JP4597045B2 - Micro sample transfer apparatus and method - Google Patents

Micro sample transfer apparatus and method Download PDF

Info

Publication number
JP4597045B2
JP4597045B2 JP2005359321A JP2005359321A JP4597045B2 JP 4597045 B2 JP4597045 B2 JP 4597045B2 JP 2005359321 A JP2005359321 A JP 2005359321A JP 2005359321 A JP2005359321 A JP 2005359321A JP 4597045 B2 JP4597045 B2 JP 4597045B2
Authority
JP
Japan
Prior art keywords
sample
micro
micro sample
connector
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005359321A
Other languages
Japanese (ja)
Other versions
JP2007163277A (en
Inventor
馨 梅村
安紀 中野
浩二 石黒
則幸 兼岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005359321A priority Critical patent/JP4597045B2/en
Publication of JP2007163277A publication Critical patent/JP2007163277A/en
Application granted granted Critical
Publication of JP4597045B2 publication Critical patent/JP4597045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空試料室内で微小試料を移送する微小試料移送装置及び方法に関する。   The present invention relates to a micro sample transfer apparatus and method for transferring a micro sample in a vacuum sample chamber.

半導体の高集積化や微細化に伴い、動作不良を解析する手段として走査電子顕微鏡(以下、SEMと略記)の持つ像分解能では判別できないほどの欠陥が不良原因となることが多くなり、SEMに代わり透過電子顕微鏡や走査型透過電子顕微鏡(以下、代表してSTEMと略記)が必須となってきた。しかし、STEM観察用の試料作製が容易ではなく、短時間で簡便に目標位置を確実に試料にする手法が望まれている。   Along with the high integration and miniaturization of semiconductors, defects that cannot be determined by the image resolution of a scanning electron microscope (hereinafter abbreviated as SEM) as a means for analyzing malfunctions often cause defects. Instead, a transmission electron microscope and a scanning transmission electron microscope (hereinafter abbreviated as STEM) have become essential. However, it is not easy to prepare a sample for STEM observation, and there is a demand for a method for easily and reliably setting a target position in a short time.

最近、集束イオンビーム(以下、FIBと略記)と先鋭化した微小試料接続具(以下、微小試料移送具とも言う)を用いて、真空容器内で数cmの小片や直径300mmウェーハを元試料として、そこから10μm程度の微小試料を摘出する方法が多用されるようになってきた。試料の一部をFIB加工と先鋭化した微小試料接続具を用いて微小試料を分離する方法については特許第2774884号公報(特許文献1)に記載されている。また、STEM用の試料台に搭載して観察試料まで仕上げる方法については特許第3547143号公報(特許文献2)に記載されている。特許文献2には、微細試料片と微小試料接続具の接続方法としてデポジション膜を使う方法と、デポジション膜を使わずに静電吸着を用いた接続方法が開示されている。   Recently, using a focused ion beam (hereinafter abbreviated as FIB) and a sharpened micro sample connection tool (hereinafter also referred to as a micro sample transport tool), a small piece of a few centimeters or a 300 mm diameter wafer is used as an original sample in a vacuum vessel. From there, a method of extracting a small sample of about 10 μm has been frequently used. Japanese Patent No. 2774884 (Patent Document 1) describes a method of separating a micro sample by using a micro sample connecting tool in which a part of the sample is FIB processed and sharpened. In addition, a method for mounting on an STEM sample stage to finish an observation sample is described in Japanese Patent No. 3547143 (Patent Document 2). Patent Document 2 discloses a method using a deposition film as a connection method between a fine sample piece and a fine sample connector, and a connection method using electrostatic adsorption without using a deposition film.

特許文献1には、集束イオンビーム装置の試料室内に先端の尖った微小試料接続具を配置し、FIBで目標位置の周辺を除去加工した後、微小試料接続具の先端を試料表面に接触させ、微小試料接続具先端を含むようにFIBアシストデポジション膜(以下、デポジション膜と略記)を形成して試料と接続して、目標位置を含む微小試料を基板から分離することが記載されている。さらに、特許文献2には分離摘出した微小試料を試料室内に設けた微小試料固定台に固定してSTEM観察しやすいように薄片化加工を施してSTEMが完成することが開示されている。また特許文献2に記載されている静電吸着による接続方法は、微小試料接続具が微小試料に点接触状態になって接続される。   In Patent Document 1, a fine sample connector having a sharp tip is arranged in the sample chamber of the focused ion beam apparatus, and after removing the periphery of the target position by FIB, the tip of the micro sample connector is brought into contact with the sample surface. , A FIB-assisted deposition film (hereinafter abbreviated as a deposition film) is formed so as to include the tip of the micro sample connector, and is connected to the sample to separate the micro sample including the target position from the substrate. Yes. Further, Patent Document 2 discloses that a STEM is completed by fixing a micro sample separated and extracted to a micro sample fixing base provided in a sample chamber and performing thinning processing so that STEM observation is easy. Further, in the connection method by electrostatic attraction described in Patent Document 2, the micro sample connector is connected to the micro sample in a point contact state.

特許文献1や2におけるSTEM試料作製方法の大きな利点のひとつは、元試料から微小試料片を摘出してSTEMホルダに固定するとき、摘出した微小試料の姿勢が変わらないために、元試料面とSTEMホルダの試料固定面とを平行にしておくと、微小試料接続具を複雑な操作することなく、STEM観察し易い薄片が作成できることである。つまり、摘出される微小試料の姿勢が崩れないことが重要な点であり、これを実現するためには、無応力で加工できるFIBと、変形しない微小試料接続具と微小試料とのデポジション膜による確実な接続が必須である。   One of the great advantages of the STEM sample preparation method in Patent Documents 1 and 2 is that when a micro sample piece is extracted from the original sample and fixed to the STEM holder, the extracted micro sample does not change its orientation, If the sample fixing surface of the STEM holder is made parallel, a thin piece that can be easily observed by the STEM can be created without complicated operation of the micro sample connector. In other words, it is important that the posture of the extracted microsample does not collapse, and in order to realize this, the FIB that can be processed without stress, the deposition film of the microsample connector that does not deform, and the microsample Reliable connection is essential.

また、特開2003−242921号公報(特許文献3)には、SEMなど電子ビームを照射する電子顕微鏡内に剥離用探針と摘出用探針を設置し、試料の被観察面を観察する際に、剥離用探針と摘出用探針に電圧を印加して、微小物体と探針とに働くクーロン引力とクーロン斥力を利用して微小物体を取り出したり落下させたりする方法及び装置が開示されている。   Japanese Patent Laid-Open No. 2003-242921 (Patent Document 3) discloses a case where a peeling probe and an extraction probe are installed in an electron microscope that irradiates an electron beam such as an SEM and an observation surface of a sample is observed. In addition, a method and an apparatus are disclosed in which a voltage is applied to the separation probe and the extraction probe, and the micro object is taken out and dropped using the Coulomb attractive force and the Coulomb repulsive force acting on the micro object and the probe. ing.

特許第2774884号公報Japanese Patent No. 2774884 特許第3547143号公報Japanese Patent No. 3547143 特開2003−242921号公報JP 2003-242921 A

上記特許文献1や2のように、従来の先鋭化した微小試料接続具を微小試料に接続するような装置には次のような問題点を有していることを見出した。   As in Patent Documents 1 and 2, it has been found that a conventional device for connecting a sharpened micro sample connector to a micro sample has the following problems.

(1)微小試料接続具の機械的強度の弱さ
微小試料接続具先端の微小領域への接触を実現するために先端半径を1μm程度まで小さくしなければならない。このために、先端近くの微小試料接続具幅も2μm程度に細くしなければならない。このため機械的剛性が低くなり、高強度物性のタングステンであっても、試料に不用意に接触させると簡単に変形して本来の目的である先端の試料への接触や接続ができなくなる。このような微小試料接続具先端が変形した場合には、微小試料接続具の交換を余儀なくされ、予備微小試料接続具が必要になると共に交換作業、装置の停止時間などの無駄が多くなり、装置使用者に不利益を与える。
(1) The weakness of the mechanical strength of the micro sample connector The tip radius must be reduced to about 1 μm in order to achieve contact of the micro sample connector tip with the micro area. For this reason, the width of the minute sample connector near the tip must be reduced to about 2 μm. For this reason, mechanical rigidity is lowered, and even tungsten having high physical properties can be easily deformed if it is inadvertently brought into contact with the sample, and contact with or connection to the sample at the tip, which is the original purpose, becomes impossible. When the tip of the micro sample connector is deformed, the micro sample connector must be replaced, and a spare micro sample connector is necessary, and waste such as replacement work and apparatus stop time increases. It is disadvantageous to the user.

(2)移送する微小試料の姿勢崩れ
微小試料を微小試料接続具の先端に接続できても、試料基板などの周辺部材との静電気力による引力や斥力のために微小試料の姿勢が崩れ、向きが変わる。微小試料の姿勢の崩れは、例えばこの微小試料の垂直断面加工や、垂直面のSTEM用の薄片加工ができないなどの弊害を生む。更に好ましくないのは、微小試料が微小試料接続具先端以外に付着すると、微小試料接続具から微小試料が分離できなくなり、当初の目的であるSTEM観察が出来なくなる。これらの原因は微小試料接続具の先端が細く、かつ、微小試料と微小試料接続具が先端で点接触となっているために微小試料が周囲の静電場による引力や斥力の影響を受けやすく、点接触部を中心に微小試料が傾くためである。このため、微小試料の移送前後で、その姿勢を維持できない。そのため、STEMで所望箇所が観察できなくなり本来の目的である観察が実現しなくなる。
(2) Displacement of the posture of the micro sample to be transferred Even if the micro sample can be connected to the tip of the micro sample connector, the posture of the micro sample is disrupted due to the attractive force or repulsive force due to electrostatic force with the peripheral members such as the sample substrate. Changes. The collapse of the posture of the micro sample causes problems such as the vertical cross-section processing of the micro sample and the STEM thin piece processing of the vertical surface cannot be performed. More preferably, if the micro sample adheres to other than the tip of the micro sample connector, the micro sample cannot be separated from the micro sample connector, and STEM observation, which is the original purpose, cannot be performed. These causes are because the tip of the micro sample connector is thin, and the micro sample and the micro sample connector are in point contact at the tip, so the micro sample is easily affected by the attractive and repulsive forces of the surrounding electrostatic field, This is because the micro sample tilts around the point contact portion. For this reason, the posture cannot be maintained before and after the transfer of the minute sample. As a result, the desired location cannot be observed with the STEM, and the original observation cannot be realized.

(3)微小試料接続具の切断分離に伴う先端の整形
微小試料接続具先端での微小試料の姿勢維持や脱落防止の観点から、微小試料接続具先端と微小試料をFIBデポジション膜で接続する方法が知られていて、特許文献1,2にも記載されている。この場合、接続強度が高くなり、接続された微小試料の姿勢は崩れない利点があるが、他の箇所への移設後は、微小試料接続具と微小試料とを分離しなければならない。これには微小試料接続具を切断するか、微小試料の一部を切断するか、デポジション膜を除去するかのいずれかの方法が用いられるが、いずれの方法も微小試料接続具先端は接続前の形状と異なり、微小試料接続具と微小試料との分離後に、微小試料接続具先端をFIBによって整形して原形に戻すか微小試料接続具を新規なものと交換しなければならない。微小試料接続具の整形には時間を要するが、この整形も10回程度の繰り返しによって微小試料接続具先端幅が大きくなり、整形時間が長くなって、ついには実用できなくなる。このような事態になると微小試料接続具そのものを交換しなければならなくなる。微小試料接続具交換は作業時間や費用の面から好ましくない。
(3) Shaping of the tip accompanying cutting and separation of the micro sample connector From the viewpoint of maintaining the posture of the micro sample at the tip of the micro sample connector and preventing the drop, the micro sample connector is connected to the micro sample with a FIB deposition film. The method is known and described in Patent Documents 1 and 2. In this case, there is an advantage that the connection strength becomes high and the posture of the connected micro sample does not collapse, but after the transfer to another location, the micro sample connecting tool and the micro sample must be separated. For this, either the method of cutting the micro sample connector, cutting a part of the micro sample, or removing the deposition film is used. In either method, the tip of the micro sample connector is connected. Unlike the previous shape, after separation of the micro sample connector and the micro sample, the tip of the micro sample connector must be shaped by FIB to return to the original shape or the micro sample connector must be replaced with a new one. The shaping of the micro sample connection tool takes time, but this shaping also increases the tip width of the micro sample connection tool by repeating about 10 times, and the shaping time becomes long, and finally it becomes unpractical. In such a situation, the micro sample connector itself must be replaced. Replacing the micro sample connector is not preferable from the viewpoint of working time and cost.

(4)微小試料接続具移動の精度
微小試料接続具と微小試料との接続箇所が例えば直径1μm程度の領域に限定されていると、微小試料接続具駆動機構に高精度な機構系と制御、補正などが必要となり、高価なものとなる。
(4) Accuracy of the movement of the micro sample connector If the connection location between the micro sample connector and the micro sample is limited to a region having a diameter of about 1 μm, for example, the micro sample connector driving mechanism has a highly accurate mechanism system and control. Correction etc. are required and it becomes expensive.

これらの問題点に対して次のような解決策が考えられるが、それにも課題が含まれている。   The following solutions can be considered for these problems, but they also have problems.

(1)微小試料接続具の変形を防ぐために、微小試料接続具直径を太くして剛性を高めることが最も簡単である。しかしながら、微小試料接続具直径を太くすると先端半径を小さくすることができず、本来の目的である試料の特定微小領域に微小試料接続具を接続できなくなる。 (1) In order to prevent deformation of the micro sample connector, it is easiest to increase the rigidity by increasing the diameter of the micro sample connector. However, if the diameter of the micro sample connector is increased, the radius of the tip cannot be reduced, and the micro sample connector cannot be connected to the specific micro area of the sample which is the original purpose.

(2)接続した微細試料の姿勢を周囲の静電場による引力や斥力に耐えて保持させるためには、接続を強固にする必要がある。そのためにデポジション膜を用いると上記(3)の問題を生じる。 (2) In order to withstand and hold the posture of the connected fine sample against the attractive force and repulsive force of the surrounding electrostatic field, it is necessary to strengthen the connection. Therefore, when the deposition film is used, the problem (3) occurs.

(3)デポジション膜を用いずに試料と微小試料接続具の接続として、特許文献2にはFIB照射時に発生する再付着膜や静電気吸着が示されている。再付着膜による接続は、従来のデポジション膜の場合と同様にFIB照射による分離が伴うため微小試料接続具の整形は避けられない。一方、静電気吸着による接続は、先鋭化された1本の微小試料接続具表面先端の1点に絶縁膜を介して静電吸着させる方法が知られている。この方法ではデポジション膜による固定を行なわないので分離時に微小試料接続具形状が保存でき、微小試料接続具の整形が不要の利点がある。しかし、この微小試料接続具を用いて数μm立方程度の微小試料を摘出すると、微小試料は微小試料接続具との接触点を支点にして、不安定に揺動する。最悪の場合、試料面に存在していた微小試料の姿勢を保持できず、傾いた状態になる等の問題を生じる。微小試料接続具と点接触している微小試料が周囲の静電場環境からの影響を敏感に受けるためである。 (3) As a connection between a sample and a micro sample connector without using a deposition film, Patent Document 2 discloses a reattachment film and electrostatic adsorption that occur during FIB irradiation. Since the connection by the redeposition film is accompanied by the separation by the FIB irradiation as in the case of the conventional deposition film, the shaping of the micro sample connector is inevitable. On the other hand, for connection by electrostatic adsorption, a method is known in which electrostatic adsorption is performed via an insulating film at one point on the tip of one sharp sample connector surface. This method has an advantage that the shape of the micro sample connector can be preserved at the time of separation because the deposition film is not fixed, and the micro sample connector is not required to be shaped. However, when a micro sample of about several μm cubic is extracted using this micro sample connection tool, the micro sample swings unstablely with the contact point with the micro sample connection tool as a fulcrum. In the worst case, the posture of the minute sample existing on the sample surface cannot be maintained, and a problem such as a tilted state occurs. This is because the micro sample in point contact with the micro sample connector is sensitively affected by the surrounding electrostatic field environment.

微小試料が姿勢崩れを起こすと、STEMで適正に微小試料の内部を観察するためには、摘出試料の姿勢を適正な向きに調整しなければならない。この微小試料の姿勢調整には、微小試料接続具駆動側に自由度を高めた機構及び制御系を備えるか、サンプルキャリア(微小試料固定具)の駆動自由度を高めた機構及び制御系を備えるか、又は、それら両者を備えるかの手段を講じなければならない。   When the posture of the micro sample collapses, in order to properly observe the inside of the micro sample with the STEM, the posture of the extracted sample must be adjusted to an appropriate orientation. In order to adjust the posture of the micro sample, a mechanism and a control system with an increased degree of freedom are provided on the micro sample connector driving side, or a mechanism and a control system with an increased degree of freedom of driving the sample carrier (micro sample fixing tool) are provided. Or a means of providing them both must be taken.

なお、特許文献3での摘出する微小物体は、廃棄するものであって微小試料接続具に付着した微小物体の姿勢の崩れは問題とならず、微小物体の姿勢を維持するための方策については示唆されていない。   Note that the micro object to be extracted in Patent Document 3 is to be discarded, and the collapse of the attitude of the micro object attached to the micro sample connector is not a problem. For measures for maintaining the micro object's attitude, Not suggested.

(4)通常、接触すべき箇所の許容領域は凡そ2μm平方である。この領域内に先鋭化した微小試料接続具を接触させる従来方法であると、微小試料接続具駆動機構には2μm以下の位置精度と0.2μm程度の接触位置分解能が要求される。 (4) Usually, the allowable area of the place to be contacted is about 2 μm square. In the conventional method of bringing a sharp micro sample connector into contact with this region, the micro sample connector driving mechanism is required to have a positional accuracy of 2 μm or less and a contact position resolution of about 0.2 μm.

このような問題点から、先端が変形せず繰り返し使える微小試料接続具、もしくは微小試料の摘出方法、もしくは、これらを実現する微小試料移送装置が望まれていた。   From such problems, there has been a demand for a micro sample connector, a micro sample extraction method, or a micro sample transport device that realizes these, which can be used repeatedly without deformation of the tip.

本発明の目的は、微小試料を分離しても微小試料移送具先端の変形が無く、何度も繰り返し使用できる微小試料移送装置を提供することである。本発明の別の目的は、微小試料移送具駆動機構に高精度な性能が不要な微小試料移送装置方法及び装置を提供することである。   An object of the present invention is to provide a micro sample transport device that can be used repeatedly many times without deformation of the tip of the micro sample transport tool even if the micro sample is separated. Another object of the present invention is to provide a method and apparatus for transferring a micro sample that does not require high-precision performance in a micro sample transfer tool drive mechanism.

本発明の微小試料移送装置は、一例として、真空試料室内の微小試料と複数点で接触又は面接触し接続する微小試料接続具と、微小試料接続具を真空試料室内で移動させる駆動機構と、微小試料接続具に電圧を印加する電源とを有する。微小試料と面接触する微小試料接続具は、例えば、微小試料と接続する平板部と、平板部を支える基部から構成するか、集束イオンビームによって微小試料と接続する面積を広める加工を施した形状にする。   The micro sample transfer device of the present invention includes, as an example, a micro sample connector that contacts or contacts a micro sample in a vacuum sample chamber at a plurality of points, a drive mechanism that moves the micro sample connector in the vacuum sample chamber, A power source for applying a voltage to the micro sample connector. The micro sample connector that comes into surface contact with the micro sample is formed, for example, from a flat plate part connected to the micro sample and a base that supports the flat plate part, or a shape that has been processed to increase the area connected to the micro sample by a focused ion beam To.

微小試料接続具と微小試料とは、微小試料接続具と微小試料の接触部を流れる電流によって生じる微小融着で接続される。   The micro sample connector and the micro sample are connected by micro fusion generated by a current flowing through the contact portion between the micro sample connector and the micro sample.

本発明によると、微小試料と接触する微小試料接続具は、先端形状が変形しにくく、摘出した微小試料の姿勢を保持したまま移送でき、従来必要であった微小試料接続具先端のFIBによる整形が不要で繰り返し使用でき、さらには、微小試料接続具駆動精度は従来よりも低い精度で済むようになる。   According to the present invention, the tip of the micro sample connector that is in contact with the micro sample is not easily deformed, and can be transferred while maintaining the posture of the extracted micro sample. Is unnecessary and can be used repeatedly. Furthermore, the accuracy of driving the micro sample connector is lower than in the prior art.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明による微小試料移送装置の一実施例を示す概略構成図である。微小試料移送装置1は、試料ステージ2に載置された試料3に集束イオンビームを照射するイオンビーム照射系4、試料などを観察する電子ビーム照射系5、導電性材料から成り試料3の一部の微小試料と接続したり、移設したりする微小試料接続具(プローブとも言う)6、この微小試料接続具6を移動させる微小試料接続具駆動手段7、試料3からの二次電子や後方散乱電子を検出する検出器8、試料面に金属膜を形成したり試料を積極的にエッチングするためのガスを供給するガス供給手段9を有する。ガス供給手段9の先端には、ガスの噴出口の微細な直径を有するノズル10を有している。   FIG. 1 is a schematic configuration diagram showing an embodiment of a micro sample transfer device according to the present invention. The micro sample transfer apparatus 1 is composed of an ion beam irradiation system 4 for irradiating a sample 3 placed on a sample stage 2 with a focused ion beam, an electron beam irradiation system 5 for observing a sample, etc., and a conductive material. A micro sample connector (also referred to as a probe) 6 to be connected to or moved from the micro sample, a micro sample connector driving means 7 for moving the micro sample connector 6, secondary electrons from the sample 3 and the rear It has a detector 8 for detecting scattered electrons, and a gas supply means 9 for supplying a gas for forming a metal film on the sample surface or actively etching the sample. At the tip of the gas supply means 9, a nozzle 10 having a fine diameter of a gas outlet is provided.

また、試料ステージ2を動作させる試料ステージ制御部11、集束イオンビーム照射系4を動作させるFIB制御部12、電子ビーム照射系を制御する電子ビーム制御系13、微小試料接続具駆動機構7の動作を制御する微小試料接続具制御部14、検出器8の動作を制御する検出器制御系15、ノズル10からのガス照射を制御するガス供給制御部16、微小試料接続具6に電圧を印加する電源17、微小試料接続具6先端の平板が損傷を受けた場合に交換できるように予備の平板を設置した平板ストッカ18、試料ステージ2などを内蔵する真空試料室19、さらに上記の各種制御部を統括して動作指示や各種データを処理、画像の記憶などを行なう計算処理部20、試料や微小試料、微小試料接続具などの画像や、各種制御部の設定値を表示し、設定する画像表示部21を有している。   Also, the operation of the sample stage control unit 11 for operating the sample stage 2, the FIB control unit 12 for operating the focused ion beam irradiation system 4, the electron beam control system 13 for controlling the electron beam irradiation system, and the operation of the micro sample connector driving mechanism 7 A voltage is applied to the micro sample connector control unit 14 that controls the operation, the detector control system 15 that controls the operation of the detector 8, the gas supply control unit 16 that controls gas irradiation from the nozzle 10, and the micro sample connector 6. The power source 17, the flat stocker 18 provided with a spare flat plate so that it can be replaced when the flat plate at the tip of the micro sample connector 6 is damaged, the vacuum sample chamber 19 containing the sample stage 2, etc., and the various control units described above The calculation processing unit 20 that performs operation instructions and various data, and stores images, and the like, images of samples, micro samples, micro sample connectors, etc., and set values of various control units Displayed, and an image display unit 21 for setting.

本実施例による微小試料移送装置1に用いる代表的な微小試料接続具6の形状は、試料との接触部が少なくとも2点以上あり、従来の微小試料接続具の先端が先鋭化された針状形状で試料との接触が1点接触であるのに対して全く異なる。好ましくは三角形の頂点に微小試料接続具先端が位置する形状が良い。   A typical micro sample connector 6 used in the micro sample transfer apparatus 1 according to the present embodiment has at least two contact portions with the sample, and a needle-like shape in which the tip of the conventional micro sample connector is sharpened. The shape is completely different from the one-point contact with the sample. Preferably, the shape in which the tip of the minute sample connector is located at the apex of the triangle is good.

本実施例で用いた微小試料接続具について、図2で説明する。微小試料接続具の先端を図2のように2点にする。図2では、少し直径の太い微小試料接続具41に対して先端を42aと42bのように分岐させて、その先端部44aと44bがほぼ同時に微小試料43に接触するように形成する。2個の先端のうち少なくとも1点は物理的に接続し、残りの接触部で微小試料の姿勢の傾きを抑える押さえの役割を果たす。上述のように従来の1点で接続される微小試料接続具では、1点で静電吸着するか、1点でデポジション膜形成されたため、周囲の環境に影響され、接続部を中心にして微小試料の姿勢が崩れたが、本形状では姿勢の崩れは起きない。   The micro sample connector used in this example will be described with reference to FIG. The tip of the micro sample connector is set to two points as shown in FIG. In FIG. 2, the tip of the micro sample connector 41 having a slightly thicker diameter is branched like 42 a and 42 b so that the tips 44 a and 44 b are in contact with the micro sample 43 almost simultaneously. At least one of the two tips is physically connected and plays a role of holding down the inclination of the posture of the micro sample at the remaining contact portion. As described above, in the conventional micro sample connection device connected at one point, it is electrostatically attracted at one point or a deposition film is formed at one point. Although the posture of the micro sample collapsed, in this shape, the posture does not collapse.

微小試料接続具の材質はタングステンで、先端部は細線を電解研磨して作製した。このような形状はタングステン細線の切断面に細線軸方向に傷付けておくと二又もしくは三又形状に加工できる。二又もしくは三又形状の先端部は電鋳(エレクトロフォーミング)によっても作製できる。電鋳による方が形状制御性、再現性が良いので好ましい。電解研磨であっても電鋳であっても作製された微小試料接続具の複数個の先端部が揃っていて、同時に試料に接触できる形状であることが重要である。なお、本来所望の接触部と、微小試料の長手方向に離れた位置にもう一点で微小試料接続具と接触すれば、従来の1点に比べて大幅に姿勢保持の効果を示すが、2点を結ぶ線を軸とした姿勢崩れの可能性も残されるので微小試料接続具先端は三角形の頂点に位置する3点に分かれていて、これらがほぼ同時に微小試料に接触することが好ましい。   The material of the micro sample connection tool was tungsten, and the tip was manufactured by electrolytic polishing of a thin wire. Such a shape can be processed into a bifurcated or trifurcated shape by scratching the cut surface of the tungsten fine wire in the direction of the fine wire axis. A bifurcated or trifurcated tip can also be produced by electroforming. Electroforming is preferred because of good shape controllability and reproducibility. It is important that a plurality of tip portions of the prepared micro sample connector are prepared so as to be in contact with the sample at the same time regardless of whether it is electrolytic polishing or electroforming. Note that if the micro sample connector is brought into contact with the original desired contact portion and at a position separated in the longitudinal direction of the micro sample at one point, the effect of maintaining the posture is greatly improved as compared with the conventional one point. Since there is still a possibility that the posture is broken around the line connecting the two, the tip of the micro sample connector is divided into three points located at the vertices of the triangle, and it is preferable that these contact the micro sample almost simultaneously.

二又もしくは三又形状の先端部のいずれかと試料との接続には通電による微小融着を用いる。微小試料接続具6には電源17を繋ぎ、+5V程度の電圧を印加し、試料は接地電位に維持する。この状態で微小試料接続具先端の2点をほぼ同時に試料に接触させると、僅かに早く接触した一方に電流が流れ、特に接触部の接触面積が小さいために抵抗が高く、高温になって融着する。一方の微小試料接続具先端は通電量が少なく機械的な接触が支配的になるが、他方の微小試料接続具の接続部を中心に微小試料が姿勢を崩しかけた場合に押さえの役割を果たすため、微小試料の姿勢の崩れは大幅に低減される。通電による微小融着によって、従来使っていたデポジション膜形成は不要となり、時間短縮の利点が生まれる。   Microfusing by energization is used to connect either the bifurcated or trifurcated tip to the sample. A power source 17 is connected to the micro sample connector 6, a voltage of about +5 V is applied, and the sample is maintained at the ground potential. In this state, if the two points at the tip of the micro sample connector are brought into contact with the sample almost simultaneously, a current flows through one of the contacts slightly earlier, particularly because the contact area of the contact portion is small, the resistance is high, and the temperature becomes high. To wear. The tip of one micro sample connector has a small amount of current and mechanical contact becomes dominant, but it plays a role of holding down when the micro sample collapses around the connection part of the other micro sample connector Therefore, the collapse of the posture of the micro sample is greatly reduced. The micro-fusion by energization makes it unnecessary to form a deposition film that has been used in the past, and the advantage of shortening the time is born.

従来技術として、微小試料接続具と試料との接触検知のために、微小試料接続具に繋がった電源の間にブザーを設置しておき、微小試料接続具先端部が導電性試料に接触した時にブザーが鳴るなど、オペレータに接触を知らせる機能がある。ここでは、この電源は別の役割を果たすが、特に、微小試料接続具と試料との過剰な融着や溶断を避けるために、通電電流値や通電時間に上限を設定できるように回路を形成している。   As a conventional technique, a buzzer is installed between the power source connected to the micro sample connector to detect contact between the micro sample connector and the sample, and the tip of the micro sample connector contacts the conductive sample. There is a function to notify the operator of contact, such as a buzzer. Here, this power supply plays a different role, but in particular, in order to avoid excessive fusion and fusing between the micro sample connector and the sample, a circuit is formed so that an upper limit can be set for the energization current value and energization time. is doing.

微小試料の接触部に関して別の実施例を説明する。図3、図4は本発明による微小試料移送装置における微小試料接続具の別の実施例を示している。微小試料接続具先端は従来の先鋭化した形状や上述の先端が分岐した形状とも異なり、試料との接触部は平面となっていて面接触するような形状になっていて従来には無い形状である。図3(a)は円柱状細線51に斜断面52を加工して試料53との接触部とした例、図4(a)は太めの微小試料接続具基部67の先端に微小な平板65を固着させた形状のもので、共通点は試料と面接触できることである。   Another embodiment regarding the contact portion of the micro sample will be described. 3 and 4 show another embodiment of the micro sample connector in the micro sample transfer apparatus according to the present invention. Unlike the conventional sharpened shape and the above-mentioned branched shape, the tip of the micro sample connector has a flat shape that is in contact with the surface and has a shape that does not exist in the past. is there. FIG. 3A shows an example in which an oblique section 52 is processed into a cylindrical thin wire 51 to make a contact portion with the sample 53. FIG. 4A shows a minute flat plate 65 at the tip of a thick minute sample connector base 67. FIG. The shape is fixed, and the common point is that it can come into surface contact with the sample.

まず、斜断面を有する微小試料接続具の実施例について図3(b)〜(d)で説明する。図3(b)は直径3μmの均一細線51を試料面に対して45°傾斜させて設置し、試料面に対して垂直に設置したFIB54で均一細線51を切断する様子を示している。均一細線の切断面52は、図3(c)のように楕円断面(短径:3μm、長径が約4.2μm)となる。切断面を微細FIBで仕上げ、平坦化した後、図3(d)のように微小試料接続具51’を180°軸回転させると、切断面52は試料面に平行になり、接触面積が細線の直交断面積より広くなる。   First, an embodiment of a micro sample connector having an oblique section will be described with reference to FIGS. FIG. 3B shows a state in which the uniform thin wire 51 having a diameter of 3 μm is installed at an inclination of 45 ° with respect to the sample surface, and the uniform thin wire 51 is cut by the FIB 54 installed perpendicular to the sample surface. The uniform fine wire cut surface 52 has an elliptical cross section (minor axis: 3 μm, major axis is about 4.2 μm) as shown in FIG. After the cut surface is finished and flattened with a fine FIB, when the micro sample connector 51 ′ is rotated by 180 ° as shown in FIG. 3D, the cut surface 52 becomes parallel to the sample surface and the contact area is thin. It becomes wider than the orthogonal cross-sectional area.

本形状の微小試料接続具51’を作成するためには、均一細線が試料面に対して正確に45°傾斜していること、斜断面形成後の180°回転に軸ぶれなど無いことなどが求められ、満足しない場合、切断面は試料面に面接触しない。これらは微小試料接続具駆動機構に傾斜補正機構を付加しておくことで解決する。   In order to create the minute sample connector 51 ′ of this shape, the uniform thin line is accurately tilted by 45 ° with respect to the sample surface, and there is no shaft shake in 180 ° rotation after forming the oblique section. If required and not satisfied, the cut surface will not come into surface contact with the sample surface. These problems can be solved by adding an inclination correction mechanism to the micro sample connector driving mechanism.

次に、図4を用いて平板付き微小試料接続具の構成と、微小試料接続具と微小試料の接続原理を説明する。ここでは説明を判り易くするために、図4において分離される微小試料61と試料基板63とを誇張して記載した。図4(a)において、微小試料61は支持部62を介して試料基板63に機械的、電気的に接続している。微小試料接続具64は平板65がデポジション膜66によって微小試料接続具基部67の先端に固着された形状で、微小試料接続具64全体は外部電源68によって電圧が印加されている。本実施例では、印加電圧は例えば−5Vとした。一方、試料基板63は接地電位である。微小試料接続具64は駆動機構69によって少なくとも直交3軸方向に微動可能で、接続部への移動や、接続した微小試料61の移動が可能である。   Next, the configuration of the flat sample-attached micro sample connector and the principle of connection between the micro sample connector and the micro sample will be described with reference to FIG. Here, for easy understanding, the micro sample 61 and the sample substrate 63 separated in FIG. 4 are exaggerated. In FIG. 4A, the micro sample 61 is mechanically and electrically connected to the sample substrate 63 via the support portion 62. The micro sample connector 64 has a shape in which a flat plate 65 is fixed to the tip of the micro sample connector base 67 by a deposition film 66, and a voltage is applied to the entire micro sample connector 64 by an external power source 68. In this embodiment, the applied voltage is set to, for example, -5V. On the other hand, the sample substrate 63 is at ground potential. The micro sample connection tool 64 can be finely moved in at least three orthogonal directions by the drive mechanism 69, and can move to the connecting portion and the connected micro sample 61.

駆動機構69を制御して、微小試料接続具64を試料基板63の所望の領域に接触させる。ブローブ64の平板65が微小試料61に接触した時点で、接地電位にある試料基板63より−5V低位にある微小試料接続具64の平板65に向かって、接触部を通じて電流が流れる。ここで、平板65と微小試料61とは一見面接触しているようであるが、微視的には平板65や微小試料63の表面には微小な凹凸があるため、互いの凸部が接触点となり電流経路となる。この接触点は実質的な接触面積が10nm平方程度と推定され、非常に小さいため、小さな電流であっても抵抗加熱して融着する。たとえ試料や平板部がシリコンであっても容易に融着する。しかし、電源68の電圧を10V以上に大きく設定すると、流れる電流が大きくなり、最悪の場合、平板65や微小試料61が溶断するので電圧設定が重要である。印加する電圧は、−0.5Vから−10V又は+0.5Vから+10Vの範囲が好ましい。   The drive mechanism 69 is controlled to bring the micro sample connector 64 into contact with a desired region of the sample substrate 63. When the flat plate 65 of the probe 64 comes into contact with the micro sample 61, a current flows through the contact portion toward the flat plate 65 of the micro sample connector 64 that is -5V lower than the sample substrate 63 at the ground potential. Here, the flat plate 65 and the micro sample 61 seem to be in contact with each other at a glance, but microscopically, since the surface of the flat plate 65 and the micro sample 63 has micro unevenness, the convex portions of each other are in contact with each other. It becomes a point and a current path. This contact point is estimated to have a substantial contact area of about 10 nm square, and is very small. Therefore, even a small current is heated by resistance and fused. Even if the sample and the flat plate portion are silicon, they are easily fused. However, if the voltage of the power source 68 is set to be larger than 10V, the flowing current increases, and in the worst case, the flat plate 65 and the micro sample 61 are fused, so that the voltage setting is important. The applied voltage is preferably in the range of −0.5V to −10V or + 0.5V to + 10V.

次に、支持部62をFIB(図示せず)で除去すると、図4(b)のように微小試料61と試料基板63は機械的、電気的に分離されるが、微小試料61と平板65の融着によって両者は接続状態を保持し、分離した時点で微小試料61は微小試料接続具電位と同じになる。しかも、微小試料61の姿勢も保持される。つまり、微小試料接続具先端部を積極的に平面にして、対象試料と面接触させることで微細試料片61の姿勢の崩れが抑制され、分離したままの姿勢が維持される。   Next, when the support portion 62 is removed by FIB (not shown), the micro sample 61 and the sample substrate 63 are mechanically and electrically separated as shown in FIG. 4B, but the micro sample 61 and the flat plate 65 are separated. As a result, the micro sample 61 becomes the same as the potential of the micro sample connector. In addition, the posture of the micro sample 61 is also maintained. In other words, the tip of the micro sample connector is positively made flat and brought into surface contact with the target sample, so that the collapse of the posture of the micro sample piece 61 is suppressed and the post-separated posture is maintained.

ここで取り扱う微小試料は1辺10μm程度の大きさであるため、融着による接合部は上記程度の接触面積で十分で、平板の残りの領域は姿勢を崩そうとする外力に対抗して微小試料の傾きを抑える役割を果たす。従って、平板の大きさは大きいほど好ましいが、取り扱う試料片の長手方向の寸法が10から20μm程度、幅が1〜5μm程度であるので、無意味に大きくできず、数μm平方程度が試料片や接続箇所が観察でき、また周辺に接触して好ましくない電流経路ができる心配もないので好ましい。また、微小試料接続具電位は絶対値が大きいと流れる電流が大きくなり、接触部が異常に高温して試料を変質させたり、微小試料が融解したりする危険性がある。このため−0.5Vから−10Vもしくは、+0.5から+10V程度が好ましい。   Since the micro sample handled here has a size of about 10 μm on a side, a contact area of the above level is sufficient for the joint portion by fusion, and the remaining area of the flat plate is micro in opposition to an external force trying to break the posture. It plays a role of suppressing the tilt of the sample. Therefore, the larger the size of the flat plate, the better. However, since the length of the sample piece to be handled is about 10 to 20 μm and the width is about 1 to 5 μm, it cannot be made meaninglessly, and the sample piece is about several μm square. It is preferable because the connection portion can be observed and there is no fear of forming an undesired current path by contacting the periphery. Also, if the absolute value of the potential of the micro sample connection tool is large, the flowing current increases, and there is a risk that the contact portion will be abnormally hot and the sample may be altered or the micro sample may be melted. For this reason, about -0.5V to -10V or +0.5 to + 10V is preferable.

逆に、この微小試料接続具64を微小試料61から分離する場合は、微小試料61を、現状の微小試料61と平板65との微小融着力よりも強い固着力で固定し、微小試料接続具64を微小試料61から遠ざけると、微小融着力が負けて両者は容易に分離する。従来のように、分離後の微小試料接続具の整形は不要になり、同じ微小試料接続具を繰り返し使うことができる。ここで、微小試料61の例えば微小試料固定台(図示せず)への固定にはデポジション膜を用いればよい。デポジション膜による接着力は強く、観察や分析に用いる微小試料は一旦固定すると強く固着されていることが望まれるので、デポジション膜による固定が最適である。   On the contrary, when separating the micro sample connector 64 from the micro sample 61, the micro sample 61 is fixed with a fixing force stronger than the micro fusion force between the current micro sample 61 and the flat plate 65. When 64 is moved away from the micro sample 61, the micro fusion force is lost and the both are easily separated. As in the prior art, shaping of the micro sample connector after separation is unnecessary, and the same micro sample connector can be used repeatedly. Here, a deposition film may be used for fixing the micro sample 61 to, for example, a micro sample fixing base (not shown). Since the adhesion force due to the deposition film is strong, and it is desired that the micro sample used for observation and analysis is fixed once, it is desired to be firmly fixed. Therefore, fixing with the deposition film is optimal.

また、平板65と試料片61との接続面は上述のように試料上面に限定されることはない。図4(c)、図4(d)に示すように、微小試料接続具基部67の先端に平板65を立てて固定し、接触面が垂直になるように固定した微小試料接続具64を用いて、微小試料片61の側面に接触させ、微小融着させて接続してもよい。   Further, the connection surface between the flat plate 65 and the sample piece 61 is not limited to the upper surface of the sample as described above. 4 (c) and 4 (d), a micro sample connector 64 is used in which a flat plate 65 is fixed upright at the tip of the micro sample connector base 67 and fixed so that the contact surface is vertical. Then, the micro sample piece 61 may be brought into contact with the side surface of the micro sample piece 61 so as to be connected by micro fusion.

このように先端に平板を有する微小試料接続具を用いることによって、摘出した微小試料の姿勢を崩すことなく移送することができる。また、通電による微小融着を利用する本実施例の微小試料接続具は、損耗なく繰り返し使用することができる。   In this way, by using the micro sample connector having a flat plate at the tip, it is possible to transfer the extracted micro sample without breaking the posture. Moreover, the micro sample connection tool of the present embodiment using micro fusion by energization can be used repeatedly without wear.

また、接触すべき箇所の許容領域が2μm平方程度であると、先鋭化した微小試料接続具を微小試料に接触させる従来方法の場合、微小試料接続具駆動機構には2μm以下の位置精度と0.2μm程度の接触位置分解能が要求される。これに対して、本実施例のように微小試料接続具が接触領域より大きい接触面を有する形状なら、微小試料接続具駆動に求められる位置精度と接触位置分解能は大幅に軽減される。例えば、2μm平方の接触領域に対して、3μm平方の接触面とすると、4μm程度の位置精度と0.4μm程度の接触位置分解能で済む。   Further, if the allowable area of the place to be contacted is about 2 μm square, in the case of the conventional method in which a sharp micro sample connector is brought into contact with the micro sample, the micro sample connector driving mechanism has a positional accuracy of 2 μm or less and 0. A contact position resolution of about 0.2 μm is required. In contrast, if the micro sample connector has a contact surface larger than the contact area as in the present embodiment, the position accuracy and contact position resolution required for driving the micro sample connector are greatly reduced. For example, if a contact area of 3 μm square is used for a contact area of 2 μm square, a position accuracy of about 4 μm and a contact position resolution of about 0.4 μm are sufficient.

次に、上述の平板付き微小試料接続具の製造方法について説明する。平板は次の2通りの方法で作製した。第1の方法は、FIB加工と先鋭化した従来微小試料接続具を用いて平板状の微細試料を摘出し、微小試料接続具基部に付け替える方法である。第2の方法は、予め平板となる形状を電鋳によって作製して微小試料移送装置内に準備しておき、必要時に微小試料接続具基部に接続する方法である。   Next, the manufacturing method of the above-mentioned flat sample connection tool with a flat plate will be described. The flat plate was produced by the following two methods. The first method is a method of picking up a flat micro sample using FIB processing and a sharpened conventional micro sample connector and replacing it with a micro sample connector base. The second method is a method in which a flat plate shape is prepared in advance by electroforming and prepared in a micro sample transfer device, and connected to a micro sample connector base when necessary.

まず、図5を参照して第1の方法を詳述する。
(a):微小試料接続具先端の平板となる原材料のシリコン板71に対して、FIB72により2箇所に矩形に穴加工74を施した。2個の矩形穴に挟まれた部分73が最終的に平板となる部分である。厚みは例えば0.5〜1μmである。
(b):試料を傾斜させ、平板となる領域の周囲に溝加工74a,74b,74cを施して、支持部75を残した形状に加工する。
(c):先鋭化された従来の微小試料接続具76を加工した平板の厚み部に接触させ、デポジション膜77で接続する。その後、支持部にFIB72を照射して支持部を切断する。
(d):こうして、おおよそ厚さが均一の微小な平板73が分離できる。このまま微小試料接続具を上昇させることで元試料と完全分離できる。
(e):摘出した平板73を、周囲に干渉箇所の無い試料71面に接触させた状態で、微小試料接続具76と平板73を繋ぐデポジション膜77をFIB72で除去する。
(f):微小試料接続具76から分離した平板73を、試料71に面するように微小試料接続具を調節しながら置く。この時、平板73は任意の向きを向いているので、微小試料接続具基部と所定の関係になるように試料ステージを回転調整する。ここで、試料71面上に置かれた平板73に対して更にFIBで整形しても良く、完成時の凡その大きさは3×4μm、厚さ1μmの直方体になった。
(g):最後に、向きを調整した平板73に対して、上記微小試料接続具76より少し太めの微小試料接続具基部76aを接触させる。例えば、平板73と接触する箇所は直径1μmで、先端から3μm離れた箇所での直径は3μmに太くして剛性を持たせている。接触部にデポジション膜78を付けて、微小試料接続具基部76aと平板73を接続固定する。
(h):このようにして、平板73が固着された平板付き微小試料接続具79が完成し、上昇させると平板73の面は必然的に試料71の表面に平行になっている。
First, the first method will be described in detail with reference to FIG.
(a): Holes 74 were formed in two rectangular shapes by FIB 72 on silicon plate 71, which is a raw material that is a flat plate at the tip of a micro sample connector. A portion 73 sandwiched between two rectangular holes is a portion that finally becomes a flat plate. The thickness is, for example, 0.5 to 1 μm.
(b): The sample is tilted, and grooves 74a, 74b, and 74c are formed around the region to be a flat plate, and processed into a shape that leaves the support portion 75.
(c): A sharpened conventional micro sample connector 76 is brought into contact with the processed thickness portion of the flat plate and connected by a deposition film 77. Thereafter, the support portion is cut by irradiating the support portion with FIB 72.
(d): In this way, a fine flat plate 73 having a substantially uniform thickness can be separated. The original sample can be completely separated by raising the micro sample connector as it is.
(e): In a state where the extracted flat plate 73 is in contact with the surface of the sample 71 having no interference portion around it, the deposition film 77 connecting the micro sample connector 76 and the flat plate 73 is removed by the FIB 72.
(f): The flat plate 73 separated from the micro sample connector 76 is placed while adjusting the micro sample connector so as to face the sample 71. At this time, since the flat plate 73 faces an arbitrary direction, the sample stage is rotated and adjusted so as to have a predetermined relationship with the minute sample connector base. Here, the flat plate 73 placed on the surface of the sample 71 may be further shaped by FIB. When completed, the flat size was 3 × 4 μm and the thickness was 1 μm.
(g): Finally, the micro sample connector base portion 76a slightly thicker than the micro sample connector 76 is brought into contact with the flat plate 73 whose orientation is adjusted. For example, the portion in contact with the flat plate 73 is 1 μm in diameter, and the diameter at a portion 3 μm away from the tip is increased to 3 μm to give rigidity. A deposition film 78 is attached to the contact portion, and the micro sample connector base 76a and the flat plate 73 are connected and fixed.
(h): In this way, the flat sample connecting tool 79 to which the flat plate 73 is fixed is completed, and when raised, the surface of the flat plate 73 is necessarily parallel to the surface of the sample 71.

このような一連の作業は、注目する試料が試料室に導入されていない時間帯に行なうので、試料面にデポ用のガスが直接照射されることはない。   Such a series of operations is performed in a time zone when the sample of interest is not introduced into the sample chamber, and therefore, the deposition gas is not directly irradiated onto the sample surface.

次に、上記第2の方法について説明する。ここでは、微小試料接続具基部の先端に容易に付けることのできる平板を複数個搭載した平板ストッカ80を用いる。図6(a)は平板ストッカ80を示し、複数個の開口パターンによって平板が取りやすくなった構造の金属薄板81である。開口パターン83a、83bの配置によって支持部84a、84bが平板82を支える構造になっている。金属薄板81部の厚さは1μm程度で、開口パターンは縦約3μm、横約4μmの平板82になるように配置されている。全体の大きさは縦4mm、横2mm程度であり、ピンセットを用いて取り扱うことができる。図6では判りやすいように便宜上、全体の大きさに対して開口パターン、支持部、平板を大きく表現した。金属薄板81の裏面は、図6(b)のように厚さ10μm程度の補強部85を有して強度を持たせている。   Next, the second method will be described. Here, a flat plate stocker 80 equipped with a plurality of flat plates that can be easily attached to the tip of the micro sample connector base is used. FIG. 6A shows a flat plate stocker 80, which is a thin metal plate 81 having a structure in which a flat plate can be easily removed by a plurality of opening patterns. The support portions 84a and 84b support the flat plate 82 by the arrangement of the opening patterns 83a and 83b. The thin metal plate 81 has a thickness of about 1 μm, and the opening pattern is arranged to be a flat plate 82 having a length of about 3 μm and a width of about 4 μm. The overall size is about 4 mm long and 2 mm wide and can be handled using tweezers. In FIG. 6, for the sake of convenience, the opening pattern, the support portion, and the flat plate are expressed with respect to the overall size for the sake of convenience. The back surface of the thin metal plate 81 has a reinforcing portion 85 having a thickness of about 10 μm as shown in FIG.

図6(c)、(d)は、平板を微小試料接続具基部に付ける手順を示している。平板82に微小試料接続具基部85を接触させ、接触部にデポジション膜86を形成する。次いで、支持部84a、84bをFIB87でスパッタ除去することで、平板82は金属薄板81から分離され、図6(d)のように、平板付き微小試料接続具88が完成する。ここで、平板82の底面(微小試料との接触面)は、金属薄板81と同じ傾きを有しているので、平板ストッカ80を摘出される試料面と水平に設置しておくことで、平板82は試料に面接触できる。図1の微小試料移送装置1では、ウェーハホルダ2Aの上に試料(ウェーハ)3と共に平板ストッカ18が設置されている。
なお、このような平面ストッカ80は、半導体リソグラフィ技術と電気化学的メッキ(電鋳)技術によって精度良く、安価に作製できる。
FIGS. 6C and 6D show a procedure for attaching a flat plate to the micro sample connector base. The minute sample connector base 85 is brought into contact with the flat plate 82, and a deposition film 86 is formed on the contact portion. Next, the support portions 84a and 84b are removed by sputtering with the FIB 87, whereby the flat plate 82 is separated from the metal thin plate 81, and the flat sample-attached micro sample connector 88 is completed as shown in FIG. Here, since the bottom surface of the flat plate 82 (contact surface with the micro sample) has the same inclination as the thin metal plate 81, the flat plate stocker 80 is placed horizontally with the sample surface to be extracted. 82 can make surface contact with the sample. In the micro sample transfer device 1 of FIG. 1, a flat plate stocker 18 is installed together with a sample (wafer) 3 on a wafer holder 2A.
Such a planar stocker 80 can be manufactured with high accuracy and at low cost by a semiconductor lithography technique and an electrochemical plating (electroforming) technique.

上述の微小試料移送装置を用いて、元試料であるウェーハから、注目部をSTEM観察するための試料作成手順について図7、図8、図9を用いて説明する。   A sample preparation procedure for STEM observation of a target portion from a wafer that is an original sample using the above-described micro sample transfer device will be described with reference to FIGS. 7, 8, and 9.

図7、図8、図9には、工程1から工程11の作業手順をFIBによる画像(SIM像)a1〜a11と、図を理解しやすくするためにFIBとは異なる視点から観た斜視説明図(右列)b1〜b11を併記して示した。   7, 8, and 9 are FIB images (SIM images) a <b> 1 to a <b> 11, and perspective views from a different viewpoint from the FIB for easy understanding of the drawing. Figures (right column) b1 to b11 are also shown.

(工程1):試料101のうち観察試料として残すべき領域100を挟んで、矩形102,103をFIBによって加工する。矩形102の寸法は、例えば、横幅20μm、縦5μm、深さ15μm、矩形103は横幅20μm、縦10μm、深さ10μmとし、両矩形の間隔、つまり摘出する試料の幅、領域100の厚さは3μmとした。
(工程2):工程1での作業後、試料ステージを傾斜させ、領域100の側面が観えるようにする。次に、摘出する微細試料片の3面をFIB照射によって細矩形104a、104b、104c加工を施す。これら細矩形加工によって、支持部103のみに支持されて残りの部分は他に接していない形状に加工する。図(b2)には、理解し易いようにFIB105の照射方向を示した。
(工程3):試料ステージの傾斜を戻して再度FIBで観察すると、領域100に矩形104によって3面と接していない状況が観える。図(b3)では、支持部103によって支持された領域100が判別できる。
(工程4):ここで、微小試料接続具107を領域に100に接近させる。微小試料接続具107は基部108aが金属性の直径3μm程度のタングステン細線であり、先端にはニッケル製の平板108bが固定されている。この平板108bは後述するように、試料101面に平行になるようにFIBデポジションによって予め固定されている。
(工程5):微小試料接続具107の平板108bを領域100の端に接近させる。領域に接触すると、微小試料移送装置内に予め設置しておいた接触検知手段で接触が確認され、微小試料接続具の移動が停止する。この状態で微小試料接続具を停止保持する。このとき微小試料接続具107と試料の間に通電し、微小試料接続具107の平板108bを領域100に微小融着する。
(工程6):領域100の支持部103を切断するために、矩形領域109にFIB105照射する。支持部の103の実質的厚み(高さ)は3μm程度であるため、FIB照射時間は1分程度で済む。
(工程7):矩形領域109へのFIB105照射によって支持部103が除去され、領域100は試料101から分離し、微小試料110となる。この時、微小試料110は微小試料接続具107の先端の平板108bに接続されている。
(工程8):微小試料接続具107を試料101から遠ざけ(上方に移動させ)、試料ステージを移動させて、視野内に微小試料固定台111を移動させる。微小試料固定台は図1の微小試料移送装置には記載が省略されているが、ウェーハホルダ2A上に設置されている。この微小試料固定台に微小試料片110が接触するように微小試料接続具107を移動させる。図1の微小試料移送装置のように電子ビーム照射系ある装置構成の場合、微小試料110が微小試料固定台111に接近する様子がわかり、接近時に接近速度を減速させることができる。微小試料110が固定台111に接触すると接触検知機が動作し、同時に微小試料接続具駆動機構も停止する。
(工程9):この状態で微小試料110と固定台111に跨るようにデポジション膜(図示せず)を形成すると、微小試料110は固定台111に固着される。
(工程10):ここで、微小試料接続具107を上昇させると、デポジション膜による固着力が、微小試料接続具107と微小試料110との微小融着による接着力より勝るため、微小試料接続具107は微小試料110から離れ、微小試料110は固定台111上に自立する。
(工程11):その後、この微小試料110に対して、各種解析手法にあった形状に更に加工を加えても良く、例えば、STEMやSTEMの場合、厚さ100nm程度にまで薄片化させる。
(Step 1): The rectangles 102 and 103 are processed by FIB with the region 100 to be left as an observation sample in the sample 101 interposed therebetween. For example, the rectangle 102 has a width of 20 μm, a length of 5 μm, a depth of 15 μm, and the rectangle 103 has a width of 20 μm, a length of 10 μm, and a depth of 10 μm. The thickness was 3 μm.
(Step 2): After the work in Step 1, the sample stage is tilted so that the side surface of the region 100 can be seen. Next, the thin rectangles 104a, 104b, and 104c are processed on the three surfaces of the fine sample piece to be extracted by FIB irradiation. By the thin rectangular processing, the remaining portion is processed into a shape that is supported only by the support portion 103 and is not in contact with other portions. In FIG. 2 (b2), the irradiation direction of the FIB 105 is shown for easy understanding.
(Step 3): When the inclination of the sample stage is returned and observed again with FIB, it can be seen that the region 100 is not in contact with the three surfaces by the rectangle 104. In the diagram (b3), the region 100 supported by the support portion 103 can be identified.
(Step 4): Here, the micro sample connector 107 is brought close to 100 in the region. The micro sample connector 107 is a tungsten thin wire with a base portion 108a having a metallic diameter of about 3 μm, and a nickel flat plate 108b is fixed to the tip. As will be described later, the flat plate 108b is fixed in advance by FIB deposition so as to be parallel to the surface of the sample 101.
(Step 5): The flat plate 108b of the micro sample connector 107 is brought close to the end of the region 100. When contact is made with the region, contact is confirmed by contact detection means installed in advance in the micro sample transfer device, and the movement of the micro sample connector stops. In this state, the micro sample connector is stopped and held. At this time, a current is applied between the micro sample connector 107 and the sample, and the flat plate 108 b of the micro sample connector 107 is micro fused to the region 100.
(Step 6): In order to cut the support portion 103 in the region 100, the FIB 105 is irradiated to the rectangular region 109. Since the substantial thickness (height) of the support 103 is about 3 μm, the FIB irradiation time is only about 1 minute.
(Step 7): The support portion 103 is removed by irradiating the rectangular region 109 with the FIB 105, and the region 100 is separated from the sample 101 to become a micro sample 110. At this time, the micro sample 110 is connected to the flat plate 108 b at the tip of the micro sample connector 107.
(Step 8): The micro sample connector 107 is moved away from the sample 101 (moved upward), the sample stage is moved, and the micro sample fixing base 111 is moved within the field of view. Although the description of the micro sample fixing base is omitted in the micro sample transfer device of FIG. 1, it is installed on the wafer holder 2A. The micro sample connector 107 is moved so that the micro sample piece 110 contacts the micro sample fixing base. In the case of an apparatus configuration having an electron beam irradiation system like the micro sample transfer apparatus of FIG. 1, it can be seen that the micro sample 110 approaches the micro sample fixing base 111, and the approach speed can be reduced when approaching. When the micro sample 110 comes into contact with the fixed base 111, the contact detector operates, and at the same time, the micro sample connector driving mechanism stops.
(Step 9): When a deposition film (not shown) is formed so as to straddle the micro sample 110 and the fixing table 111 in this state, the micro sample 110 is fixed to the fixing table 111.
(Step 10): Here, when the micro sample connector 107 is raised, the adhesion force by the deposition film is superior to the adhesive force by micro fusion of the micro sample connector 107 and the micro sample 110. The tool 107 is separated from the micro sample 110, and the micro sample 110 is self-supporting on the fixed base 111.
(Step 11): Thereafter, the micro sample 110 may be further processed into a shape suitable for various analysis techniques. For example, in the case of STEM or STEM, the sample is sliced to a thickness of about 100 nm.

なお、本例では、平板が微小試料接続具先端に固着され、この平板の面が元の試料表面に平行である微小試料接続具を用いて、摘出される微小試料の上面に接触し接続していた。本発明はこれに限ることはなく、試料と接触し接続される微小試料接続具は角柱形状でもよい。この例を図10で説明する。   In this example, a flat plate is fixed to the tip of the micro sample connector, and the surface of this flat plate is in contact with and connected to the top surface of the micro sample to be extracted using a micro sample connector whose surface is parallel to the original sample surface. It was. The present invention is not limited to this, and the minute sample connector to be connected in contact with the sample may have a prismatic shape. This example will be described with reference to FIG.

図10は、微小試料接続具駆動機構120に下向き傾斜して接続された微小試料接続具基部121の先端に角柱形状の先端微小試料接続具122がされている。角柱微小試料接続具は基準の水平面に対して傾斜下向きであるため、微小試料接続具の先端は試料と面接触しやすくするために、面取りした形状となっている。角柱部分の寸法例は、一辺2μmの正方形断面で、長さ10μmで、先端は微小試料接続具傾斜角に応じた角度で面取りし、実質の水平面の寸法は凡そ2×1μm程度である。このような形状はFIBによって加工できる。   In FIG. 10, a prismatic tip micro sample connector 122 is formed at the tip of a micro sample connector base 121 connected to the micro sample connector driving mechanism 120 while being inclined downward. Since the prismatic micro sample connection tool is inclined downward with respect to the reference horizontal plane, the tip of the micro sample connection tool has a chamfered shape to facilitate surface contact with the sample. A dimension example of the prism portion is a square cross section with a side of 2 μm, a length of 10 μm, a tip chamfered at an angle corresponding to the inclination angle of the micro sample connector, and a substantial horizontal plane dimension is about 2 × 1 μm. Such a shape can be processed by FIB.

このような微小試料接続具によって、図10(b)、(c)、(d)のように、摘出する微小試料123の上面もしくは側面に面接触し接続できる。試料上面に微小試料接続具を接触させる場合、観察手段である顕微鏡が真上から見る装置構成であると、微小試料接続具先端と試料間の間隔が把握しづらく、安全に微小試料接続具と試料を接触させるためには、技量と時間を要していたが、図10(b)や図10(d)のように試料側面に接触させる場合は、試料と微小試料接続具先端の面間隔が真上からの顕微鏡で把握し易く、安全に素早く接触させることができる。   With such a micro sample connector, as shown in FIGS. 10B, 10C, and 10D, the micro sample 123 to be extracted can be connected in surface contact with the upper surface or the side surface. When the micro sample connector is brought into contact with the upper surface of the sample, it is difficult to grasp the distance between the tip of the micro sample connector and the sample when the microscope as the observation means is viewed from directly above. In order to bring the sample into contact, skill and time are required. However, when the sample is brought into contact with the side surface of the sample as shown in FIGS. Is easy to grasp with a microscope from directly above, and can be safely and quickly contacted.

また、これらの微小試料接続具の特徴は、微小試料接続具先端の形状が従来の先鋭化した円錐形状ではなく特異な形状をしているため、試料表面や薄膜を画像化し、その画像から微小試料接続具先端の一部の形状のみを認識し、特定しやすいことも特徴である。画像認識しやすい形状の微小試料接続具先端を採用することによって、試料上の目標箇所に微小試料接続具を移動させる作業を、微小試料接続具先端形状を画像認識し、微小試料接続具先端部に事前に施したマークと試料上のマークとが、予め定めた位置関係になるように微小試料接続具を制御することで、装置操作者が制御するのではなく無人自動で行なうことができる。   In addition, the features of these micro sample connectors are that the tip of the micro sample connector has a unique shape rather than the conventional sharpened conical shape. Another feature is that only a part of the tip of the sample connector is recognized and easily identified. By adopting the tip of the micro sample connector with a shape that makes it easy to recognize the image, the tip of the micro sample connector is recognized by moving the micro sample connector to the target location on the sample. By controlling the micro sample connection tool so that the mark made in advance and the mark on the sample are in a predetermined positional relationship, the apparatus operator can perform the unattended automatic operation instead of controlling it.

例えば、図11に示したような作業フローで微小試料接続具制御、ステージ制御、ノズル制御させることで自動的に行なうことができる。つまり、微小試料移送のフローを開始する(S100)。まず、微小試料接続具に所定の電圧の電源を接続する。例えば、−5Vの電源とした(S110)。次に、微小試料接続具を対象とする微小試料に接近させ、面接触させる(S120)。この時、上記のように微小試料接続具の少なくとも一部の形状を登録しておき、微小試料接続具の移動手段と連動させることで、微小試料接続具先端を目標位置に容易に移動させることができる。形状登録には、先端部そのものの形状、もしくは先端部に施したマークを正確に認識させることが重要で、これを確度高く制御するためには試料上に現れにくい人工的、幾何学的形状にすることが重要である。   For example, it can be automatically performed by controlling the micro sample connector, stage control, and nozzle in the work flow as shown in FIG. That is, the flow of transferring the micro sample is started (S100). First, a power source having a predetermined voltage is connected to the micro sample connector. For example, a power supply of −5V was used (S110). Next, the micro sample connector is brought close to the target micro sample and brought into surface contact (S120). At this time, at least a part of the shape of the micro sample connector is registered as described above, and the tip of the micro sample connector can be easily moved to the target position by interlocking with the moving means of the micro sample connector. Can do. For shape registration, it is important to accurately recognize the shape of the tip itself or the mark on the tip, and in order to control this with high accuracy, it is necessary to create an artificial or geometric shape that is difficult to appear on the sample. It is important to.

接触確認後、微小試料接続具を試料から離間させ、微小試料を試料基板から分離する。微小試料接続具に微小試料を接続した状態で移動させ、微小試料を移送させる(S130)。微小試料の移設先の部材に微小試料が所望の姿勢で接触するように、微小試料接続具を移送させる(S140)。微小試料が微小試料固定具に接触した後、試料をデポジション膜等の接着手段で固定して、微小試料接続具を微小試料から離間して遠ざける(S150)。このような手順により微小試料の移送が完了し、一連のフローは終了する(S160)。   After confirming the contact, the micro sample connector is separated from the sample, and the micro sample is separated from the sample substrate. The micro sample is moved with the micro sample connected to the micro sample connector, and the micro sample is transferred (S130). The micro sample connector is moved so that the micro sample comes into contact with the member to which the micro sample is to be transferred in a desired posture (S140). After the micro sample comes into contact with the micro sample fixing tool, the sample is fixed by an adhesion means such as a deposition film, and the micro sample connecting tool is separated from the micro sample (S150). By such a procedure, the transfer of the micro sample is completed, and the series of flows is completed (S160).

本発明による微小試料移送装置の構成例を示す図。The figure which shows the structural example of the micro sample transfer apparatus by this invention. 本発明による微小試料接続具の例を示す図。The figure which shows the example of the micro sample connection tool by this invention. 本発明による微小試料接続具の例を示す図。The figure which shows the example of the micro sample connection tool by this invention. 本発明による微小試料接続具の例を示す図。The figure which shows the example of the micro sample connection tool by this invention. 本発明による平板微小試料接続具の作製方法を説明する図。The figure explaining the manufacturing method of the flat micro sample connection tool by this invention. 本発明による平板微小試料接続具の別の作製方法を説明する図。The figure explaining another manufacturing method of the flat micro sample connection tool by this invention. 本発明による試料作製方法の説明図。Explanatory drawing of the sample preparation method by this invention. 本発明による試料作製方法の説明図。Explanatory drawing of the sample preparation method by this invention. 本発明による試料作製方法の説明図。Explanatory drawing of the sample preparation method by this invention. 本発明による微小試料接続具の別の例と試料との接触、接続方法の説明図。Explanatory drawing of the contact of another example of the micro sample connection tool by this invention, and a sample, and the connection method. 本発明による試料移送手順を示すフロー図。The flowchart which shows the sample transfer procedure by this invention.

符号の説明Explanation of symbols

1…微小試料移送装置、2…試料ステージ、3…試料、4…イオンビーム照射系、6…微小試料接続具、7…微小試料接続具駆動機構、17…微小試料接続具電源、18…平板ストッカ、41…微小試料接続具基部、42a,42b…分岐微小試料接続具、43…微小試料、44a,44b…接触点、45…面微小試料接続具基部、46…接触面、51…均一細線、51’…面微小試料接続具、52…接触面、53…試料面、54…集束イオンビーム、61…微小試料、63…試料基板、64…微小試料接続具、65…平板、67…微小試料接続具基部、68…外部電源、69…駆動機構、120…微小試料接続具駆動機構、121…微小試料接続具基部、122…先端微小試料接続具、123…微小試料 DESCRIPTION OF SYMBOLS 1 ... Micro sample transfer apparatus, 2 ... Sample stage, 3 ... Sample, 4 ... Ion beam irradiation system, 6 ... Micro sample connector, 7 ... Micro sample connector drive mechanism, 17 ... Micro sample connector power supply, 18 ... Flat plate Stocker 41 ... Micro sample connector base, 42a, 42b ... Branch micro sample connector, 43 ... Micro sample, 44a, 44b ... Contact point, 45 ... Surface micro sample connector base, 46 ... Contact surface, 51 ... Uniform thin wire , 51 ′: surface micro sample connector, 52, contact surface, 53, sample surface, 54, focused ion beam, 61, micro sample, 63, sample substrate, 64, micro sample connector, 65, flat plate, 67, micro Sample connector base, 68 ... external power source, 69 ... drive mechanism, 120 ... micro sample connector drive mechanism, 121 ... micro sample connector base, 122 ... tip micro sample connector, 123 ... micro sample

Claims (23)

試料を収容する真空試料室と、
複数に分岐した先端部を有し、かつ該先端部の頂点が平面上に揃っている微小試料接続具と、
前記微小試料接続具を前記真空試料室内で移動させる駆動機構と、
前記微小試料接続具と前記試料との間を融着するために電圧を印加する電源と、
を有し、
前記微小試料接続具は、前記先端部のうち少なくとも1つの先端部で前記試料を融着し、残りの先端部で前記試料を押さえることを特徴とする微小試料移送装置。
A vacuum sample chamber containing the sample;
A micro sample connector having a tip portion branched into a plurality, and the apexes of the tip portion being aligned on a plane;
A drive mechanism for moving the micro sample connector in the vacuum sample chamber;
A power source for applying a voltage to fuse between the micro sample connector and the sample;
I have a,
The micro sample connection device is characterized in that the sample is fused by at least one tip portion of the tip portions, and the sample is pressed by the remaining tip portion .
請求項1記載の微小試料移送装置において、前記先端部は、二又または三又に分岐していることを特徴とする微小試料移送装置。2. The micro sample transfer apparatus according to claim 1, wherein the tip portion is bifurcated or trifurcated. 試料を収容する真空試料室と、
前記試料から分離する微小試料の一部と面接触する平面を有する微小試料接続具と、
前記微小試料を観察することのできる顕微鏡と、
前記微小試料接続具を前記真空試料室内で移動させる駆動機構と、
前記微小試料接続具と前記微小試料との間を融着するために電圧を印加する電源と、
を有し、
前記微小試料接続具は、前記平面のうち一部の領域で前記試料を融着し、残りの領域で前記試料を押さえることを特徴とする微小試料移送装置。
A vacuum sample chamber containing the sample;
A micro sample connector having a plane in surface contact with a portion of the micro sample to be separated from the sample;
A microscope capable of observing the minute sample;
A drive mechanism for moving the micro sample connector in the vacuum sample chamber;
A power source for applying a voltage to fuse between the micro sample connector and the micro sample;
I have a,
The micro sample connection device is characterized in that the sample is fused in a partial area of the plane and the sample is pressed in the remaining area .
請求項記載の微小試料移送装置において、前記微小試料接続具は、略円柱もしくは略円錐形状の部材を有し、当該部材の先端部が前記微小試料と面接触する平面になっていることを特徴とする微小試料移送装置。 4. The micro sample transfer device according to claim 3 , wherein the micro sample connector has a substantially cylindrical or substantially conical member, and a tip portion of the member is a flat surface in contact with the micro sample. A micro sample transfer device. 請求項記載の微小試料移送装置において、前記微小試料接続具は、前記微小試料に面接触する角柱部を有することを特徴とする微小試料移送装置。 4. The micro sample transport device according to claim 3 , wherein the micro sample connector has a prism portion in surface contact with the micro sample. 請求項記載の微小試料移送装置において、前記微小試料接続具は、前記微小試料と面接触する平板部と、該平板部を支える基部とを有することを特徴とする微小試料移送装置。 4. The micro sample transport apparatus according to claim 3 , wherein the micro sample connector has a flat plate portion that is in surface contact with the micro sample, and a base portion that supports the flat plate portion. 試料を載置する試料ステージと、
前記試料ステージを収容する真空試料室と、
前記試料から分離した微小試料を保持して移送する微小試料接続具と、
前記微小試料接続具を前記真空試料室内で移動させる駆動機構と、
試料加工用の集束イオンビーム照射系と、
試料観察用の電子ビーム照射系と、
デポジション膜形成用の原料ガスを供給するガス供給手段と、
前記試料ステージに載置された試料と前記微小試料接続具との間を融着するために電圧を印加する電源とを有し、
前記微小試料接続具は
複数に分岐した先端部を有し、かつ該先端部の頂点が平面上に揃っている形状であり前記先端部のうち少なくとも1つの先端部で前記試料を融着し、残りの先端部で前記試料を押さえるか、又は
前記試料から分離する微小試料の一部と面接触する平面を有し、前記平面のうち一部の領域で前記試料を融着し、残りの領域で前記試料を押さえる
ことを特徴とする微小試料移送装置。
A sample stage on which the sample is placed;
A vacuum sample chamber containing the sample stage;
A micro sample connector for holding and transferring a micro sample separated from the sample;
A drive mechanism for moving the micro sample connector in the vacuum sample chamber;
A focused ion beam irradiation system for sample processing;
An electron beam irradiation system for sample observation;
A gas supply means for supplying a source gas for forming a deposition film;
And a conductive you apply a voltage source to fuse between the micro-sample connector and placed on the sample to the sample stage,
The micro-sample connecting device,
The tip has a plurality of branched ends, and the apexes of the tips are aligned on a plane , and the sample is fused with at least one of the tips, and the remaining tips are Hold down the sample, or
A flat surface that is in surface contact with a part of a micro sample separated from the sample, the sample is fused in a part of the plane, and the sample is pressed in the remaining area. A micro sample transfer device.
請求項7記載の微小試料移送装置において、前記先端部は、二又または三又に分岐していることを特徴とする微小試料移送装置。8. The micro sample transfer device according to claim 7, wherein the tip portion is bifurcated or bifurcated. 請求項記載の微小試料移送装置において、前記微小試料接続具は、略円柱もしくは略円錐形状の部材を有し、当該部材の先端部が前記微小試料と面接触する平面になっていることを特徴とする微小試料移送装置。 8. The micro sample transfer device according to claim 7 , wherein the micro sample connector has a substantially cylindrical or substantially conical member, and a tip portion of the member is a flat surface in contact with the micro sample. A micro sample transfer device. 請求項記載の微小試料移送装置において、前記微小試料接続具は、前記微小試料に面接触する角柱部を有することを特徴とする微小試料移送装置。 8. The micro sample transport device according to claim 7 , wherein the micro sample connector has a prism portion that is in surface contact with the micro sample. 請求項記載の微小試料移送装置において、前記微小試料接続具は、前記微小試料と面接触する平板部と、該平板部を支える基部とを有することを特徴とする微小試料移送装置。 8. The micro sample transport device according to claim 7 , wherein the micro sample connector has a flat plate portion that is in surface contact with the micro sample, and a base portion that supports the flat plate portion. 請求項11記載の微小試料移送装置において、前記平板部は予め前記真空試料室内に準備され、前記真空試料室内で前記平板部と前記基部と固着して前記微小試料接続具を形成することを特徴とする微小試料移送装置。 12. The micro sample transfer device according to claim 11 , wherein the flat plate portion is prepared in advance in the vacuum sample chamber, and the flat sample portion and the base portion are fixed in the vacuum sample chamber to form the micro sample connector. A micro sample transfer device. 請求項記載の微小試料移送装置において、前記微小試料接続具のうち前記微小試料との接触部が導電性材料又はシリコンで構成されていることを特徴とする微小試料移送装置。 8. The micro sample transfer device according to claim 7 , wherein a contact portion of the micro sample connector with the micro sample is made of a conductive material or silicon. 請求項記載の微小試料移送装置において、前記微小試料接続具に保持して移動させた前記微小試料を移設する微小試料設置具を前記真空試料室内に有することを特徴とする微小試料移送装置。 8. The micro sample transfer device according to claim 7 , further comprising a micro sample installation tool for transferring the micro sample held and moved by the micro sample connection tool in the vacuum sample chamber. 真空試料室に収容された試料に微小試料接続具が有する平面を面接触させ、前記試料と前記微小試料接続具との間に電圧を印加して前記平面のうち一部の領域で前記試料を融着し、残りの領域で前記試料を押さえることで前記試料を前記微小試料接続具に保持し、前記試料を保持した前記微小試料接続具を移動することによって前記試料を所望位置に移動し、前記試料を前記所望位置に固定し、前記微小試料接続具を前記試料から離れる方向に移動させて前記試料から分離することを特徴とする微小試料移送方法。 A flat surface of a micro sample connector is brought into surface contact with a sample accommodated in a vacuum sample chamber, and a voltage is applied between the sample and the micro sample connector to apply the sample in a part of the plane. Fusing and holding the sample in the micro sample connector by pressing the sample in the remaining area, moving the sample to a desired position by moving the micro sample connector holding the sample, A method of transferring a micro sample, wherein the sample is fixed at the desired position, and the micro sample connector is moved away from the sample to be separated from the sample. 請求項15記載の微小試料移送方法において、前記微小試料接続具を前記試料の側面に面接触させることを特徴とする微小試料移送方法。 The micro sample transfer method according to claim 15 , wherein the micro sample connector is brought into surface contact with a side surface of the sample. 請求項15記載の微小試料移送方法において、前記試料と接触する前記微小試料移送具の接触部材を前記真空試料室内に準備し、前記真空試料室内で前記接触部材を前記微小試料移送具の先端に固着させることを特徴とする微小試料移送方法。 16. The micro sample transfer method according to claim 15 , wherein a contact member of the micro sample transfer tool that contacts the sample is prepared in the vacuum sample chamber, and the contact member is provided at a tip of the micro sample transfer tool in the vacuum sample chamber. A method for transferring a micro sample, wherein the sample is fixed. 真空試料室に収容された試料から分離すべき微小試料に微小試料接続具が有する平面を面接触させ、前記試料と前記微小試料接続具との間に電圧を印加して前記平面のうち一部の領域で前記試料を融着し、残りの領域で前記試料を押さえることで前記微小試料を前記微小試料接続具に保持し、前記微小試料を前記試料から分離し、前記微小試料を保持した前記微小試料接続具を駆動して前記微小試料を固定台に接触させ、前記固定台に前記微小試料を固定し、前記微小試料接続具を前記微小試料から離れる方向に移動させて前記微小試料から分離することを特徴とする微小試料移送方法。 A surface of a micro sample connector is brought into surface contact with a micro sample to be separated from a sample accommodated in a vacuum sample chamber, and a voltage is applied between the sample and the micro sample connector to partially The sample is fused in the region, and the sample is held in the remaining region to hold the micro sample on the micro sample connector, the micro sample is separated from the sample, and the micro sample is held. A micro sample connector is driven to bring the micro sample into contact with a fixing table, the micro sample is fixed to the fixing table, and the micro sample connector is moved away from the micro sample to be separated from the micro sample. A method for transferring a micro sample, comprising: 請求項18記載の微小試料移送方法において、前記微小試料接続具を前記微小試料の側面に面接触させることを特徴とする微小試料移送方法。 19. The micro sample transfer method according to claim 18 , wherein the micro sample connector is brought into surface contact with a side surface of the micro sample. 請求項18記載の微小試料移送方法において、前記微小試料と接触する前記微小試料移送具の接触部材を前記真空試料室内に準備し、前記真空試料室内で前記接触部材を前記微小試料移送具の先端に固着させることを特徴とする微小試料移送方法。 19. The micro sample transfer method according to claim 18 , wherein a contact member of the micro sample transfer tool that comes into contact with the micro sample is prepared in the vacuum sample chamber, and the contact member is provided at the tip of the micro sample transfer tool in the vacuum sample chamber. A method of transferring a micro sample, characterized in that the sample is fixed to a surface. 真空試料室に収容された試料を集束イオンビームで加工して支持部で接続された状態で前記試料から微小試料を切り出し、前記微小試料に微小試料接続具が有する平面を面接触させ、前記試料と前記微小試料接続具との間に電圧を印加して前記平面のうち一部の領域で前記試料を融着し、残りの領域で前記試料を押さえることで前記微小試料を前記微小試料接続具に接続し、前記支持部に集束イオンビームを照射して切断することによって前記微小試料を前記試料から分離し、前記微小試料を接続した前記微小試料接続具を移動させて前記微小試料を固定台に接触させ、前記微小試料と前記固定台との接触領域にビームアシストデポジション膜を形成して前記微小試料を前記固定台に固定し、前記微小試料接続具を前記微小試料から離れる方向に移動させて前記微小試料から分離することを特徴とする微小試料移送方法。 A sample accommodated in a vacuum sample chamber is processed with a focused ion beam and cut out from the sample in a state where the sample is connected to a support, and a surface of the micro sample connection tool is brought into surface contact with the micro sample. A voltage is applied between the micro sample connection tool and the sample is fused in a part of the plane, and the sample is held in the remaining area to hold the micro sample in the micro sample connection tool. The micro sample is separated from the sample by irradiating the support portion with a focused ion beam and cut, and the micro sample connector to which the micro sample is connected is moved so that the micro sample is fixed. A method of forming a beam-assisted deposition film in a contact region between the micro sample and the fixing table to fix the micro sample to the fixing table, and separating the micro sample connector from the micro sample. Micro sample transfer method moves and separating from the micro sample to. 請求項21記載の微小試料移送方法において、前記微小試料接続具を前記微小試料の側面に面接触させることを特徴とする微小試料移送方法。 The micro sample transfer method according to claim 21 , wherein the micro sample connector is brought into surface contact with a side surface of the micro sample. 請求項21記載の微小試料移送方法において、前記微小試料と接触する前記微小試料移送具の接触部材を前記真空試料室内に準備し、前記真空試料室内で前記接触部材を前記微小試料移送具の先端に固着させることを特徴とする微小試料移送方法。 23. The micro sample transfer method according to claim 21 , wherein a contact member of the micro sample transfer tool that is in contact with the micro sample is prepared in the vacuum sample chamber, and the contact member is provided at the tip of the micro sample transfer tool in the vacuum sample chamber. A method of transferring a micro sample, characterized in that the sample is fixed to a surface.
JP2005359321A 2005-12-13 2005-12-13 Micro sample transfer apparatus and method Expired - Fee Related JP4597045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359321A JP4597045B2 (en) 2005-12-13 2005-12-13 Micro sample transfer apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359321A JP4597045B2 (en) 2005-12-13 2005-12-13 Micro sample transfer apparatus and method

Publications (2)

Publication Number Publication Date
JP2007163277A JP2007163277A (en) 2007-06-28
JP4597045B2 true JP4597045B2 (en) 2010-12-15

Family

ID=38246341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359321A Expired - Fee Related JP4597045B2 (en) 2005-12-13 2005-12-13 Micro sample transfer apparatus and method

Country Status (1)

Country Link
JP (1) JP4597045B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540908B2 (en) * 2010-06-07 2014-07-02 新日鐵住金株式会社 Manufacturing method of probe for focused ion beam processing apparatus and probe for focused ion beam processing apparatus
EP3163283B1 (en) * 2014-06-30 2023-08-30 Hitachi High-Tech Science Corporation Automated sample-preparation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774884B2 (en) * 1991-08-22 1998-07-09 株式会社日立製作所 Method for separating sample and method for analyzing separated sample obtained by this separation method
JP2000251820A (en) * 1999-03-04 2000-09-14 Hitachi Ltd Manipulator and probe device and sample preparation device using the same
JP2003242921A (en) * 2002-02-15 2003-08-29 Jeol Ltd Minute object moving method, and observation method and observation device using the same
JP3547143B2 (en) * 1997-07-22 2004-07-28 株式会社日立製作所 Sample preparation method
JP2004212304A (en) * 2003-01-08 2004-07-29 Hitachi High-Technologies Corp Sample preparing apparatus and sample preparing method
JP2004295146A (en) * 2004-06-09 2004-10-21 Hitachi Ltd Manipulator, probe device using it, and sample preparing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774884B2 (en) * 1991-08-22 1998-07-09 株式会社日立製作所 Method for separating sample and method for analyzing separated sample obtained by this separation method
JP3547143B2 (en) * 1997-07-22 2004-07-28 株式会社日立製作所 Sample preparation method
JP2000251820A (en) * 1999-03-04 2000-09-14 Hitachi Ltd Manipulator and probe device and sample preparation device using the same
JP2003242921A (en) * 2002-02-15 2003-08-29 Jeol Ltd Minute object moving method, and observation method and observation device using the same
JP2004212304A (en) * 2003-01-08 2004-07-29 Hitachi High-Technologies Corp Sample preparing apparatus and sample preparing method
JP2004295146A (en) * 2004-06-09 2004-10-21 Hitachi Ltd Manipulator, probe device using it, and sample preparing device

Also Published As

Publication number Publication date
JP2007163277A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP3547143B2 (en) Sample preparation method
JP4200665B2 (en) Processing equipment
US8723144B2 (en) Apparatus for sample formation and microanalysis in a vacuum chamber
EP2991096B1 (en) Charged particle beam apparatus
JP6931214B2 (en) Charged particle beam device
US20080308727A1 (en) Sample Preparation for Micro-Analysis
JP3805547B2 (en) Sample preparation equipment
US10832890B2 (en) Charged particle beam device
JP6542608B2 (en) Charged particle beam device
JP6700897B2 (en) Charged particle beam device
JP4185962B2 (en) Sample preparation equipment
JP2008153239A5 (en)
JP4048210B2 (en) Sample preparation method
JP4597045B2 (en) Micro sample transfer apparatus and method
JP4747952B2 (en) Sample processing apparatus and sample processing method
JP3996856B2 (en) Sample preparation apparatus and sample preparation method
JP4589993B2 (en) Focused ion beam device
JP4185963B2 (en) Sample analysis method and sample preparation method
JP5024468B2 (en) Sample processing equipment
JP2008103225A (en) Sample making device and sample making method
JP2004309499A (en) Apparatus for preparing testpiece and method for preparing testpiece
JP4185961B2 (en) Focused ion beam device
JP4826680B2 (en) Beam member
JP6885637B2 (en) Charged particle beam device
JP4392272B2 (en) TEM sample preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees