JP4595272B2 - 放電灯点灯装置 - Google Patents

放電灯点灯装置 Download PDF

Info

Publication number
JP4595272B2
JP4595272B2 JP2001291745A JP2001291745A JP4595272B2 JP 4595272 B2 JP4595272 B2 JP 4595272B2 JP 2001291745 A JP2001291745 A JP 2001291745A JP 2001291745 A JP2001291745 A JP 2001291745A JP 4595272 B2 JP4595272 B2 JP 4595272B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
supply unit
circuit
chopper circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001291745A
Other languages
English (en)
Other versions
JP2003100489A (ja
Inventor
滋 井戸
正徳 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2001291745A priority Critical patent/JP4595272B2/ja
Publication of JP2003100489A publication Critical patent/JP2003100489A/ja
Application granted granted Critical
Publication of JP4595272B2 publication Critical patent/JP4595272B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Description

【0001】
【発明の属する技術分野】
本発明は、放電灯点灯装置に関するものである。
【0002】
【従来の技術】
図18に回路図を示す従来例1の放電灯点灯装置は、直流電源部101の出力電圧をインバータ部100で変換した高周波電圧を放電灯Laに供給するもので、インバータ部100は、直流電源部101に並列に接続されたスイッチング素子Q100,Q101の直列回路と、スイッチング素子Q100,Q101の接続中点に一端を接続されたコンデンサC100と、スイッチング素子Q100,Q101をオン・オフする制御回路100aとから構成され、インバータ部100が高周波電圧を供給する負荷回路は、スイッチング素子Q101にコンデンサC100を介して並列接続されたインダクタL101,コンデンサC101の直列回路と、コンデンサC101に並列接続された放電灯Laとから構成され、放電灯Laにはランプ電圧Vlaが印加され、ランプ電流Ilaが流れる。そして、直流電源部101が出力する直流電圧Vdcを調整することによって調光を行い、定格電力の異なる放電灯Laが装着された場合でも、異なる放電灯間で光出力比を略一定に調光制御できる異負荷共用タイプの放電灯点灯装置である。
【0003】
次に、図19に示す従来例2の放電灯点灯装置は、直流電源部101を昇圧チョッパ回路で構成したもので、直流電源部101は、交流電源Vsと、交流電源Vsの出力を整流するダイオードブリッジDBと、ダイオードブリッジDBの正出力側に接続されたインダクタL102とダイオードD100との直列回路と、インダクタL102を介してダイオードブリッジDBの出力端に並列接続されたスイッチング素子Q102と、ダイオードD100を介してスイッチング素子Q102に並列接続された平滑用のコンデンサC102と、調光レベルを設定する調光器101aと、調光器101aからの調光信号に応じてスイッチング素子Q102をオン・オフして直流電源部101が出力する直流電圧Vdcを制御する制御回路101bとから構成される。
【0004】
この従来例2の放電灯点灯装置において、直流電源部101が出力する直流電圧Vdcの範囲は、Vs(peak)≦Vdc(ここで、Vs(peak)は交流電源Vsのピーク電圧を示す)となる。例えば、交流電源Vsが、100Vの交流電源であればピーク電圧Vs(peak)は141V、200Vの交流電源であればピーク電圧Vs(peak)は282Vとなる。
【0005】
したがって、予め調光器によって決められる調光下限を、交流電源Vsのピーク電圧Vs(peak)の値に設定しておけば、即ち100Vの交流電源であれば直流電圧Vdc=141Vの時に調光下限となるように設定しておけば、直流電圧Vdcはそれ以下に下がることはなく、制御回路101bでは直流電圧Vdcが所定のレベル以下にならないように制限するためのリミッタ回路が必要なくなり、制御が容易になる。
【0006】
このような従来例2では、定格電力の異なる放電灯Laが装着された場合でも、インバータ部100の点灯周波数を一定にしたままで、直流電圧Vdcを調整することによって定格電力の異なる放電灯間の光出力比を略一定に調光制御でき、且つ調光下限での直流電圧Vdcの値を制御する必要がないので制御回路を容易に構成することができて、さらに、直流電源部101が昇圧チョッパ回路を構成することによって、チョッパ回路での電圧変換の効率がよいという長所もある。
【0007】
次に、図20に示す従来例3の放電灯点灯装置は、直流電源部101を昇降圧チョッパ回路で構成したもので、直流電源部101は、交流電源Vsと、交流電源Vsの出力を整流するダイオードブリッジDBと、ダイオードブリッジDBの負出力側に接続されたスイッチング素子Q103とダイオードD100との直列回路と、スイッチング素子Q103を介してダイオードブリッジDBの出力端に並列接続されたインダクタL102と、ダイオードD100を介してインダクタL102に並列接続された平滑用のコンデンサC102と、調光レベルを設定する調光器101aと、調光器101aからの調光信号に応じてスイッチング素子Q103をオン・オフして直流電源部101が出力する直流電圧Vdcを制御する制御回路101bとから構成される。
【0008】
この従来例3の放電灯点灯装置において、直流電源部101が出力する直流電圧Vdcの範囲は、交流電源Vsのピーク電圧Vs(peak)に関係なく、任意に設定することができる。即ち、直流電圧Vdcが交流電源Vsのピーク電圧Vs(peak)より低い電圧を必要な時は、直流電源部101の昇降圧チョッパ回路を降圧動作させ、直流電圧Vdcがピーク電圧Vs(peak)より高い電圧を必要な時は、直流電源部101の昇降圧チョッパ回路を昇圧動作させればよい。したがって、交流電源Vsによる直流電圧Vdcの制限がなくなり、放電灯Laのランプ電流Ilaの制御範囲が広がることになる。
【0009】
このような従来例3では、定格電力の異なる放電灯Laが装着された場合でも、インバータ部100の点灯周波数を一定にしたままで、直流電圧Vdcを調整することによって定格電力の異なる放電灯間の光出力比を略一定に調光制御でき、且つ点灯周波数が一定であるため制御回路を容易に構成することができて、さらに、直流電源部101が出力する直流電圧Vdcの制御範囲が交流電源Vsによって制限されないので、任意のランプ電流Ilaに制御することができ、制御範囲を広くすることができる。
【0010】
また、図21に示す従来例4の放電灯点灯装置は、直流電源部101を2石式の昇降圧チョッパ回路で構成したもので、直流電源部101は、交流電源Vsと、交流電源Vsの出力を整流するダイオードブリッジDBと、ダイオードブリッジDBの正出力側に接続されたインダクタL102とダイオードD100とスイッチング素子Q104とインダクタL103との直列回路と、インダクタL102を介してダイオードブリッジDBの出力端に並列接続されたスイッチング素子Q102と、ダイオードD100を介してスイッチング素子Q102に並列接続された平滑用のコンデンサC102と、スイッチング素子Q104を介してコンデンサC102に並列接続されたダイオードD101と、インダクタL103を介してダイオードD101に並列接続されたコンデンサC103と、調光レベルを設定する調光器101aと、調光器101aからの調光信号に応じてスイッチング素子Q104をオン・オフ制御して直流電源部101が出力する直流電圧Vdcを制御する制御回路101bと、スイッチング素子Q102をオン・オフ制御する制御回路101cとから構成される。
【0011】
【発明が解決しようとする課題】
ところが、前記従来例において、直流電源部101の構成が図19に示す昇圧チョッパ回路である場合、直流電圧Vdcを交流電源Vsのピーク電圧Vs(peak)以下に設定することができないため広い範囲で制御を行うことができず、より深い調光を行うことができない。
【0012】
また、直流電源部101の構成が図20に示す昇降圧チョッパ回路である場合、高耐圧のスイッチング素子を使用しなければならないためコストが高くなり、且つ昇圧チョッパ回路に比べて電圧変換の効率が低くなる。さらに、図21に示す2石式の昇降圧チョッパ回路を用いた場合は、1石式のチョッパ回路を用いる場合に比べて素子数が増えるため、チョッパ回路での損失が増えるという欠点がある。
【0013】
本発明は、上記事由に鑑みてなされたものであり、その目的は、直流電圧を調整して調光を行う際の電圧変換の効率を改善した放電灯点灯装置を提供することにある。
【0014】
【課題を解決するための手段】
請求項1の発明は、交流電源の電圧を直流電圧に変換するダイオードブリッジと、スイッチング素子を有し、前記スイッチング素子をオン・オフすることで前記ダイオードブリッジが出力する直流電圧を所望の電圧に変換する直流電源部と、前記直流電源部の出力を平滑するコンデンサと、前記コンデンサの電圧を高周波電圧に変換するインバータ部と、前記インバータ部が出力する高周波電圧を供給される放電灯と、前記直流電源部のスイッチング素子のオン・オフ動作を制御する制御回路と、前記コンデンサの電圧が所定の電圧以上の時、前記直流電源部の動作を昇圧チョッパ回路の動作に切替え、前記コンデンサの電圧が所定の電圧以下の時、前記直流電源部の動作を昇降圧チョッパ回路の動作に切替える切替手段とを備えることを特徴とする。
【0015】
請求項2の発明は、請求項1の発明において、前記切替手段は、前記交流電源の電圧が所定の電圧以上の時、前記直流電源部の動作を常に昇降圧チョッパ回路の動作に切替えておくことを特徴とする。
【0016】
請求項3の発明は、請求項1または2の発明において、前記交流電源の電圧を略100Vとし、前記切替手段は、前記直流電源部の動作を、前記コンデンサの電圧が略200V以上の時、昇圧チョッパ回路の動作に切替え、前記コンデンサの電圧が略200V以下の時、昇降圧チョッパ回路の動作に切替えることを特徴とする。
【0017】
請求項4の発明は、請求項1または2の発明において、前記切替手段が前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替える時の前記コンデンサの電圧は、交流電源の出力電流の全高調波歪み率が所定の値以下になるように設定したことを特徴とする。
【0018】
請求項5の発明は、請求項1乃至4いずれかの発明において、前記切替え手段は、前記制御回路が前記直流電源部のスイッチング素子のオン・オフのタイミングを制御することによって、前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替えることで成ることを特徴とする。
【0019】
請求項6の発明は、請求項1乃至5いずれかの発明において、前記直流電源部は2つ以上のスイッチング素子を具備し、前記2つ以上のスイッチング素子はグランドレベルが共通であることを特徴とする。
【0020】
請求項7の発明は、請求項5または6の発明において、前記直流電源部は2つ以上のスイッチング素子を具備し、前記制御回路は1つのスイッチング素子のオン・オフのタイミングを制御することによって、前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替えることを特徴とする。
【0021】
請求項8の発明は、請求項7の発明において、前記直流電源部は2つのスイッチング素子を具備し、前記制御回路は、前記コンデンサの電圧と基準電圧とを比較するコンパレータと、前記スイッチング素子をオン・オフさせる駆動信号が互いに異なる2つの駆動回路と、前記コンパレータの比較結果に応じて一方のスイッチング素子の駆動回路を前記2つの駆動回路のうちいずれかに切替えるスイッチとを具備し、他方のスイッチング素子は前記2つの駆動回路のうちいずれかの駆動回路により常にオン・オフされることを特徴とする。
【0022】
請求項9の発明は、請求項1乃至8いずれかの発明において、前記切替え手段は、前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替える時、昇圧チョッパ回路と昇降圧チョッパ回路との各動作期間の間に、昇圧チョッパ回路と昇降圧チョッパ回路との各動作を交互に行う期間を設けたことを特徴とする。
【0023】
請求項10の発明は、請求項5乃至8いずれかの発明において、前記放電灯に一定の電力を供給する場合、前記制御回路は、前記直流電源部の動作を昇圧チョッパ回路の動作とする時のスイッチング素子のオン時間と、前記直流電源部の動作を昇降圧チョッパ回路の動作とする時のスイッチング素子のオン時間との比を一定とすることを特徴とする。
【0024】
請求項11の発明は、請求項10の発明において、前記直流電源部の動作を昇圧チョッパ回路の動作とする時のスイッチング素子のオン時間は、前記直流電源部の動作を昇降圧チョッパ回路の動作とする時のスイッチング素子のオン時間の1/√2倍であることを特徴とする。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0026】
(実施形態1)
図1は、本実施形態のブロック構成を示し、交流電源Vsと、交流電源Vsの出力を整流するダイオードブリッジDBと、スイッチング素子を有し、そのスイッチング素子をオン・オフすることでダイオードブリッジDBが出力する直流電圧を所望の直流電圧Vdcに変換する直流電源部1と、直流電源部1の出力を平滑する電解コンデンサC1と、コンデンサC1両端の直流電圧Vdcを高周波電圧に変換するインバータ部2と、インバータ部2が出力する高周波電圧を供給される放電灯Laと、調光レベルを設定する調光器3と、コンデンサC1両端の直流電圧Vdc及び調光器3の調光信号に応じて直流電源部1のスイッチング素子のオン・オフを制御する制御回路4とから構成される。
【0027】
ここで、直流電源部1は、昇圧チョッパ回路10と、昇降圧チョッパ回路11と、切替え手段12とを備えており、制御回路4は、コンデンサC1両端の直流電圧Vdcが所定の電圧以上の時、切替え手段12によって直流電源部1の入力を昇圧チョッパ回路10に接続して直流電源部1の動作を昇圧動作に切替え、コンデンサC1両端の直流電圧Vdcが所定の電圧以下の時、切替え手段12によって直流電源部1の入力を昇降圧チョッパ回路11に接続して直流電源部1の動作を昇降圧動作に切替えている。
【0028】
次に図2は、本実施形態の具体的な回路構成を示す。直流電源部1は、ダイオードブリッジDBの正出力側に接続されたFETから成るスイッチング素子Q1とインダクタL1とダイオードD2との直列回路と、スイッチング素子Q1を介してダイオードブリッジDBの出力端に並列接続されたダイオードD1と、インダクタL1を介してダイオードD1に並列接続されたFETから成るスイッチング素子Q2とから構成された2石式の昇降圧チョッパ回路である。インバータ部2は、直流電源部1の出力端に接続したコンデンサC1に並列に接続されたスイッチング素子Q3,Q4の直列回路と、スイッチング素子Q4に並列接続されたコンデンサC2,インダクタL2,コンデンサC3の直列回路と、スイッチング素子Q3,Q4を交互にオン・オフ駆動する制御回路2aとから構成されたハーフブリッジインバータであり、放電灯LaはコンデンサC3に並列に接続される。制御回路4は、入力端子cを介してコンデンサC1両端の直流電圧Vdcを検出し、出力端子a,bを介してスイッチング素子Q1,Q2を各々駆動している。
【0029】
次に制御回路4による制御方法について説明する。図3(a),(b),(c)は、(a)スイッチング素子Q1のゲート信号Vq1,(b)スイッチング素子Q2のゲート信号Vq2,(c)コンデンサC1両端の直流電圧Vdcの各波形を示しており、横軸には調光状態、即ち左側が全点灯状態(Full状態)、右側が調光下限状態(Dim状態)として示してある。直流電圧Vdcがしきい値電圧V1以上の時(調光状態がp点よりFull状態側の時)、ゲート信号Vq1はHighレベルを維持してスイッチング素子Q1はオン状態を維持し、ゲート信号Vq2は高周波でオン・オフを繰り返してスイッチング素子Q2のみがオン・オフすることによって、直流電源部1は昇圧チョッパ回路として動作する。直流電圧Vdcがしきい値電圧V1以下の時(調光状態がp点よりDim状態側の時)は、ゲート信号Vq1,Vq2共に同一の信号で高周波でオン・オフを繰り返してスイッチング素子Q1,Q2が同様にオン・オフすることによって、直流電源部1は昇降圧チョッパ回路として動作する。このように、コンデンサC1両端の直流電圧Vdcが所定の電圧以上の場合には、直流電源部1を昇圧チョッパ回路として動作させ、コンデンサC1両端の直流電圧Vdcが所定の電圧以下の場合には、直流電源部1を昇降圧チョッパ回路として動作させることによって、昇圧チョッパ回路として動作している期間は、スイッチング素子Q1では、高周波スイッチングによる損失がなくなり、オン抵抗による損失のみが発生するので、この時の効率は昇圧チョッパ回路と略同等な効率となり、全調光範囲で昇降圧チョッパ回路としてのみ動作させる場合に比べて、電圧変換時の効率を改善することができる。
【0030】
図4は制御回路4の回路図を示しており、制御回路4は、反転入力端子に入力端子cを接続し、非反転入力端子に基準電圧源E1を接続したコンパレータCP1と、高周波でオン・オフする駆動信号を出力する駆動回路4aと、常にHighレベルの駆動信号を出力する駆動回路4bと、コンパレータCP1の出力に応じて出力端子aに接続する駆動回路を駆動回路4aまたは駆動回路4bに切替えるスイッチ4cとから構成され、出力端子bは駆動回路4aに接続されている。基準電圧源E1の電圧は、図3に示すしきい値電圧V1に相当し、入力端子cを介して入力されるコンデンサC1両端の直流電圧Vdcが基準電圧源E1の電圧以上の場合には(図3のVfullからV1の状態)、コンパレータCP1の出力はLowレベルとなり、スイッチ4cは出力端子aと駆動回路4bとを接続して、出力端子aには駆動回路4bのHighレベルの駆動信号が出力され、出力端子bには駆動回路4aの高周波でオン・オフする駆動信号が出力され、直流電源部1は昇圧チョッパ回路として動作する。また、コンデンサC1両端の直流電圧Vdcが基準電圧源E1の電圧以下の場合には(図3のV1からVdimの状態)、コンパレータCP1の出力はHighレベルとなり、スイッチ4cは出力端子aと駆動回路4aとを接続して、出力端子a,b共に駆動回路4aの高周波でオン・オフする駆動信号が出力され、直流電源部1は昇降圧チョッパ回路として動作する。このときのスイッチング素子Q1,Q2の各ゲート信号Vq1,Vq2は図3(a),(b)に示す各波形となる。
【0031】
このような本実施形態は、交流電源Vsの電源電圧が比較的低い、例えば略100Vの時に有効である。なぜならば、特に電源電圧が低い方が高い場合に比べて、直流電源部1を昇圧チョッパ回路として動作させる範囲が広く、また昇圧チョッパ回路として動作させる方が昇降圧チョッパとして動作させるよりも電圧変換時の効率がよいため、昇降圧チョッパ回路に比べて効率が改善される範囲が広くなり効率的に有利となるためである。そして、この時のしきい値電圧V1を略200Vに設定すればさらに効率を改善することができる。また、昇圧チョッパ回路と昇降圧チョッパ回路との切替え手段は、直流電源部1のチョッパ回路を構成するスイッチング素子Q1のオン・オフ動作によって構成されるため、制御回路4の構成を簡単にすることができる。
【0032】
(実施形態2)
図5は本実施形態の具体的な回路構成を示し、実施形態1を示す図2とは、ダイオードブリッジDBの出力電圧を制御回路4に入力して、そのダイオードブリッジDBの出力電圧に応じて実施形態1で説明した直流電源部1のチョッパ回路動作の切替を有効または無効にしている点が異なり、他の点は同様であり、同様の構成には同一の符号を付して説明は省略する。本実施形態の制御回路4は、ダイオードブリッジDBの出力電圧が所定の電圧以上であれば、直流電圧Vdcの値に関わらず、スイッチング素子Q1,Q2を高周波でオン・オフする同一のゲート信号で駆動して、直流電源部1は昇降圧チョッパ回路として動作し、また、ダイオードブリッジDBの出力電圧が所定の電圧以下であれば、直流電圧Vdcに応じて実施形態1と同様に昇降圧チョッパ回路としての動作と昇圧チョッパ回路としての動作との切替えを行う。
【0033】
例えば、図6(a),(b),(c)は、交流電源Vsの電源電圧が比較的高い場合(例えば略200V)の(a)スイッチング素子Q1のゲート信号Vq1,(b)スイッチング素子Q2のゲート信号Vq2,(c)コンデンサC1両端の直流電圧Vdcの各波形を示しており、横軸には調光状態、即ち左側が全点灯状態(Full状態)、右側が調光下限状態(Dim状態)として示している。このとき、交流電源Vsの電源電圧が高く、ダイオードブリッジDBの出力電圧が所定の電圧以上であるために、スイッチング素子Q1,Q2は常に高周波でオン・オフする同一のゲート信号を入力されて、昇降圧チョッパ回路として動作している。
【0034】
このようにダイオードブリッジDBの出力電圧、即ち交流電源Vsの電源電圧が所定の電圧以上であれば直流電源部1は昇降圧チョッパ回路としてのみ動作し、交流電源Vsの電源電圧が所定の電圧以下であれば直流電源部1は直流電圧Vdcに応じて昇降圧チョッパ回路としての動作と昇圧チョッパ回路としての動作とを切替えることによって、例えば100Vから242Vまでの広範囲の電源電圧の交流電源Vsに対応することができる。特に、電源電圧が高い場合(例えば略242V)においても、直流電圧Vdcを調整することによって調光を行うことができる。
【0035】
(実施形態3)
図7は本実施形態の具体的な回路構成を示し、実施形態1を示す図2とは、直流電源部1の構成が異なり、他の点は同様であり、同様の構成には同一の符号を付して説明は省略する。本実施形態の直流電源部1は、ダイオードブリッジDBの正出力側に接続されたインダクタL1とダイオードD2との直列回路と、ダイオードブリッジDBの負出力側に接続されたFETからなるスイッチング素子Q5と、インダクタL1を介してダイオードブリッジDBの出力端に並列接続されたFETからなるスイッチング素子Q2と、平滑用のコンデンサC1の負側とダイオードブリッジDBの正出力側との間に接続されたダイオードD3とから構成された2石式の昇降圧チョッパ回路であり、スイッチング素子Q2,Q5のソースは同一電位に接続されている。
【0036】
次に、本実施形態の制御回路4による制御方法について説明する。図8(a),(b),(c)は、(a)スイッチング素子Q5のゲート信号Vq5,(b)スイッチング素子Q2のゲート信号Vq2,(c)コンデンサC1両端の直流電圧Vdcの各波形を示しており、横軸には調光状態、即ち左側が全点灯状態(Full状態)、右側が調光下限状態(Dim状態)として示してある。直流電圧Vdcがしきい値電圧V1以上の時(調光状態がp点よりFull状態側の時)、ゲート信号Vq5はHighレベルを維持してスイッチング素子Q5はオン状態を維持し、ゲート信号Vq2は高周波でオン・オフを繰り返してスイッチング素子Q2のみがオン・オフすることによって、直流電源部1は昇圧チョッパ回路として動作する。直流電圧Vdcがしきい値電圧V1以下の時(調光状態がp点よりDim状態側の時)は、ゲート信号Vq5はLowレベルを維持してスイッチング素子Q5はオフ状態を維持し、ゲート信号Vq2は高周波でオン・オフを繰り返してスイッチング素子Q2のみがオン・オフすることによって、直流電源部1は昇降圧チョッパ回路として動作する。
【0037】
このときの図7に示す回路の動作について説明する。まず、直流電源部1が昇圧チョッパ動作をしている時において、スイッチング素子Q5オン、スイッチング素子Q2オン時には、交流電源Vs→ダイオードブリッジDB→インダクタL1→スイッチング素子Q2→ダイオードブリッジDB→交流電源Vsの経路で電流が流れ、インダクタL1にエネルギーが蓄積する。そして、スイッチング素子Q5オン、スイッチング素子Q2オフになると、インダクタL1に蓄えられたエネルギーは、インダクタL1→ダイオードD2→コンデンサC1→スイッチング素子Q5→ダイオードブリッジDB→インダクタL1の経路でコンデンサC1を充電する。
【0038】
次に、直流電源部1が昇降圧チョッパ動作をしている時において、スイッチング素子Q5オフ、スイッチング素子Q2オン時には、交流電源Vs→ダイオードブリッジDB→インダクタL1→スイッチング素子Q2→ダイオードブリッジDB→交流電源Vsの経路で電流が流れ、インダクタL1にエネルギーが蓄積する。そして、スイッチング素子Q5オフ、スイッチング素子Q2オフになると、インダクタL1に蓄えられたエネルギーは、インダクタL1→ダイオードD2→コンデンサC1→ダイオードD3→インダクタL1の経路でコンデンサC1を充電する。
【0039】
また、スイッチング素子Q2,Q5のソース電位が共通となるため、例えばそのソース電位をグランドレベルとすれば、制御回路4においてゲート信号Vq2,Vq5の生成が容易になる。なお、この時のインバータ制御回路2aによるインバータ部2のスイッチング素子Q3,Q4の駆動方法については、例えばインダクタL2を用いた自励駆動としてもよい。
【0040】
さらに、本実施形態の他の回路構成を図9に示す。この回路は、1石兼用の昇圧チョッパ回路をベースにして、スイッチング素子Q5をオン・オフさせることによって昇降圧チョッパ回路に切替わるものである。即ち、図7に示す回路に対して、スイッチング素子Q2,Q4をスイッチング素子Q4で兼用し、ダイオードD2をスイッチング素子Q3の帰還ダイオード(図示なし)で兼用した例である。図9に示す回路の制御回路4による制御方法については、図7に示す回路と略同様であり、図8において(a)がスイッチング素子Q5のベース信号の波形を、(b)がスイッチング素子Q4のベース信号の波形を示す。このような構成とすることによって、スイッチング素子の数を減らすことができる。
【0041】
なお、実施形態1〜3においては、チョッパ回路の動作を、コンデンサC1両端の直流電圧Vdcの値に応じて昇圧チョッパ回路としての動作と昇降圧チョッパ回路としての動作とを切替えることの主たる目的は効率の改善であって、その切替えの動作点は、その効率の改善という目的に合う動作点を設定されていた。しかし、その動作点として、例えば、入力電流歪みがクラスCを満足するようにチョッパ回路の動作を切替えたり、予め定める全高調波歪み率(THD:Total Harmonics Distortion)の範囲内に収まるように切替えの動作点を設定してもよい。
【0042】
(実施形態4)
図10は本実施形態の回路構成を示し、基本的な構成は実施形態1を示す図2と同様であり、同様の構成には同一の符号を付して説明は省略する。本実施形態ではスイッチング素子Q1,Q2を駆動する制御回路4について説明する。制御回路4は、調光器3から出力される電圧指示信号S1と、コンデンサC1両端の直流電圧Vdcのフィードバック信号S2とを入力して、直流電圧Vdcが目的電圧になるようにスイッチング素子Q2のスイッチング動作を制御するPWM信号S4を出力するPWM回路4dと、遅れ要素τを有する遅れ回路4fと、調光器3の切替え信号S3を遅れ回路4fを介して入力した切替信号S3’に応じてパルスデューティを連続的に可変とし、直流電源部1の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替えるPWM信号S5を出力する発振器であるPWM回路4eと、PWM回路4d,4eが出力するPWM信号S4,S5の論理積演算を行い、信号S6を出力する論理積回路IC1と、PWM回路4eが出力したPWM信号S5を論理否定した信号S7を出力する論理否定回路IC2と、論理積回路IC1と論理否定回路IC2とが各々出力する信号S6,S7の論理和演算を行い、信号S8を出力する論理和回路IC3と、信号S8に応じてスイッチング素子Q1のゲート信号を出力するドライバ回路4gとから構成される。
【0043】
PWM回路4eは図11に示すように、三角波発生器40と、コンパレータCP2とを備えており、コンパレータCP2の非反転入力端子には調光器3からの切替信号S3’が入力され、反転入力端子には三角波発生器40が出力する三角波Stが入力されて、PWM信号S5を出力しており、このときの各部の波形を図12に示す。切替信号S3’は直流信号であり、切替信号S3’よりも三角波Stの方が小さい期間ではPWM信号S5はHighレベルとなり、切替信号S3’よりも三角波Stの方が大きい期間ではPWM信号S5はLowレベルとなる。
【0044】
直流電源部1を昇降圧チョッパ回路として動作させる時には、切替信号S3’は三角波Stよりも常に高い電圧V2とし、PWM信号S5を常にHighレベルとする。昇圧チョッパ回路として動作させる時には、切替信号S3’は三角波Stよりも常に低い電圧V3とし、PWM信号S5を常にLowレベルとする。切替信号S3’が電圧V2と電圧V3との間の値である時には、直流電源部1は、昇降圧チョッパ回路としての動作と昇圧チョッパ回路としての動作とが周期的に混在して交互に動作する。
【0045】
図13は、信号S4〜S8の各波形を示している。PWM信号S5がLowレベルの時、論理積回路IC1の出力信号S6はPWM信号S4に関わらずLowレベルになり、論理否定回路IC2の出力信号S7はHighレベルになり、したがって論理和回路IC3の出力信号S8は常にHighレベルになり、スイッチング素子Q1はスイッチング素子Q2のオン・オフに関わらずオン状態を維持して、直流電源部1は昇圧チョッパ回路として動作する。また、PWM信号S5がHighレベルの時、論理積回路IC1の出力信号S6はPWM信号S4と同様の信号となり、論理否定回路IC2の出力信号S7はLowレベルになり、したがって論理和回路IC3の出力信号S8はPWM信号S4と同様の信号になり、スイッチング素子Q1はスイッチング素子Q2と同様にオン・オフして、直流電源部1は昇降圧チョッパ回路として動作する。
【0046】
このように直流電源部1は、PWM信号S5に応じて昇圧動作と昇降圧動作とを切替えることができ、昇圧動作から昇降圧動作へ移行する時は、調光器3が出力する切替信号S3をLowレベルからHighレベルに切替え、昇降圧動作から昇圧動作へ移行する時は、調光器3が出力する切替信号S3をHighレベルからLowレベルに切替えることで行う。なお、PWM回路4eが出力するPWM信号S5の周期は、PWM回路4dが出力するPWM信号S4の周期の2倍以上とする。
【0047】
従来、直流電源部1の動作を昇圧動作から昇降圧動作へ、または昇降圧動作から昇圧動作へ切替える際(図14(a))には、急激な入力電力の変化が発生し、切替えの時間t1において直流電圧Vdcに振動が発生していた(図14(b))。しかし、本実施形態では、図15(a)に示すように、昇降圧動作から昇圧動作へ切替える際に(昇圧動作から昇降圧動作へ切替える場合も同様)、切替信号S3を時間t2〜t3に亘ってHighレベルからLowレベルに切替えることによって(図15(c))、時間t2〜t3に図12で説明したような昇圧動作と昇降圧動作とが周期的に交互に混在した制御状態を生成し(図15(a))、その混在比率をスイープさせることによって動作切替え時に直流電圧Vdcの振動を発生させず安定にしつつ、動作の切替えを行う(図15(b))。このように直流電圧Vdcを安定にすることによって、放電灯Laへの影響をなくすことができる。
【0048】
なお、直流電圧Vdcのフィードバック応答に応じて遅れ回路4fの遅れ要素τを調整することによって、スイープスピードを調整して動作切替え時の安定性を確保することができる。
【0049】
(実施形態5)
図16は本実施形態の回路構成を示し、基本的な構成は実施形態1を示す図2と同様であり、同様の構成には同一の符号を付して説明は省略する。本実施形態ではスイッチング素子Q1,Q2を駆動する制御回路4について説明する。制御回路4は、コンデンサC1両端の直流電圧Vdcに現れるノイズを除去し、制御に適した直流電圧Vdcのフィードバック信号S2を得るための低域通過フィルタ4hと、低域通過フィルタ4hとグランド間に接続された抵抗R1と、低域通過フィルタ4hと抵抗R1との接続点に一端を接続された抵抗R2と、調光器3に一端を接続された抵抗R3と、非反転入力端子に抵抗R2の他端を接続し、反転入力端子に抵抗R3の他端を接続したオペアンプOP1と、オペアンプOP1の出力端子と反転入力端子との間に接続された抵抗R4と、三角波信号を出力する三角波発生器4iと、三角波信号を1/√2倍に減衰させる減衰器4jと、反転入力端子に接続したオペアンプOP1の差動出力と非反転入力端子に接続した減衰器4jで1/√2倍に減衰させた三角波信号とを比較するコンパレータCP3と、反転入力端子に接続したオペアンプOP1の差動出力と非反転入力端子に接続した三角波信号とを比較するコンパレータCP4と、コンパレータCP3の出力端子を固定接点Aに接続し、コンパレータCP4の出力端子を固定接点Bに接続した切替器4kと、定電圧Vccを固定接点Aに接続し、切替器4kの出力を固定接点Bに接続した切替器4mと、切替器4mの出力に応じてスイッチング素子Q1のゲート信号を出力するドライバ回路4gとから構成される。切替器4k,4mは調光器3が出力する切替信号S3によって可動接点を接点AまたはBに切替え、スイッチング素子Q2のゲートは切替器4kの出力に接続している。
【0050】
本実施形態は、放電灯Laに一定の電力を供給する場合、直流電源部1の動作を昇圧チョッパ回路の動作とする時のスイッチング素子のオン時間は、直流電源部1の動作を昇降圧チョッパ回路の動作とする時のスイッチング素子のオン時間の1/√2倍となることに着目したものである。このことについて以下説明する。スイッチング素子のスイッチング1回(昇圧動作時はスイッチング素子Q1はオン状態を維持しながらスイッチング素子Q2がスイッチングを行い、昇降圧動作時はスイッチング素子Q1,Q2ともに同様のスイッチングを行う)で、交流電源VsからインダクタL1を介して負荷(放電灯La)に出力されるエネルギーについて、昇圧動作時の出力エネルギーを図17(a)に示し、昇降圧動作時の出力エネルギーを図17(b)に示す。図17(a)に示す昇圧動作時において、スイッチングのオン時間をTon1、オフ時間をToff1、インダクタ電流のピーク値il1、直流電源部1の入力電圧をVin、出力する直流電圧をVdcとすると、Vdc=2×Vin、Ton1=Toff1の時、il1=α×Ton1(αは傾き)となる。この昇圧動作では、グラフの斜線部の面積S1が出力エネルギーと等しく、S1=1/2×Ton1×il1=1/2×α×Ton12となる。
【0051】
次に図17(b)に示す昇降圧動作時においては、スイッチングのオン時間をTon2、オフ時間をToff2、インダクタ電流のピーク値il2、直流電源部1の入力電圧をVin、出力する直流電圧をVdcとすると、Vdc=2×Vin、Ton2=2×Toff2の時、il2=α×Ton2(αは傾き)となる。この昇圧動作では、グラフの斜線部の面積S2が出力エネルギーと等しく、S2=1/4×Ton2×il2=1/4×α×Ton22となる。
【0052】
したがって、Ton1=Ton2である場合の昇圧動作時の出力エネルギーは、昇降圧動作時の出力エネルギーの2倍になる。ここで、昇圧動作時と昇降圧動作時との各出力エネルギーを等しくすると、Ton1とTon2との関係は、S1=S2より、1/2×α×Ton12=1/4×α×Ton22となり、したがって、Ton1=1/√2×Ton2という関係になり、放電灯Laに一定の電力を供給する場合、直流電源部1の動作を昇圧チョッパ回路の動作とする時のスイッチング素子のオン時間は、直流電源部1の動作を昇降圧チョッパ回路の動作とする時のスイッチング素子のオン時間の1/√2倍となる。
【0053】
ここで、図16に示す回路の昇降圧動作時の動作について説明する。直流電圧Vdcを最大出力電圧の1/2以下にする時、調光器3は切替信号S3をB状態にして、切替器4k,4mの各可動接点をB接点側に切替える。即ち、切替器4kの出力はコンパレータCP4の出力となり、切替器4mの出力は切替器4kの出力つまりコンパレータCP4の出力となる。
【0054】
オペアンプOP1と抵抗R2,R3,R4とは差動増幅器を構成しており、調光器3が出力する電圧指示信号S1と直流電圧Vdcを分圧したフィードバック信号S2との差を増幅し、コンパレータCP4は、三角波発生器4iの三角波信号と差動増幅器出力とを比較しPWM信号を出力して、切替器4kを介してスイッチング素子Q2をオン・オフし、且つ切替器4k,4m、ドライバー回路4gを介してスイッチング素子Q1をオン・オフすることによって、電圧制御負帰還回路を構成しており、目標の電圧指示値(電圧指示信号S1)に対応した直流電圧Vdcとなるように、PWM信号を補正している。
【0055】
次に、昇圧動作時の動作について説明する。直流電圧Vdcを最大出力電圧の1/2以上にする時、調光器3は切替信号S3をA状態にして、切替器4k,4mの各可動接点をA接点側に切替える。即ち、切替器4kの出力はコンパレータCP3の出力となり、切替器4mの出力は定電圧Vccとなる。したがって、ドライバ回路4gには定電圧Vccが入力されて、スイッチング素子Q1はオン状態を維持する。
【0056】
コンパレータCP3は、減衰器4jで1/√2倍に減衰させた三角波信号と差動増幅器出力とを比較しPWM信号を出力して、切替器4kを介してスイッチング素子Q2をオン・オフすることによって、電圧制御負帰還回路を構成しており、目標の電圧指示値(電圧指示信号S1)に対応した直流電圧Vdcとなるように、PWM信号を補正している。
【0057】
このように昇圧動作時には、減衰器4jにより1/√2倍に減衰した三角波信号によって、コンパレータCP3の出力パルス幅は、コンパレータCP4の出力パルス幅と比べて1/√2倍になったものが得られる。その結果、直流電源部1の昇圧動作・昇降圧動作の切替直後の入力電力の変化はなく、動作切替直後の直流電圧Vdcの振動が無くなり、滑らかな昇圧・昇降圧動作の切替を行うことができる。
【0058】
【発明の効果】
請求項1の発明は、交流電源の電圧を直流電圧に変換するダイオードブリッジと、スイッチング素子を有し、前記スイッチング素子をオン・オフすることで前記ダイオードブリッジが出力する直流電圧を所望の電圧に変換する直流電源部と、前記直流電源部の出力を平滑するコンデンサと、前記コンデンサの電圧を高周波電圧に変換するインバータ部と、前記インバータ部が出力する高周波電圧を供給される放電灯と、前記直流電源部のスイッチング素子のオン・オフ動作を制御する制御回路と、前記コンデンサの電圧が所定の電圧以上の時、前記直流電源部の動作を昇圧チョッパ回路の動作に切替え、前記コンデンサの電圧が所定の電圧以下の時、前記直流電源部の動作を昇降圧チョッパ回路の動作に切替える切替手段とを備えるので、従来の昇降圧チョッパ回路に比べ、昇圧動作を行う部分での効率が改善されることで、直流電圧を調整して調光を行う際の電圧変換の効率を改善することができ、特に交流電源の電源電圧が低い場合(例えば100V)に効率が改善される範囲が広くなるという効果がある。
【0059】
請求項2の発明は、請求項1の発明において、前記切替手段は、前記交流電源の電圧が所定の電圧以上の時、前記直流電源部の動作を常に昇降圧チョッパ回路の動作に切替えておくので、交流電源の電源電圧が高い場合(例えば242V)の場合にも、直流電源部が出力する直流電圧による調光が可能となるため、使用可能な電源電圧の範囲を広くすることができるという効果がある。
【0060】
請求項3の発明は、請求項1または2の発明において、前記交流電源の電圧を略100Vとし、前記切替手段は、前記直流電源部の動作を、前記コンデンサの電圧が略200V以上の時、昇圧チョッパ回路の動作に切替え、前記コンデンサの電圧が略200V以下の時、昇降圧チョッパ回路の動作に切替えるので、交流電源の電源電圧が100Vの時に、直流電圧を調整して調光を行う際の電圧変換の効率をさらに改善することができるという効果がある。
【0061】
請求項4の発明は、請求項1または2の発明において、前記切替手段が前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替える時の前記コンデンサの電圧は、交流電源の出力電流の全高調波歪み率が所定の値以下になるように設定したので、装置の入力電流歪を改善することができるという効果がある。
【0062】
請求項5の発明は、請求項1乃至4いずれかの発明において、前記切替え手段は、前記制御回路が前記直流電源部のスイッチング素子のオン・オフのタイミングを制御することによって、前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替えることで成るので、直流電源部のスイッチング素子を切替手段に兼用できて、制御回路を簡単に構成することができるという効果がある。
【0063】
請求項6の発明は、請求項1乃至5いずれかの発明において、前記直流電源部は2つ以上のスイッチング素子を具備し、前記2つ以上のスイッチング素子はグランドレベルが共通であるので、スイッチング素子を駆動する制御回路を容易に構成することができるという効果がある。
【0064】
請求項7の発明は、請求項5または6の発明において、前記直流電源部は2つ以上のスイッチング素子を具備し、前記制御回路は1つのスイッチング素子のオン・オフのタイミングを制御することによって、前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替えるので、切替手段は1つのスイッチング素子を制御すればよく、切替手段を容易に構成することができるという効果がある。
【0065】
請求項8の発明は、請求項7の発明において、前記直流電源部は2つのスイッチング素子を具備し、前記制御回路は、前記コンデンサの電圧と基準電圧とを比較するコンパレータと、前記スイッチング素子をオン・オフさせる駆動信号が互いに異なる2つの駆動回路と、前記コンパレータの比較結果に応じて一方のスイッチング素子の駆動回路を前記2つの駆動回路のうちいずれかに切替えるスイッチとを具備し、他方のスイッチング素子は前記2つの駆動回路のうちいずれかの駆動回路により常にオン・オフされるので、直流電源部の動作を切替える時のコンデンサの電圧を、コンパレータに入力した基準電圧によって任意に設定することができるという効果がある。
【0066】
請求項9の発明は、請求項1乃至8いずれかの発明において、前記切替え手段は、前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替える時、昇圧チョッパ回路と昇降圧チョッパ回路との各動作期間の間に、昇圧チョッパ回路と昇降圧チョッパ回路との各動作を交互に行う期間を設けたので、直流電源部の動作の切替時における急激な入力電力の変化を低減して、直流電源部が出力する直流電圧を安定させて、放電灯への影響を無くすことができるという効果がある。
【0067】
請求項10の発明は、請求項5乃至8いずれかの発明において、前記放電灯に一定の電力を供給する場合、前記制御回路は、前記直流電源部の動作を昇圧チョッパ回路の動作とする時のスイッチング素子のオン時間と、前記直流電源部の動作を昇降圧チョッパ回路の動作とする時のスイッチング素子のオン時間との比を一定とするので、請求項9と同様の効果を奏する。
【0068】
請求項11の発明は、請求項10の発明において、前記直流電源部の動作を昇圧チョッパ回路の動作とする時のスイッチング素子のオン時間は、前記直流電源部の動作を昇降圧チョッパ回路の動作とする時のスイッチング素子のオン時間の1/√2倍であるので、直流電源部の動作の切替時における急激な入力電力の変化を無くして、直流電源部が出力する直流電圧を安定させて、放電灯への影響を無くすことができるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施形態1を示すブロック構成図である。
【図2】本発明の実施形態1を示す回路構成図である。
【図3】(a)〜(c)本発明の実施形態1の動作を説明する波形図である。
【図4】本発明の実施形態1の制御回路を示す回路構成図である。
【図5】本発明の実施形態2を示す回路構成図である。
【図6】(a)〜(c)本発明の実施形態2の動作を説明する波形図である。
【図7】本発明の実施形態3を示す回路構成図である。
【図8】(a)〜(c)本発明の実施形態3の動作を説明する波形図である。
【図9】本発明の実施形態3を示す別の回路構成図である。
【図10】本発明の実施形態4を示す回路構成図である。
【図11】本発明の実施形態4のPWM回路を示す回路構成図である。
【図12】本発明の実施形態4のPWM回路の動作を説明する波形図である。
【図13】本発明の実施形態4の動作を説明する波形図である。
【図14】(a),(b)従来の放電灯点灯装置が出力する直流電圧波形図である。
【図15】(a),(b)本発明の実施形態4が出力する直流電圧波形図である。
(c)本発明の実施形態4の切替信号の波形図である。
【図16】本発明の実施形態5を示す回路構成図である。
【図17】(a)本発明の実施形態5の昇圧動作時の出力エネルギーを表す図である。
(b)本発明の実施形態5の昇降圧動作時の出力エネルギーを表す図である。
【図18】従来例1を示す回路構成図である。
【図19】従来例2を示す回路構成図である。
【図20】従来例3を示す回路構成図である。
【図21】従来例4を示す回路構成図である。
【符号の説明】
1 直流電源部
2 インバータ部
3 調光器
4 制御回路
10 昇圧チョッパ回路
11 昇降圧チョッパ回路
12 切替手段
DB ダイオードブリッジ
C1 コンデンサ

Claims (11)

  1. 交流電源の電圧を直流電圧に変換するダイオードブリッジと、スイッチング素子を有し、前記スイッチング素子をオン・オフすることで前記ダイオードブリッジが出力する直流電圧を所望の電圧に変換する直流電源部と、前記直流電源部の出力を平滑するコンデンサと、前記コンデンサの電圧を高周波電圧に変換するインバータ部と、前記インバータ部が出力する高周波電圧を供給される放電灯と、前記直流電源部のスイッチング素子のオン・オフ動作を制御する制御回路と、前記コンデンサの電圧が所定の電圧以上の時、前記直流電源部の動作を昇圧チョッパ回路の動作に切替え、前記コンデンサの電圧が所定の電圧以下の時、前記直流電源部の動作を昇降圧チョッパ回路の動作に切替える切替手段とを備えることを特徴とする放電灯点灯装置。
  2. 前記切替手段は、前記交流電源の電圧が所定の電圧以上の時、前記直流電源部の動作を常に昇降圧チョッパ回路の動作に切替えておくことを特徴とする請求項1記載の放電灯点灯装置。
  3. 前記交流電源の電圧を略100Vとし、前記切替手段は、前記直流電源部の動作を、前記コンデンサの電圧が略200V以上の時、昇圧チョッパ回路の動作に切替え、前記コンデンサの電圧が略200V以下の時、昇降圧チョッパ回路の動作に切替えることを特徴とする請求項1または2記載の放電灯点灯装置。
  4. 前記切替手段が前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替える時の前記コンデンサの電圧は、交流電源の出力電流の全高調波歪み率が所定の値以下になるように設定したことを特徴とする請求項1または2記載の放電灯点灯装置。
  5. 前記切替え手段は、前記制御回路が前記直流電源部のスイッチング素子のオン・オフのタイミングを制御することによって、前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替えることで成ることを特徴とする請求項1乃至4いずれか記載の放電灯点灯装置。
  6. 前記直流電源部は2つ以上のスイッチング素子を具備し、前記2つ以上のスイッチング素子はグランドレベルが共通であることを特徴とする請求項1乃至5いずれか記載の放電灯点灯装置。
  7. 前記直流電源部は2つ以上のスイッチング素子を具備し、前記制御回路は1つのスイッチング素子のオン・オフのタイミングを制御することによって、前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替えることを特徴とする請求項5または6記載の放電灯点灯装置。
  8. 前記直流電源部は2つのスイッチング素子を具備し、前記制御回路は、前記コンデンサの電圧と基準電圧とを比較するコンパレータと、前記スイッチング素子をオン・オフさせる駆動信号が互いに異なる2つの駆動回路と、前記コンパレータの比較結果に応じて一方のスイッチング素子の駆動回路を前記2つの駆動回路のうちいずれかに切替えるスイッチとを具備し、他方のスイッチング素子は前記2つの駆動回路のうちいずれかの駆動回路により常にオン・オフされることを特徴とする請求項7記載の放電灯点灯装置。
  9. 前記切替え手段は、前記直流電源部の動作を昇圧チョッパ回路または昇降圧チョッパ回路の動作に切替える時、昇圧チョッパ回路と昇降圧チョッパ回路との各動作期間の間に、昇圧チョッパ回路と昇降圧チョッパ回路との各動作を交互に行う期間を設けたことを特徴とする請求項1乃至8いずれか記載の放電灯点灯装置。
  10. 前記放電灯に一定の電力を供給する場合、前記制御回路は、前記直流電源部の動作を昇圧チョッパ回路の動作とする時のスイッチング素子のオン時間と、前記直流電源部の動作を昇降圧チョッパ回路の動作とする時のスイッチング素子のオン時間との比を一定とすることを特徴とする請求項5乃至8いずれか記載の放電灯点灯装置。
  11. 前記直流電源部の動作を昇圧チョッパ回路の動作とする時のスイッチング素子のオン時間は、前記直流電源部の動作を昇降圧チョッパ回路の動作とする時のスイッチング素子のオン時間の1/√2倍であることを特徴とする請求項10記載の放電灯点灯装置。
JP2001291745A 2001-09-25 2001-09-25 放電灯点灯装置 Expired - Fee Related JP4595272B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291745A JP4595272B2 (ja) 2001-09-25 2001-09-25 放電灯点灯装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291745A JP4595272B2 (ja) 2001-09-25 2001-09-25 放電灯点灯装置

Publications (2)

Publication Number Publication Date
JP2003100489A JP2003100489A (ja) 2003-04-04
JP4595272B2 true JP4595272B2 (ja) 2010-12-08

Family

ID=19113838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291745A Expired - Fee Related JP4595272B2 (ja) 2001-09-25 2001-09-25 放電灯点灯装置

Country Status (1)

Country Link
JP (1) JP4595272B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301288B2 (en) 2004-04-08 2007-11-27 International Rectifier Corporation LED buck regulator control IC
JP4282673B2 (ja) * 2005-02-09 2009-06-24 パナソニック株式会社 スイッチング電源装置
JP5397532B2 (ja) * 2010-02-17 2014-01-22 トヨタ自動車株式会社 電源装置
CN106533192B (zh) * 2016-11-25 2023-04-18 广东百事泰医疗器械股份有限公司 一种正弦波智能降压转换装置
JP2021016268A (ja) * 2019-07-12 2021-02-12 株式会社ダイヘン 電圧変換回路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111987A (ja) * 1992-09-24 1994-04-22 Toto Ltd 放電灯点灯装置
JPH07123737A (ja) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd インバータ装置
JPH07211476A (ja) * 1994-01-17 1995-08-11 Hitachi Ltd 蛍光ランプ用点灯回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111987A (ja) * 1992-09-24 1994-04-22 Toto Ltd 放電灯点灯装置
JPH07123737A (ja) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd インバータ装置
JPH07211476A (ja) * 1994-01-17 1995-08-11 Hitachi Ltd 蛍光ランプ用点灯回路

Also Published As

Publication number Publication date
JP2003100489A (ja) 2003-04-04

Similar Documents

Publication Publication Date Title
US7528554B2 (en) Electronic ballast having a boost converter with an improved range of output power
US5434477A (en) Circuit for powering a fluorescent lamp having a transistor common to both inverter and the boost converter and method for operating such a circuit
CN101513132A (zh) 用于驱动放电灯的灯驱动器电路和方法
US8400074B2 (en) Electronic ballast with feedback current control for preheating of lamp filaments
US20090129134A1 (en) Controlled class-e dc ac converter
US6271633B1 (en) High power factor electronic ballast with fully differential circuit topology
CN101141842A (zh) 电子镇流器
EP1433365A1 (en) Electronic ballast with lamp run-up current regulation
US7541744B2 (en) Electronic ballast for a high-pressure discharge lamp having a current-measuring device
JP4595272B2 (ja) 放電灯点灯装置
US8324813B1 (en) Electronic ballast with frequency independent filament voltage control
US8502475B2 (en) Discharge lamp ballast with feedback current control during an electrode heating operation
JP2008022668A (ja) ハーフブリッジ回路を用いる電力供給装置
JP2004527896A (ja) 高効率高力率電子安定器
KR102070445B1 (ko) 플리커를 저감하기 위한 led 디밍 제어장치 및 방법
KR100283312B1 (ko) 형광등 자동 점멸장치
CA2614004A1 (en) Device and method for operating a high-pressure discharge lamp
KR102070444B1 (ko) 플리커를 저감하기 위한 led 조도 제어장치
JP3530060B2 (ja) 放電灯点灯装置
JP2018064380A (ja) ハーフブリッジ回路を用いた電源装置
JPH09251896A (ja) 放電灯点灯装置及び照明装置
JP2868224B2 (ja) 負荷制御装置
JP3806995B2 (ja) インバータ装置
JP2005142120A (ja) 放電灯点灯装置及び照明器具
JP3823533B2 (ja) 放電灯点灯装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees