JP2003190953A - Electrolytic sterilized water producing apparatus - Google Patents

Electrolytic sterilized water producing apparatus

Info

Publication number
JP2003190953A
JP2003190953A JP2001392557A JP2001392557A JP2003190953A JP 2003190953 A JP2003190953 A JP 2003190953A JP 2001392557 A JP2001392557 A JP 2001392557A JP 2001392557 A JP2001392557 A JP 2001392557A JP 2003190953 A JP2003190953 A JP 2003190953A
Authority
JP
Japan
Prior art keywords
water
electrolytic
cooling water
cooling
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001392557A
Other languages
Japanese (ja)
Other versions
JP3986820B2 (en
Inventor
Toyohiko Doi
豊彦 土井
Masaki Suzuki
正喜 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU GIKEN KOGYO KK
Morinaga Milk Industry Co Ltd
Original Assignee
HOKUETSU GIKEN KOGYO KK
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU GIKEN KOGYO KK, Morinaga Milk Industry Co Ltd filed Critical HOKUETSU GIKEN KOGYO KK
Priority to JP2001392557A priority Critical patent/JP3986820B2/en
Publication of JP2003190953A publication Critical patent/JP2003190953A/en
Application granted granted Critical
Publication of JP3986820B2 publication Critical patent/JP3986820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that the life of an electrode is shortened by the temperature rise of an electrolytic cell in a apparatus for producing electrolytic sterilized water by applying electrolysis to raw water containing a chlorine ion such as hydrochloric acid, and to provide an electrolytic sterilized water producing apparatus capable of efficiently suppressing the temperature rise of the electrolytic cell without making it large-sized. <P>SOLUTION: The electrolytic sterilized water producing apparatus 20 capable of suppressing the temperature rise of the electrolytic cell 30 and prolonging the life of the electrode is provided by installing a cooling jacket 40 through which cooling water is passed in the outside of the electrolytic cell 30. A structure having a connection passage 50 for letting the electrolytic sterilized water produce in the electrolytic cell 30 into the cooling jacket 40 and supplying the electrolytic sterilized water from a cooling water outlet 42 after it is stirred and mixed with cooling water and diluted inside the cooling jacket 40 is adopted to the apparatus. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、塩素イオンを含
有する原料水を電気分解して、次亜塩素酸を含有する電
解殺菌水を生成する電解殺菌水製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic sterilized water production apparatus for electrolyzing raw material water containing chlorine ions to produce electrolytic sterilized water containing hypochlorous acid.

【0002】[0002]

【従来の技術】近年、種々の溶液を電気分解して得られ
る電解水に、殺菌効果があることが知られており、この
ような電解殺菌水は種々の殺菌、消毒に応用されている
(芝紀代子ら著、「強電解水ハンドブック」、医学情報
社、平成7年)。従来の電解殺菌水の製造方法として
は、例えば特開平1−180293号公報のように、塩
化ナトリウムを添加した水を隔膜付きの電解槽に通液
し、これを電気分解し、陽極側に生成する強酸性水を電
解殺菌水として取得するものが知られている。この電解
殺菌水のpHは1.5以上3.2以下であり、単なる低
pH液に比して殺菌効果が高いとされている。また、特
許第2627100号の明細書に開示された技術におい
ては、塩化ナトリウムを添加した水と、塩酸を添加した
水とを混合し、これを無隔膜電解槽によって電気分解す
るものであり、この塩化ナトリウムを添加した水は、電
解する際の効率を増加するために不可欠の添加物とされ
ている。更に、特願平8−309920号、特願平10
−189744号(いずれも発明者は本発明者の一人で
ある土井豊彦)では、実質的に塩化ナトリウムを含有し
ない塩酸水溶液を、無隔膜電解槽に通液して電気分解
し、電解殺菌水を得る技術が開示されている。
2. Description of the Related Art In recent years, it has been known that electrolyzed water obtained by electrolyzing various solutions has a sterilizing effect, and such electrolyzed water has been applied to various sterilization and disinfection ( Kiyoko Shiba et al., "Strong Electrolyzed Water Handbook", Medical Information Company, 1995). As a conventional method for producing electrolytic sterilized water, for example, as disclosed in JP-A-1-180293, water containing sodium chloride is passed through an electrolytic cell with a diaphragm, which is electrolyzed to generate on the anode side. It is known to obtain strong acidic water as electrolyzed water. The pH of this electrolytic sterilizing water is 1.5 or more and 3.2 or less, and it is said that the sterilizing effect is higher than that of a simple low pH liquid. Further, in the technique disclosed in the specification of Japanese Patent No. 2627100, water to which sodium chloride is added and water to which hydrochloric acid is added are mixed and electrolyzed by a diaphragmless electrolytic cell. Water added with sodium chloride is an essential additive for increasing the efficiency of electrolysis. Furthermore, Japanese Patent Application Nos. 8-309920 and 10
No. 189744 (all inventors are one of the present inventors, Toyohiko Doi), a hydrochloric acid aqueous solution containing substantially no sodium chloride is passed through a diaphragmless electrolytic cell to be electrolyzed to obtain electrolytic sterilized water. Techniques for obtaining are disclosed.

【0003】これらの技術によって製造された電解殺菌
水は、例えば、次亜塩素酸ソ−ダを水に溶解して調製し
た塩素水に比して、低塩素濃度であっても殺菌効果が高
く、また、毎回使用する度に微妙な濃度調整を行なう必
要がないので、殺菌剤として好適である。電解殺菌水の
原料となる水(以下、原料水と記載する場合がある。)
は、例えば、塩化ナトリウム水溶液、塩酸水溶液等のよ
うに塩素イオンを含有する水である。このような原料水
を電気分解し、電解酸化の作用により塩素ガスを発生さ
せ、発生した塩素ガスを水に溶解させて、水中に次亜塩
素酸を生成させる。この次亜塩素酸の作用によって電解
殺菌水は殺菌効果を呈するのである。
The electrolytic sterilizing water produced by these techniques has a high sterilizing effect even at a low chlorine concentration as compared with, for example, chlorine water prepared by dissolving soda hypochlorite in water. Moreover, since it is not necessary to finely adjust the concentration each time it is used, it is suitable as a germicide. Water as a raw material for electrolytic sterilization water (hereinafter sometimes referred to as raw material water)
Is water containing chloride ions, such as an aqueous solution of sodium chloride and an aqueous solution of hydrochloric acid. Such raw material water is electrolyzed, chlorine gas is generated by the action of electrolytic oxidation, and the generated chlorine gas is dissolved in water to generate hypochlorous acid in water. The electrolytic sterilized water exhibits a bactericidal effect by the action of this hypochlorous acid.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
電解殺菌水製造装置では、電気分解に伴い電解槽の温度
が上昇する傾向があり、電極が劣化して寿命が短くなる
問題があった。また、電解槽から供給される高濃度の電
解殺菌水は水で希釈して使用することが通常の使用法で
あるが、高濃度の電解殺菌水が使用者の手指に直接触れ
たりすると肌荒れの原因になる等の不都合がある。前述
の特願平10−189744号では、水道水等の水(以
下、原水と称する場合がある)を2手に分流して一方を
電解槽へ電解用原水として供給し、他方を電解槽から供
給される高濃度の電解殺菌水の希釈水として利用する技
術を開示しているが、電解槽から出た電解殺菌水と希釈
水とを攪拌混合する攪拌混合槽を電解槽と別に設けて、
希釈済みの電解殺菌水を供給するとなると、当該電解殺
菌水製造装置を含む設備全体の構成の大型化、コスト上
昇が避けられない。また、前記攪拌混合槽のように、希
釈水と電解殺菌水とを攪拌混合するための手段が無い
と、最終的に出口から供給される製品(電解殺菌水)の
濃度が安定しにくいといった問題がある。
However, in the conventional electrolytic sterilizing water producing apparatus, there is a problem that the temperature of the electrolytic cell tends to rise due to electrolysis and the electrode deteriorates to shorten the life. In addition, the high concentration electrolytic sterilized water supplied from the electrolysis tank is usually used by diluting with water, but if the high concentration electrolytic sterilized water is directly touched by the user's fingers, it may cause rough skin. There is an inconvenience such as a cause. In the above-mentioned Japanese Patent Application No. 10-189744, water such as tap water (hereinafter sometimes referred to as raw water) is divided into two hands, one of which is supplied to the electrolytic cell as raw water for electrolysis and the other of which is supplied from the electrolytic cell. Disclosed is a technique to use as diluted water of high-concentration electrolytic sterilizing water to be supplied, but a stirring and mixing tank for stirring and mixing electrolytic sterilizing water and diluting water discharged from an electrolytic tank is provided separately from the electrolytic tank.
When the diluted electrolytic sterilizing water is supplied, it is unavoidable that the size of the entire equipment including the electrolytic sterilizing water producing apparatus is increased and the cost is increased. In addition, the problem that the concentration of the product (electrolytic sterilized water) finally supplied from the outlet is difficult to stabilize unless there is a means for stirring and mixing the diluting water and the electrolytic sterilized water like the stirring and mixing tank. There is.

【0005】この発明の課題は、(1)電解槽の温度上
昇を抑えて電極の劣化を抑制することで電極の寿命を延
長できる、(2)電解槽で生成した電解殺菌水を冷却水
通路を利用して冷却水と攪拌混合することで希釈して、
供給濃度の安定化を低コストで実現できる、コンパクト
な電解殺菌水製造装置を提供することである。
The object of the present invention is to (1) suppress the temperature rise of the electrolytic cell and suppress the deterioration of the electrode to extend the life of the electrode. (2) The electrolytic sterilized water produced in the electrolytic cell is used as a cooling water passage. Dilute by stirring and mixing with cooling water using
It is an object of the present invention to provide a compact electrolytic sterilizing water production apparatus capable of stabilizing the supply concentration at low cost.

【0006】[0006]

【課題を解決するための手段】この発明に係る電解殺菌
水製造装置は、塩素イオンを含有する原料水を電気分解
して電解殺菌水を生成する電解殺菌水製造装置であっ
て、前記原料水を電気分解して前記電解殺菌水を生成す
る電解槽に、冷却水が通水される冷却水通路が設けられ
ていることを特徴とする。請求項2記載の発明は、請求
項1記載の電解殺菌水製造装置において、前記電解槽と
前記冷却水通路とが接続通路によって接続され、前記冷
却水通路は該冷却水通路の冷却水入口から流入された冷
却水と前記接続通路を介して該冷却水通路に流入した電
解殺菌水とを攪拌混合する機能を有し、前記冷却水によ
って混合希釈された電解殺菌水を前記冷却水通路の冷却
水出口から供給するようになっていることを特徴とす
る。請求項3記載の発明は、請求項2記載の電解殺菌水
製造装置において、前記接続通路の前記冷却水通路側の
端部である接続通路出口が前記冷却水入口付近に開口さ
れていることを特徴とする。請求項4記載の発明は、請
求項2又は3記載の電解殺菌水製造装置において、前記
接続通路の前記電解槽側の端部である接続通路入口が前
記電解槽の上部に開口されていることを特徴とする。請
求項5記載の発明は、請求項1から4のいずれかに記載
の電解殺菌水製造装置において、前記電解槽の外側に前
記冷却水通路である冷却ジャケットがリング状に設けら
れ、前記冷却ジャケットの中心軸線がほぼ水平となるよ
うに設置される二重筒状に構成されていることを特徴と
する。請求項6記載の発明は、請求項2〜4のいずれか
に記載の電解殺菌水製造装置において、前記電解槽の外
側に前記冷却水通路である冷却ジャケットがリング状に
設けられ、前記冷却ジャケットの中心軸線がほぼ水平と
なるように設置される二重筒状に構成され、前記冷却ジ
ャケットは、冷却水入口から流入された冷却水を該冷却
ジャケットの周方向ほぼ全周にわたって通過させて冷却
水出口から排出する冷却水通路を形成していることを特
徴とする。
The electrolytic sterilizing water producing apparatus according to the present invention is an electrolytic sterilizing water producing apparatus that electrolyzes raw material water containing chlorine ions to produce electrolytic sterilizing water. A cooling water passage through which cooling water is passed is provided in an electrolytic cell that electrolyzes to produce the electrolytic sterilized water. According to a second aspect of the present invention, in the electrolytic sterilized water manufacturing apparatus according to the first aspect, the electrolytic cell and the cooling water passage are connected by a connection passage, and the cooling water passage is from a cooling water inlet of the cooling water passage. It has a function of stirring and mixing the inflowing cooling water and the electrolytic sterilizing water flowing into the cooling water passage through the connection passage, and cooling the electrolytic sterilizing water mixed and diluted with the cooling water in the cooling water passage. It is characterized by being supplied from a water outlet. According to a third aspect of the present invention, in the electrolytic sterilized water manufacturing apparatus according to the second aspect, a connection passage outlet, which is an end portion of the connection passage on the cooling water passage side, is opened near the cooling water inlet. Characterize. According to a fourth aspect of the present invention, in the electrolytic sterilized water manufacturing apparatus according to the second or third aspect, a connection passage inlet, which is an end portion of the connection passage on the electrolytic cell side, is opened at an upper portion of the electrolytic cell. Is characterized by. According to a fifth aspect of the present invention, in the electrolytic sterilized water manufacturing apparatus according to any one of the first to fourth aspects, a cooling jacket that is the cooling water passage is provided in a ring shape outside the electrolytic cell, and the cooling jacket is provided. It is characterized in that it is configured in a double-cylindrical shape so that the central axis line of is substantially horizontal. According to a sixth aspect of the present invention, in the electrolytic sterilizing water production apparatus according to any of the second to fourth aspects, a cooling jacket, which is the cooling water passage, is provided in a ring shape outside the electrolytic cell, and the cooling jacket is provided. The cooling jacket is installed in such a manner that the central axis of the cooling jacket is substantially horizontal, and the cooling jacket cools the cooling water introduced from the cooling water inlet by passing the cooling water over substantially the entire circumference of the cooling jacket. The cooling water passage for discharging from the water outlet is formed.

【0007】この発明に係る電解殺菌水製造装置は、電
解槽に冷却用の冷却水通路が設けられている構成であ
り、電解槽に設けられた冷却水通路によって電解槽の温
度上昇が抑えられるため、電極の劣化を抑制でき、電極
を長寿命化できる。これにより、長期にわたって所望の
電解効率を安定に維持できる。冷却水通路としては、例
えば、電解槽内あるいは電解槽の外壁外面に沿って配設
した通水パイプや、電解槽の外壁外面に沿って配設した
ジャケット(請求項5の冷却ジャケット等。内側に冷却
水が通水される流路(通路)を形成するもの)など、各
種構成が採用可能である。
The electrolytic sterilizing water producing apparatus according to the present invention has a structure in which a cooling water passage for cooling is provided in the electrolytic cell, and the cooling water passage provided in the electrolytic cell suppresses the temperature rise of the electrolytic cell. Therefore, the deterioration of the electrode can be suppressed and the life of the electrode can be extended. Thereby, the desired electrolysis efficiency can be stably maintained over a long period of time. As the cooling water passage, for example, a water passage pipe provided inside the electrolytic cell or along the outer surface of the outer wall of the electrolytic cell, or a jacket provided along the outer surface of the outer wall of the electrolytic cell (cooling jacket of claim 5 and the like). Various configurations such as a flow path (passage) through which cooling water flows can be used.

【0008】請求項2記載の発明に係る電解殺菌水製造
装置は、電解槽にて生成した電解殺菌水を、電解槽と冷
却水通路とを接続する接続通路を介して冷却水通路に流
入させ、この冷却水通路内にて冷却水と攪拌混合するこ
とで希釈してから、冷却水通路の冷却水出口から供給す
る構成になっている。ここで、冷却水通路は、接続通路
を介して冷却水通路に流入した電解殺菌水と冷却水とを
攪拌混合する機能を有するものであり、前記攪拌混合を
実現する構成として、例えばパイプ状の冷却水通路の湾
曲や屈曲、攪拌用の突起や凹凸等の接触攪拌手段等を内
部に有するものを採用する。これにより、冷却水出口か
ら所望の希釈濃度で希釈された電解殺菌水を安定供給で
きる。
In the electrolytic sterilized water producing apparatus according to the second aspect of the present invention, the electrolytic sterilized water generated in the electrolytic bath is caused to flow into the cooling water passage through the connection passage connecting the electrolytic bath and the cooling water passage. In this cooling water passage, the cooling water is agitated and mixed to be diluted, and then supplied from the cooling water outlet of the cooling water passage. Here, the cooling water passage has a function of stirring and mixing the electrolytic sterilization water and the cooling water that have flowed into the cooling water passage through the connection passage, and as a configuration for realizing the stirring and mixing, for example, a pipe shape A cooling water passage having a curved or bent contact stirring means such as a stirring projection or unevenness is used. As a result, the electrolytic sterilized water diluted with a desired dilution concentration can be stably supplied from the cooling water outlet.

【0009】請求項3記載の発明のように、前記接続通
路の前記冷却水通路側の端部である接続通路出口は、前
記冷却水入口付近に開口されていることがより好まし
く、これにより、冷却水通路内での電解殺菌水と冷却水
との攪拌混合をより充分に行える。
It is more preferable that the connection passage outlet, which is the end portion of the connection passage on the cooling water passage side, is opened near the cooling water inlet. The electrolytic sterilization water and the cooling water can be more sufficiently stirred and mixed in the cooling water passage.

【0010】請求項4記載の発明のように、前記接続通
路の前記電解槽側の端部である接続通路入口が前記電解
槽の上部に開口されている構成を採用すると、電解槽で
の原料水(塩酸水溶液等)の電気分解に伴い発生するガ
ス(水素ガス等)が電解槽の上部から順次、接続通路を
介して冷却水通路に送り出されて、電解槽上部に滞留す
ることを防止できる。これにより、電解槽内の滞留ガス
によって電解槽内の原料水の収容量が減少して電解効率
が低下する等の不都合を防止でき、電解槽の容積を有効
に活用できる。電解槽に設けられた液入口から、塩酸水
溶液等の原料水が電解槽内に流入(必要に応じて希釈用
の水も流入)される構成の場合、電解槽での電気分解に
伴って発生して電解槽上部に溜まったガスは、前記原料
液入口からの原料水等の流入によって順次押し出される
ようにして、接続通路を経由して冷却水通路に排出され
る。冷却水通路に送り込まれた水素ガス等の水に溶解し
にくいガスは、電解殺菌水や冷却水と一緒に攪拌されて
これら電解殺菌水及び冷却水の攪拌混合を促進する機能
を果たす。請求項3記載のように接続通路出口を冷却水
通路の冷却水入口付近に設けると、ガスによる攪拌効果
をより一層有効に作用させることが可能になる。
When the connection passage inlet, which is the end of the connection passage on the electrolytic cell side, is opened at the upper part of the electrolytic cell, the raw material in the electrolytic cell is set. It is possible to prevent the gas (hydrogen gas, etc.) generated by the electrolysis of water (hydrochloric acid aqueous solution, etc.) from the upper part of the electrolytic cell to be sequentially sent out to the cooling water path through the connection path and stay in the upper part of the electrolytic cell . As a result, it is possible to prevent the inconvenience that the amount of raw water contained in the electrolytic cell decreases due to the stagnant gas in the electrolytic cell and the electrolysis efficiency decreases, and the volume of the electrolytic cell can be effectively utilized. When the raw material water such as hydrochloric acid aqueous solution flows into the electrolysis tank through the liquid inlet provided in the electrolysis tank (water for dilution also flows in if necessary), it is generated by electrolysis in the electrolysis tank Then, the gas accumulated in the upper part of the electrolytic cell is sequentially pushed out by the inflow of the raw material water or the like from the raw material liquid inlet, and is discharged to the cooling water passage through the connection passage. The gas, such as hydrogen gas, which is sent into the cooling water passage and is difficult to dissolve in water, is stirred together with the electrolytic sterilizing water and the cooling water to fulfill the function of promoting the stirring and mixing of the electrolytic sterilizing water and the cooling water. When the connection passage outlet is provided in the vicinity of the cooling water inlet of the cooling water passage as described in claim 3, the stirring effect of the gas can be more effectively exerted.

【0011】請求項5記載のように、前記電解槽の外側
に前記冷却水通路である冷却ジャケットがリング状に設
けられ、前記冷却ジャケットの中心軸線がほぼ水平とな
るように設置される二重筒状に構成されている構成であ
れば、冷却ジャケットの内側に電解槽が保護された構成
であり、電解槽の冷却効率を向上できる。また、接続通
路を介して冷却ジャケットに電解殺菌水を導入して冷却
ジャケット内で冷却水と攪拌混合する構成(請求項2〜
4記載の発明の冷却水通路が冷却ジャケットである構
成)では、電解槽の外側のリング状の冷却ジャケットで
あれば、攪拌混合のための流路(通路)をより長く確保
したり、攪拌混合のための機能を付与する構成とするこ
とが容易であり、電解殺菌水と冷却水との攪拌混合をよ
り充分に行うことができる利点もある。具体的には、請
求項6記載のように、前記冷却ジャケットが、冷却水入
口から流入された冷却水を該冷却ジャケットの周方向ほ
ぼ全周にわたって通過させて冷却水出口から排出する冷
却水通路を形成している構成等によって実現される。
According to a fifth aspect of the present invention, a cooling jacket, which is the cooling water passage, is provided in a ring shape on the outside of the electrolytic cell, and the cooling jacket is installed so that the central axis of the cooling jacket is substantially horizontal. If the configuration is cylindrical, the electrolytic cell is protected inside the cooling jacket, and the cooling efficiency of the electrolytic cell can be improved. Further, electrolytic sterilizing water is introduced into the cooling jacket through the connection passage and stirred and mixed with the cooling water in the cooling jacket (claim 2
4), the cooling water passage of the invention described in 4) is a ring-shaped cooling jacket on the outer side of the electrolytic cell, so that a longer passage (passage) for stirring and mixing can be ensured or stirring and mixing can be performed. It is easy to adopt a configuration for imparting the function for, and there is also an advantage that the electrolytic sterilization water and the cooling water can be more sufficiently stirred and mixed. Specifically, as described in claim 6, a cooling water passage through which the cooling jacket allows the cooling water introduced from the cooling water inlet to pass through substantially the entire circumference in the circumferential direction of the cooling jacket and to discharge the cooling water from the cooling water outlet. It is realized by the configuration forming the.

【0012】[0012]

【発明の実施の形態】以下、本発明の電解殺菌水製造装
置の実施の形態を説明する。ここで、電解殺菌水の原料
となる塩素イオンを含有した原料水は、例えば、塩化ナ
トリウム水溶液、塩酸水溶液等のように塩素イオンを含
有する水である。本発明に係る電解殺菌水製造装置は、
このような原料水を電気分解し、電解酸化の作用により
塩素ガスを発生させ、発生した塩素ガスを水に溶解させ
て、水中に次亜塩素酸を生成させるものである。但し、
電解効率の向上、それによるランニングコストの低減、
電極の長寿命化等の点では、特願平10−189744
号のように、電解槽として無隔膜電解槽、電解用の電極
として複極式電極を採用し、実質的に塩化ナトリウムを
含有しない原料水(人為的なナトリウムの添加等が無い
原料水。ナトリウムイオン濃度が200ppm以下)を
電解槽(無隔膜電解槽)にて電気分解する構成を採用す
ることが適している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the electrolytic sterilizing water producing apparatus of the present invention will be described below. Here, the raw material water containing chlorine ions, which is a raw material for electrolytic sterilization water, is water containing chlorine ions, such as an aqueous solution of sodium chloride or an aqueous solution of hydrochloric acid. Electrolytic sterilizing water production apparatus according to the present invention,
Such raw material water is electrolyzed, chlorine gas is generated by the action of electrolytic oxidation, and the generated chlorine gas is dissolved in water to generate hypochlorous acid in water. However,
Improving electrolysis efficiency, thereby reducing running costs,
In terms of extending the life of the electrode, Japanese Patent Application No. 10-189744
As described in No. 3, a non-diaphragm electrolytic cell is used as an electrolytic cell, a bipolar electrode is used as an electrode for electrolysis, and raw material water that does not substantially contain sodium chloride (raw material water without artificial addition of sodium. It is suitable to employ a configuration in which an ion concentration of 200 ppm or less) is electrolyzed in an electrolytic cell (non-diaphragm electrolytic cell).

【0013】一般に電解槽において、電極を、複数の電
極板で構成して通電する場合には、通電の方法として、
従来、単極式及び複極式の二種類の形式が公知である
(社団法人電気化学協会編、「電気化学便覧」、第51
0ペ−ジ、丸善、昭和29年)。単極式とは、電極板の
全てが陰極又は陽極のいずれかである形式であり、複極
式とは、例えば、複数の電極を一定間隔で相互に絶縁し
て重ね合わせた構造を有し、電源の陽極に接続された電
極板と、電源の陰極に接続された電極板との間に、いず
れの極とも接続されない電極(以下、中間電極と記載す
る。)が、少なくとも1枚存在する形式である(本明細
書では、単極式の通電方法を行う電極を単極式電極、複
極式の通電方法を行う電極を複極式電極と記載する)で
ある。特願平10−189744号のように、複極式電
極は単極式電極に比べて様々な利点があり、前述のよう
に、無隔膜電解槽にて、実質的に塩化ナトリウムを含有
しない原料水の電気分解に用いることで、電解効率の向
上、それによるランニングコストの低減、電極の長寿命
化等の様々な効果が得られる。
Generally, in an electrolytic cell, when the electrode is composed of a plurality of electrode plates and is energized, the energizing method is as follows.
Conventionally, two types of types, a monopolar type and a bipolar type, are known (edited by the Electrochemical Society of Japan, “Electrochemical Handbook”, No. 51).
0 page, Maruzen, 1958). The unipolar type is a type in which all of the electrode plates are either cathodes or anodes, and the bipolar type has, for example, a structure in which a plurality of electrodes are insulated from each other at regular intervals and overlapped. Between the electrode plate connected to the anode of the power source and the electrode plate connected to the cathode of the power source, there is at least one electrode that is not connected to any of the electrodes (hereinafter referred to as an intermediate electrode). This is the format (in the present specification, an electrode that performs a monopolar energization method is described as a monopolar electrode and an electrode that performs a bipolar electrode energization method is described as a bipolar electrode). As in Japanese Patent Application No. 10-189744, a bipolar electrode has various advantages as compared with a monopolar electrode, and as described above, a raw material containing substantially no sodium chloride in a diaphragmless electrolytic cell. By using it for electrolysis of water, various effects such as improvement of electrolysis efficiency, reduction of running cost due to it, and extension of life of the electrode can be obtained.

【0014】図1は、この発明の実施の形態に係る電解
殺菌水製造装置を備える電解殺菌水製造システムの構成
図である。電解殺菌水製造システム1は、塩酸(水溶
液)と水道水などである原水とを電解殺菌水製造装置2
0の電解槽30に供給して、塩酸水溶液を原水で希釈し
て調製した原料水を電解槽30内で電気分解して電解殺
菌水を生成し、この電解殺菌水を電解殺菌水製造装置2
0の冷却ジャケット40内で冷却水によって混合希釈し
たものを供給口16から供給するものであり、原水入口
2から流入した原水が流れる原水ライン1Aと、この原
水ライン1Aを流れる原水の一部を電解殺菌水製造装置
20の電解槽30に供給する希釈水供給ライン1Bと、
原水ライン1Aを流れる原水の一部を前記電解殺菌水製
造装置20の冷却水通路である冷却ジャケット40に冷
却水として供給する冷却水供給ライン1Cと、塩酸水溶
液を電解殺菌水製造装置20の電解槽30に供給する塩
酸供給ライン1Dと、電解殺菌水製造装置20にて製造
され前記冷却ジャケット40の冷却水出口42から排出
された電解殺菌水(希釈済み)を供給口16に供給する
電解水供給ライン1Eとを有している。希釈水供給ライ
ン1Bは、原水ライン1Aに設けられた分流器9から下
流側に2手に分岐された一方であり、冷却水供給ライン
1Cは分岐された他方である。
FIG. 1 is a configuration diagram of an electrolytic sterilizing water production system including an electrolytic sterilizing water producing apparatus according to an embodiment of the present invention. The electrolytic sterilized water production system 1 uses hydrochloric acid (aqueous solution) and raw water such as tap water to produce electrolytic sterilized water 2
No. 0 electrolysis tank 30 and the raw water prepared by diluting the hydrochloric acid aqueous solution with raw water is electrolyzed in the electrolysis tank 30 to generate electrolytic sterilized water.
A mixture of the cooling water mixed with the cooling water in the cooling jacket 40 of 0 is supplied from the supply port 16, and the raw water line 1A through which the raw water flowing from the raw water inlet 2 flows and a part of the raw water flowing through this raw water line 1A. A dilution water supply line 1B for supplying to the electrolytic bath 30 of the electrolytic sterilized water manufacturing apparatus 20;
A cooling water supply line 1C for supplying a part of the raw water flowing through the raw water line 1A as cooling water to a cooling jacket 40 which is a cooling water passage of the electrolytic sterilized water production apparatus 20, and an electrolysis of the electrolytic sterilized water production apparatus 20 for hydrochloric acid aqueous solution. Hydrochloric acid supply line 1D for supplying to tank 30, and electrolytic sterilized water (diluted) discharged from cooling water outlet 42 of cooling jacket 40 produced in electrolytic sterilized water production apparatus 20 to electrolytic inlet water supplied to supply port 16 It has a supply line 1E. The dilution water supply line 1B is branched into two parts downstream from the flow divider 9 provided in the raw water line 1A, and the cooling water supply line 1C is the other branched part.

【0015】電解槽30内では、塩酸供給ライン1Dに
よって供給された塩酸(水溶液)を、希釈水供給ライン
1Bから供給された希釈水としての原水によって希釈し
て調製される原料水を電気分解するようになっている。
なお、原料水の塩化水素濃度は、適切な反応を起させる
ためには0.01%(重量。以下、特に断りのない限り
同じ。)以上であることが望ましく、特に0.1%以上
であることが推奨される。ただし、経済性を追及する場
合には、塩化水素濃度は、1.0%以上、21.0%以
下であることが望ましい。即ち、塩化水素濃度が1.0
%以上であれば、工業的に安定した反応を得ることが可
能であり、また21.0%以下であれば、常温で発煙す
ることがなく、保管、取扱いの点で望ましいからであ
る。「原水」は、水道水、地下水、伏流水、脱塩水、蒸
留水、精製水(RO水、膜処理水)、これらの混合水等
であって、実質的に塩化ナトリウムを含有しない水を意
味している。
In the electrolytic cell 30, the raw water prepared by diluting the hydrochloric acid (aqueous solution) supplied from the hydrochloric acid supply line 1D with the raw water as the dilution water supplied from the dilution water supply line 1B is electrolyzed. It is like this.
The concentration of hydrogen chloride in the raw material water is preferably 0.01% (by weight, hereinafter, the same unless otherwise specified) in order to cause an appropriate reaction, and particularly preferably 0.1% or more. Is recommended. However, when economic efficiency is pursued, the hydrogen chloride concentration is preferably 1.0% or more and 21.0% or less. That is, the hydrogen chloride concentration is 1.0
%, It is possible to obtain an industrially stable reaction, and if it is 21.0% or less, no smoke is generated at room temperature, which is desirable in terms of storage and handling. "Raw water" means tap water, ground water, underground water, demineralized water, distilled water, purified water (RO water, membrane-treated water), mixed water thereof, and the like, which does not substantially contain sodium chloride. is doing.

【0016】原水ライン1Aは、原水入口2から流入し
た原水が流れる流路に、ストレーナ4と、ストレーナ4
の下流側で原水の流れを開閉する開閉弁5(電磁弁)
と、電磁弁5の下流側にて配管内を流れる原水の圧力を
計測する圧力センサ6a,6bと、原水の流量を電磁弁
5の下流側で一定に調整する定流量弁7と、原水の逆流
を定流量弁7の下流側で防止する逆止弁8とが接続され
ており、この逆止弁8の下流側に接続された分流器9に
よって、希釈水供給ライン1Bと冷却水供給ライン1C
とに分岐されている。
The raw water line 1A has a strainer 4 and a strainer 4 in a flow path through which raw water flowing from the raw water inlet 2 flows.
Valve 5 (solenoid valve) that opens and closes the flow of raw water on the downstream side of
A pressure sensor 6a, 6b for measuring the pressure of the raw water flowing in the pipe on the downstream side of the solenoid valve 5, a constant flow valve 7 for adjusting the flow rate of the raw water to a constant level on the downstream side of the solenoid valve 5, and the raw water. A check valve 8 for preventing backflow from the downstream side of the constant flow valve 7 is connected, and a diversion water supply line 1B and a cooling water supply line are connected by a flow divider 9 connected to the downstream side of the check valve 8. 1C
It has been branched to.

【0017】希釈水供給ライン1Bには、原水を電解槽
30に向けて送り出すポンプ10と、ポンプ10の下流
側で原水の逆流を防止する背圧逆止弁11とが接続され
ている。一方、冷却水供給ライン1Cは、原水ライン1
Aの下流端の配管3を分流器9の下流側に延長した部分
などによって形成された原水流路を電解殺菌水製造装置
20の冷却ジャケット40に接続した構成であり、この
冷却水供給ライン1Cを流れる原水は、図示しないポン
プによる原水ライン1Aの原水入口2への原水の流入圧
によって電解殺菌水製造装置20の冷却ジャケット40
に送り込まれる。
The dilution water supply line 1B is connected to a pump 10 for sending raw water toward the electrolytic cell 30 and a back pressure check valve 11 for preventing backflow of raw water on the downstream side of the pump 10. On the other hand, the cooling water supply line 1C is the raw water line 1
A raw water flow path formed by a portion of the pipe 3 at the downstream end of A extending to the downstream side of the flow distributor 9 is connected to the cooling jacket 40 of the electrolytic sterilizing water producing apparatus 20, and the cooling water supply line 1C is provided. The raw water flowing through the cooling water is supplied to the raw water inlet 2 of the raw water line 1A by a pump (not shown), and the cooling jacket 40 of the electrolytic sterilized water manufacturing apparatus 20 is controlled by the raw water.
Sent to.

【0018】塩酸供給ライン1Dには、塩酸水溶液(H
CL)を貯蔵する容器12と、この容器12から配管1
3を介して塩酸水溶液を吸い出し、電解殺菌水製造装置
20に向けて送り出すポンプ14と、ポンプ14の下流
側で塩酸水溶液の逆流を防止する背圧逆止弁15とが接
続されている。
A hydrochloric acid aqueous solution (H
CL) container 12 and a pipe 1 from this container 12
A pump 14 for sucking the hydrochloric acid aqueous solution through 3 and sending it toward the electrolytic sterilization water producing apparatus 20 and a back pressure check valve 15 for preventing the reverse flow of the hydrochloric acid aqueous solution are connected on the downstream side of the pump 14.

【0019】電解水供給ライン1Eには、原水ライン1
Aへの原水の流入圧、及び、ポンプ10、14の送り圧
によって電解殺菌水製造装置20から送り出されてきた
電解殺菌水が流入し、供給口16へ送り出される。この
電解水供給ライン1Eに接続されたバイパス流路1Fに
は、電解殺菌水の流れを開閉する開閉弁17(電磁弁)
及び電解殺菌水のPHを測定するPH計18が接続され
ている。このバイパス流路1Fの一端は分流器Faを介
して電解水供給ライン1Eと接続され、他端は前記一端
よりも下流にて分流器Fbを介して電解水供給ライン1
Eに接続されている。
The electrolytic water supply line 1E has a raw water line 1
The electrolytic sterilized water sent from the electrolytic sterilized water manufacturing apparatus 20 flows in by the inflow pressure of the raw water into A and the feed pressure of the pumps 10 and 14, and is sent out to the supply port 16. An on-off valve 17 (solenoid valve) for opening and closing the flow of electrolytic sterilizing water is provided in the bypass flow passage 1F connected to the electrolytic water supply line 1E.
Also, a PH meter 18 for measuring the pH of the electrolytic sterilization water is connected. One end of the bypass flow passage 1F is connected to the electrolyzed water supply line 1E via the flow distributor Fa, and the other end is downstream of the one end via the flow distributor Fb to the electrolyzed water supply line 1E.
It is connected to E.

【0020】図2〜図4は電解殺菌水製造装置20を示
す図であって、図2は斜視図、図3は正面図、図4は縦
断面図である。なお、図3及び図4では、図2に示す電
解殺菌水製造装置20の前後を逆にして示しており、図
3は図2に示す電解殺菌水製造装置20の接続通路50
が形成されている鏡板23側から見た図であり、これを
「前面」としている。また、図4は、図3を若干拡大し
た大きさで図示している。
2 to 4 are views showing an electrolytic sterilized water producing apparatus 20, FIG. 2 is a perspective view, FIG. 3 is a front view, and FIG. 4 is a longitudinal sectional view. 3 and 4, the front and rear of the electrolytic sterilized water manufacturing apparatus 20 shown in FIG. 2 are reversed, and FIG. 3 shows the connection passage 50 of the electrolytic sterilized water manufacturing apparatus 20 shown in FIG.
It is the figure seen from the end plate 23 side in which is formed, and this is made into the "front". Further, FIG. 4 illustrates the size of FIG. 3 in a slightly enlarged manner.

【0021】図2〜図4に示すように、電解殺菌水製造
装置20は、円筒状の隔壁(円筒内壁)を構成する内筒
21と、この内筒21の外側に同心円状に配置され円筒
状の外ケース(円筒外壁)を構成する外筒22と、内筒
21の軸方向両端開口部を塞ぐ円板23a、24aと、
円板23a、24aを外側から覆うように固定された円
板23b、24bと、これら円板23b、24bを内側
に収容するようにしてその外側に同心円状に配置されて
一体化され、内筒21及び外筒22の間に画成されたリ
ング状の空間の軸方向両端を塞ぐ円環状板23c、24
cなどから構成された二重円筒容器(タンク)である。
円板23a、23b、24a、24b及び円環状板23
c、24cは、二重円筒容器の鏡板23、24を構成す
る。
As shown in FIGS. 2 to 4, the electrolytic sterilizing water producing apparatus 20 includes an inner cylinder 21 that constitutes a cylindrical partition wall (a cylindrical inner wall), and a cylinder that is concentrically arranged outside the inner cylinder 21. An outer cylinder 22 that forms a cylindrical outer case (cylindrical outer wall), and disks 23a and 24a that close the openings of both ends of the inner cylinder 21 in the axial direction,
The discs 23b and 24b fixed so as to cover the discs 23a and 24a from the outside, and the discs 23b and 24b are housed inside and are concentrically arranged on the outside to be integrated with each other. 21. The annular plates 23c, 24 for closing both axial ends of a ring-shaped space defined between the outer cylinder 21 and the outer cylinder 22.
It is a double cylindrical container (tank) composed of c and the like.
Discs 23a, 23b, 24a, 24b and annular plate 23
c and 24c constitute the end plates 23 and 24 of the double cylindrical container.

【0022】前記電解槽30及び前記冷却ジャケット4
0は、この電解殺菌水製造装置20の内部に画成されて
いる。前記電解槽30は、内筒21とその軸方向両端の
円板23a、24aとによって形成されている。また、
電解槽30との隔壁としての内筒21と、外筒22と、
円環状板23c、24cとによって、電解槽30の外側
をリング状に取り囲む形状の冷却ジャケット40が形成
されている。また、この電解殺菌水製造装置20は、二
重円筒容器の中心軸線方向をほぼ水平にして設置され、
電解槽30の外周を、該電解槽30のほぼ水平になって
いる中心軸線廻りに冷却ジャケット40が取り巻くよう
に配置された構成になっている。図2〜図3において、
紙面上側が該装置20の上側、紙面下側が該装置20の
下側である。また、装置20の側部は、上部と下部の中
間(例えば図3左右)にて側面を形成する部分である。
The electrolytic cell 30 and the cooling jacket 4
0 is defined inside the electrolytic sterilizing water manufacturing apparatus 20. The electrolytic cell 30 is formed by the inner cylinder 21 and the disks 23a and 24a at both axial ends thereof. Also,
An inner cylinder 21 as a partition with the electrolytic cell 30, an outer cylinder 22,
The annular jackets 23c and 24c form a cooling jacket 40 that surrounds the outside of the electrolytic cell 30 in a ring shape. Further, the electrolytic sterilized water manufacturing apparatus 20 is installed with the central axis direction of the double cylindrical container being substantially horizontal,
The outer periphery of the electrolytic cell 30 is arranged so that the cooling jacket 40 surrounds the substantially horizontal center axis of the electrolytic cell 30. 2 to 3,
The upper side of the paper is the upper side of the device 20, and the lower side of the paper is the lower side of the device 20. Further, the side portion of the device 20 is a portion that forms a side surface between the upper portion and the lower portion (for example, left and right in FIG. 3).

【0023】この電解殺菌水製造装置20は、電解槽3
0にて、図1に示す塩酸供給ライン1Dによって供給さ
れた塩酸水溶液と希釈水供給ライン1Bによって供給さ
れた希釈水(原水)とが混合された原料水を電気分解し
て電解殺菌水を生成し、この電解殺菌水を接続通路50
を介して冷却ジャケット40内部の冷却水通路に流入さ
せて、該冷却ジャケット40に冷却水供給ライン1Cか
ら供給された冷却水と混合して希釈した後、冷却水出口
42から排出、供給するようになっている。冷却ジャケ
ット40は、冷却水によって電解槽30を冷却する機能
に加えて、電解殺菌水を冷却水によって混合希釈する混
合槽としても機能する。電解槽30での電気分解並びに
冷却ジャケット40での電解殺菌水の希釈は、塩酸供給
ライン1Dや希釈水供給ライン1Bから電解槽30への
塩酸水溶液や原水の流入、冷却水供給ライン1Cから冷
却ジャケット40への冷却水の流入を継続しつつ行うこ
とができ、この場合、これら各ライン1B〜1Dからの
液の流入に対応する量の液(冷却水によって希釈された
電解殺菌水)が冷却水出口42から継続的に排出され
る。
This electrolytic sterilized water producing apparatus 20 is equipped with an electrolytic bath 3
At 0, electrolysis of the raw material water in which the hydrochloric acid aqueous solution supplied by the hydrochloric acid supply line 1D shown in FIG. 1 and the dilution water (raw water) supplied by the dilution water supply line 1B are electrolyzed to generate electrolytic sterilized water. Then, this electrolytic sterilizing water is connected to the connecting passage 50.
The cooling water is introduced into the cooling water passage through the cooling jacket 40 to be mixed with the cooling water supplied from the cooling water supply line 1C to the cooling jacket 40 to be diluted, and then discharged and supplied from the cooling water outlet 42. It has become. The cooling jacket 40 has a function of cooling the electrolyzer 30 with cooling water, and also functions as a mixing tank for mixing and diluting electrolytic sterilized water with cooling water. Electrolysis in the electrolysis tank 30 and dilution of electrolytic sterilizing water in the cooling jacket 40 are performed by inflowing a hydrochloric acid aqueous solution or raw water into the electrolysis tank 30 from the hydrochloric acid supply line 1D or dilution water supply line 1B, and cooling from the cooling water supply line 1C. The cooling water can be continuously supplied to the jacket 40. In this case, the amount of the liquid (electrolytic sterilized water diluted with the cooling water) corresponding to the inflow of the liquid from each of the lines 1B to 1D is cooled. It is continuously discharged from the water outlet 42.

【0024】接続通路50は、前面側の鏡板23(詳細
には電解槽30の鏡板を構成する円板23a)に該円板
23aの面方向に沿って真っ直ぐに穿設された穿孔と、
この穿孔の延長上に位置する内筒21を貫通して形成さ
れた孔とを連通させたものであり、その一端に電解槽3
0内に開口する接続通路入口51、他端に冷却ジャケッ
ト40内に開口する接続通路出口52を有している。な
お、図3、図4では、円板23aに貫通孔を穿設したた
めその一端を封止材53で密閉して、接続通路入口51
から接続通路50に流入した電解殺菌水が、円板23a
と内筒21との接合部に入り込まないようにして、シー
ル性を高めているが、これに限定されず、例えば、接続
通路入口51側が円板23a端面に貫通していない穿孔
を形成することも可能であり、この場合には封止材53
による封止の手間を省略できる。
The connection passage 50 has a perforation formed in the front end plate 23 (specifically, the disk 23a constituting the end plate of the electrolytic cell 30) in a straight line along the surface direction of the disk 23a.
A hole formed by penetrating the inner cylinder 21 located on the extension of the perforation is communicated with the electrolytic cell 3 at one end thereof.
It has a connection passage inlet 51 opening into 0 and a connection passage outlet 52 opening into the cooling jacket 40 at the other end. In FIGS. 3 and 4, since the circular plate 23a is provided with a through hole, one end thereof is sealed with the sealing material 53, and the connection passage inlet 51 is formed.
Electrolytic sterilized water that has flowed into the connection passage 50 from the disk 23a
The sealability is improved by not entering the joint between the inner cylinder 21 and the inner cylinder 21, but the invention is not limited to this. For example, forming a perforation on the end face of the disc 23a at the connection passage inlet 51 side. Is also possible, in this case the sealing material 53
The labor of sealing by can be omitted.

【0025】電解槽30は、塩酸供給ライン1Dによっ
て供給された塩酸水溶液を希釈水供給ライン1Bによっ
て供給された希釈水(原水)によって希釈した原料水を
電気分解して電解殺菌水を生成する無隔膜式電解槽であ
る。塩酸供給ライン1Dによって供給される塩酸水溶液
及び希釈水供給ライン1Bによって供給される希釈水
(原水)は、後面側の鏡板24外側に突出された配管接
続部31の液入口31a、31b(流入穴)から、電解
槽30の内側空間、すなわち、内筒21とその軸方向両
端の円板23a、24aとによって囲まれる内側の空間
内に流入される。液入口31a、31bには、塩酸供給
ライン1Dや希釈水供給ライン1Bの配管端末が接続さ
れる。
The electrolytic bath 30 produces electrolytic sterilized water by electrolyzing raw material water obtained by diluting the hydrochloric acid aqueous solution supplied by the hydrochloric acid supply line 1D with the dilution water (raw water) supplied by the dilution water supply line 1B. It is a diaphragm type electrolytic cell. The hydrochloric acid aqueous solution supplied by the hydrochloric acid supply line 1D and the diluting water (raw water) supplied by the diluting water supply line 1B are liquid inlets 31a, 31b (inflow holes) of the pipe connecting portion 31 projected outside the end plate 24 on the rear surface side. ) Into the inner space of the electrolytic cell 30, that is, the inner space surrounded by the inner cylinder 21 and the disks 23a and 24a at both axial ends thereof. Piping terminals of the hydrochloric acid supply line 1D and the dilution water supply line 1B are connected to the liquid inlets 31a and 31b.

【0026】電解槽30の内側空間には、それぞれ電解
槽30の中心軸線と直交する向きで配置された複数の円
板状の電極32、32…が配列されており、複数の電極
32の通電によって電解槽30内の原料水が電気分解さ
れる。図4中、符号33、34は、電極32間の間隔を
確保する電気絶縁性のスペーサである。但し、詳細に
は、複数の電極32は複極式電極を構成しており、陽極
となる電極と陰極となる電極との間に、どちらの極性で
も無い電極が存在するように通電される。電極32への
通電用の端子34a、34bは、電解殺菌水製造装置2
0の鏡板23、24を貫通して外側に突出されており、
これら端子34a、34bに接続された直流電源35に
よって、陽極又は陰極となる各電極32への通電がなさ
れる。このように、複極式電極を備えた無隔膜式電解槽
30によって、ナトリウムイオンを含まない原料水を電
気分解する場合、優れた電解効率が得られる(特願平1
0−189744号参照)。
In the inner space of the electrolytic cell 30, there are arranged a plurality of disc-shaped electrodes 32, 32 ... Arranged in a direction orthogonal to the central axis of the electrolytic cell 30, and the plurality of electrodes 32 are energized. As a result, the raw material water in the electrolytic cell 30 is electrolyzed. In FIG. 4, reference numerals 33 and 34 are electrically insulating spacers that secure a space between the electrodes 32. However, in detail, the plurality of electrodes 32 constitute a bipolar electrode, and the electrodes are energized so that an electrode having neither polarity exists between the electrode serving as the anode and the electrode serving as the cathode. The terminals 34a, 34b for energizing the electrode 32 are used in the electrolytic sterilized water manufacturing apparatus 2
It penetrates through the end plates 23 and 24 of 0, and is projected outside,
A DC power supply 35 connected to these terminals 34a and 34b energizes each electrode 32 that serves as an anode or a cathode. As described above, when the raw material water containing no sodium ions is electrolyzed by the diaphragmless electrolytic cell 30 equipped with the bipolar electrode, excellent electrolysis efficiency can be obtained (Japanese Patent Application No.
0-189744).

【0027】電解槽30内にて生成された電解殺菌水
は、塩酸供給ライン1Dや希釈水供給ライン1Bから電
解槽30への液(塩酸水溶液や希釈水)の流入に伴い順
次、接続通路50を介して押し出されるようにして冷却
ジャケット40内へ流入して行く。ここで、塩酸供給ラ
イン1Dや希釈水供給ライン1Bから液入口31a、3
1bに流入された塩酸水溶液や希釈水は、配管接続部3
1内の流路31c、31d(図3参照)を通って該配管
接続部31内の合流流路31eにて合流、混合され、こ
の配管接続部31が設けられている鏡板24の電解槽3
0内側空間に臨む内面側に開口する合流流路31e端部
(図4参照)から電解槽30内部空間に流入されるよう
になっている。一方、接続通路50は、前面側の鏡板2
3の電解槽30内部空間に臨む内面側に開口する接続通
路入口51から電解槽30内の液が流入するようになっ
ているため、電解槽30内では、電解前の原料水が後面
側の鏡板24側から前面側の鏡板23へ順次電解されつ
つ移動し、最終的には塩酸がほぼ完全に分解された状態
(電解殺菌水)で接続通路50に流入する。しかも、合
流流路31eの端部は、後面側の鏡板24の下部に開口
しているのに対し、接続通路50の接続通路入口51
は、前面側の鏡板23の上部に開口されているため、こ
の点からも、電解槽30内の原料水を、接続通路50に
到達するまでに充分に電気分解させることができる。
The electrolytic sterilizing water produced in the electrolytic cell 30 is sequentially connected to the connection passage 50 as the liquid (hydrochloric acid aqueous solution or diluted water) flows into the electrolytic cell 30 from the hydrochloric acid supply line 1D or the diluted water supply line 1B. It flows into the cooling jacket 40 so as to be extruded through. Here, from the hydrochloric acid supply line 1D or the dilution water supply line 1B, the liquid inlets 31a, 3
The hydrochloric acid aqueous solution and dilution water that have flowed into the 1b are connected to the pipe connecting portion 3
1 through the flow passages 31c and 31d (see FIG. 3) in the pipe connection portion 31 to be merged and mixed, and the electrolytic cell 3 of the end plate 24 in which the pipe connection portion 31 is provided.
The end portion of the merging flow passage 31e (see FIG. 4) that opens toward the inner surface facing the 0 inner space is introduced into the inner space of the electrolytic cell 30. On the other hand, the connecting passage 50 is provided on the front end plate 2
Since the liquid in the electrolysis tank 30 flows in from the connection passage inlet 51 opening to the inner surface side facing the inner space of the electrolysis tank 30 of 3, the raw material water before electrolysis in the electrolysis tank 30 is on the rear surface side. The end plate 24 moves from the side of the end plate 24 to the end plate 23 on the front side while being sequentially electrolyzed, and finally flows into the connection passage 50 in a state where hydrochloric acid is almost completely decomposed (electrolytic sterilized water). Moreover, while the end portion of the confluent flow passage 31e is open to the lower portion of the end plate 24 on the rear surface side, the connection passage inlet 51 of the connection passage 50 is formed.
Is opened at the upper part of the end plate 23 on the front side, and from this point as well, the raw material water in the electrolytic cell 30 can be sufficiently electrolyzed before reaching the connection passage 50.

【0028】塩酸水溶液と希釈水との混合水である原料
水の電気分解では、陽極から発生した塩素ガスが原料水
に溶解して次亜塩素酸を生成する一方、陰極から発生し
た水素ガスは水溶性に乏しいため、原料水に溶解せずに
気泡となって上昇する。この水素ガスが電解槽30の上
部に溜まると、電解槽30内部における原料水の収容量
が少なくなり、電解効率の低下の原因になるが、この電
解殺菌水製造装置20では、前述のように、接続通路5
0の接続通路入口50が電解槽30の上部(鏡板23の
上部)に開口されているため、塩酸供給ライン1Dや希
釈水供給ライン1Bからの塩酸水溶液や希釈水の流入に
伴って、電解槽30内で生成された電解殺菌水とともに
水素ガスの気泡をも順次押し出すようにして接続通路5
0から冷却ジャケット40内に流入、排出させることが
でき、電解槽30内にガスが溜まることを防止できるた
め、高い電解効率を維持できる。
In the electrolysis of raw material water which is a mixed water of hydrochloric acid aqueous solution and dilution water, chlorine gas generated from the anode is dissolved in the raw material water to generate hypochlorous acid, while hydrogen gas generated from the cathode is Since it has poor water solubility, it does not dissolve in the raw material water and rises as bubbles. If this hydrogen gas accumulates in the upper part of the electrolysis tank 30, the amount of raw material water contained in the electrolysis tank 30 decreases, which causes a decrease in electrolysis efficiency. However, in the electrolytic sterilized water manufacturing apparatus 20, as described above. , Connection passage 5
Since the connection passage inlet 50 of 0 is opened in the upper part of the electrolytic cell 30 (upper part of the end plate 23), the electrolytic cell is accompanied by the inflow of the hydrochloric acid aqueous solution or the diluted water from the hydrochloric acid supply line 1D or the diluted water supply line 1B. In addition to the electrolytic sterilizing water generated in 30, the bubbles of hydrogen gas are sequentially pushed out so that the connection passage 5
Since it can be introduced into and discharged from the cooling jacket 40 from 0 and gas can be prevented from accumulating in the electrolysis tank 30, high electrolysis efficiency can be maintained.

【0029】また、この電解殺菌水製造装置20では、
冷却ジャケット40内を流れる冷却水によって電解槽3
0が冷却されるため、電解に伴う発熱による電解槽30
の温度上昇を抑制できる。これにより、電極32の劣化
を抑制でき、電極32の長寿命化を実現できるから、長
期にわたって高い電解効率を安定に維持できるといった
利点がある。冷却水供給ライン1Cから供給される冷却
水は、冷却ジャケット40の側部の冷却水入口41から
冷却ジャケット40内の流路、つまり、内筒21と外筒
22と両円環状板23c、24cとによって囲まれる内
側の空間に流入され、リング状の冷却ジャケット40内
を図3中反時計回りに流れて、前記冷却水入口41付近
に設けられている冷却水出口42から流出する。冷却水
入口41と冷却水出口42との間は、冷却ジャケット4
0内部が仕切板43によって水密に仕切られており、冷
却ジャケット40内には、冷却水入口41から流入され
た冷却水が、冷却ジャケット40のほぼ全周を移動した
後、冷却水出口42から流出する流路(冷却水流路)が
形成される。しかも、冷却ジャケット40内では、リン
グ状の冷却ジャケット40の周方向全周にわたって分散
配置されている多数の邪魔板44、45によって多数回
蛇行された流路が形成されており、冷却ジャケット40
内面、とりわけ、電解槽30と冷却ジャケット40との
間の隔壁になっている内筒21と冷却水との接触、熱交
換が充分になされて、電解槽30を効果的に冷却できる
ようになっている。
Further, in this electrolytic sterilized water producing apparatus 20,
By the cooling water flowing in the cooling jacket 40, the electrolytic cell 3
Since 0 is cooled, the electrolyzer 30 due to heat generated by electrolysis
Can suppress the temperature rise. As a result, the deterioration of the electrode 32 can be suppressed, and the life of the electrode 32 can be extended. Therefore, there is an advantage that high electrolysis efficiency can be stably maintained for a long period of time. The cooling water supplied from the cooling water supply line 1C flows from the cooling water inlet 41 on the side of the cooling jacket 40 into the cooling jacket 40, that is, the inner cylinder 21, the outer cylinder 22, and the both annular plates 23c and 24c. It flows into the inner space surrounded by and flows in the ring-shaped cooling jacket 40 counterclockwise in FIG. 3 and flows out from the cooling water outlet 42 provided near the cooling water inlet 41. The cooling jacket 4 is provided between the cooling water inlet 41 and the cooling water outlet 42.
The interior of 0 is watertightly divided by a partition plate 43, and the cooling water flowing from the cooling water inlet 41 into the cooling jacket 40 moves around the entire circumference of the cooling jacket 40 and then from the cooling water outlet 42. An outflow passage (cooling water passage) is formed. Moreover, in the cooling jacket 40, a plurality of baffle plates 44 and 45, which are distributed over the entire circumference in the circumferential direction of the ring-shaped cooling jacket 40, form a flow path meandered many times.
The contact and heat exchange between the inner surface, in particular, the inner cylinder 21 serving as a partition wall between the electrolytic cell 30 and the cooling jacket 40 and the cooling water are sufficiently performed so that the electrolytic cell 30 can be effectively cooled. ing.

【0030】図3、図4に示す邪魔板44、45はいず
いれも内筒21と外筒22との間を連結するリブ状にな
っているが、符号44の邪魔板は、前面側の鏡板23
(詳細には円環状板23c)との間のみに冷却水通路で
ある間隙部44aを確保して他の部分は冷却ジャケット
40内面と密接しており、符号45の邪魔板は、前面側
の鏡板24(詳細には円環状板24c)との間のみに冷
却水通路である間隙部45aを確保して他の部分は冷却
ジャケット40内面と密接しており、冷却ジャケット4
0内を流れる冷却水は、各邪魔板44、45の間隙部4
4a、45aを経由して繰り返し蛇行して流れる。
Both the baffles 44 and 45 shown in FIGS. 3 and 4 are in the form of ribs that connect the inner cylinder 21 and the outer cylinder 22, but the baffle 44 is the front side. End plate 23
A gap portion 44a, which is a cooling water passage, is secured only between (specifically, the annular plate 23c), and the other portion is in close contact with the inner surface of the cooling jacket 40. A gap portion 45a which is a cooling water passage is secured only between the end plate 24 (specifically, the annular plate 24c), and the other portion is in close contact with the inner surface of the cooling jacket 40.
The cooling water flowing in 0 is the gap 4 between the baffles 44 and 45.
It repeatedly meanders and flows via 4a and 45a.

【0031】冷却ジャケット40内では、電解槽30か
ら接続通路50を介して冷却ジャケット40内に流入し
た電解殺菌水が冷却水と混合されて、攪拌されつつ冷却
水出口42へ向かって流れていく。接続通路出口52
は、冷却水入口41付近で冷却ジャケット40内に開口
されているため、接続通路50から冷却ジャケット40
内に流入した電解殺菌水は冷却水とともに冷却ジャケッ
ト40内の冷却水通路のほぼ全長を流れてから冷却水出
口42から流出されることになり、冷却ジャケット40
内を移動する間に、前述の邪魔板44、45との接触、
蛇行等によって、冷却水と良く攪拌混合される。このた
め、冷却水出口42からは、所望濃度に希釈された電解
殺菌水が安定に得られる。
In the cooling jacket 40, the electrolytic sterilized water flowing from the electrolytic cell 30 into the cooling jacket 40 through the connection passage 50 is mixed with the cooling water and flows toward the cooling water outlet 42 while being stirred. . Connection passage outlet 52
Has an opening in the cooling jacket 40 near the cooling water inlet 41, so that the
The electrolyzed sterilized water that has flowed into the inside flows along the cooling water along substantially the entire length of the cooling water passage in the cooling jacket 40 and then flows out from the cooling water outlet 42.
While moving inside, contact with the baffles 44, 45 described above,
By meandering or the like, it is well stirred and mixed with the cooling water. Therefore, electrolytic sterilized water diluted to a desired concentration can be stably obtained from the cooling water outlet 42.

【0032】しかも、冷却ジャケット40内では、電解
槽30から接続通路50を介して流入した水素ガス等の
水溶性が乏しいガスの気泡も、冷却水や電解殺菌水とと
もに冷却水出口42に向かって押し流されて行く。ここ
で、水素ガス等の気泡は、邪魔板44、45等と接触し
ながら水中で攪拌されることで、冷却水と電解殺菌水と
の攪拌混合を促進する機能を果たす。なお、図3に示す
ように、冷却水入口41付近から冷却ジャケット40の
下部にかけて、他の部分に比べて邪魔板44、45の設
置間隔が短く、高密度に配置されている初期攪拌領域R
が設けられており、接続通路50から流入した水素ガス
等の気泡の冷却水(及び電解殺菌水)の流れに伴う冷却
水通路の下流側への移動しやすくなっているため、冷却
水入口41付近で大量のガスが溜まって、接続通路50
からの電解殺菌水の流入の障害になるといった不都合は
生じない。
Moreover, in the cooling jacket 40, bubbles of gas having a poor water solubility such as hydrogen gas flowing from the electrolytic cell 30 through the connection passage 50 are also directed to the cooling water outlet 42 together with the cooling water and the electrolytic sterilizing water. I will be washed away. Here, the bubbles of hydrogen gas or the like fulfill a function of promoting stirring and mixing of the cooling water and the electrolytic sterilized water by being stirred in water while being in contact with the baffles 44, 45 and the like. As shown in FIG. 3, from the vicinity of the cooling water inlet 41 to the lower part of the cooling jacket 40, the installation intervals of the baffle plates 44 and 45 are shorter than other portions, and the initial stirring region R is arranged in high density.
Is provided and is easily moved to the downstream side of the cooling water passage due to the flow of cooling water (and electrolytic sterilizing water) such as bubbles of hydrogen gas flowing in from the connection passage 50. A large amount of gas accumulates near the connection passage 50.
There is no inconvenience such as obstruction to the inflow of electrolytic sterilization water from.

【0033】冷却ジャケット内を流れる冷却水と電解殺
菌水との攪拌、混合を促進する機構としては、前述の邪
魔板44、45に限定されず、例えば、ラシヒリングや
ベルルサドルなどの設置等も採用可能である。
The mechanism for promoting the stirring and mixing of the cooling water flowing in the cooling jacket and the electrolytic sterilizing water is not limited to the baffles 44 and 45 described above, and, for example, the installation of Raschig rings, berl saddles, etc. can also be adopted. Is.

【0034】(冷却効果)図5は、この発明に係る前記
電解殺菌水製造装置20の電解槽30の温度変化を示す
グラフである。図5に示す縦軸は温度(°C)であり、
横軸は時間(分)である。電解中の温度変化を調べるた
めに、冷却ジャケット40内で電解殺菌水を原水に混合
せずに取出しチューブによって直接外部に取り出せるよ
うに電解殺菌水製造装置20を構成した。そして、取出
しチューブの外面に温度センサを設置して、電解槽30
から排出された直後の電解殺菌水の温度を測定した。冷
却効果を確認するために、冷却ジャケット40に水を流
した場合と流さない場合とで同様に測定をした。図5に
示すように、冷却ジャケット40に冷却水を流した場合
には、冷却水を流さなかった場合に比べて電解槽30の
温度が低く冷却効果が確認された。また、電解殺菌水製
造装置20の電極32の端子34a、34bに50.4
VDC/2.5Aの電流を流して電気分解し、水硬度が
標準で水温21°Cの原水及び冷却水を室温31°Cの
環境下で電解槽30及び冷却ジャケット40に供給し
た。図3に示す接続通路入口51における配管温度を測
定したところ、冷却しない場合には配管温度58°Cで
あったが冷却した場合には配管温度47°Cであり冷却
効果が確認された。
(Cooling Effect) FIG. 5 is a graph showing a temperature change in the electrolytic cell 30 of the electrolytic sterilized water manufacturing apparatus 20 according to the present invention. The vertical axis shown in FIG. 5 is the temperature (° C),
The horizontal axis is time (minutes). In order to examine the temperature change during electrolysis, the electrolytic sterilized water production apparatus 20 was configured so that the electrolytic sterilized water could be directly taken out by a take-out tube without being mixed with the raw water in the cooling jacket 40. Then, a temperature sensor is installed on the outer surface of the take-out tube, and the electrolytic cell 30
The temperature of electrolytic sterilized water immediately after being discharged from was measured. In order to confirm the cooling effect, the same measurement was performed with and without water flowing through the cooling jacket 40. As shown in FIG. 5, when the cooling water was flown through the cooling jacket 40, the temperature of the electrolytic cell 30 was lower than that when the cooling water was not flowed, and the cooling effect was confirmed. Moreover, 50.4 is attached to the terminals 34a and 34b of the electrode 32 of the electrolytic sterilized water manufacturing apparatus 20.
A current of VDC / 2.5 A was applied to cause electrolysis, and raw water having a standard water hardness of 21 ° C. and cooling water were supplied to the electrolytic cell 30 and the cooling jacket 40 in an environment of room temperature of 31 ° C. When the pipe temperature at the connection passage inlet 51 shown in FIG. 3 was measured, the pipe temperature was 58 ° C. without cooling, but the pipe temperature was 47 ° C. with cooling, confirming the cooling effect.

【0035】(混合効果)図6は、この発明に係る電解
殺菌水製造装置の有効塩素濃度の変化を示すグラフであ
る。図1〜図4に示す電解殺菌水製造装置20の電解槽
30に5%塩酸水溶液100mL/hを供給するととも
に冷却ジャケット40に水20L/mを供給し、電極3
2,33の端子32a,33aに24VDC/2Aの電
流を流して電解殺菌水を生成し希釈された電解殺菌水を
得た。この電解殺菌水を定時的にサンプリングし、次の
ヨウ素滴定法によって有効塩素濃度の値を測定した。即
ち、サンプリングした試料200gを精密に量り、ヨウ
化カリウム2g及び酢酸(1→4)10mLを加え、直
ちに密栓して暗所に15分間放置し、遊離したヨウ素を
0.005mol/Lチオ硫酸ナトリウム溶液で滴定す
る(指示薬 デンプン試薬)。また、別に空試験を行い
補正する。なお、0.005mol/Lチオ硫酸ナトリ
ウム溶液1mLは0.17727mgClに相当する。
(Mixing Effect) FIG. 6 is a graph showing changes in effective chlorine concentration of the electrolytic sterilizing water manufacturing apparatus according to the present invention. To the electrolysis tank 30 of the electrolytic sterilized water manufacturing apparatus 20 shown in FIGS. 1 to 4, 100 mL / h of a 5% hydrochloric acid aqueous solution is supplied, and 20 L / m of water is supplied to the cooling jacket 40 to supply the electrode 3
A current of 24 VDC / 2 A was applied to the terminals 32a and 33a of 2, 33 to generate electrolytic sterilized water, and diluted electrolytic sterilized water was obtained. This electrolytic sterilized water was sampled at regular intervals, and the value of effective chlorine concentration was measured by the following iodometric titration method. That is, 200 g of the sampled sample was precisely weighed, 2 g of potassium iodide and 10 mL of acetic acid (1 → 4) were added, the container was immediately sealed and left in the dark for 15 minutes, and the liberated iodine was 0.005 mol / L sodium thiosulfate. Titrate with solution (indicator starch reagent). In addition, a separate blank test will be performed and corrected. 1 mL of the 0.005 mol / L sodium thiosulfate solution corresponds to 0.17727 mgCl.

【0036】(ガス漏れ)50cm立法の箱を作成し
て、図1〜図4に示す電解殺菌水製造装置20及び塩素
ガスセンサ(フィガロ技研社製半導体ガスセンサを用い
て自作したもの)をこの箱内に設置して連続的に電気分
解した。連続5時間電気分解したが塩素ガスは検出され
なかった。一方、冷却効果の確認で使用した電解槽(冷
却ジャケット40のない電解槽)によって同様の試験を
行ったところ、5時間後に空中塩素濃度が0.6ppm
であった。これは、電解槽から出た高濃度の電解殺菌水
をチューブや継ぎ手を経由して流下させるときに、チュ
ーブや継ぎ手から極僅かに塩素ガスが透過することによ
るもので、本発明による冷却ジャケット40付きの電解
槽30ではガス透過が完全に防止されることを示してい
る。つまり、冷却ジャケット40付きの電解槽30の構
造になっている本発明の電解殺菌水製造装置では、電解
槽30のシール性が向上するとともに、電解槽30内で
生成された高濃度の電解殺菌水は電解殺菌水製造装置の
外に出ること無く冷却ジャケット内にて冷却水との混合
希釈されてしまうため、塩素ガスが外部に漏れ出す機会
が無く、高い安全性を確保できる。
(Gas Leakage) A 50 cm cubic box was prepared, and the electrolytic sterilizing water production apparatus 20 and the chlorine gas sensor (made by himself using a semiconductor gas sensor manufactured by Figaro Giken Co., Ltd.) shown in FIGS. It was set up in and electrolyzed continuously. Electrolysis was carried out for 5 hours continuously, but chlorine gas was not detected. On the other hand, when the same test was conducted using the electrolytic cell used to confirm the cooling effect (electrolytic cell without the cooling jacket 40), the chlorine concentration in the air was 0.6 ppm after 5 hours.
Met. This is because when the high-concentration electrolytic sterilized water discharged from the electrolytic cell is made to flow down through the tube or joint, a slight amount of chlorine gas permeates from the tube or joint, and the cooling jacket 40 according to the present invention. It is shown that gas permeation is completely prevented in the attached electrolytic cell 30. That is, in the electrolytic sterilizing water production apparatus of the present invention having the structure of the electrolytic bath 30 with the cooling jacket 40, the sealing performance of the electrolytic bath 30 is improved and the high concentration electrolytic sterilization generated in the electrolytic bath 30 is performed. Since the water is mixed and diluted with the cooling water in the cooling jacket without going out of the electrolytic sterilizing water manufacturing apparatus, there is no chance that chlorine gas leaks to the outside, and high safety can be secured.

【0037】この発明は、以上説明した実施形態に限定
するものではなく、種々の変形又は変更が可能であり、
これらもこの発明の範囲内である。例えば、この発明の
実施形態では、電解槽へ希釈水として供給される原水と
同一の原水ラインを流れる水(原水)を冷却ジャケット
へ冷却水として供給する構成を例示したが、冷却ジャケ
ットへ供給する希釈水の取水は必ずしも電解槽へ供給さ
れる希釈水と同一の水源の水である必要は無く、電解槽
へ供給される希釈水とは別の水源の水であっても良い。
また、この実施形態では、電解用の電解質原料として塩
酸水溶液を例に挙げて説明したが、食塩又は塩化カリウ
ムなどについてもこの発明に適用することができる。電
解槽、冷却ジャケットの具体的形状は、前述の実施の形
態に例示したものに限定されず、各種採用可能である。
例えば、冷却ジャケットの構成は、単に、電解槽の外側
をリング状に覆う形状でなく、電解槽の外側の出来るだ
け多くの領域を覆うようにすることが、シール性を向上
して塩素ガス等のガス漏出を防止することに有利に機能
する。また、前述の実施の形態の内筒21及び外筒22
の「円」筒状、各鏡板23、24を構成する「円」板や
「円」環状板などの「円」形状は、正円に限定されるも
のでは無く、楕円、その他の変形例も含まれる。
The present invention is not limited to the embodiments described above, and various modifications and changes are possible.
These are also within the scope of this invention. For example, in the embodiment of the present invention, the configuration is shown in which the water (raw water) flowing through the same raw water line as the raw water supplied as the dilution water to the electrolytic cell is supplied to the cooling jacket as the cooling water, but it is supplied to the cooling jacket. The diluting water is not necessarily taken from the same water source as the diluting water supplied to the electrolytic cell, but may be a water source different from the diluting water supplied to the electrolytic cell.
In addition, in this embodiment, an aqueous hydrochloric acid solution is taken as an example of the electrolyte raw material for electrolysis, but it is also possible to apply salt or potassium chloride to the present invention. The specific shapes of the electrolytic cell and the cooling jacket are not limited to those exemplified in the above-mentioned embodiment, and various types can be adopted.
For example, the structure of the cooling jacket is not merely a ring-shaped outer surface of the electrolytic cell, but a large area on the outer side of the electrolytic cell is covered to improve the sealing performance and to prevent chlorine gas, etc. It advantageously functions to prevent gas leakage. Further, the inner cylinder 21 and the outer cylinder 22 of the above-described embodiment.
The “circular” shape such as the “circular” cylindrical shape, the “circular” plate or the “circular” annular plate that constitutes each end plate 23, 24 is not limited to a perfect circle, and an ellipse and other modified examples are also possible. included.

【0038】[0038]

【発明の効果】この発明に係る電解殺菌水製造装置によ
れば、電解槽に冷却用の冷却水通路が設けられている構
成であり、電解槽に設けられた冷却水通路によって電解
槽の温度上昇が抑えられるため、電極の劣化を抑制で
き、電極を長寿命化できる。これにより、長期にわたっ
て所望の電解効率を安定に維持できる。
According to the electrolytic sterilizing water producing apparatus of the present invention, the electrolytic cell is provided with the cooling water passage for cooling, and the temperature of the electrolytic cell is controlled by the cooling water passage provided in the electrolytic cell. Since the rise is suppressed, the deterioration of the electrode can be suppressed and the life of the electrode can be extended. Thereby, the desired electrolysis efficiency can be stably maintained over a long period of time.

【0039】請求項2記載の発明に係る電解殺菌水製造
装置によれば、電解槽にて生成した電解殺菌水を、電解
槽と冷却水通路とを接続する接続通路を介して冷却水通
路に流入させ、この冷却水通路内にて冷却水と攪拌混合
することで希釈してから、冷却水通路の冷却水出口から
供給できるので、冷却水出口から所望の希釈濃度で希釈
された電解殺菌水を安定供給できる。
According to the electrolytic sterilizing water producing apparatus of the second aspect of the invention, the electrolytic sterilizing water produced in the electrolytic bath is supplied to the cooling water passage through the connection passage connecting the electrolytic bath and the cooling water passage. It can be supplied from the cooling water outlet of the cooling water passage after being diluted with the cooling water passage by stirring and mixing with the cooling water in the cooling water passage. Can be stably supplied.

【0040】請求項3記載の発明のように、前記接続通
路の前記冷却水通路側の端部である接続通路出口は、前
記冷却水入口付近に開口されていることがより好まし
く、これにより、冷却水通路内での電解殺菌水と冷却水
との攪拌混合をより充分に行える。
It is more preferable that the connection passage outlet, which is the end of the connection passage on the cooling water passage side, is opened near the cooling water inlet. The electrolytic sterilization water and the cooling water can be more sufficiently stirred and mixed in the cooling water passage.

【0041】請求項4記載の発明のように、前記接続通
路の前記電解槽側の端部である接続通路入口が前記電解
槽の上部に開口されている構成を採用すると、電解槽で
の原料水(塩酸水溶液等)の電気分解に伴い発生するガ
ス(水素ガスや塩素ガス)が電解槽の上部から順次、接
続通路を介して冷却水通路に送り出されて、電解槽上部
に滞留することを防止できる。これにより、電解槽内の
滞留ガスによって電解槽内の原料水の収容量が減少して
電解効率が低下する等の不都合を防止でき、電解槽の容
積を有効に活用できる。また、冷却水通路に流入したガ
スの気泡をも、電解殺菌水と冷却水との攪拌混合の促進
に利用できる。
According to the invention as set forth in claim 4, when the connection passage inlet which is the end portion of the connection passage on the electrolytic cell side is opened to the upper part of the electrolytic cell, the raw material in the electrolytic cell is The gas (hydrogen gas or chlorine gas) generated by the electrolysis of water (hydrochloric acid solution, etc.) is sequentially sent out from the upper part of the electrolytic cell to the cooling water channel through the connection channel and stays in the upper part of the electrolytic cell. It can be prevented. As a result, it is possible to prevent the inconvenience that the amount of raw water contained in the electrolytic cell decreases due to the stagnant gas in the electrolytic cell and the electrolysis efficiency decreases, and the volume of the electrolytic cell can be effectively utilized. Further, gas bubbles that have flowed into the cooling water passage can also be used to promote stirring and mixing of electrolytic sterilized water and cooling water.

【0042】請求項5記載のように、前記電解槽の外側
に前記冷却水通路である冷却ジャケットがリング状に設
けられ、前記冷却ジャケットの中心軸線がほぼ水平とな
るように設置される二重筒状に構成されている構成であ
れば、冷却ジャケットの内側に電解槽が保護された構成
であり、電解槽の冷却効率を向上できる。しかも、電解
槽の外側を覆う冷却ジャケットによって、電解槽のシー
ル性を高めることができ、微量の塩素ガス漏れ等も確実
に阻止することができ、安全性を向上できる。
According to a fifth aspect of the present invention, a cooling jacket, which is the cooling water passage, is provided in a ring shape outside the electrolytic cell, and the double jacket is installed so that the central axis of the cooling jacket is substantially horizontal. If the configuration is cylindrical, the electrolytic cell is protected inside the cooling jacket, and the cooling efficiency of the electrolytic cell can be improved. In addition, the cooling jacket that covers the outside of the electrolytic cell can enhance the sealing performance of the electrolytic cell, reliably prevent a small amount of chlorine gas from leaking, and improve the safety.

【0043】請求項6記載のように、冷却ジャケット
が、冷却水入口から流入された冷却水を該冷却ジャケッ
トの周方向ほぼ全周にわたって通過させて冷却水出口か
ら排出する冷却水通路を形成している構成では、攪拌混
合のための流路をより長く確保したり、攪拌混合のため
の機能を付与する構成とすることが容易であり、電解殺
菌水と冷却水との攪拌混合をより充分に行うことができ
る利点もある。
According to the sixth aspect of the present invention, the cooling jacket forms a cooling water passage through which the cooling water introduced from the cooling water inlet passes through substantially the entire circumference in the circumferential direction of the cooling jacket and is discharged from the cooling water outlet. With such a configuration, it is easy to secure a longer flow path for stirring and mixing, or to provide a function for stirring and mixing, and it is possible to sufficiently stir and mix electrolytic sterilized water and cooling water. There is also an advantage that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施形態に係る電解殺菌水製造装
置を備える電解殺菌水製造システムの構成図である。
FIG. 1 is a configuration diagram of an electrolytic sterilizing water production system including an electrolytic sterilizing water producing apparatus according to an embodiment of the present invention.

【図2】 この発明の実施形態に係る電解殺菌水製造装
置を示す斜視図である。
FIG. 2 is a perspective view showing an electrolytic sterilizing water manufacturing apparatus according to an embodiment of the present invention.

【図3】 この発明の実施形態に係る電解殺菌水製造装
置を示す正面図である。
FIG. 3 is a front view showing an electrolytic sterilizing water production apparatus according to an embodiment of the present invention.

【図4】 この発明の実施形態に係る電解殺菌水製造装
置を示す縦断面図である。
FIG. 4 is a vertical cross-sectional view showing an electrolytic sterilizing water manufacturing apparatus according to an embodiment of the present invention.

【図5】 この発明の実施形態に係る電解殺菌水製造装
置の電解槽の温度変化を示すグラフである。
FIG. 5 is a graph showing a temperature change in the electrolytic cell of the electrolytic sterilizing water manufacturing apparatus according to the embodiment of the present invention.

【図6】 この発明の実施形態に係る電解殺菌水製造装
置の有効塩素濃度の変化を示すグラフである。
FIG. 6 is a graph showing changes in effective chlorine concentration of the electrolytic sterilizing water manufacturing apparatus according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20…電解殺菌水製造装置、30…電解槽、40…冷却
ジャケット、41…冷却水入口、42…冷却水出口、5
0…接続通路、51…接続通路入口、52…接続通路出
口。
20 ... Electrolytic sterilizing water production apparatus, 30 ... Electrolyzer, 40 ... Cooling jacket, 41 ... Cooling water inlet, 42 ... Cooling water outlet, 5
0 ... connecting passage, 51 ... connecting passage inlet, 52 ... connecting passage outlet.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/76 C02F 1/76 A (72)発明者 鈴木 正喜 神奈川県大和市西鶴間8丁目6番19号 株 式会社北越技研工業内 Fターム(参考) 4D050 AA02 AA04 AB06 BB04 BD02 BD06 CA10 4D061 DA02 DA03 DB10 EA02 EB01 EB04 EB14 EB20 ED12 ED20─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/76 C02F 1/76 A (72) Inventor Masayoshi Suzuki 8-6-19 Nishitsuruma, Yamato-shi, Kanagawa F-term in Hokuetsu Giken Industrial Co., Ltd. (Reference) 4D050 AA02 AA04 AB06 BB04 BD02 BD06 CA10 4D061 DA02 DA03 DB10 EA02 EB01 EB04 EB14 EB20 ED12 ED20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 塩素イオンを含有する原料水を電気分解
して電解殺菌水を生成する電解殺菌水製造装置であっ
て、 前記原料水を電気分解して前記電解殺菌水を生成する電
解槽に、冷却水が通水される冷却水通路が設けられてい
ることを特徴とする電解殺菌水製造装置。
1. An electrolytic sterilizing water production apparatus for electrolyzing raw material water containing chlorine ions to produce electrolytic sterilizing water, comprising: an electrolytic cell for electrolyzing the raw material water to produce the electrolytic sterilizing water. An electrolytic sterilized water producing apparatus, characterized in that a cooling water passage through which cooling water is passed is provided.
【請求項2】 前記電解槽と前記冷却水通路とが接続通
路によって接続され、前記冷却水通路は該冷却水通路の
冷却水入口から流入された冷却水と前記接続通路を介し
て該冷却水通路に流入した電解殺菌水とを攪拌混合する
機能を有し、前記冷却水によって混合希釈された電解殺
菌水を前記冷却水通路の冷却水出口から供給するように
なっていることを特徴とする請求項1記載の電解殺菌水
製造装置。
2. The electrolytic cell and the cooling water passage are connected by a connection passage, and the cooling water passage is cooled by the cooling water introduced from a cooling water inlet of the cooling water passage and the connection passage. It has a function of stirring and mixing electrolytic sterilizing water that has flowed into the passage, and electrolytic sterilizing water mixed and diluted by the cooling water is supplied from a cooling water outlet of the cooling water passage. The electrolytic sterilizing water manufacturing apparatus according to claim 1.
【請求項3】 前記接続通路の前記冷却水通路側の端部
である接続通路出口が前記冷却水入口付近に開口されて
いることを特徴とする請求項2記載の電解殺菌水製造装
置。
3. The electrolytic sterilized water production apparatus according to claim 2, wherein a connection passage outlet, which is an end portion of the connection passage on the cooling water passage side, is opened near the cooling water inlet.
【請求項4】 前記接続通路の前記電解槽側の端部であ
る接続通路入口が前記電解槽の上部に開口されているこ
とを特徴とする請求項2又は3記載の電解殺菌水製造装
置。
4. The electrolytic sterilized water production apparatus according to claim 2, wherein a connection passage inlet, which is an end portion of the connection passage on the electrolysis tank side, is opened at an upper portion of the electrolysis tank.
【請求項5】 前記電解槽の外側に前記冷却水通路であ
る冷却ジャケットがリング状に設けられ、前記冷却ジャ
ケットの中心軸線がほぼ水平となるように設置される二
重筒状に構成されていることを特徴とする請求項1から
4のいずれかに記載の電解殺菌水製造装置。
5. A cooling jacket, which is the cooling water passage, is provided in a ring shape on the outside of the electrolytic cell, and is configured in a double cylinder shape so that a central axis of the cooling jacket is substantially horizontal. The electrolytic sterilized water production apparatus according to any one of claims 1 to 4, wherein
【請求項6】 前記電解槽の外側に前記冷却水通路であ
る冷却ジャケットがリング状に設けられ、前記冷却ジャ
ケットの中心軸線がほぼ水平となるように設置される二
重筒状に構成され、 前記冷却ジャケットは、冷却水入口から流入された冷却
水を該冷却ジャケットの周方向ほぼ全周にわたって通過
させて冷却水出口から排出する冷却水通路を形成してい
ることを特徴とする請求項2〜4のいずれかに記載の電
解殺菌水製造装置。
6. A cooling jacket, which is the cooling water passage, is provided in a ring shape on the outside of the electrolytic cell, and is configured in a double cylinder shape so that a central axis of the cooling jacket is substantially horizontal. 3. The cooling jacket forms a cooling water passage through which the cooling water introduced from the cooling water inlet passes through almost the entire circumference in the circumferential direction of the cooling water and is discharged from the cooling water outlet. The electrolytic sterilized water manufacturing apparatus according to any one of 1 to 4.
JP2001392557A 2001-12-25 2001-12-25 Electrolyzed water production equipment Expired - Lifetime JP3986820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392557A JP3986820B2 (en) 2001-12-25 2001-12-25 Electrolyzed water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392557A JP3986820B2 (en) 2001-12-25 2001-12-25 Electrolyzed water production equipment

Publications (2)

Publication Number Publication Date
JP2003190953A true JP2003190953A (en) 2003-07-08
JP3986820B2 JP3986820B2 (en) 2007-10-03

Family

ID=27599836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392557A Expired - Lifetime JP3986820B2 (en) 2001-12-25 2001-12-25 Electrolyzed water production equipment

Country Status (1)

Country Link
JP (1) JP3986820B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035201A (en) * 2004-07-28 2006-02-09 Hokuetsu:Kk Water-cooled vertical electrolytic cell
WO2011077875A1 (en) * 2009-12-25 2011-06-30 森永乳業株式会社 Electrolyzed water producing device
WO2013027473A1 (en) * 2011-08-24 2013-02-28 森永乳業株式会社 Electrolyzed water production device
KR101313698B1 (en) * 2013-02-01 2013-10-01 김정남 Generation-system for antiseptic solution including chlorine
JP5980373B1 (en) * 2015-04-28 2016-08-31 シャープ株式会社 Electrolyzer
JP2016209864A (en) * 2016-04-18 2016-12-15 シャープ株式会社 Electrolytic water generator
KR101706124B1 (en) * 2016-04-26 2017-02-13 주식회사 아쿠아인텍 Electrolysis apparatus and method for electrolyte and solvent
KR101762065B1 (en) * 2015-12-29 2017-08-04 주식회사 아쿠아인텍 High efficiency electrolysis apparatus and method thereof
WO2018147614A1 (en) * 2017-02-09 2018-08-16 정진호 Electrolytic electrolysis device
KR20180092806A (en) * 2017-02-09 2018-08-20 정진호 Electrolytic electrolysis device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204243174U (en) 2014-10-21 2015-04-01 中兴通讯股份有限公司 A kind of antenna structure
JP6031489B2 (en) 2014-11-11 2016-11-24 森永乳業株式会社 Embedded device and method for controlling embedded device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035201A (en) * 2004-07-28 2006-02-09 Hokuetsu:Kk Water-cooled vertical electrolytic cell
JP4599487B2 (en) * 2004-07-28 2010-12-15 株式会社ホクエツ Water-cooled vertical electrolytic cell
WO2011077875A1 (en) * 2009-12-25 2011-06-30 森永乳業株式会社 Electrolyzed water producing device
CN102666400A (en) * 2009-12-25 2012-09-12 森永乳业株式会社 Electrolysis water-making apparatus
JPWO2011077875A1 (en) * 2009-12-25 2013-05-02 森永乳業株式会社 Electrolyzed water production equipment
JP5538431B2 (en) * 2009-12-25 2014-07-02 森永乳業株式会社 Electrolyzed water production equipment
US9403699B2 (en) 2009-12-25 2016-08-02 Morinaga Milk Industry Co., Ltd. Electrolysis water-making apparatus
WO2013027473A1 (en) * 2011-08-24 2013-02-28 森永乳業株式会社 Electrolyzed water production device
US9399588B2 (en) 2011-08-24 2016-07-26 Morinaga Milk Industry Co., Ltd. Electrolysis water-making apparatus
KR101313698B1 (en) * 2013-02-01 2013-10-01 김정남 Generation-system for antiseptic solution including chlorine
JP5980373B1 (en) * 2015-04-28 2016-08-31 シャープ株式会社 Electrolyzer
WO2016174782A1 (en) * 2015-04-28 2016-11-03 シャープ株式会社 Electrolysis device
JP2016204731A (en) * 2015-04-28 2016-12-08 シャープ株式会社 Electrolytic device
CN107849712A (en) * 2015-04-28 2018-03-27 夏普生命科学株式会社 Electrolysis unit
KR101762065B1 (en) * 2015-12-29 2017-08-04 주식회사 아쿠아인텍 High efficiency electrolysis apparatus and method thereof
JP2016209864A (en) * 2016-04-18 2016-12-15 シャープ株式会社 Electrolytic water generator
KR101706124B1 (en) * 2016-04-26 2017-02-13 주식회사 아쿠아인텍 Electrolysis apparatus and method for electrolyte and solvent
WO2018147614A1 (en) * 2017-02-09 2018-08-16 정진호 Electrolytic electrolysis device
KR20180092806A (en) * 2017-02-09 2018-08-20 정진호 Electrolytic electrolysis device
KR101996479B1 (en) * 2017-02-09 2019-07-03 정진호 Electrolytic electrolysis device
US11299809B2 (en) 2017-02-09 2022-04-12 Aqentec Co., Ltd. Electrolytic electrolysis device

Also Published As

Publication number Publication date
JP3986820B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
KR100802361B1 (en) Electrolysis sterilization disinfecting possibility supply apparatus
KR101640592B1 (en) Apparatus for producing hydrogen-dissolved drinking water and process for producing the dissolved drinking water
KR100575036B1 (en) Electrolysis cell for generating chlorine dioxide
KR100964878B1 (en) Highly efficient sodium hypochlorite generator with water cooling heat exchanger
JP2003190953A (en) Electrolytic sterilized water producing apparatus
JP5640266B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
TW201208182A (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JPS6320496A (en) Automated chlorine generator
US9896354B2 (en) Method for producing oxidized water for sterilization use without adding electrolyte
JPH10121280A (en) Hypochlorite producing device
JP3818619B2 (en) Hypochlorite production apparatus and method
JP2002275671A (en) Method for producing hydrogen peroxide aqueous solution
JP4599487B2 (en) Water-cooled vertical electrolytic cell
JP2587731B2 (en) Electrolytic reaction unit for sterile water production
JP3682275B2 (en) Ozone water production equipment
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
JP2008073189A (en) Apparatus for producing carbonated spring using circulating bathtub water
JP2007252963A (en) Electrolytic water producer
JP2018158285A (en) Electrolytic water generation apparatus
KR101313698B1 (en) Generation-system for antiseptic solution including chlorine
JP2001191079A (en) Electrolytic water forming device
JP3220355B2 (en) Electrochemical treatment method for water to be treated
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
JP2002361252A (en) Electrolytic bath of strong electrolytic water generator
JP2002153874A (en) Water sterilization method and water sterilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3986820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term