JP4302386B2 - Electrolyzer - Google Patents

Electrolyzer Download PDF

Info

Publication number
JP4302386B2
JP4302386B2 JP2002306979A JP2002306979A JP4302386B2 JP 4302386 B2 JP4302386 B2 JP 4302386B2 JP 2002306979 A JP2002306979 A JP 2002306979A JP 2002306979 A JP2002306979 A JP 2002306979A JP 4302386 B2 JP4302386 B2 JP 4302386B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
plate
intermediate electrode
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002306979A
Other languages
Japanese (ja)
Other versions
JP2004143481A (en
Inventor
善胤 田村
Original Assignee
日研システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日研システム株式会社 filed Critical 日研システム株式会社
Priority to JP2002306979A priority Critical patent/JP4302386B2/en
Publication of JP2004143481A publication Critical patent/JP2004143481A/en
Application granted granted Critical
Publication of JP4302386B2 publication Critical patent/JP4302386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、希釈塩水、自然水等の電解液を電気分解して次亜塩酸ソーダ、遊離塩素等を生成する次亜塩酸ソーダ生成装置、遊離塩素生成装置等に使用する電解装置に関するものである。
【0002】
【従来の技術】
例えば、飲料水等の消毒に使用する次亜塩酸ソーダ生成装置は、飽和塩水を3%程度に希釈化した希釈塩水(電解液)を電解部に通し、この電解部の隣り合う一対の電極間を通過するときに希釈塩水を電気分解して次亜塩酸ソーダを生成する。
【0003】
従来の次亜塩酸ソーダ生成装置は、1枚の板材により構成され且つ板厚方向の一側面が陽極面、他側面が陰極面となった単板構造の電極を使用し、複数の電極を電解槽内に所定の間隔を置いて略平行に配置して電解部を構成すると共に、電気分解時のジュール熱による希釈塩水の温度上昇を防止するために、電解部の両側近傍又は各電極間にコイル状、その他の冷却管から成る冷却手段を配置している(例えば特許文献1参照)。
【0004】
【特許文献1】
特開平7−216572号公報(図9、図10)
【0005】
【発明が解決しようとする課題】
従来の次亜塩酸ソーダ生成装置は、陰極面側に白金酸化物等をコーティングしたチタン板等の単板構造の電極を使用しているため、電極自体の機械的強度が十分でない上に、電極の陰極面側が電解時に発生する水素イオンを吸蔵する吸蔵現象が発生し、中間の電極等はその吸蔵現象により陰極面側が伸びて陽極面側が凹むように湾曲し変形する。
【0006】
電解部には3mm前後の間隔で複数個の電極を近接して配置しているので、吸蔵現象によって電極が変形すれば電極相互間の間隔が変化して、一対の電極の接近部分に電流が局部的に集中したり、一対の電極が接触して短絡電流が流れたりすることがある。従って、電極の変形は、電解効率の低下、電極の部分的な消耗の原因となり、更には電極の短絡部分に孔があく等の問題が生じ。そして、その場合には、性能が極端に低下すると共に、電極の再利用は殆ど不可能となる。
【0007】
また電解部の両側近傍、又は電解槽内の適当箇所に冷却手段を配置しているため、この冷却手段によって装置全体が大型化し、部品点数も多く複雑となり製作コストが大幅にアップする問題もある。
【0008】
本発明は、このような従来の問題点に鑑み、電極の物理的強度が向上すると共に、吸蔵現象による電極の変形を極力防止でき、電解効率の向上、電極の長寿命化を図ることができ、また電極自体で電解液等を容易に冷却でき、装置全体の小型化、製作コストの低減を図ることができる電解装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、3個以上の電極を所定の間隔をおいて配置し、隣り合う一対の前記電極間で、該電極間を下から上へと流れる電解液を電気分解するようにした電解装置において、前記各電極の内、少なくとも中間の前記電極は、所定の間隔をおいて略平行に配置された相対向する2枚の電極板と、該2枚の電極板をその周縁側で電気的に接続する接続板とを備えた中空状とし、前記中間の電極の両側の前記電極間の短絡を阻止する短絡阻止部材を該中間の電極の前記接続板の上面に当接又は近接して設け、前記中間の電極の内部空間を、冷却水が通過する冷却室としたものである。
記中間の電極の内部空間は偏平な箱状とすることが望ましい。前記2枚の電極板間に、前記電極板間の間隔を保持し且つ前記冷却室を冷却通路に区画する仕切り板を設けてもよい。
また矩形状の2枚の前記電極板の相対向する二辺に前記接続板を一体に折り曲げて設け、その夫々の前記接続板が相手側の前記電極板の前記接続板のない辺に対応するように前記2枚の電極板を組み合わせて、その端縁同士を溶接で固定してもよい。
【0011】
【発明の実施の形態】
以下、本発明の各実施形態を図面に基づいて詳細に説明する。図1〜図8は本発明を次亜塩酸ソーダ生成装置に採用した第1の実施形態を例示する。次亜塩酸ソーダ生成装置は、図1〜図5に示すように外郭を構成する電解槽1と、電解槽1内に配置された電解部2と、電解部2を電解槽1に対して前側から前後方向に挿脱自在に支持する支持枠3と、電解部2の下側で電解槽1内の下部に配置された希釈塩水(以下、電解液という)用の整流部4と、電解部2の上側で電解槽1内の上部に配置された気液分離部5とを備え、供給管6を経て整流部4に供給された電解液が電解部2の各電極7,8相互間を下から上へと流れるときに、その電解液を電気分解して次亜塩酸ソーダ(以下、次亜液という)を生成し、電気分解時に発生する電解ガスをガス抜き管11から大気へと放出し、次亜液を取り出し管10から外部へと取り出すようになっている。なお、電解部2と支持枠3とにより電解ユニットが構成されている。
【0012】
電解槽1は前壁部12、後壁部13、上壁部14、下壁部15及び左右一対の側壁部16を接合して上下方向及び前後方向に長い箱状に構成され、その下壁部15が据え付け用の取り付け部17となっている。なお、電解槽1は合成樹脂板、その他の絶縁材により密閉状に構成されている。電解槽1の前壁部12側には、支持枠3を介して電解部2を前側から挿脱するための開口部18が設けられ、この開口部18を前側から開閉自在に塞ぐ蓋体19が支持枠3の前部に設けられている。
【0013】
支持枠3は開口部18を塞ぐ蓋体19の他に、蓋体19から後方に突出し且つ電解部2の左右両側に配置された左右一対の側枠部20と、電解部2の後側で左右の側枠部20の後端を連結する後枠部21とを備え、その内部に複数個の電極7,8からなる電解部2と、電解部2の上下両側に着脱自在に配置された短絡阻止用の簀の子体22,23とが設けられている。
【0014】
支持枠3はその各側枠部20が電解槽1の内部、例えば各側壁部16の内面に固定された上レール部材24、下レール部材25により前後方向に摺動自在に支持されている。蓋体19は、その外周縁側の複数個のボルト26により前壁部12にパッキング、オーリング等のシール材27を介して着脱自在に装着されている。後枠部21は左右の側枠部20に対して後側からボルト28等で着脱自在に固定されている。なお、支持枠3、簀の子体22,23は合成樹脂等の絶縁材により構成されている。また支持枠3の蓋体19、側枠部20、後枠部21は一体でも良いし、別体でも良い。
【0015】
整流部4は左右の下レール部材25間に、電解部2に対応して上部側が左右に広がるように形成されており、この整流部4の左右方向の略中央に前後方向の電解液供給管6が配置されている。電解液供給管6には電解部2の下側でその各電極7,8間に略均等に電解液を分散して供給できるように、その上側等の適当箇所に所定間隔をおいて多数の供給口6aが形成されている。電解液供給管6は電解槽1の前壁部12と後壁部13とに固定されると共に、後壁部13を後方に貫通し、その後端が供給管路29を介して電解液の供給源に接続されている。なお、供給口6aは電解液供給管6の上側の左右にその長手方向に所定の間隔をおいて2列設けられている。
【0016】
気液分離部5は左右の上レール部材24間に、上下方向の中間部が左右に広がるように形成されており、その中間部分に次亜液を外部に取り出すための前後方向の取り出し管10が左右に2個設けられ、この取り出し管10よりも上側のガス放出部30に連通するガス抜き管11が設けられている。ガス抜き管11は電解槽1の上壁部14に前後に2個設けられている。
【0017】
取り出し管10は上側にその長手方向に沿って長孔状の取り出し口10aが設けられ、また電解槽1の前壁部12と後壁部13とに固定され、後端側が後壁部13を後方に貫通している。そして、取り出し管10の後端には気液分離部31が設けられ、この気液分離部31にガス抜き管路53と次亜液用の取り出し管路54とが上下に接続されている。
【0018】
なお、取り出し管10、ガス抜き管11は1個でも良いし、2個以上の複数個でも良い。電解槽1の下壁部15には、整流部4に連通するドレン管32が設けられている。
【0019】
電解部2は矩形状の複数個の電極7,8を備え、その各電極7,8が左右方向に所定の間隔をおいて略平行に配置され、両端の電極7,8にターミナル33が設けられている。各電極7,8は支持枠3、特にその蓋体19及び後枠部21に形成された上下方向の保持溝34に前後両端縁が挿入され、支持枠3に着脱自在に保持されている。なお、各電極7,8は、後枠部21を取り外すことにより着脱可能である。
【0020】
電極7,8は3個以上の複数個であって、左右両側に配置された一対の端電極7と、その中間に配置された1個又は2個以上の複数個(この実施形態では6個)の中間電極8とが近接して略平行に設けられている。
【0021】
各端電極7は板状の単板構造であって、支持枠3の各側枠部20の内面に沿って接触するように配置され、その後部外側面に後方に突出するターミナル33が溶接等で前後方向に固定されている。ターミナル33は支持枠3の後枠部21から電解槽1の後壁部13に形成された貫通孔35を挿脱自在に貫通して後方に突出し、電解槽1の外側にそのネジ部36に螺合するナット37により電源端子33aが着脱自在に取り付けられている。なお、貫通孔35はオーリング等のシール材によりシールされている。ターミナル33のネジ部36とナット37により、電解ユニットの支持枠3の後部側が電解槽1に固定されている。
【0022】
中間電極8は2枚の電極板38を備えた偏平な箱状の複板構造であって、図6、図7に示すように所定の間隔をおいて相対向して略平行に配置された2枚の電極板38と、この2枚の電極板38の外周の略全周を一体接続する接続板39とにより中空状に構成され、その内部空間が冷却水を通過させる冷却室40となっている。
【0023】
各電極板38は矩形状であって、各電極7,8相互間の間隔よりも若干大きな間隔をおいて配置され、その外周縁の4辺が帯状の接続板39の両端に溶接等で固定されている。そして、電極板38、接続板39により形成される内部空間が冷却室40となっており、前側の接続板39の上下両端部に冷却水用の2個の口金具41が前方に突出して前後方向に固定されている。
【0024】
端電極7、中間電極8は導電性金属板、例えばチタン板等により構成されている。そして、各端電極7には中間電極8と対向する内側面の略全面に、また中間電極8の各電極板38には隣接の端電極7又は中間電極8と対向する各外側面の略全面に夫々白金酸化物等の導電性皮膜がコーティングされている。そして、ターミナル33に接続された外部の直流電源部は、一対の端電極7に対して陽極、陰極の通電方向を所定時間間隔で切り換えるようになっている。なお、通電方向が一方向の直流電源部の場合には、各電極7,8の陰極面側に必要に応じて所定目的のコーティングをしても良い。
【0025】
口金具41は支持枠3の蓋体19に形成された通孔19aを挿脱自在に貫通して前側に突出し、蓋体19の前側の凹部42内でそのネジ部に螺合するナット43により蓋体19に固定されている。各中間電極8の冷却室40は、上下2個の口金具41に着脱自在なホース等の接続管44を介して蓋体19の前側で直列状に接続され、また両端の中間電極8の残りの口金具41に冷却の流入管45、流出管46が夫々着脱自在に接続されている。
【0026】
なお、中間電極8には、上下両端部の外側に口金具41を設けたものと、それよりも内側に口金具41を設けたもの等のように、口金具41の取り付け位置が異なる2種類のものがあり、異なる種類の中間電極8が隣り合うように交互に配置されている。これは隣り合う中間電極8相互の口金具41を上下に離間させて、蓋体19に形成される通孔19a、凹部42の間隔を確保するためである。
【0027】
中間電極8が大きい場合には、図8に示すように両電極板38間に1個又は複数個(例えば3個)の仕切り板47を設け、この仕切り板47を各電極板38にスポット溶接等により固定しても良い。この仕切り板47は両電極板38間の間隔を保持すると共に、冷却室40内を電極板38の全体にわたる冷却通路48に区画して、中間電極8の全体に冷却水を満偏なく流すためのものである。
【0028】
簀の子体22,23は合成樹脂等の絶縁材から成り、各中間電極8に対応して略平行に配置され且つ電解電流の短絡を阻止する複数個の短絡阻止部材49,50と、各短絡阻止部材49,50の長手方向の両端側を連結する帯状の連結枠51,52とにより一体に構成され、電解部2の上下両側で支持枠3に圧入等により着脱自在に嵌め込まれている。短絡阻止部材49,50、連結枠51,52は電解液、次亜液等の流れを阻害しない帯板状であって、その各短絡阻止部材49,50は中間電極8の上下の接続板39に当接又は近接して設けられている。
【0029】
なお、簀の子体22,23は、電極7,8の前後両端縁を支持枠3、特にその蓋体19及び後枠部21に形成された上下方向の保持溝34に挿入している場合には、その両端縁側では支持枠3自体が短絡阻止部材として機能するので、上下両側に設ければ十分である。また簀の子体22,23は、一対の電極7,8間を流れる電解液の流れ方向の両側の内、少なくとも電極7,8に対して下流側(即ち電解部2の上側)に設けるだけでも良い。短絡阻止部材49,50等の電解電流の短絡を阻止するための短絡阻止機能を有する部材は、電極7,8の端縁側の周方向の全周に設けることが望ましい。
【0030】
次亜液の生成に際しては、給水管から電解部2の下側の整流部4に電解液を供給しながら、電解部2の各電極7,8に直流電源部からターミナル33を経て直流電流を流す。すると整流部4に供給された電解液は、整流部4の整流作用によって略均等に分散して各電極7,8間に入り、各電極7,8間の間隙を下から上へと流れる間に直流電流により電気分解され、これによって次亜液が生成される。
【0031】
この電気分解により次亜液の生成と同時に、水素ガスを主体とする電解ガスが多量に発生する。そして、微細な気泡状の電解ガスを含む次亜液は、電極7,8間を上昇して電解部2の上側の気液分離部5へと移動し、この気液分離部5で次亜液と電解ガスとに気液分離され、次亜液は取り出し管10から電解槽1の外部へと取り出され、また電解ガスはガス放出部30を経てガス抜き管11から外部の大気へと放出される。
【0032】
取り出し管10はその上側に取り出し口10aがあるため、次亜液が微細な気泡状の電解ガスを多量に含む場合にも、その電解ガスが取り出し管10の上側を経て取り出し口10aへと入る前に電解ガスの多くが次亜液から分離されるので、殆どの電解ガスを気液分離部5で次亜液から分離でき、取り出し管10から取り出される次亜液中のガス量を極力少なくできる。また仮に多少の電解ガスが取り出し管10に入っても、電解槽1の外部の気液分離部31で次亜液と電解ガスとが分離され、その電解ガスはガス抜き管路53から大気に放出されるため、取り出し管路54側に電解ガスの少ない次亜液を取り出すことができる。
【0033】
直流電流は一方の端電極7を陽極とし、他方の端電極7を陰極として、一方の端電極7から中間電極8を経て他方の端電極7へと流し、所定時間が経過すれば、陽極、陰極を切り換えて逆方向に流す。このため電極7,8の陰極面側には酸化物が付着し易いが、通電方向を交互に切り換えることによって、各電極7,8の酸化物の付着量を少なくでき、また付着した酸化物も陽極となったときに離脱等により除去できる。
【0034】
電気分解時に水素イオンの吸蔵現象が発生する。例えば、図9に示すように端電極7aが陽極となり、端電極7bが陰極となる場合には、端電極7aから中間電極8aの一方の電極板381aへと電流が流れ、またその他方の電極板381bから隣の中間電極8bの一方の電極板382aへと電流が流れる。
【0035】
このとき各電極7,8相互間で水素イオンが発生し、その水素イオンが中間電極8a,8b,8cの陰極である電極板381a,382a,383aの陰極面側に吸蔵される吸蔵現象が発生する。
【0036】
しかし、1個の中間電極8a,8bを見た場合、2枚の電極板381a,381b,382a,382bの内、その陰極である一方の電極板381a,382aの陰極面側が水素イオンを吸蔵するが、この一方の電極板381a,382aと、他方の電極板381b,382bの陽極面側とが別の電極板により構成されているため、陰極面と陽極面とが1枚の電極板の両側にある従来の単板電極の場合に比較して中間電極8a,8bの各電極板381a,381b,382a,382bの湾曲等の変形を極力少なくできる。
【0037】
従って、中間電極8が2枚の電極板38を備えた偏平な箱状であって、その機械的強度が大であることと相まって、中間電極8の各電極板38の湾曲、その他の変形を極力防止でき、各電極7,8間の間隔を略一定に保持することが可能であり、隣り合う電極7,8相互間の局部的な電流の集中、短絡等に伴う電解効率の低下、電極7,8の部分的な消耗等がなくなり、電極7,8の長寿命化を図ることができる。
【0038】
電解液の電気分解中は、各中間電極8の内部の冷却室40に冷却水を流して、中間電極8を内部側から冷却する。このため中間電極8自体の簡単な構造によって、ジュール熱による電極7,8、電解液、その他の温度上昇を防止でき、電解効率が向上する。また中間電極8が2枚の電極板38を備えた偏平な箱状であって、その内部空間を冷却室40としているため、電解部2の近傍に冷却手段を別途設ける従来の場合に比較して装置全体を小型化でき、製作コストを低減できる。しかも、各中間電極8の夫々に冷却室40があり、その各中間電極8毎に冷却機能があるため、電解部2の全体で略均等に満偏なく効率的に冷却することが可能である。
【0039】
電解部2の上流側及び下流側に各中間電極8に対応して短絡阻止部材49,50を設けているため、2枚の電極板38の外周縁を接続板39で一体に接続した偏平な箱状の複板構造の中間電極8を使用するにも拘わらず、中間電極8の上流側及び下流側において、1個又は複数個の中間電極8を挟んでその両側にある中間電極8相互間に流れる短絡電流を防止でき、電解効率が向上する。
【0040】
即ち、複板構造の中間電極8を使用する場合、中間電極8の板厚方向の寸法が厚くなるため、中間電極8に対して電解液の流れ方向の両側(上流側及び下流側)、それによって単板構造の電極7に比較して、中間電極8の上流側及び下流側の接続板39に絶縁性の酸化物等が付着し易くなる。また電極7,8相互間の電気抵抗は、その電極面の絶縁性の酸化物等の付着量、或いは電極7,8相互間で発生する電解ガスの発生量等によって変化する。
【0041】
従って、例えば図10に示すように或る中間電極8bに絶縁性の酸化物55等が付着し、しかも何等かの原因で中間電極8bとこれに隣り合う中間電極8aとの電極面間の電気抵抗が一時的に大きくなった場合には、短絡阻止部材49,50がなければ、この中間電極8bの両側にある中間電極8a,8cの上流側又は下流側相互間で電解液又は次亜液を介して短絡電流Iが流れることがある。そして、この場合には、電解部2の電解効率が極端に低下する惧れがある。
【0042】
しかし、各中間電極8の上流側及び下流側に絶縁材から成る短絡阻止部材49,50を設けておけば、中間電極8bの上流側又は下流側に絶縁性の酸化物55等が付着した状況において、一時的に中間電極8a,8bの電極板381b,382a間の電気抵抗が増大するようなことがあっても、短絡電流Iは短絡阻止部材49bを避けて短絡阻止部材49bと中間電極8bとの間を流れるか、又は短絡阻止部材49bに対して中間電極8bと反対側を流れることになる。
【0043】
前者の場合には、短絡阻止部材49bが中間電極8bに当接又は近接しており、短絡電流Iが中間電極8bの近傍を通って流れようとするため、その電流Iはその近傍にある中間電極8bへと流れる。また後者の場合には短絡阻止部材49bがあり、中間電極8a,8b相互間の電気抵抗が中間電極8a,8c相互間の電気抵抗よりも増加するため、その電流Iは近くにあって電気抵抗の小さい中間電極8bへと流れる。
【0044】
従って、短絡阻止部材49を各中間電極8に当接又は近接して設けることによって、1個又は複数個の中間電極8を挟んでその両側の電極7,8間で短絡電流Iが流れることはない。なお、各中間電極8の前後両側は保持溝34に嵌合しているので、その保持溝34側での短絡電流の問題はない。
【0045】
電解部2の保守、点検等の際は、ターミナル33のナット37、電源端子33aを外し、口金具41の接続管44、ナット43を外した後、蓋体19の固定を解除すれば、電解部2を備えた支持枠3を上下のレール部材24,25に沿って電解槽1から前側へと容易に抜き取ることができる。また組み込む場合には、支持枠3をレール部材24,25に沿って電解槽1内に挿入し、その後蓋体19を電解槽1に固定し、ターミナル33にナット37で電源端子33aを固定し、口金具41をナット43で締め付けて接続管44を接続すれば良い。
【0046】
図11は本発明を次亜塩酸ソーダ生成装置に採用した第2の実施形態を例示する。各電極板38が矩形状の中間電極8は、図11に示すように構成しても良い。この中間電極8は、各電極板38の相対向する二辺に接続板39を一体に折り曲げて設け、その夫々の接続板39が相手側の電極板38の接続板39のない辺に対応するように2枚の電極板38を組み合わせて、その端縁同士を溶接等で固定している。なお、他の構成は第1の実施形態と同様である。
【0047】
図12及び図13は本発明を次亜塩酸ソーダ生成装置に採用した第3の実施形態を例示する。電解部2の複数個の電極8Aは2個の電極板38の二辺を接続板39で一体に接続して偏平な筒状に構成されている。蓋体19付きの支持枠3には、その蓋体19から後方に突出する複数個の支持部材57が櫛歯状に設けられ、その各支持部材57に偏平な筒状の電極8Aが着脱自在に套嵌されている。支持部材57は板状又は枠状である。なお、支持枠3は、左右一対の側枠部20とその後端を連結する後枠部21とを備えている。また両端の電極8Aには、その外側の電極板38にターミナル33が溶接等で固定されている。他の構成は第1の実施形態と略同様である。
【0048】
この実施形態に例示するように複数個(取り分け3個以上)の偏平筒状の電極8Aにより電解部2を構成し、その各電極8Aを支持枠3の各支持部材57に套嵌しても良い。なお、電極8Aは上下方向の支持部材57に対して上又は下から套嵌しても良い。
【0049】
図14及び図15は本発明を次亜塩酸ソーダ生成装置に採用した第4の実施形態を例示する。消毒対象水を貯留する貯留槽58に投入して使用する次亜塩酸ソーダ生成装置の場合には、図14、図15に示すように電解部2の各電極7,8を支持枠3に装着した状態で使用することも可能である。
【0050】
なお、貯留槽58の底壁上に据え置く場合には、図14、図15に示すように支持枠3の下部に脚体59を設ければ良いし、また吊り下げる場合には、支持枠3に吊り具を設けることが望ましい。各ターミナル33は防水し絶縁することが望ましい。電解部2、支持枠3、簀の子体22,23等の構造は第1の実施形態と略同様である。
【0051】
以上、本発明の各実施形態について詳述したが、本発明は各実施形態に限定されるものではない。例えば、電解部2を電解槽1内に設ける場合、その電解槽1は密閉式でも良いし、大気開放式でも良い。また電解部2は支持枠3を介して電解槽1に前側から挿脱自在に挿入する他、電解槽1に対して後側から挿脱自在に挿入しても良いし、上側から挿脱自在に挿入しても良い。電解部2の各電極7,8は、電解槽1の保持溝34に上側から個々に挿入するようにしても良い。この場合には、電解槽1とは別に支持枠3を設ける必要はない。
【0052】
複板構造の電極8,8Aは、2枚の電極板38の外周縁を接続板39で一体に接続する他、2枚の電極板38がドーナツ状等の場合には、その内周縁及び/又は外周縁を接続板39で接続しても良い。従って、複板構造の電極7,8は、相対向して略平行に配置された2枚の電極板38を接続板39で一体に接続した構造であれば十分であり、電極板38の端縁の全周に接続板39を設けた箱状、周方向の一部で接続板39に開口を設けた袋状、その他の形状でも良い。
【0053】
また2枚の電極板38は同一材料でも良いし、異なる材料でも良い。また接続板39は2枚の電極板38の両方又は一方と同一材料でも良いし、電極板38と異なる材料でも良い。電解液の流れ方向は上下方向、左右方向、前後方向でも良い。その場合にも、短絡阻止部材49,50は少なくとも電極8,8Aの下流側にあれば良い。電解装置は次亜塩酸ソーダ生成装置以外のものでも良い。
【0054】
【発明の効果】
本発明では、電極の機械的強度が向上すると共に、電気分解時の吸蔵現象による電極の変形を防止でき、初期性能の長期保証、電解効率の向上、電極の長寿命化を図ることができる。また中間の電極の両側の電極間での短絡を防止でき、電解効率が向上する。
【0055】
更に極自体で電解液等を容易に冷却でき、冷却機能を備えた電極を安価に製作できる。
【図面の簡単な説明】
【図1】本説明の第1の実施形態を例示する次亜塩酸ソーダ生成装置の接続管等を外した正面図である。
【図2】本説明の第1の実施形態を例示する次亜塩酸ソーダ生成装置の正面断面図である。
【図3】本説明の第1の実施形態を例示する次亜塩酸ソーダ生成装置の側面断面図である。
【図4】本説明の第1の実施形態を例示する次亜塩酸ソーダ生成装置の平面断面図である。
【図5】本説明の第1の実施形態を例示する次亜塩酸ソーダ生成装置の分解斜視図である。
【図6】本説明の第1の実施形態を例示する中間電極の一部破断側面図である。
【図7】本説明の第1の実施形態を例示する中間電極の一部破断平面図である。
【図8】本説明の第1の実施形態を例示する中間電極の断面図である。
【図9】本説明の第1の実施形態を例示する作用説明図である。
【図10】本説明の第1の実施形態を例示する作用説明図である。
【図11】本説明の第2の実施形態を例示する中間電極の分解斜視図である。
【図12】本説明の第3の実施形態を例示する次亜塩酸ソーダ生成装置の要部の斜視図である。
【図13】本説明の第3の実施形態を例示する次亜塩酸ソーダ生成装置の要部の斜視図である。
【図14】本説明の第4の実施形態を例示する次亜塩酸ソーダ生成装置の斜視図である。
【図15】本説明の第4の実施形態を例示する次亜塩酸ソーダ生成装置の断面図である。
【符号の説明】
7,8,8A 電極
38 電極板
39 接続板
40 冷却室
49,50 短絡阻止部材
[0001]
BACKGROUND OF THE INVENTION
  The present invention is used in a sodium hypochlorite generator, a free chlorine generator, etc. that electrolyzes an electrolyte such as diluted salt water or natural water to produce sodium hypochlorite, free chlorine, etc.RudenIt relates to a solution device.
[0002]
[Prior art]
For example, a sodium hypochlorite generator used for disinfecting drinking water or the like passes a diluted salt water (electrolyte) obtained by diluting saturated salt water to about 3% through an electrolysis part, and between a pair of adjacent electrodes of this electrolysis part As it passes through, the diluted brine is electrolyzed to produce sodium hypochlorite.
[0003]
A conventional sodium hypochlorite generator uses a single-plate electrode composed of a single plate material, with one side in the plate thickness direction serving as the anode surface and the other side serving as the cathode surface. In order to prevent the rise of the temperature of the diluted salt water due to Joule heat during electrolysis, the electrolysis part is arranged in parallel with a predetermined interval in the tank. The cooling means which consists of a coil shape and another cooling pipe is arrange | positioned (for example, refer patent document 1).
[0004]
[Patent Document 1]
JP-A-7-216572 (FIGS. 9 and 10)
[0005]
[Problems to be solved by the invention]
The conventional sodium hypochlorite generator uses a single-plate electrode such as a titanium plate coated with platinum oxide or the like on the cathode side, so that the mechanical strength of the electrode itself is not sufficient. An occlusion phenomenon occurs in which the cathode surface side occludes hydrogen ions generated during electrolysis, and an intermediate electrode or the like is bent and deformed by the occlusion phenomenon so that the cathode surface side extends and the anode surface side is recessed.
[0006]
Since a plurality of electrodes are arranged close to each other at an interval of about 3 mm in the electrolysis section, if the electrodes are deformed by the occlusion phenomenon, the distance between the electrodes changes, and current flows in the proximity of the pair of electrodes. A local concentration may occur, or a pair of electrodes may come into contact with each other and a short-circuit current may flow. Therefore, the deformation of the electrode causes a decrease in electrolytic efficiency and a partial consumption of the electrode, and further causes problems such as a hole in the short circuit portion of the electrode. In that case, the performance is extremely lowered, and the electrode can hardly be reused.
[0007]
In addition, since cooling means are arranged in the vicinity of both sides of the electrolysis unit or at an appropriate place in the electrolytic cell, there is a problem that this cooling means increases the size of the entire apparatus, increases the number of parts, and increases the manufacturing cost. .
[0008]
  In view of such conventional problems, the present invention can improve the physical strength of the electrode, prevent deformation of the electrode due to the occlusion phenomenon as much as possible, improve electrolysis efficiency, and extend the life of the electrode. In addition, the electrolyte solution can be easily cooled by the electrode itself, and the entire device can be downsized and the manufacturing cost can be reduced.RudenAn object is to provide a solution device.
[0009]
[Means for Solving the Problems]
  The present invention relates to an electrolysis apparatus in which three or more electrodes are arranged at a predetermined interval, and an electrolytic solution flowing from the bottom to the top between the pair of adjacent electrodes is electrolyzed. Among the electrodes, at least the intermediate electrode is electrically connected to two opposite electrode plates arranged substantially in parallel at a predetermined interval, and the two electrode plates on the peripheral side thereof. And a short-circuit prevention member for preventing a short circuit between the electrodes on both sides of the intermediate electrode is provided in contact with or close to the upper surface of the connection plate of the intermediate electrode.The internal space of the intermediate electrode is a cooling chamber through which cooling water passes.It is a thing.
  in frontInternal space of intermediate electrodeIs a flat boxIs desirable. A partition plate may be provided between the two electrode plates to maintain a distance between the electrode plates and partition the cooling chamber into cooling passages.
  In addition, the connection plates are integrally bent on two opposite sides of the two rectangular electrode plates, and each of the connection plates corresponds to a side of the counterpart electrode plate where the connection plate is not provided. As described above, the two electrode plates may be combined and their edges may be fixed by welding.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 to 8 illustrate a first embodiment in which the present invention is adopted in a sodium hypochlorite generator. As shown in FIG. 1 to FIG. 5, the sodium hypochlorite production apparatus includes an electrolytic cell 1 that forms an outer shell, an electrolytic unit 2 disposed in the electrolytic cell 1, and the electrolytic unit 2 in front of the electrolytic cell 1. A support frame 3 that is detachably supported in the front-rear direction, a rectifying unit 4 for dilute salt water (hereinafter referred to as an electrolytic solution) disposed below the electrolysis unit 2 in the electrolytic cell 1, and an electrolysis unit 2 and a gas-liquid separation unit 5 disposed in the upper part of the electrolytic cell 1. The electrolytic solution supplied to the rectification unit 4 through the supply pipe 6 passes between the electrodes 7 and 8 of the electrolysis unit 2. When flowing from the bottom to the top, the electrolytic solution is electrolyzed to produce sodium hypochlorite (hereinafter referred to as hyponitrous acid), and the electrolytic gas generated during the electrolysis is released from the degassing pipe 11 to the atmosphere. Then, the hypofilament is taken out from the take-out tube 10 to the outside. The electrolysis unit 2 and the support frame 3 constitute an electrolysis unit.
[0012]
The electrolytic cell 1 has a front wall portion 12, a rear wall portion 13, an upper wall portion 14, a lower wall portion 15, and a pair of left and right side wall portions 16 and is configured in a box shape that is long in the vertical direction and the front and rear direction. The part 15 is a mounting part 17 for installation. The electrolytic cell 1 is hermetically sealed with a synthetic resin plate or other insulating material. An opening 18 for inserting / removing the electrolysis unit 2 from the front side through the support frame 3 is provided on the front wall 12 side of the electrolytic cell 1, and a lid 19 that closes the opening 18 from the front side so as to be freely opened and closed. Is provided at the front portion of the support frame 3.
[0013]
In addition to the lid 19 that closes the opening 18, the support frame 3 protrudes rearward from the lid 19 and is disposed on the left and right sides of the electrolysis unit 2, and on the rear side of the electrolysis unit 2. A rear frame portion 21 for connecting the rear ends of the left and right side frame portions 20, and an electrolysis portion 2 composed of a plurality of electrodes 7, 8 therein and detachably disposed on both upper and lower sides of the electrolysis portion 2 A spider body 22, 23 for preventing a short circuit is provided.
[0014]
Each side frame portion 20 of the support frame 3 is supported slidably in the front-rear direction by an upper rail member 24 and a lower rail member 25 fixed to the inside of the electrolytic cell 1, for example, the inner surface of each side wall portion 16. The lid body 19 is detachably attached to the front wall portion 12 via a sealing material 27 such as packing or O-ring by a plurality of bolts 26 on the outer peripheral edge side. The rear frame portion 21 is detachably fixed to the left and right side frame portions 20 with bolts 28 or the like from the rear side. Note that the support frame 3 and the splint bodies 22 and 23 are made of an insulating material such as synthetic resin. Further, the lid body 19, the side frame portion 20, and the rear frame portion 21 of the support frame 3 may be integrated or separate.
[0015]
The rectifying unit 4 is formed between the left and right lower rail members 25 so that the upper side of the rectifying unit 4 extends left and right corresponding to the electrolysis unit 2. 6 is arranged. In the electrolyte supply pipe 6, a large number of appropriate intervals such as the upper side are provided at predetermined intervals so that the electrolyte can be distributed and supplied substantially uniformly between the electrodes 7 and 8 below the electrolysis unit 2. A supply port 6a is formed. The electrolytic solution supply pipe 6 is fixed to the front wall portion 12 and the rear wall portion 13 of the electrolytic cell 1, penetrates the rear wall portion 13 rearward, and the rear end thereof supplies the electrolytic solution through the supply pipe line 29. Connected to the source. The supply ports 6a are provided in two rows on the upper left and right sides of the electrolyte supply pipe 6 at a predetermined interval in the longitudinal direction.
[0016]
The gas-liquid separation part 5 is formed between the left and right upper rail members 24 so that the middle part in the vertical direction spreads left and right. Are provided on the left and right, and a gas vent pipe 11 communicating with the gas discharge section 30 above the take-out pipe 10 is provided. Two degassing pipes 11 are provided on the upper wall portion 14 of the electrolytic cell 1 in the front-rear direction.
[0017]
The take-out tube 10 is provided with a long hole-like take-out port 10a on the upper side along the longitudinal direction thereof, and is fixed to the front wall portion 12 and the rear wall portion 13 of the electrolytic cell 1, and the rear end side is connected to the rear wall portion 13. It penetrates backward. A gas-liquid separation part 31 is provided at the rear end of the take-out pipe 10, and a gas vent line 53 and a sub-liquid take-out line 54 are vertically connected to the gas-liquid separation part 31.
[0018]
Note that the number of the extraction pipe 10 and the gas vent pipe 11 may be one, or two or more. A drain pipe 32 communicating with the rectifying unit 4 is provided on the lower wall portion 15 of the electrolytic cell 1.
[0019]
The electrolysis unit 2 includes a plurality of rectangular electrodes 7, 8. The electrodes 7, 8 are arranged substantially parallel to each other at a predetermined interval in the left-right direction, and terminals 33 are provided on the electrodes 7, 8 at both ends. It has been. Each electrode 7, 8 is inserted into the support frame 3, in particular, the holding groove 34 in the vertical direction formed in the lid 19 and the rear frame portion 21 thereof, and both front and rear edges are held detachably on the support frame 3. The electrodes 7 and 8 can be attached and detached by removing the rear frame portion 21.
[0020]
The electrodes 7 and 8 are a plurality of three or more, a pair of end electrodes 7 arranged on the left and right sides, and one or two or more plural electrodes (in this embodiment, six in this embodiment). ) And the intermediate electrode 8 are provided in close proximity and in parallel.
[0021]
Each end electrode 7 has a plate-like single plate structure, and is arranged so as to be in contact with the inner surface of each side frame portion 20 of the support frame 3. It is fixed in the front-rear direction. The terminal 33 projects from the rear frame portion 21 of the support frame 3 through the through hole 35 formed in the rear wall portion 13 of the electrolytic cell 1 so as to be detachable and protrudes rearward. A power terminal 33a is detachably attached by a nut 37 to be screwed. The through hole 35 is sealed with a sealing material such as an O-ring. The rear side of the supporting frame 3 of the electrolysis unit is fixed to the electrolytic cell 1 by the screw part 36 and the nut 37 of the terminal 33.
[0022]
The intermediate electrode 8 has a flat box-like double plate structure including two electrode plates 38, and is disposed substantially in parallel with each other at a predetermined interval as shown in FIGS. The two electrode plates 38 and a connection plate 39 that integrally connects the outer circumferences of the two electrode plates 38 are formed in a hollow shape, and the inner space is a cooling chamber 40 through which cooling water passes. ing.
[0023]
Each electrode plate 38 has a rectangular shape and is arranged with a gap slightly larger than the interval between the electrodes 7 and 8, and the four sides of the outer periphery thereof are fixed to both ends of the belt-like connection plate 39 by welding or the like. Has been. The internal space formed by the electrode plate 38 and the connection plate 39 is a cooling chamber 40, and two mouth fittings 41 for cooling water protrude forward from the front and rear end portions of the front connection plate 39. It is fixed in the direction.
[0024]
The end electrode 7 and the intermediate electrode 8 are made of a conductive metal plate such as a titanium plate. Each end electrode 7 has a substantially entire inner surface facing the intermediate electrode 8, and each electrode plate 38 of the intermediate electrode 8 has substantially the entire outer surface facing the adjacent end electrode 7 or intermediate electrode 8. Each is coated with a conductive film such as platinum oxide. The external DC power supply connected to the terminal 33 is configured to switch the energization direction of the anode and the cathode at a predetermined time interval with respect to the pair of end electrodes 7. In the case of a direct current power supply unit in which the energization direction is one direction, a coating for a predetermined purpose may be applied to the cathode surface side of each of the electrodes 7 and 8 as necessary.
[0025]
The fitting 41 passes through a through hole 19a formed in the lid body 19 of the support frame 3 so as to be detachable and protrudes to the front side, and by a nut 43 that is screwed into the threaded portion in the concave portion 42 on the front side of the lid body 19. It is fixed to the lid 19. The cooling chamber 40 of each intermediate electrode 8 is connected in series on the front side of the lid 19 via a connecting pipe 44 such as a hose that can be attached to and detached from the upper and lower two fittings 41, and the remaining intermediate electrodes 8 at both ends. A cooling inflow pipe 45 and an outflow pipe 46 are detachably connected to the fitting 41.
[0026]
The intermediate electrode 8 has two types of attachment positions of the fitting 41, such as those having the fitting 41 on the outer side of the upper and lower ends and those having the fitting 41 on the inner side. And different types of intermediate electrodes 8 are alternately arranged so as to be adjacent to each other. This is to secure the gap between the through hole 19 a and the recess 42 formed in the lid 19 by vertically separating the fittings 41 between the adjacent intermediate electrodes 8.
[0027]
When the intermediate electrode 8 is large, as shown in FIG. 8, one or a plurality of (for example, three) partition plates 47 are provided between the electrode plates 38, and the partition plates 47 are spot welded to the electrode plates 38. It may be fixed by, for example. The partition plate 47 keeps the space between the electrode plates 38 and partitions the inside of the cooling chamber 40 into cooling passages 48 extending over the entire electrode plate 38 so that the cooling water flows through the entire intermediate electrode 8 completely. belongs to.
[0028]
The spider bodies 22 and 23 are made of an insulating material such as a synthetic resin, and are arranged substantially in parallel with each of the intermediate electrodes 8, and each of the short-circuit prevention members 49 and 50 that prevents a short circuit of the electrolytic current, and each short-circuit prevention The members 49 and 50 are integrally formed by strip-like connecting frames 51 and 52 that connect both end sides in the longitudinal direction, and are detachably fitted into the support frame 3 by press fitting or the like on both upper and lower sides of the electrolysis unit 2. The short-circuit prevention members 49 and 50 and the connecting frames 51 and 52 are in the form of strips that do not impede the flow of the electrolyte, hypochlorous acid, etc., and the respective short-circuit prevention members 49 and 50 are the upper and lower connection plates 39 of the intermediate electrode 8. It is provided in contact with or close to.
[0029]
In the case where the front and rear ends of the electrodes 7 and 8 are inserted into the holding frame 34 in the vertical direction formed in the support frame 3, in particular, the lid body 19 and the rear frame portion 21 thereof, Since the support frame 3 itself functions as a short-circuit prevention member at both end edges, it is sufficient to provide it on both the upper and lower sides. In addition, the spider bodies 22 and 23 may be provided only on the downstream side of at least the electrodes 7 and 8 (that is, on the upper side of the electrolysis unit 2) of the both sides in the flow direction of the electrolyte flowing between the pair of electrodes 7 and 8. . The members having a short-circuit preventing function for preventing a short circuit of the electrolytic current, such as the short-circuit preventing members 49 and 50, are desirably provided on the entire circumference in the circumferential direction on the edge sides of the electrodes 7 and 8.
[0030]
In the generation of hypochlorous acid, a DC current is supplied from the DC power supply unit to the electrodes 7 and 8 of the electrolysis unit 2 via the terminal 33 while supplying the electrolyte solution from the water supply pipe to the rectification unit 4 below the electrolysis unit 2. Shed. Then, the electrolytic solution supplied to the rectifying unit 4 is dispersed almost evenly by the rectifying action of the rectifying unit 4 and enters between the electrodes 7 and 8, and flows between the electrodes 7 and 8 from below to above. Is electrolyzed by a direct current, thereby producing hypochlorous liquid.
[0031]
By this electrolysis, a large amount of electrolytic gas mainly composed of hydrogen gas is generated at the same time as the generation of hypochlorous liquid. Then, the hypochlorous acid containing the fine cell-like electrolytic gas rises between the electrodes 7 and 8 and moves to the gas-liquid separation part 5 on the upper side of the electrolysis part 2. The gas and liquid are separated into a liquid and an electrolytic gas, the hypochlorous acid is taken out from the take-out pipe 10 to the outside of the electrolytic cell 1, and the electrolytic gas is discharged from the degassing pipe 11 to the outside atmosphere through the gas discharge part 30. Is done.
[0032]
Since the take-out pipe 10 has a take-out port 10a on the upper side, even when the hypochlorous acid contains a large amount of fine cell-like electrolytic gas, the electrolytic gas enters the take-out port 10a through the upper side of the take-out pipe 10. Since most of the electrolytic gas is previously separated from the sub-liquid, most of the electrolytic gas can be separated from the sub-liquid by the gas-liquid separation unit 5, and the amount of gas in the sub-liquid taken out from the take-out pipe 10 is minimized. it can. Even if some electrolytic gas enters the take-out pipe 10, the hypochlorous acid and the electrolytic gas are separated by the gas-liquid separation unit 31 outside the electrolytic cell 1, and the electrolytic gas is released from the gas vent line 53 to the atmosphere. Since it is discharged, it is possible to take out the hypo-sub solution with less electrolytic gas to the take-out pipeline 54 side.
[0033]
The direct current flows from one end electrode 7 through the intermediate electrode 8 to the other end electrode 7 using one end electrode 7 as an anode and the other end electrode 7 as a cathode. Switch the cathode to flow in the opposite direction. For this reason, oxides easily adhere to the cathode surface side of the electrodes 7 and 8, but by alternately switching the energizing direction, the amount of oxides deposited on the electrodes 7 and 8 can be reduced, When it becomes an anode, it can be removed by separation or the like.
[0034]
Occlusion of hydrogen ions occurs during electrolysis. For example, as shown in FIG. 9, when the end electrode 7a is an anode and the end electrode 7b is a cathode, a current flows from the end electrode 7a to one electrode plate 381a of the intermediate electrode 8a, and the other electrode A current flows from the plate 381b to one electrode plate 382a of the adjacent intermediate electrode 8b.
[0035]
At this time, hydrogen ions are generated between the electrodes 7 and 8, and the hydrogen ions are occluded on the cathode surface side of the electrode plates 381a, 382a and 383a which are the cathodes of the intermediate electrodes 8a, 8b and 8c. To do.
[0036]
However, when one intermediate electrode 8a, 8b is viewed, the cathode surface side of one of the two electrode plates 381a, 381b, 382a, 382b, which is the cathode, of the two electrode plates 381a, 382a occludes hydrogen ions. However, since the one electrode plate 381a, 382a and the anode surface side of the other electrode plate 381b, 382b are constituted by different electrode plates, the cathode surface and the anode surface are both sides of one electrode plate. In comparison with the conventional single plate electrode shown in FIG. 1, deformations such as bending of the electrode plates 381a, 381b, 382a, 382b of the intermediate electrodes 8a, 8b can be minimized.
[0037]
Accordingly, the intermediate electrode 8 has a flat box shape having two electrode plates 38, and the mechanical strength thereof is coupled with the bending of each electrode plate 38 of the intermediate electrode 8 and other deformations. It is possible to prevent as much as possible, and to keep the interval between the electrodes 7 and 8 substantially constant, local current concentration between the adjacent electrodes 7 and 8, reduction in electrolytic efficiency due to short circuit, etc. 7 and 8 are not partially consumed and the life of the electrodes 7 and 8 can be extended.
[0038]
During electrolysis of the electrolytic solution, cooling water is allowed to flow into the cooling chamber 40 inside each intermediate electrode 8 to cool the intermediate electrode 8 from the inner side. For this reason, the simple structure of the intermediate electrode 8 itself can prevent the temperature increase of the electrodes 7, 8 and the electrolytic solution due to Joule heat, and the electrolysis efficiency is improved. Further, since the intermediate electrode 8 has a flat box shape with two electrode plates 38 and the internal space is a cooling chamber 40, compared to the conventional case in which cooling means is separately provided in the vicinity of the electrolysis unit 2. Thus, the entire apparatus can be reduced in size and the manufacturing cost can be reduced. Moreover, since each of the intermediate electrodes 8 has a cooling chamber 40 and each of the intermediate electrodes 8 has a cooling function, the entire electrolysis unit 2 can be efficiently cooled almost uniformly and without any bias. .
[0039]
Since the short-circuit prevention members 49 and 50 are provided corresponding to the intermediate electrodes 8 on the upstream side and the downstream side of the electrolysis unit 2, the flat outer periphery of the two electrode plates 38 is integrally connected by the connection plate 39. In spite of the use of the intermediate electrode 8 having a box-like double plate structure, one or more intermediate electrodes 8 are sandwiched between the intermediate electrodes 8 on both sides of the upstream and downstream sides of the intermediate electrode 8. Can prevent a short-circuit current flowing through the electrode, improving electrolysis efficiency.
[0040]
That is, when the intermediate electrode 8 having a double plate structure is used, the dimension in the plate thickness direction of the intermediate electrode 8 becomes thick, so both sides (upstream side and downstream side) of the electrolyte flow direction with respect to the intermediate electrode 8, As a result, in comparison with the electrode 7 having a single plate structure, an insulating oxide or the like is likely to adhere to the connection plates 39 on the upstream side and the downstream side of the intermediate electrode 8. The electrical resistance between the electrodes 7 and 8 varies depending on the amount of insulating oxide or the like deposited on the electrode surface or the amount of electrolytic gas generated between the electrodes 7 and 8.
[0041]
Therefore, for example, as shown in FIG. 10, an insulating oxide 55 or the like adheres to a certain intermediate electrode 8b, and the electric current between the electrode surfaces of the intermediate electrode 8b and the adjacent intermediate electrode 8a due to some reason. When the resistance temporarily increases, if there is no short-circuit prevention member 49, 50, the electrolyte or hypo-sub solution between the upstream or downstream sides of the intermediate electrodes 8a, 8c on both sides of the intermediate electrode 8b. The short circuit current I may flow through In this case, the electrolysis efficiency of the electrolysis unit 2 may be extremely reduced.
[0042]
However, if the short-circuit prevention members 49 and 50 made of an insulating material are provided on the upstream side and the downstream side of each intermediate electrode 8, the insulating oxide 55 or the like is attached to the upstream side or the downstream side of the intermediate electrode 8b. In this case, even if the electrical resistance between the electrode plates 381b and 382a of the intermediate electrodes 8a and 8b temporarily increases, the short-circuit current I avoids the short-circuit prevention member 49b and the short-circuit prevention member 49b and the intermediate electrode 8b. Or the opposite side of the intermediate electrode 8b with respect to the short-circuit prevention member 49b.
[0043]
In the former case, the short-circuit prevention member 49b is in contact with or close to the intermediate electrode 8b, and the short-circuit current I tends to flow through the vicinity of the intermediate electrode 8b. It flows to the electrode 8b. In the latter case, there is a short-circuit prevention member 49b, and the electric resistance between the intermediate electrodes 8a and 8b increases more than the electric resistance between the intermediate electrodes 8a and 8c. Flows to the intermediate electrode 8b having a small diameter.
[0044]
Therefore, by providing the short-circuit prevention member 49 in contact with or close to each intermediate electrode 8, the short-circuit current I flows between the electrodes 7 and 8 on both sides of the intermediate electrode 8. Absent. Since both the front and rear sides of each intermediate electrode 8 are fitted in the holding groove 34, there is no problem of a short circuit current on the holding groove 34 side.
[0045]
When the electrolytic unit 2 is maintained, inspected, etc., the nut 37 and the power terminal 33a of the terminal 33 are removed, the connecting pipe 44 and the nut 43 of the fitting 41 are removed, and then the lid 19 is unlocked. The support frame 3 provided with the portion 2 can be easily extracted from the electrolytic cell 1 to the front side along the upper and lower rail members 24 and 25. In addition, when incorporating, the support frame 3 is inserted into the electrolytic cell 1 along the rail members 24, 25, and then the lid 19 is fixed to the electrolytic cell 1, and the power terminal 33 a is fixed to the terminal 33 with the nut 37. The connection pipe 44 may be connected by tightening the fitting 41 with the nut 43.
[0046]
FIG. 11 illustrates a second embodiment in which the present invention is employed in a sodium hypochlorite generator. The intermediate electrode 8 with each electrode plate 38 having a rectangular shape may be configured as shown in FIG. The intermediate electrode 8 is provided by integrally bending connection plates 39 on two opposite sides of each electrode plate 38, and each of the connection plates 39 corresponds to a side of the counterpart electrode plate 38 that does not have the connection plate 39. Thus, the two electrode plates 38 are combined, and the edges are fixed by welding or the like. Other configurations are the same as those of the first embodiment.
[0047]
12 and 13 illustrate a third embodiment in which the present invention is employed in a sodium hypochlorite generator. The plurality of electrodes 8A of the electrolysis unit 2 are formed in a flat cylindrical shape by integrally connecting two sides of the two electrode plates 38 with a connection plate 39. The support frame 3 with the lid body 19 is provided with a plurality of support members 57 protruding rearward from the lid body 19 in a comb-tooth shape, and a flat cylindrical electrode 8A is detachably attached to each support member 57. It is fitted in. The support member 57 has a plate shape or a frame shape. The support frame 3 includes a pair of left and right side frame portions 20 and a rear frame portion 21 that connects the rear ends thereof. Further, the terminals 33 are fixed to the outer electrode plates 38 by welding or the like in the electrodes 8A at both ends. Other configurations are substantially the same as those of the first embodiment.
[0048]
As illustrated in this embodiment, the electrolytic section 2 is constituted by a plurality (particularly, three or more) of flat cylindrical electrodes 8A, and each electrode 8A is fitted to each support member 57 of the support frame 3. good. The electrode 8A may be fitted over the support member 57 in the vertical direction from above or below.
[0049]
14 and 15 illustrate a fourth embodiment in which the present invention is employed in a sodium hypochlorite generator. In the case of a sodium hypochlorite generating apparatus that is used by being put into the storage tank 58 for storing the water to be disinfected, the electrodes 7 and 8 of the electrolysis unit 2 are mounted on the support frame 3 as shown in FIGS. It is also possible to use it in such a state.
[0050]
In the case of standing on the bottom wall of the storage tank 58, a leg 59 may be provided at the lower part of the support frame 3 as shown in FIGS. It is desirable to provide a hanger. Each terminal 33 is preferably waterproof and insulated. The structures of the electrolysis unit 2, the support frame 3, the spider body 22, 23 and the like are substantially the same as those in the first embodiment.
[0051]
As mentioned above, although each embodiment of this invention was explained in full detail, this invention is not limited to each embodiment. For example, when the electrolysis unit 2 is provided in the electrolytic cell 1, the electrolytic cell 1 may be a hermetically sealed type or an open-air type. The electrolysis unit 2 can be inserted into the electrolytic cell 1 from the front side through the support frame 3 so as to be detachable from the front side. It may be inserted into. The electrodes 7 and 8 of the electrolysis unit 2 may be individually inserted into the holding groove 34 of the electrolytic cell 1 from above. In this case, it is not necessary to provide the support frame 3 separately from the electrolytic cell 1.
[0052]
The electrodes 8 and 8A having a double plate structure are formed by integrally connecting the outer peripheral edges of the two electrode plates 38 with a connection plate 39, and when the two electrode plates 38 have a donut shape or the like, Alternatively, the outer peripheral edge may be connected by the connection plate 39. Accordingly, it is sufficient for the electrodes 7 and 8 having a double plate structure to have a structure in which two electrode plates 38 arranged in parallel to each other and connected in parallel are integrally connected by a connection plate 39. A box shape in which the connection plate 39 is provided on the entire periphery of the edge, a bag shape in which an opening is provided in the connection plate 39 in a part in the circumferential direction, or other shapes may be used.
[0053]
The two electrode plates 38 may be made of the same material or different materials. The connection plate 39 may be made of the same material as both or one of the two electrode plates 38 or may be made of a material different from that of the electrode plate 38. The flow direction of the electrolytic solution may be up and down, left and right, and front and rear. Even in this case, the short-circuit prevention members 49 and 50 may be at least downstream of the electrodes 8 and 8A. The electrolyzer may be other than a sodium hypochlorite generator.
[0054]
【The invention's effect】
  The present inventionThen, of the electrodeThe mechanical strength is improved, and the electricity caused by the occlusion phenomenon during electrolysisExtremeCan prevent deformation, long-term guarantee of initial performance, improved electrolytic efficiency,ExtremeLong life can be achieved.Moreover, a short circuit between the electrodes on both sides of the intermediate electrode can be prevented, and the electrolysis efficiency is improved.
[0055]
  MoreElectricExtreme selfElectrolyte etc. can be easily cooled by the body and has a cooling function.The poleCan be manufactured at low cost.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a front view of a sodium hypochlorite generator that illustrates a first embodiment of the present invention, with connection pipes and the like removed.
FIG. 2 is a front sectional view of a sodium hypochlorite generator exemplifying the first embodiment of the present description.
FIG. 3 is a side sectional view of a sodium hypochlorite generator exemplifying the first embodiment of the present description.
FIG. 4 is a plan sectional view of a sodium hypochlorite generator exemplifying the first embodiment of the present description.
FIG. 5 is an exploded perspective view of a sodium hypochlorite generator exemplifying the first embodiment of the present description.
FIG. 6 is a partially cutaway side view of the intermediate electrode illustrating the first embodiment of the present description.
FIG. 7 is a partially broken plan view of an intermediate electrode illustrating the first embodiment of the present description.
FIG. 8 is a cross-sectional view of an intermediate electrode illustrating the first embodiment of the present description.
FIG. 9 is an operation explanatory diagram illustrating the first embodiment of the present description.
FIG. 10 is an operation explanatory diagram illustrating the first embodiment of the present description.
FIG. 11 is an exploded perspective view of an intermediate electrode illustrating the second embodiment of the present description.
FIG. 12 is a perspective view of a relevant part of a sodium hypochlorite generator exemplifying the third embodiment of the present description.
FIG. 13 is a perspective view of a relevant part of a sodium hypochlorite generator exemplifying the third embodiment of the present description.
FIG. 14 is a perspective view of a sodium hypochlorite generator exemplifying the fourth embodiment of the present description.
FIG. 15 is a cross-sectional view of a sodium hypochlorite generator exemplifying the fourth embodiment of the present description.
[Explanation of symbols]
7,8,8A electrode
38 Electrode plate
39 Connection board
40 Cooling room
49, 50 Short-circuit prevention member

Claims (4)

3個以上の電極を所定の間隔をおいて配置し、隣り合う一対の前記電極間で、該電極間を下から上へと流れる電解液を電気分解するようにした電解装置において、前記各電極の内、少なくとも中間の前記電極は、所定の間隔をおいて略平行に配置された相対向する2枚の電極板と、該2枚の電極板をその周縁側で電気的に接続する接続板とを備えた中空状とし、前記中間の電極の両側の前記電極間の短絡を阻止する短絡阻止部材を該中間の電極の前記接続板の上面に当接又は近接して設け、前記中間の電極の内部空間を、冷却水が通過する冷却室としたことを特徴とする電解装置。In the electrolysis apparatus in which three or more electrodes are arranged at a predetermined interval, and an electrolytic solution flowing between the electrodes from the bottom to the top is electrolyzed between a pair of adjacent electrodes, the electrodes Among these, at least the intermediate electrode is composed of two opposing electrode plates arranged substantially in parallel at a predetermined interval, and a connecting plate for electrically connecting the two electrode plates on the peripheral side thereof A short-circuit prevention member for preventing a short circuit between the electrodes on both sides of the intermediate electrode is provided in contact with or close to the upper surface of the connection plate of the intermediate electrode, and the intermediate electrode An electrolysis apparatus characterized in that the internal space of the is a cooling chamber through which cooling water passes . 記中間の電極の内部空間は偏平な箱状であることを特徴とする請求項1に記載の電解装置。Electrolysis apparatus according to claim 1 the inner space of the previous SL intermediate electrode, which is a flat box. 前記2枚の電極板間に、前記電極板間の間隔を保持し且つ前記冷却室を冷却通路に区画する仕切り板を設けたことを特徴とする請求項1又は2に記載の電解装置。Wherein the two electrode plates, the electrolytic device according to claim 1 or 2, characterized in that a partition plate a holding and the cooling chamber a distance of the electrode plates to define a cooling passage. 矩形状の2枚の前記電極板の相対向する二辺に前記接続板を一体に折り曲げて設け、その夫々の前記接続板が相手側の前記電極板の前記接続板のない辺に対応するように前記2枚の電極板を組み合わせて、その端縁同士を溶接で固定したことを特徴とする請求項1〜3の何れかに記載の電解装置。  The connection plate is integrally bent on two opposite sides of the two rectangular electrode plates, and each of the connection plates corresponds to a side of the counterpart electrode plate where the connection plate is not provided. The electrolysis apparatus according to any one of claims 1 to 3, wherein the two electrode plates are combined and their edges are fixed by welding.
JP2002306979A 2002-10-22 2002-10-22 Electrolyzer Expired - Fee Related JP4302386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306979A JP4302386B2 (en) 2002-10-22 2002-10-22 Electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306979A JP4302386B2 (en) 2002-10-22 2002-10-22 Electrolyzer

Publications (2)

Publication Number Publication Date
JP2004143481A JP2004143481A (en) 2004-05-20
JP4302386B2 true JP4302386B2 (en) 2009-07-22

Family

ID=32453584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306979A Expired - Fee Related JP4302386B2 (en) 2002-10-22 2002-10-22 Electrolyzer

Country Status (1)

Country Link
JP (1) JP4302386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200111290A (en) * 2015-08-05 2020-09-28 신-융 린 An electrolytic device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060793B2 (en) * 2007-02-02 2012-10-31 日科ミクロン株式会社 Ozone water generator
JP4594357B2 (en) * 2007-07-29 2010-12-08 株式会社微酸性電解水研究所 Disinfectant manufacturing equipment
KR101198630B1 (en) 2010-08-09 2012-11-07 유니테크 주식회사 Supporting structure of electrode plates in electrolytic cell for preparing sodium hypochlorite
JP2013103209A (en) * 2011-11-16 2013-05-30 Shinmaywa Industries Ltd Water electrolyzing sterilizing apparatus
JP5899097B2 (en) * 2012-09-28 2016-04-06 森永乳業株式会社 Electrode plate support body, electrolytic cell equipped with electrode plate support body, and electrolyzed water production apparatus
JP6528173B2 (en) * 2015-04-02 2019-06-12 株式会社微酸研 Electrolytic cell and hypochlorous acid water production device
WO2017113009A1 (en) * 2015-12-30 2017-07-06 Innovative Hydrogen Solutions, Inc. Electrolytic cell for internal combustion engine
JP6853049B2 (en) * 2017-01-18 2021-03-31 株式会社日本トリム Electrolyzed water generator
CN108193226B (en) * 2018-02-11 2024-02-27 广东卓信环境科技股份有限公司 Composite electrode assembly
JP6569144B1 (en) * 2019-01-23 2019-09-04 三菱重工環境・化学エンジニアリング株式会社 Monopolar electrolytic device
KR102274879B1 (en) * 2020-08-19 2021-07-08 (주)테크윈 An electrode assembly for an electrolyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200111290A (en) * 2015-08-05 2020-09-28 신-융 린 An electrolytic device
US11021800B2 (en) 2015-08-05 2021-06-01 Hsin-Yung Lin Electrolytic device
KR102277185B1 (en) * 2015-08-05 2021-07-14 신-융 린 An electrolytic device

Also Published As

Publication number Publication date
JP2004143481A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP6077087B2 (en) Electrolyzer for ozone generation
JP4302386B2 (en) Electrolyzer
JP2581685B2 (en) Electrolyzer with intermediate electrode structure
JPH06339683A (en) Electrolyzed water generation device
JP2002129369A (en) Equipment for generating gas mixture of oxygen and hydrogen
JP4594357B2 (en) Disinfectant manufacturing equipment
TW201942415A (en) Electrolysis vessel for alkaline water electrolysis
WO2009070938A1 (en) Multielectrodes-type ion-membrane electrolytic cell with oxygen-cathodes
JP2024027150A (en) generator
CN211199421U (en) Intelligent split type hydrogen and oxygen generator
CN106946322B (en) Electrolysis mechanism for purifying water
JP4599487B2 (en) Water-cooled vertical electrolytic cell
TW526289B (en) Bipolar multipurpose electrolysis cell for high current loads
JP4056623B2 (en) Electrolytic tank of electrolysis neutral water generator
JP4925658B2 (en) Electrolytic cell
JP3091617B2 (en) Bipolar electrolytic cell
CN212894047U (en) A electrolytic device for reducing COD in sewage
JP3229266B2 (en) Bipolar filter press type electrolytic cell
JP6499151B2 (en) Electrolytic cell
KR101159306B1 (en) Electrode structure
KR100424665B1 (en) great volume oxygen and hydrogen mixture gas generation equipment of variable an electrolytic cell
JP3322988B2 (en) Electrolyzed water generator
JP2003183867A (en) Electrolysis method for alkali chloride solution
JP2944068B2 (en) Continuous electrolyzed water generator
WO2008128302A1 (en) Improved electrolytic cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4302386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees