JP2007313489A - Sterilizing water production apparatus - Google Patents
Sterilizing water production apparatus Download PDFInfo
- Publication number
- JP2007313489A JP2007313489A JP2006169299A JP2006169299A JP2007313489A JP 2007313489 A JP2007313489 A JP 2007313489A JP 2006169299 A JP2006169299 A JP 2006169299A JP 2006169299 A JP2006169299 A JP 2006169299A JP 2007313489 A JP2007313489 A JP 2007313489A
- Authority
- JP
- Japan
- Prior art keywords
- water
- electrode
- dilution
- sterilizing water
- electrolytic cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
本発明は、同心円状に配置された複数の円筒電極間に形成される間隙で、塩素イオン溶液を電解し、生成された電解液を希釈水で希釈して、次亜塩素酸を含んだ殺菌用水を製造する装置に関する。より詳しくは、希釈水と、電解液が希釈水で希釈され調製された殺菌用水の両方又は一方が、いずれかの円筒電極の、塩素イオン溶液が電解されている面以外の円筒面に接液しながら、流下する構造の殺菌用水製造装置に関する。 The present invention provides a sterilization containing hypochlorous acid by electrolyzing a chlorine ion solution in a gap formed between a plurality of concentrically arranged cylindrical electrodes and diluting the produced electrolyte with dilution water. The present invention relates to an apparatus for producing water. More specifically, both or one of the dilution water and the sterilizing water prepared by diluting the electrolyte with the dilution water are in contact with the cylindrical surface of any one of the cylindrical electrodes other than the surface on which the chlorine ion solution is electrolyzed. The present invention also relates to a sterilizing water production apparatus having a structure that flows down.
直径の異なる二の円筒電極を同心円状に配置し、それらの間隙で電解した電解薬液を希釈用原水で希釈し殺菌水を生成するための電解反応ユニットの技術について特許文献1に開示されている。
また、隔膜を介して円筒電極を同心円状に配した電解イオン水発生装置が特許文献2に開示されている。Further,
さらに特許文献3には、同心円状に配置した電極を用いてハロゲンイオンを電解し、次亜塩素酸と活性酸素を含む殺菌洗浄水を調製するための方法が開示されている。Furthermore,
これらの技術は何れも、同心円状に配置した円筒電極を内蔵した電解装置で電気分解を行う点では共通である。特許文献1は円筒電極と、円筒電極に直角方向に流れを持つ希釈水の通水ブロックを一体成型した殺菌水製造用電解ユニットであり、電解槽で電解生成された電解液を通水ブロックを流下する希釈水で希釈し殺菌水を製造する目的に使用するものである。この技術が解決しようとした課題は、コンパクトで電解効率が良く、電解槽の温度上昇が抑制され塩素ガスの吸収の良い殺菌水製造用の電解反応ユニットを提供することとしている。その冷却効果は電極の端子棒が冷却水の流れの中にあるために得られるとしている。最内側の電極の内面や、最外側の電極の外面あるいはその他の電極面の冷却については特に記述が見られない。All of these techniques are common in that electrolysis is performed with an electrolysis apparatus incorporating cylindrical electrodes arranged concentrically.
特許文献2の技術は、同心円状に配置した円筒電極の間に隔膜を配し、陽極室と陰極室を設け、アルカリイオン水と酸性水を調製する電解イオン水発生装置に関するものである。解決しようとした課題は電解槽を小型にし、かつ電解槽の交換を容易にすることとしている。最内側の電極の内部空間を利用し管路を通過させるとの記述は見られるが、特許文献1と同様に電極面の冷却についての記述は特に見られない。The technology of
特許文献3の技術は同心円状に配置した電極の間隙でハロゲンイオンを含有する水溶液を電気分解し、次亜ハロゲン酸と活性酸素を含んだ殺菌洗浄水を生成する方法であり、解決しようとした課題は、電極端子部分を改良し電極面積当たりの通電量を上げても長時間耐久性能のよい電解槽を提供することとしている。そして、最内側電極とその中心に挿入する端子棒との接触面積を増やしたことで発熱を抑えたとしている。
電解槽に求められる重要な条件は、電解効率の良いことと同時に電極が長寿命であることである。電極材質は貴金属等の高価な材料で製作されるために、寿命が短いことはランニングコストの大幅な上昇を意味するからである。また、電極の耐久性が高いと、電極面積当たりの電解電流値を上げることが可能になり、電解効率を高めたり、電極面積を小さく設計し電解槽の小型化を図ることも可能になるのである。An important condition required for the electrolytic cell is that the electrode has a long life as well as good electrolysis efficiency. This is because the electrode material is made of an expensive material such as a noble metal, so that a short life means a significant increase in running cost. In addition, if the durability of the electrode is high, it is possible to increase the electrolysis current value per electrode area, so that it is possible to increase the electrolysis efficiency or to reduce the size of the electrolytic cell by designing the electrode area to be small. is there.
ところで、電極の材質以外で、電極の寿命に最も大きな影響を与えるのは電解時の電極の温度である。電極温度が高くなるほど寿命が短くなるが、特に50℃を超えると急激な消耗が起きることは広く知られている。上述の特許文献1および特許文献3にも温度上昇の防止や電極の長寿命化が目的の一部として掲げられている。By the way, the temperature of the electrode during electrolysis has the greatest influence on the life of the electrode other than the material of the electrode. It is well known that the lifetime becomes shorter as the electrode temperature becomes higher, but abrupt wear occurs especially when the temperature exceeds 50 ° C. The
そこで、特許文献1の技術の内容を精査してみると、同心円状に配置された円筒電極の間隙で電解が行われているが、最内側の電極の内面や最外側の電極の外面等を利用した冷却対策についての記述はない。また、この技術の冷却効果は、電極に電気を供給する電極端子棒のみを希釈水の流れの中に置くことで得られると主張しているが、この方法では電極そのものの冷却効果はほとんど期待できないのである。また、電解液を希釈するための手段である、通水ブロックを電解槽の外部に配設した構造としているために、全体のサイズを増す結果となっている。Accordingly, when examining the contents of the technique of
一方、特許文献2に記載されている技術は、同心円状に配置された円筒電極の間隙に、円筒状の隔膜を配し、陽極と陰極を分離してアルカリイオン水と酸性水を生成する電解槽であるが、原水全体が電解され、その後希釈工程が無いために、冷却の効果を得るための手段はない。むしろ、電極を円筒形としたために、最内面の空気による冷却効果が期待できない構造となっている。On the other hand, the technique described in
さらに、特許文献3は最内側に配された円筒電極の内面と電気を供給する導体との電気接触を改良し、接触抵抗を下げることによって、接触部分で発生するジュール熱を減らすことを目論でいるが、電極そのものの温度を積極的に下げる手段は見られない。この構造では、内部電極で発生した熱の逃げ場所自体が塞がれており、接触部分で発生した熱と電極で発生した熱は合わさり、電極の温度上昇を助長する構造といえる。Furthermore,
そこで、本発明が解決しようとする課題は、同心円状に配置された複数の円筒電極間に形成される間隙で、塩素イオン溶液を電解し、生成された電解液を希釈水で希釈して、次亜塩素酸を含んだ殺菌用水を製造する装置において、電極寿命を延ばすために最も効果のある電極の直接的な冷却手段を提供すること、同時に電解槽の小型化および耐圧化を図ることである。Therefore, the problem to be solved by the present invention is to electrolyze a chlorine ion solution in a gap formed between a plurality of concentric cylindrical electrodes, dilute the generated electrolyte with dilution water, By providing direct electrode cooling means that is most effective in extending the life of the electrode in an apparatus for producing sterilizing water containing hypochlorous acid, and simultaneously reducing the size and pressure resistance of the electrolytic cell. is there.
本発明は上記課題を解決するために、同心円状に配置された複数の円筒電極間に形成される間隙で、塩素イオン溶液を電解し、生成された電解液を希釈水で希釈して、殺菌用水を製造する装置において、まず、電極の冷却のために、電極の電解面以外の面を、希釈水あるいは、電解液を希釈水で希釈し生成した殺菌用水で直接冷却する方法を案出した。また、電解液の吸引希釈手段を、最内側に配した円筒電極の内部または電解槽の端面に配する構造に着想し、全体を小型に構成する課題を解決した。さらに、吸引希釈手段を上記のように配することで、電解槽全体を円筒状に構成することが可能になり、耐圧化を図る課題も解決した。次に、本発明の各態様毎に課題の解決手段を詳細に説明する。In order to solve the above problems, the present invention electrolyzes a chlorine ion solution in a gap formed between a plurality of concentrically arranged cylindrical electrodes, and dilutes the generated electrolyte with dilution water to sterilize. In an apparatus for producing water, first, a method for directly cooling an electrode other than the electrolytic surface of the electrode with dilution water or sterilization water produced by diluting the electrolyte with dilution water was devised for cooling the electrode. . In addition, the solution of the suction dilution means for the electrolyte was conceived in the structure of the cylindrical electrode arranged on the innermost side or the end face of the electrolytic cell to solve the problem of making the whole compact. Furthermore, by arranging the suction dilution means as described above, the entire electrolytic cell can be configured in a cylindrical shape, and the problem of increasing the pressure resistance has also been solved. Next, the means for solving the problems will be described in detail for each aspect of the present invention.
課題を解決するための第一の態様として、同心円状に配置された複数の円筒電極間に形成される間隙で、塩素イオン溶液を電解し、生成された電解液を希釈水で希釈して、殺菌用水を調製する装置において、希釈水あるいは、電解液を希釈水で希釈し調製された殺菌用水が、いずれかの円筒電極の、塩素イオン溶液が電解されている面以外の円筒面に接液しながら流下する構造とした。金属薄板で構成されている電極は表裏の熱伝導が速やかであるために、電極の電解面の裏を直接流水が流下することによって、最も効果的な電極の冷却効果が得られるのである。希釈水は通常室温の水が使用されるので、高倍率の希釈によって得られる殺菌用水の温度もほとんど同じ室温である。室温であれば、ほとんどの場所で夏場でも40℃以下であるので、目的とする50℃以下への冷却は可能であるが、必要であれば、40℃以下あるいはさらに30℃や20℃以下さらには10℃以下などの低温に冷却された希釈水を利用することも可能である。このように電極板の裏側を冷却することによって、電極面や、そこに接している電解液を連続的に冷却することが可能となり、電極材質と電解液の不要な化学反応を抑制し、もって電極の消耗を防止するのである。As a first aspect for solving the problem, in a gap formed between a plurality of cylindrical electrodes arranged concentrically, a chlorine ion solution is electrolyzed, and the generated electrolyte is diluted with dilution water, In an apparatus for preparing sterilizing water, diluting water or sterilizing water prepared by diluting an electrolytic solution with diluting water is in contact with a cylindrical surface of one of the cylindrical electrodes other than the surface on which the chlorine ion solution is electrolyzed. The structure was made to flow down. Since the electrode composed of a thin metal plate has quick heat conduction on the front and back, the most effective cooling effect of the electrode can be obtained by flowing water directly down the back of the electrolytic surface of the electrode. Since dilution water is usually used at room temperature, the temperature of sterilization water obtained by high-dilution dilution is almost the same room temperature. If it is room temperature, it is 40 ° C or lower in most places in summer, so it can be cooled to the target 50 ° C or lower. However, if necessary, it is 40 ° C or lower, or even 30 ° C or 20 ° C or lower. It is also possible to use diluted water cooled to a low temperature such as 10 ° C. or lower. By cooling the back side of the electrode plate in this way, it becomes possible to continuously cool the electrode surface and the electrolyte solution in contact therewith, suppressing unnecessary chemical reaction between the electrode material and the electrolyte solution, This prevents the electrode from being consumed.
複数の円筒電極で構成された電解槽においては、最内側に配置された電極の内面と、最外側に配置された電極の外面は電解に寄与しないので、そこに冷却作用のある液体を流下することによって容易に電極冷却を達成することは可能である。特に二の円筒電極を同心円状に配した電解槽では、この方法で全ての電極が直接冷却されるため、十分な冷却効果が期待できるのである。一方、四以上の円筒電極を同心円状に配した電解槽では、隣接するいずれか二の電極を同極性とし、その間隙を冷却作用のある液体を流下させることによって、電解電圧に影響を与えることなく冷却効果を得ることも可能である。In an electrolytic cell composed of a plurality of cylindrical electrodes, the inner surface of the electrode arranged on the innermost side and the outer surface of the electrode arranged on the outermost side do not contribute to the electrolysis, so that a cooling liquid flows down there. Thus, it is possible to easily achieve electrode cooling. In particular, in an electrolytic cell in which two cylindrical electrodes are arranged concentrically, since all the electrodes are directly cooled by this method, a sufficient cooling effect can be expected. On the other hand, in an electrolytic cell in which four or more cylindrical electrodes are concentrically arranged, any two adjacent electrodes have the same polarity, and a liquid having a cooling action flows down between the two electrodes, thereby affecting the electrolysis voltage. It is also possible to obtain a cooling effect.
課題を解決するための第二の態様は、同心円状に配置された複数の円筒電極間に形成される間隙で、塩素イオン溶液を電解し、生成された電解液を希釈水で希釈して、殺菌用水を調製する装置において、希釈水あるいは殺菌用水が、いずれかの円筒電極の、塩素イオン溶液が電解されている面以外の円筒面に接液しながら流下する構造の電解槽において、希釈水または調製された殺菌用水の流路に、その流れの力を利用して、電解生成された電解液を希釈水または殺菌用水の流れの中に引き込む吸引希釈手段を配した構造である。このような構造とすることによって電解液の、希釈水による希釈混合を容易にするほか、電解槽内を陰圧にし、希釈水流路から電解槽へ圧力がかかることを避けることができて、システムの耐圧性を改善できるのである。さらに、塩素イオン溶液の電解槽への供給に電解槽側の陰圧を利用すればよいので、別途供給手段を配設する必要もないので装置の簡素化にも有効である。吸引希釈手段としては後述のエジェクターの他に、アスピレーターを配置する方法や、希釈水流路と電解液排出管路の合流点より下流の、希釈水と電解液の混合で生成された殺菌用水の流路上に排水ポンプを配置し、かつ合流点の上流に定流量弁やオリフィスあるいは絞り弁などを配設し、合流点を陰圧にする方法でも可能である。A second aspect for solving the problem is to electrolyze a chlorine ion solution in a gap formed between a plurality of concentrically arranged cylindrical electrodes, dilute the generated electrolyte with dilution water, In an apparatus for preparing sterilizing water, diluting water or sterilizing water is used in an electrolytic cell having a structure in which the diluting water or sterilizing water flows down while in contact with a cylindrical surface other than the surface on which the chlorine ion solution is electrolyzed Or it is the structure which arranged the suction dilution means which draws in the flow of dilution water or the water for sterilization into the flow of dilution water or the water for sterilization using the power of the flow in the channel of the prepared sterilization water. In addition to facilitating dilution and mixing of the electrolyte with dilution water, this system makes it possible to create a negative pressure inside the electrolytic cell and avoid applying pressure from the dilution water flow path to the electrolytic cell. This can improve the pressure resistance. Furthermore, since the negative pressure on the electrolytic cell side may be used for supplying the chlorine ion solution to the electrolytic cell, it is not necessary to provide a separate supply means, which is effective for simplifying the apparatus. As the suction dilution means, in addition to the ejector described later, a method of disposing an aspirator, or the flow of sterilization water generated by mixing the dilution water and the electrolyte downstream from the junction of the dilution water channel and the electrolyte discharge pipe It is also possible to use a method in which a drainage pump is arranged on the road and a constant flow valve, an orifice, a throttle valve, or the like is arranged upstream of the junction, and the junction is made negative pressure.
課題を解決するための第三の態様は、前述の吸引希釈手段が最内部の円筒電極の内部に配設されている構造とした。このようにすることにより、電解槽の外部に吸引希釈手段を配することによる装置の大型化を回避できることや、電解液の排液管路を電解槽の外部に出す必要が無く、腐食性の強い電解液の外部への漏れの危惧を無くすことができる。また配管経路も短く余分の配管材料を必要としないなどの利点がある。当然、最内側の電極の冷却にも最適である。この態様の一例として図1を説明する。この電解槽は内部電極1と外部電極2の二の電極で構成されている。塩酸は塩酸供給口10から、電極間隙に供給されて電解され電解液となる。希釈水は希釈水供給口18から、外部電極と外套5の間隙に供給され上に向かって流れ、電解槽の端部で流れを転換しエジェクター3に上から流入する。希釈水がエジェクターの喉部を高速で通過する時陰圧が発生し、そこに連接されている電解液排出管路4を通して電解液が希釈水の流れの中に吸引され希釈混合され殺菌用水となる。生成された殺菌用水は内部電極の内面に接液しながら流下し、殺菌用水排出口19から排出される。このように構成することによって、外部電極の外面が希釈水で、さらに、内部電極の内面が殺菌用水によって効率良く冷却され、電極の消耗を防ぐのである。また、エジェクターは内部電極の内部に配設されるために、電解槽の長さを長くしたり、太さを増すことがなく、全体に小型に製作できるのである。A third aspect for solving the problem has a structure in which the above-described suction dilution means is disposed inside the innermost cylindrical electrode. By doing so, it is possible to avoid an increase in the size of the apparatus due to the arrangement of the suction dilution means outside the electrolytic cell, and there is no need to take out the electrolyte drainage line outside the electrolytic cell, which is corrosive. The risk of leakage of strong electrolyte to the outside can be eliminated. In addition, there is an advantage that the piping route is short and no extra piping material is required. Of course, it is also optimal for cooling the innermost electrode. FIG. 1 will be described as an example of this aspect. This electrolytic cell is composed of two electrodes, an
課題を解決するための第四の態様は、前述の吸引希釈手段が同心円状に配置された複数の円筒電極の端部に配設されている構造とした。同心円状に配置された複数の円筒電極の最内側の電極内面や最外側の電極の外面、あるいは電極間隙を流下した希釈水や殺菌用水が電極の端面から外部に流出する位置に吸引希釈手段を配設する構造や、最内側の電極内面や最外側の電極外面、あるいは電極間隙のいずれかを流下した希釈水または殺菌用水が電極端面で折り返し、最内側の電極内面や最外側の電極外面、あるいは電極間隙のいずれかへ流入する場合の折り返し位置に配設する構造が可能である。いずれの構造も吸引希釈手段を電解槽と一体に構成することが可能なため、装置の小型化や流路構成要素の節約が可能になるという利点がある。その一例として図6をもとに作用を説明する。希釈水は内部電極の下部の希釈水供給口18から流入し、内部電極の内面を上昇し、上部の端面に配設されたエジェクター3に流入する。この例では複数のエジェクターが配設されている。希釈水はエジェクターで直角方向に流れの方向が変えられ、さらにエジェクターを出ると下向きの流れになって、外部電極2の外面に接液しながら流下し、殺菌用水排出口19から排出される。エジェクターを通過する時発生する陰圧で電解液排出管路から電解液を吸引し、希釈水の中に混合し、殺菌用水が生成される。希釈水によって内部電極の内面、殺菌用水によって外部電極の外面が冷却される。エジェクターは電解槽と一体に形成されるので全体を小型に設計可能である。The fourth aspect for solving the problem has a structure in which the above-described suction dilution means is disposed at the ends of a plurality of cylindrical electrodes arranged concentrically. Suction dilution means are provided at the innermost electrode inner surface or outermost electrode outer surface of a plurality of concentrically arranged cylindrical electrodes, or at a position where dilution water or sterilizing water flowing down the electrode gap flows out from the electrode end surface to the outside. Dilution water or sterilizing water flowing down either the innermost electrode inner surface or outermost electrode outer surface, or the electrode gap is folded back at the electrode end surface, the innermost electrode inner surface or outermost electrode outer surface, Or the structure arrange | positioned in the folding | turning position in the case of flowing in into either of electrode gaps is possible. In any structure, since the suction dilution means can be integrally formed with the electrolytic cell, there is an advantage that the apparatus can be downsized and the flow path components can be saved. As an example, the operation will be described with reference to FIG. The dilution water flows from the dilution
課題を解決するための第五の態様は、吸引希釈手段が希釈水または殺菌用水の流れを吸引の駆動源とするエジェクターであることとした。つまり、エジェクターの吸引部に電解液の排出管路を連接し、エジェクター内部を流下する希釈水や殺菌用水の高速流れによって生み出される陰圧によって、電解槽から電解液排出管路を通して電解液を希釈水や殺菌用水の流れのなかに引き込み混合希釈するわけである。これに利用するエジェクターは希釈水や殺菌用水の流量に合った最適形状に設計されなければならない。使用する部材の材質は電解液に耐久性のある金属、樹脂、ガラスなどで、タンタル、チタン、ハステロイ、硬質塩化ビニール、フッ素樹脂などが例示できる。In a fifth aspect for solving the problem, the suction dilution means is an ejector using a flow of dilution water or sterilizing water as a driving source for suction. In other words, the electrolyte discharge line is connected to the suction part of the ejector, and the electrolyte is diluted from the electrolytic cell through the electrolyte discharge line by the negative pressure generated by the high-speed flow of dilution water and sterilization water flowing down the ejector. It is drawn into the flow of water or sterilizing water and mixed and diluted. The ejector used for this purpose must be designed in an optimal shape that matches the flow rate of dilution water and sterilization water. The material of the member to be used is a metal, resin, glass or the like that is durable to the electrolyte, and examples thereof include tantalum, titanium, hastelloy, hard vinyl chloride, and fluororesin.
課題を解決するための第六の態様は、希釈水が、同心円状に配置された最外側の電極の外面に接液して流下し、かつ、殺菌用水が同心円状に配置された最内側の電極の内面に接液して流下することとした。この態様は、希釈水や殺菌用水が、最外側に配置された電極と、最外側の電極の外部を覆うように配置された円筒形の外套との間隙を流下し、円筒電極の端部で折り返し、最内側に配置された電極の内部を流下する構造である。電解液を希釈水や殺菌用水の中に吸引希釈する手段は、最外側電極の外側で電極端部に近い位置や、端部で、希釈水や殺菌用水の流れが最外側電極の外側から最内側電極の内側に移変わる位置、あるいは、最内側電極の内側で電極端部に近い位置に配置することができる。一例を図1、図3、図5に示した。図3は複数のエジェクターを配設した例である。また、図5は四の電極20〜23を組み合わせた電解槽の例である。これら電極の結線方法は最外側と最内側のみにそれぞれ異なる極性の配線を結線し、内部二の電極には結線しない、いわゆる複極式の結線でも、全ての電極を交互に異なる極性に結線する、いわゆる単極式の結線のいずれでも利用可能であり、同様の冷却効果が得られる。The sixth aspect for solving the problem is that the dilution water flows in contact with the outer surface of the outermost electrode arranged concentrically and flows down, and the sterilizing water is arranged in the innermost arrangement arranged concentrically. It was decided that the liquid would come into contact with the inner surface of the electrode and flow down. In this aspect, dilution water or sterilizing water flows down the gap between the outermost electrode and the cylindrical outer sheath that covers the outside of the outermost electrode, at the end of the cylindrical electrode. It is a structure that folds down and flows down inside the innermost electrode. The means for aspirating and diluting the electrolyte into dilution water or sterilization water is the position near the electrode end outside the outermost electrode or at the end where the flow of dilution water or sterilization water flows from the outermost electrode outside. It can be arranged at a position where it moves to the inside of the inner electrode, or at a position near the end of the electrode inside the innermost electrode. An example is shown in FIG. 1, FIG. 3, and FIG. FIG. 3 shows an example in which a plurality of ejectors are provided. Moreover, FIG. 5 is an example of the electrolytic cell which combined the four electrodes 20-23. The connection method of these electrodes is to connect wirings of different polarities only at the outermost side and the innermost side and not to the inner two electrodes, so that all electrodes are alternately connected to different polarities even in the so-called multipolar connection. Any so-called monopolar connection can be used, and the same cooling effect can be obtained.
課題を解決するための第七の態様は、希釈水が、同心円状に配置された最内側の電極の内面に接液して流下し、かつ、殺菌用水が、同心円状に配置された最外側の電極の外面に接液して流下することとした。この態様は前記第七の態様と逆の流れ方法になるが、吸引希釈手段の設置位置は全く同じである。一例を図6に示した。A seventh aspect for solving the problem is that the dilution water flows in contact with the inner surface of the innermost electrode arranged concentrically and flows down, and the sterilizing water is arranged on the outermost side arranged concentrically. The liquid was allowed to flow down on the outer surface of the electrode. This mode is the reverse flow method to the seventh mode, but the installation position of the suction dilution means is exactly the same. An example is shown in FIG.
課題を解決するための第八の態様は、電解槽が、同心円状に配置された二の円筒電極で構成されており、内部の電極を陽極とし外部の電極を陰極とするか、内部の電極を陰極とし外部の電極を陽極とするかのいずれかであることとした。このような構成とすることにより、二の電極の電解面の全ての裏面が直接流水で冷却可能となるため、全電極の直接冷却及び、電解液の冷却も可能となり、最も効率的な電解槽冷却の効果が得られるのである。図1、図3、図6などが例である。An eighth aspect for solving the problem is that the electrolytic cell is composed of two cylindrical electrodes arranged concentrically, and the internal electrode is an anode and the external electrode is a cathode, or the internal electrode Is the cathode and the external electrode is the anode. By adopting such a configuration, all the back surfaces of the electrolysis surfaces of the two electrodes can be directly cooled with flowing water, so that all the electrodes can be directly cooled and the electrolyte can be cooled. A cooling effect is obtained. Examples are FIG. 1, FIG. 3, FIG.
課題を解決するための第九の態様は、希釈水あるいは、殺菌用水が、複数の円筒電極間に形成される間隙のいずれかを流下することとした。三以上の円筒電極を同心円状に配置した電解槽では、全ての電極間隙で電解を行うようにすると、最外側電極の外面と最内側電極の内面以外は直接冷却ができない。そこで、そのような場合は、隣接する二の電極を同一極性に設定し、その間隙を希釈あるいは殺菌用水を流下させることで、中間に配置された任意の電極の直接冷却が可能になるのである。その一例を図4で説明する。この例は四の電極を組み合わせた電解槽を示しており、二の中間電極21,22が同一極性に結線してあり、最内側電極20と最外側電極23がそれ等と異なる極性に結線してある。希釈水は希釈水供給口18から流入し最外側電極の外側と、内側電極21と22の間隙に分かれて流下し端部で合流する。合流後エジェクター3に流入し、電解液排出管路から電解液を吸入し混合後、殺菌用水となって、最内側電極20の内側を流下し外部に排出される。このように構成することにより、四以上の電極で構成された電解槽においても、冷却効率をより一層高めることが可能となるのである。In a ninth aspect for solving the problem, the dilution water or the sterilizing water flows down any one of the gaps formed between the plurality of cylindrical electrodes. In an electrolytic cell in which three or more cylindrical electrodes are concentrically arranged, if the electrolysis is performed in all electrode gaps, only the outer surface of the outermost electrode and the inner surface of the innermost electrode cannot be directly cooled. Therefore, in such a case, the adjacent two electrodes are set to the same polarity, and the gap between them is diluted or the sterilizing water is allowed to flow down, so that it becomes possible to directly cool any electrode arranged in the middle. . An example of this will be described with reference to FIG. This example shows an electrolytic cell in which four electrodes are combined. Two
課題を解決するための第十の態様は、電解槽が無隔膜電解槽であることとした。隔膜式電解槽は同心円状に配置した円筒電極の間にさらに円筒隔膜を配するので構造が極めて複雑になり、さらに、吸引希釈手段で電解液を吸引すると隔膜の両側で圧力バランスが崩れるので、十分な電解機能を維持するのが困難になる。本発明の特長をよりよく発揮するためには無隔膜電解槽が最適である。The tenth aspect for solving the problem is that the electrolytic cell is a non-diaphragm electrolytic cell. Since the diaphragm type electrolytic cell further arranges the cylindrical diaphragm between the cylindrical electrodes arranged concentrically, the structure becomes extremely complicated. Further, when the electrolyte is sucked by the suction dilution means, the pressure balance is lost on both sides of the diaphragm. It becomes difficult to maintain a sufficient electrolytic function. A diaphragm electrolyzer is the most suitable for exhibiting the features of the present invention better.
課題を解決するための第十一の態様は、塩素イオン溶液が、塩化ナトリウムあるいは他のミネラルを含んだ飲用適の水で希釈した塩酸であることとした。塩素イオン溶液を電気分解して調製する殺菌用水の中で、有効塩素濃度が低くても十分な殺菌力があり、効果の保存性が高く、殺菌対象物への悪影響が少ないのは微酸性電解水と呼ばれる、pHが5〜6.5の水である。ところで、前段の第十の態様で説明した通り、本発明の特長をよりよく発揮するためには無隔膜電解槽が有利であるが、無隔膜電解槽で微酸性電解水を生成するために利用できる塩素イオン源は塩酸のみである。そこで塩素イオン溶液として塩酸を使うこととした。一方、殺菌用水の有効塩素濃度やpHを目標とする値に合わせるためには、塩素イオン溶液である塩酸の濃度を適宜希釈調節する必要がある。そのときに使用する水が塩化ナトリウムあるいは他のミネラルを含んでいると、それらミネラルによる緩衝作用によって、調製された殺菌用水のpHを目的の範囲にするのに好都合なのである。The eleventh aspect for solving the problem is that the chloride solution is hydrochloric acid diluted with potable water containing sodium chloride or other minerals. In the water for sterilization prepared by electrolyzing a chloride ion solution, even if the effective chlorine concentration is low, it has sufficient sterilization power, has high storability, and has little adverse effect on the sterilization target. It is water having a pH of 5 to 6.5 called water. By the way, as explained in the tenth aspect of the previous stage, a diaphragm electrolyzer is advantageous in order to better exhibit the features of the present invention, but it is used to generate slightly acidic electrolyzed water in the diaphragm electrolyzer. The only possible chlorine ion source is hydrochloric acid. Therefore, it was decided to use hydrochloric acid as the chlorine ion solution. On the other hand, in order to adjust the effective chlorine concentration and pH of sterilizing water to target values, it is necessary to appropriately adjust the concentration of hydrochloric acid, which is a chlorine ion solution. If the water used at that time contains sodium chloride or other minerals, it is convenient to bring the pH of the prepared sterilizing water into the target range by the buffering action of these minerals.
本発明は、同心円状に配置された複数の円筒電極間に形成される間隙で、塩素イオン溶液を電解し、生成された電解液を希釈水で希釈して、次亜塩素酸を含んだ殺菌用水を製造する装置において、希釈水と、希釈水で希釈され調製された殺菌用水の両方又は一方が、いずれかの円筒電極の、塩素イオン溶液が電解されている面以外の円筒面に接液しながら、流下する構造とし、さらに、希釈水あるいは殺菌用水の流路に配設した吸引希釈手段で、電解液を希釈水あるいは殺菌用水の中に吸引希釈する構成としたことにより、電極の冷却効果を高め、電極寿命を延ばした。さらに塩素イオン供給ポンプが不要になり、電解槽を含めた電解ユニットを小型に構成し、電解槽を円筒形に形成することが可能となったことで耐圧性も高めた。 The present invention provides a sterilization containing hypochlorous acid by electrolyzing a chlorine ion solution in a gap formed between a plurality of concentrically arranged cylindrical electrodes and diluting the produced electrolyte with dilution water. In an apparatus for producing irrigation water, both or one of dilution water and sterilization water prepared by dilution with dilution water is in contact with a cylindrical surface of one of the cylindrical electrodes other than the surface on which the chlorine ion solution is electrolyzed. However, the cooling of the electrode is achieved by adopting a structure in which the electrolytic solution is sucked and diluted into the diluting water or the sterilizing water by the suction diluting means disposed in the flow path of the diluting water or the sterilizing water. Increased effect and extended electrode life. Furthermore, the chloride ion supply pump is not required, the electrolytic unit including the electrolytic cell is configured in a small size, and the electrolytic cell can be formed in a cylindrical shape, thereby improving the pressure resistance.
次に本発明に関する理解をさらに深めるために、実施例をもとに本発明を実施するための最良の形態を説明する。Next, in order to further deepen the understanding of the present invention, the best mode for carrying out the present invention will be described based on examples.
図1に示したのは、ホクエツ社製微酸性電解水生成装置apia1500の主要部の概略図である。電解槽は二の電極で構成され、内部電極が外径140mmの触媒を付着させたチタン製円筒、外部電極が内径160mmのチタン製円筒、電解部の長さ250mmで、内部電極を陽極、外部電極を陰極としている。塩酸供給管路9上には電磁開閉弁8を配設した。電解槽への直流電流の供給配線上に電流センサー15を配設し、電流値が設定値を下回ったとき電磁開閉弁8を開き、電流値が設定値を上回ったときに閉めるように制御し、一定範囲の電流値を塩酸濃度でコントロールする方法で電解する。希釈水は希釈水供給管路11上に配設した定流量弁12で制御し、1500L/hの一定流量とした。塩酸タンク7には6重量%の塩酸を貯留し、そのままの濃度で電解槽に供給した。図中に示した矢印は実線が希釈水又は殺菌用水の流れ方向、破線が塩酸又は電解液の流れ方向を示す。この装置を、2.3V、35Aで運転し、有効塩素濃度21ppm、pH5.8の微酸性電解水を1500L/hで安定して生成できることを確認した。電極間隙の電解液温度は希釈水の温度を1度以上越えることはなかった。さらに、電極の累積使用時間が6000時間を超えた時点でも安定して稼動することが確認された。FIG. 1 is a schematic view of a main part of a slightly acidic electrolyzed water generating apparatus apia 1500 manufactured by Hokuetsu. The electrolytic cell is composed of two electrodes, the internal electrode is a titanium cylinder to which a catalyst with an outer diameter of 140 mm is attached, the external electrode is a titanium cylinder with an inner diameter of 160 mm, the length of the electrolysis part is 250 mm, the internal electrode is an anode, and the external The electrode is a cathode. An electromagnetic on-off
図2に示したのは、ホクエツ社製の微酸性電解水生成装置apia300の主要部概略図である。電解槽は二の電極で構成され、内部の陽極は外径48mm触媒を付着させたチタン製円筒、外部の陰極は内径60mmのチタン製円筒、電極長さは140mmである。塩酸供給管路上にはしごきポンプ16を配設した。希釈水は流量調整弁17を経て、電解槽頂部の希釈水供給口から入り、エジェクター3を通過し、内部電極1の内側を流下し殺菌用水排出口19から排出される。塩酸タンク7に貯留された3%塩酸はしごきポンプによって、塩酸供給口10から、電極間隙に供給される。電解液は、エジェクターの作用によって、頂部から電解液排出管路4を経て希釈水中に吸引混合される。電流値の制御は実施例1と同様である。この装置を、2.4V、7.7Aで運転して、有効塩素濃度23ppm、pH5.9の微酸性電解水を300L/hで得た。電解液の最高温度は希釈水温度を2℃以上超えることはなかった。FIG. 2 is a schematic view of the main part of a slightly acidic electrolyzed water generating apparatus apia300 manufactured by Hokuetsu. The electrolytic cell is composed of two electrodes, the inner anode is a titanium cylinder with a 48 mm outer diameter catalyst attached, the outer cathode is a titanium cylinder with an inner diameter of 60 mm, and the electrode length is 140 mm. The ironing pump 16 was disposed on the hydrochloric acid supply pipe. The dilution water enters the dilution water supply port at the top of the electrolytic cell through the flow
本発明は、安全性が高く、強力な殺菌液である微酸性電解水を生成する装置において、ランニングコストに最も大きな影響を与える電解槽の寿命を飛躍的に延ばす技術と、耐圧製の高い装置を小型に製作できる技術を提供することにより、微酸性電解水の普及に貢献する。The present invention is a device that generates slightly acidic electrolyzed water that is a highly safe and powerful sterilizing solution, a technology that dramatically extends the life of an electrolytic cell that has the greatest impact on running cost, and a device that has high pressure resistance. Will contribute to the spread of slightly acidic electrolyzed water by providing technology that can be manufactured in a small size.
1 内部電極
2 外部電極
3 エジェクター
4 電解液排出管路
5 電解槽外套
6 電解槽
7 塩酸タンク
8 塩酸用電磁開閉弁
9 塩酸供給管路
10 塩酸供給口
11 希釈水供給管路
12 定流量弁
13 直流電源
14 制御装置
15 電流センサー
16 しごきポンプ
17 流量調整弁
18 希釈水供給口
19 殺菌用水排出口
20 最内側電極
21 中間電極1
22 中間電極2
23 最外側電極DESCRIPTION OF
22
23 Outermost electrode
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006169299A JP2007313489A (en) | 2006-05-23 | 2006-05-23 | Sterilizing water production apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006169299A JP2007313489A (en) | 2006-05-23 | 2006-05-23 | Sterilizing water production apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007313489A true JP2007313489A (en) | 2007-12-06 |
Family
ID=38847830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006169299A Pending JP2007313489A (en) | 2006-05-23 | 2006-05-23 | Sterilizing water production apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007313489A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101323506B1 (en) * | 2011-08-05 | 2013-10-29 | 주식회사 한국전해수시스템 | An apparatus and method for producing slight acidic hypochlorous acid water |
KR101363346B1 (en) | 2012-03-12 | 2014-02-14 | (주)미라클린 | Non-diaphragm electrolytic cell |
KR101391193B1 (en) * | 2012-07-25 | 2014-05-02 | 동인메디텍 주식회사 | Apparatus for manufacturing of weak-acidic hypochlorous acid water |
JP2016506301A (en) * | 2013-01-08 | 2016-03-03 | ジョン ハ パク | Sterilization washing water |
JP5980373B1 (en) * | 2015-04-28 | 2016-08-31 | シャープ株式会社 | Electrolyzer |
CN108004562A (en) * | 2017-11-23 | 2018-05-08 | 山东大学 | A kind of javelle water preparation facilities and method |
KR20230052665A (en) * | 2021-10-13 | 2023-04-20 | 정지윤 | Electrolysis apparatus |
-
2006
- 2006-05-23 JP JP2006169299A patent/JP2007313489A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101323506B1 (en) * | 2011-08-05 | 2013-10-29 | 주식회사 한국전해수시스템 | An apparatus and method for producing slight acidic hypochlorous acid water |
KR101363346B1 (en) | 2012-03-12 | 2014-02-14 | (주)미라클린 | Non-diaphragm electrolytic cell |
KR101360079B1 (en) * | 2012-03-12 | 2014-02-21 | (주)미라클린 | Non-diaphragm electrolytic cell |
EP2826888A4 (en) * | 2012-03-12 | 2015-11-25 | Miraclein Co Ltd | Diaphragmless electrolyzer |
KR101391193B1 (en) * | 2012-07-25 | 2014-05-02 | 동인메디텍 주식회사 | Apparatus for manufacturing of weak-acidic hypochlorous acid water |
JP2016506301A (en) * | 2013-01-08 | 2016-03-03 | ジョン ハ パク | Sterilization washing water |
JP5980373B1 (en) * | 2015-04-28 | 2016-08-31 | シャープ株式会社 | Electrolyzer |
WO2016174782A1 (en) * | 2015-04-28 | 2016-11-03 | シャープ株式会社 | Electrolysis device |
JP2016204731A (en) * | 2015-04-28 | 2016-12-08 | シャープ株式会社 | Electrolytic device |
CN107849712A (en) * | 2015-04-28 | 2018-03-27 | 夏普生命科学株式会社 | Electrolysis unit |
CN108004562A (en) * | 2017-11-23 | 2018-05-08 | 山东大学 | A kind of javelle water preparation facilities and method |
KR20230052665A (en) * | 2021-10-13 | 2023-04-20 | 정지윤 | Electrolysis apparatus |
KR102661284B1 (en) * | 2021-10-13 | 2024-04-25 | 정지윤 | Electrolysis apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2704270C (en) | Electrolysis device for preparation of hypochlorous water | |
JP2007313489A (en) | Sterilizing water production apparatus | |
US20070017801A1 (en) | High electric field electrolysis cell | |
JP2015217357A (en) | Electrolytic water production apparatus, and production method of electrolytic water using the same | |
TWI622666B (en) | Electrolyzed water generator | |
US20130228459A1 (en) | Electrolyzed water producing apparatus | |
JP2007007632A (en) | Electrolytic water producing apparatus | |
KR101474868B1 (en) | Electrolyzer improving electrolvte diffusion efficiency and gas-exhaust efficiency | |
JP4599487B2 (en) | Water-cooled vertical electrolytic cell | |
JP4597263B1 (en) | Electrolyzed water production apparatus and electrolyzed water production method using the same | |
JP2007301540A (en) | Slightly acidic electrolyzed water generation apparatus | |
KR101517676B1 (en) | Apparatus for manufacturing of hypochlorous acid sloution | |
US10239772B2 (en) | Recycling loop method for preparation of high concentration ozone | |
WO2017104203A1 (en) | Device for generating hydrogen peroxide | |
JP2008055400A (en) | Method for producing bactericidal water through dual electrolysis | |
WO2018043711A1 (en) | Device for generating chlorine dioxide and method for generating chlorine dioxide | |
JP2008073189A (en) | Apparatus for producing carbonated spring using circulating bathtub water | |
JP2008086886A (en) | Electrolytic water generator | |
JP2001191079A (en) | Electrolytic water forming device | |
KR101054266B1 (en) | A equipment of electrolytic sterilizing water, manufacturing system and method thereof | |
US9797050B2 (en) | Energy-efficient diaphragm-electrolyser | |
JP2015128755A (en) | Device for generating ozonized water | |
JP2005161196A (en) | Electrolytic sterilized water producing apparatus | |
JP2007308738A (en) | Ozone production method | |
JP6885776B2 (en) | Electrolyzed water generator |