JP4594615B2 - Insulated wire and insulated coil - Google Patents

Insulated wire and insulated coil Download PDF

Info

Publication number
JP4594615B2
JP4594615B2 JP2003408227A JP2003408227A JP4594615B2 JP 4594615 B2 JP4594615 B2 JP 4594615B2 JP 2003408227 A JP2003408227 A JP 2003408227A JP 2003408227 A JP2003408227 A JP 2003408227A JP 4594615 B2 JP4594615 B2 JP 4594615B2
Authority
JP
Japan
Prior art keywords
polyimide
insulated wire
insulated
siloxane bond
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003408227A
Other languages
Japanese (ja)
Other versions
JP2005174561A (en
Inventor
慎太郎 中島
敏之 五島
モー ソー ウィン
政徳 藤井
芳次 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PI R&D Co Ltd
Mitsubishi Cable Industries Ltd
Original Assignee
PI R&D Co Ltd
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PI R&D Co Ltd, Mitsubishi Cable Industries Ltd filed Critical PI R&D Co Ltd
Priority to JP2003408227A priority Critical patent/JP4594615B2/en
Publication of JP2005174561A publication Critical patent/JP2005174561A/en
Application granted granted Critical
Publication of JP4594615B2 publication Critical patent/JP4594615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulating Of Coils (AREA)
  • Insulated Conductors (AREA)

Description

本発明は絶縁電線及び絶縁コイルに関し、特に、優れた耐熱性を有するとともに、絶縁層の剥がれや割れが生じにくい(可撓性に優れる)、信頼性の高い絶縁電線及び絶縁コイルに関する。   The present invention relates to an insulated wire and an insulated coil, and more particularly, to an insulated wire and an insulated coil that have excellent heat resistance and are highly resistant to peeling or cracking of an insulating layer (excellent flexibility).

従来から、絶縁電線の製造方法として、導体線の外周に絶縁性樹脂のワニス(電着液)を電着、焼付けした絶縁被膜を設けることが知られている。例えば、特許文献1は、断面が平角状の導体線の外周に、特定濃度のエポキシ変性アクリル樹脂が分散した水分散ワニスを電着、焼付けして絶縁被膜を形成した平角状絶縁電線を開示している。この絶縁電線は、横断面形状が平角状の導体線(以下、「平角導体線」ともいう。)の外周を覆う絶縁被膜が導体線の平坦部を覆う部分よりもコーナー部を覆う部分の厚みが大きくなるように形成されており、それによって電線の耐電圧特性を向上させている。しかし、かかる絶縁電線は、十分な耐熱性は有していない。一方、耐熱性を有する被覆材として、ポリイミドが挙げられるが、被覆させる手段としては、専らディッピングによるものが殆どであった。ディッピングでは、導体線の断面形状が平角状のものでは、コーナー部(角部)に十分な被膜厚みを得ることができないという問題があった。具体的には、平坦部の0.2倍程度の厚みしか得られない。また、ディッピングで得られる膜厚は、上記の点から薄くするには限界がある。そこで、本発明者等は平角導体線の外周に耐熱性に優れたポリイミドワニス(特許文献2、3)を電着、焼付けして、高耐熱性の絶縁電線を得ることを試みた。しかしながら、これらのポリイミドワニスを導体線に電着、焼付けして得られる絶縁電線は高耐熱性を有するが、絶縁電線に曲げ加工を施した場合、また、絶縁電線をエッジワイズコイル巻きして絶縁コイルを形成した場合に、絶縁層である電着被膜が割れて導体線から剥がれる等の問題を生じた。つまり、公知のポリイミドの電着被膜を使用した絶縁電線は、可撓性が不十分であるという問題があることが分かった。
特開平7−320573号公報 特開平9−104839号公報 特開平9−124978号公報
Conventionally, as a method of manufacturing an insulated wire, it is known to provide an insulating coating obtained by electrodeposition and baking an insulating resin varnish (electrodeposition liquid) on the outer periphery of a conductor wire. For example, Patent Document 1 discloses a rectangular insulated wire in which an insulating coating is formed by electrodeposition and baking a water-dispersed varnish in which an epoxy-modified acrylic resin having a specific concentration is dispersed on the outer periphery of a conductor wire having a rectangular cross section. ing. In this insulated wire, the thickness of the portion where the insulating coating covering the outer periphery of the conductor wire having a flat cross-sectional shape (hereinafter also referred to as “flat conductor wire”) covers the corner portion rather than the portion covering the flat portion of the conductor wire. Is formed so that the withstand voltage characteristic of the electric wire is improved. However, such insulated wires do not have sufficient heat resistance. On the other hand, polyimide is exemplified as a coating material having heat resistance, but most of the means for coating is by dipping. In dipping, when the cross-sectional shape of the conductor wire is flat, there is a problem that a sufficient film thickness cannot be obtained at the corner (corner). Specifically, only a thickness about 0.2 times the flat portion can be obtained. Moreover, the film thickness obtained by dipping has a limit in making it thin from said point. Therefore, the present inventors tried to obtain a highly heat-resistant insulated wire by electrodeposition and baking a polyimide varnish (Patent Documents 2 and 3) having excellent heat resistance on the outer periphery of the flat conductor wire. However, the insulated wires obtained by electrodepositing and baking these polyimide varnishes on the conductor wires have high heat resistance. However, when the insulated wires are bent, they are insulated by winding the insulated wires with edgewise coils. When the coil was formed, there was a problem that the electrodeposition film as an insulating layer was broken and peeled off from the conductor wire. That is, it has been found that an insulated wire using a known polyimide electrodeposition coating has a problem of insufficient flexibility.
JP-A-7-320573 JP-A-9-104839 JP-A-9-124978

上記事情に鑑み、本発明の課題は、高耐熱性を有し、かつ、絶縁電線に曲げ加工を施した場合の絶縁層の剥がれや割れが生じにくい(即ち、可撓性に優れた)、絶縁電線及び該絶縁電線を用いた絶縁コイルを提供することである。
さらに、本発明の他の課題は、高耐熱性を有し、かつ、絶縁電線に曲げ加工を施した場合の絶縁層の剥がれや割れが生じにくく(即ち、可撓性に優れ)、しかも、耐電圧性も良好な絶縁電線及び該絶縁電線を用いた絶縁コイルを提供することである。
In view of the above circumstances, the problem of the present invention is that it has high heat resistance and is less likely to cause peeling or cracking of the insulating layer when the insulated wire is bent (that is, excellent in flexibility). An insulated wire and an insulated coil using the insulated wire are provided.
Furthermore, the other subject of this invention has high heat resistance, and when an insulated electric wire is bent, it is hard to produce peeling and a crack of an insulating layer (that is, it is excellent in flexibility), An object of the present invention is to provide an insulated wire having good voltage resistance and an insulated coil using the insulated wire.

上記課題を解決するために、本発明は以下の構成を採用したものである。
すなわち、本発明は、
(1)ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミドであって、重量平均分子量(Mw)が45,000〜90,000、数平均分子量(Mn)が20,000〜40,000であるブロック共重合ポリイミドの電着被膜を導体線外周の絶縁層として設けたことを特徴とする絶縁電線、
(2)ブロック共重合ポリイミドの固有対数粘度(25℃)が20wt%のNMP(N−メチル−2−ピロリドン)溶液時において、5,000〜50,000mPa・sである、上記(1)記載の絶縁電線
(3)ポリイミドの主鎖中のシロキサン結合が、シロキサン結合含有ジアミン化合物由来のシロキサン結合であり、当該シロキサン結合含有ジアミン化合物が、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1,1,3,3−テトラメチルジシロキサン、及び下記の一般式(I)で表される化合物よりなる群から選ばれる1種又は2種以上である、上記(1)又は(2)記載の絶縁電線、
In order to solve the above problems, the present invention employs the following configuration.
That is, the present invention
(1) A block copolymer polyimide containing a siloxane bond in the main chain of the polyimide and having an anionic group in the molecule, having a weight average molecular weight (Mw) of 45,000 to 90,000, a number average molecular weight ( An insulated wire comprising an electrodeposited coating of block copolymerized polyimide having a Mn) of 20,000 to 40,000 as an insulating layer around the conductor wire;
(2) The above (1) description, wherein the intrinsic logarithmic viscosity (25 ° C. ) of the block copolymerized polyimide is 5,000 to 50,000 mPa · s in a 20 wt% NMP (N-methyl-2-pyrrolidone) solution. Insulated wire ,
(3) The siloxane bond in the main chain of the polyimide is a siloxane bond derived from a siloxane bond-containing diamine compound, and the siloxane bond-containing diamine compound is bis (4-aminophenoxy) dimethylsilane, 1,3-bis (4 -Aminophenoxy) -1,1,3,3-tetramethyldisiloxane, and one or more selected from the group consisting of compounds represented by the following general formula (I), (1) Or the insulated wire according to (2) ,

Figure 0004594615
Figure 0004594615

(式中、Rは、それぞれ独立して、アルキル基、シクロアルキル基、フェニル基、又は1個乃至3個のアルキル基若しくはアルコキシル基で置換されたフェニル基を表し、l及びmはそれぞれ独立して1〜4の整数を表し、nは1〜20の整数を表す。)
)ブロック共重合ポリイミドのジアミン成分がシロキサン結合含有ジアミン化合物及び芳香族ジアミンからなり、テトラカルボン酸ジ無水物成分が芳香族テトラカルボン酸ジ無水物からなる、上記(1)〜(3)のいずれかに記載の絶縁電線、
)芳香族ジアミンが、芳香族ジアミノカルボン酸及び/又は芳香族ジアミノスルホン酸を少なくとも含有する、上記()記載の絶縁電線、
)芳香族テトラカルボン酸ジ無水物が、3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物、ビス−(3,4−ジカルボキシフェニル)エーテルジ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジ無水物、及び3,3’,4,4’−ビフェニルスルホンテトラカルボン酸ジ無水物から選ばれる少なくとも1種からなる、上記()又は()記載の絶縁電線、
)導体線の横断面形状が平角状である、上記(1)〜()のいずれかに記載の絶縁電線、
)導体線が銅または銅合金からなる、上記(1)〜()のいずれかに記載の絶縁電線、
)導体線外周の平坦面に形成された絶縁被膜の厚みが1.5〜30μmである、上記()に記載の絶縁電線
(10)ブロック共重合ポリイミドの電着被膜が、該ブロック共重合ポリイミドを有機極性溶媒に溶解した溶液に水とポリイミドに対する貧溶媒とポリイミドを中和塩とするための中和剤とをさらに添加した溶液分散型ワニスを導体線外周に電着、焼付けして形成したものである、上記(1)〜(9)のいずれかに記載の絶縁電線、及び
11)上記(1)〜(10)のいずれかに記載の絶縁電線をエッジワイズコイル巻きまたは整列巻きした絶縁コイル、関する。
(In the formula, each R independently represents an alkyl group, a cycloalkyl group, a phenyl group, or a phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, and l and m are each independently And n represents an integer of 1 to 20.)
( 4 ) The above (1) to (3) , wherein the diamine component of the block copolymerized polyimide comprises a siloxane bond-containing diamine compound and an aromatic diamine, and the tetracarboxylic dianhydride component comprises an aromatic tetracarboxylic dianhydride. Insulated wires according to any of the
( 5 ) The insulated wire according to ( 4 ) above, wherein the aromatic diamine contains at least an aromatic diaminocarboxylic acid and / or an aromatic diaminosulfonic acid,
( 6 ) The aromatic tetracarboxylic dianhydride is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis- (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′. , 4,4′-benzophenone tetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride, the above ( 4 ) or ( 5 ) Insulated wire as described,
( 7 ) The insulated wire according to any one of (1) to ( 6 ), wherein the conductor wire has a flat cross-sectional shape.
( 8 ) The insulated wire according to any one of (1) to ( 7 ), wherein the conductor wire is made of copper or a copper alloy.
(9) The thickness of the insulating film formed on the flat surface of the conductor wires periphery is 1.5~30Myuemu, insulated wire described above SL (7),
(10) An electrodeposition film of block copolymerized polyimide is further added to a solution obtained by dissolving the block copolymerized polyimide in an organic polar solvent, a water-poor solvent for polyimide and a neutralizing agent for neutralizing polyimide. The insulated wire according to any one of the above (1) to (9), and ( 11 ) the above (1) to ( 10 ) , which is formed by electrodepositing and baking the solution dispersion type varnish on the outer periphery of the conductor wire. insulating coils of insulated wire were wound edgewise coil winding or alignment of any one of) relates to.

本発明によれば、良好な耐熱性を有するとともに、電線の曲げ加工時に絶縁層の剥がれや割れが生じ難い、可撓性に優れた絶縁電線を得ることができる。特に、導体線の横断面形状が平角状の絶縁電線においては、導体線外周のコーナー部にも電着被膜が安定に形成されて、導体線外周の平坦部を覆う被膜の厚みを薄くできることから、絶縁電線の優れた耐熱性、耐電圧特性及び加工耐性を達成できるとともに、小型化(軽量化)を図ることができる。また、かかる横断面形状が平角状の絶縁電線をエッジワイズコイル巻きして得られる本発明の絶縁コイルにおいては、巻加工した絶縁電線における絶縁層(絶縁被膜)が導体線へ高い密着力で密着していることから、高信頼性及び高耐久性の絶縁コイルとなる。   ADVANTAGE OF THE INVENTION According to this invention, while having favorable heat resistance, it is hard to produce a peeling and a crack of an insulating layer at the time of the bending process of an electric wire, and can obtain the insulated wire excellent in flexibility. In particular, in an insulated wire having a flat cross-sectional shape of the conductor wire, an electrodeposition coating is stably formed at the corner portion of the outer periphery of the conductor wire, and the thickness of the coating covering the flat portion of the outer periphery of the conductor wire can be reduced. In addition to achieving excellent heat resistance, withstand voltage characteristics and processing resistance of the insulated wire, it is possible to achieve downsizing (weight reduction). In addition, in the insulated coil of the present invention obtained by winding an edge-wise coil of an insulated wire having a flat cross-sectional shape, the insulating layer (insulating film) of the wound insulated wire is adhered to the conductor wire with high adhesion. Therefore, the insulated coil has high reliability and high durability.

以下、本発明を詳細に説明する。
本発明の絶縁電線は、ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミド(以下、「シロキサン結合含有ブロック共重合ポリイミド」とも略称する。)の電着被膜を導体線外周の絶縁層として設けてなるものである。
Hereinafter, the present invention will be described in detail.
The insulated wire of the present invention is a block copolymer polyimide containing a siloxane bond in the main chain of polyimide and having an anionic group in the molecule (hereinafter also abbreviated as “siloxane copolymer containing block copolymer polyimide”). The coating film is provided as an insulating layer around the conductor wire.

ここで、「ブロック共重合ポリイミド」とは、テトラカルボン酸ジ無水物とジアミンとを加熱してイミドオリゴマーを生成させ(第1段階反応)、次いでこれに前記のテトラカルボン酸ジ無水物と同一若しくは異なるテトラカルボン酸ジ無水物又は/及び前記のジアミンとは異なるジアミンを加えて反応(第2段階反応)することによって、アミック酸間で起る交換反応に起因するランダム共重合化を防止して得られる、共重合ポリイミドのことを意味し、「電着被膜」とは、「ワニス(電着液)を電着して得られる塗膜に加熱処理(焼付け処理)を施して得られる絶縁被膜」のことである。   Here, “block copolymerized polyimide” means that a tetracarboxylic dianhydride and a diamine are heated to form an imide oligomer (first stage reaction), and then the same as the tetracarboxylic dianhydride described above. Alternatively, by reacting with different tetracarboxylic dianhydrides or / and diamines different from the above diamines (second stage reaction), random copolymerization caused by exchange reaction occurring between amic acids can be prevented. The term “electrodeposition coating” means “insulation obtained by subjecting a coating obtained by electrodeposition of a varnish (electrodeposition solution) to heat treatment (baking treatment)” It is the “coating”.

本発明の絶縁電線では、シロキサン結合含有ブロック共重合ポリイミドの電着被膜による絶縁層が導体線に対して高密着力で密着し、絶縁電線に曲げ加工を施した際に、導体線から絶縁層が剥がれたり、絶縁層に割れを生じたりすることがなく、優れた加工耐性を有するものとなる。また、特に、ポリイミドの電着被膜はピンホールを生じることなく導体線の外周を良好に被覆し、横断面形状が平角状の導体線にあっては、その外周の平端部だけでなくコーナー部も良好に被覆されるので、優れた耐熱性、加工耐性及び耐電圧性を有する平角状の絶縁電線を得ることができる。   In the insulated wire of the present invention, the insulating layer formed by the electrodeposition coating of the siloxane bond-containing block copolymerized polyimide adheres to the conductor wire with high adhesion, and when the insulated wire is bent, the insulating layer is formed from the conductor wire. It does not peel off or cracks in the insulating layer, and has excellent processing resistance. In particular, the electrodeposited film of polyimide satisfactorily covers the outer periphery of the conductor wire without causing pinholes, and in the case of a conductor wire having a flat cross-sectional shape, not only the flat end portion of the outer periphery but also the corner portion. Can be obtained, so that a rectangular insulated wire having excellent heat resistance, processing resistance and voltage resistance can be obtained.

本発明において、ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミドにおいて、主鎖中のシロキサン結合はテトラカルボン酸ジ無水物成分由来のシロキサン結合であっても、ジアミン成分由来のシロキサン結合であってもよいが、好ましくはジアミン成分由来のシロキサン結合であり、通常、ジアミン成分の少なくとも一部に、分子骨格中にシロキサン結合(−Si−O−)を有するジアミン化合物(以下、「シロキサン結合含有ジアミン化合物」とも呼ぶことがある。)を用いて得られたブロック共重合ポリイミドが使用される。   In the present invention, in a block copolymer polyimide containing a siloxane bond in the main chain of polyimide and having an anionic group in the molecule, the siloxane bond in the main chain is a siloxane bond derived from a tetracarboxylic dianhydride component. Or a siloxane bond derived from a diamine component, preferably a siloxane bond derived from a diamine component, and usually a siloxane bond (—Si—O—) in the molecular skeleton at least part of the diamine component. A block copolymerized polyimide obtained by using a diamine compound having benzene (hereinafter sometimes referred to as “siloxane bond-containing diamine compound”) is used.

本発明において、シロキサン結合含有ジアミン化合物としては、テトラカルボン酸ジ無水物との間でイミド化し得るものであれば特に制限なく使用できるが、例えば、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1,1,3,3−テトラメチルジシロキサン、及び一般式(I):   In the present invention, the siloxane bond-containing diamine compound can be used without particular limitation as long as it can be imidized with tetracarboxylic dianhydride. For example, bis (4-aminophenoxy) dimethylsilane, 1, 3-bis (4-aminophenoxy) -1,1,3,3-tetramethyldisiloxane and general formula (I):

Figure 0004594615
Figure 0004594615

(式中、Rは、それぞれ独立して、アルキル基、シクロアルキル基、フェニル基、又は1個ないし3個のアルキル基若しくはアルコキシル基で置換されたフェニル基を表し、l及びmはそれぞれ独立して1〜4の整数を表し、nは1〜20の整数を表す。)で表される化合物が挙げられる。当該一般式(I)で表される化合物は、式中nが1又は2の単一化合物、及びポリシロキサンジアミンを含む。 (In the formula, each R independently represents an alkyl group, a cycloalkyl group, a phenyl group, or a phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, and l and m are each independently And an integer of 1 to 4 and n represents an integer of 1 to 20.). The compound represented by the general formula (I) includes a single compound in which n is 1 or 2, and polysiloxane diamine.

式(I)中のRにおいて、アルキル基、シクロアルキル基の炭素数は1〜6が好ましく、1〜2がより好ましい。また、1個ないし3個のアルキル基若しくはアルコキシル基で置換されたフェニル基における、1個ないし3個のアルキル基若しくはアルコキシル基は、それが2又は3個の場合、互いに同一であっても異なってもよい。また、アルキル基、アルコキシル基は、それぞれ、炭素数が1〜6が好ましく、1〜2がより好ましい。   In R in Formula (I), the alkyl group and the cycloalkyl group preferably have 1 to 6 carbon atoms, and more preferably 1 to 2 carbon atoms. In the phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, 1 to 3 alkyl groups or alkoxyl groups may be the same or different when they are 2 or 3 May be. Moreover, as for an alkyl group and an alkoxyl group, C1-C6 is respectively preferable, and 1-2 are more preferable.

一般式(I)で表される化合物は、式中のRがアルキル基(特にメチル基)又はフェニル基であるのが好ましく、また、式中l及びmが2〜3、nが5〜15にあるポリシロキサンジアミンが好ましい。   In the compound represented by the general formula (I), R in the formula is preferably an alkyl group (particularly a methyl group) or a phenyl group, and in the formula, l and m are 2 to 3, and n is 5 to 15 The polysiloxane diamine in

ポリシロキサンジアミンの好ましい例としては、ビス(γ−アミノプロピル)ポリジメチルシロキサン(式(I)中、l及びmが3、R、Rがメチル基のもの。)、ビス(γ−アミノプロピル)ポリジフェニルシロキサン(式(I)中、l及びmが3、R、Rがフェニル基のもの。)が挙げられる。 Preferred examples of the polysiloxane diamine include bis (γ-aminopropyl) polydimethylsiloxane (in the formula (I), 1 and m are 3, R 1 and R 2 are methyl groups), bis (γ-amino). Propyl) polydiphenylsiloxane (in the formula (I), 1 and m are 3, and R 1 and R 2 are phenyl groups).

本発明において、シロキサン結合含有ジアミン化合物はいずれか一種の化合物を単独で使用しても、2種以上を併用して使用してもよく、特に好ましいものは、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1、1、3、3−テトラメチルジシロキサン、及び前記の一般式(I)で表される化合物よりなる群から選ばれる化合物である。   In the present invention, the siloxane bond-containing diamine compound may be used alone or in combination of two or more. A particularly preferred one is bis (4-aminophenoxy) dimethylsilane. 1,3-bis (4-aminophenoxy) -1,1,3,3-tetramethyldisiloxane and a compound selected from the group consisting of the compounds represented by formula (I).

なお、上記シロキサン結合含有ジアミン化合物は、市販品を使用してもよく、信越化学工業社、東レ・ダウコーニング社、チッソ社から販売されているものをそのまま使用できる。具体的には、信越化学工業社製のKF−8010(ビス(γ−アミノプロピル)ポリジメチルシロキサン:アミノ基当量約450)、X−22−161A(ビス(γ−アミノプロピル)ポリジメチルシロキサン:アミノ基当量約840)等が挙げられる。   In addition, the said siloxane bond containing diamine compound may use a commercial item, and can use what is sold from Shin-Etsu Chemical Co., Toray Dow Corning, Chisso, as it is. Specifically, KF-8010 (bis (γ-aminopropyl) polydimethylsiloxane: amino group equivalent of about 450), X-22-161A (bis (γ-aminopropyl) polydimethylsiloxane: Shin-Etsu Chemical Co., Ltd .: Amino group equivalent of about 840) and the like.

本発明において、シロキサン結合含有ブロック共重合ポリイミドは、例えば、シロキサン結合含有ジアミン化合物を少なくとも含むジアミン化合物と、テトラカルボン酸ジ無水物とを略等量用い、ラクトン及び塩基よりなる触媒の存在下、有機極性溶媒中、加熱、重縮合することで得られる。すなわち、第1段階でテトラカルボン酸ジ無水物とジアミン化合物を加熱してイミドオリゴマーを生成させ、次いで、ジアミン化合物又は/及びテトラカルボン酸ジ無水物をさらに加えて第2段階の反応を行い、ブロック共重合化する。このとき、第1段階又は/及び第2段階で用いるジアミン化合物としてシロキサン結合含有ジアミン化合物をブロックセグメントとして組み込む。なお、反応においては、反応系に無水フタル酸等の酸無水物やアニリン等のアミン化合物を末端停止剤として加えてもよい。上記有機極性溶媒としては、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、γ−ブチロラクトン(γBL)、アニソール、シクロヘキサノン、テトラメチル尿素、スルホラン等が挙げられ、好ましくはポリイミドとの相溶性の点からNMPである。   In the present invention, the siloxane bond-containing block copolymerized polyimide uses, for example, a substantially equal amount of a diamine compound containing at least a siloxane bond-containing diamine compound and tetracarboxylic dianhydride in the presence of a catalyst consisting of a lactone and a base, It can be obtained by heating and polycondensation in an organic polar solvent. That is, the tetracarboxylic dianhydride and the diamine compound are heated in the first stage to form an imide oligomer, and then the diamine compound or / and the tetracarboxylic dianhydride are further added to perform the second stage reaction, Block copolymerize. At this time, a siloxane bond-containing diamine compound is incorporated as a block segment as the diamine compound used in the first stage and / or the second stage. In the reaction, an acid anhydride such as phthalic anhydride or an amine compound such as aniline may be added to the reaction system as a terminal terminator. Examples of the organic polar solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), and γ-butyrolactone (γBL). , Anisole, cyclohexanone, tetramethylurea, sulfolane and the like, preferably NMP from the viewpoint of compatibility with polyimide.

本発明において、シロキサン結合含有ジアミン化合物の使用量は、該シロキサン結合含有ジアミン化合物をジアミン成分とするイミド単位が、ポリイミドを構成する全繰り返し単位(イミド単位)中の5〜90モル%となる量が好ましく、10〜70モル%となる量がより好ましく、15〜50モル%となる量がとりわけ好ましい。シロキサン結合含有ジアミン化合物に基づくイミド単位の量が10モル%未満の場合、そのようなポリイミドの電着被膜は、導体線への密着性及び伸び率が劣悪となって、十分な可撓性が得られにくく、剥がれや割れを生じ易くなるため、好ましくない。また、シロキサン結合含有ジアミン化合物に基づくイミド単位の量が90モル%を超えると、耐熱性が低下する傾向となり、好ましくない。   In this invention, the usage-amount of a siloxane bond containing diamine compound is the quantity from which the imide unit which uses this siloxane bond containing diamine compound as a diamine component becomes 5-90 mol% in all the repeating units (imide unit) which comprise a polyimide. Is preferable, the amount of 10 to 70 mol% is more preferable, and the amount of 15 to 50 mol% is particularly preferable. When the amount of the imide unit based on the siloxane bond-containing diamine compound is less than 10 mol%, such a polyimide electrodeposition film has poor adhesion and elongation to the conductor wire, and sufficient flexibility. This is not preferable because it is difficult to obtain and easily peels off or cracks. Moreover, when the amount of the imide unit based on the siloxane bond-containing diamine compound exceeds 90 mol%, the heat resistance tends to decrease, which is not preferable.

本発明の絶縁電線は、導体線の外周に、上記のシロキサン結合含有ブロック共重合ポリイミドのワニス(即ち、シロキサン結合含有ブロック共重合ポリイミドを樹脂分とするワニス(電着液))を、電着、焼付けして製造される。ポリイミドのワニス(電着液)の調製及び電着被膜の形成については、例えば、特開昭49−52252、特開昭52−32943、特開昭63−111199号公報等に記載された、ポリイミドの前駆体であるポリアミド酸を溶解した有機極性溶媒に、貧溶媒及び水を添加したワニス(電着液)を用いて電着した後、電着膜を加熱してイミド膜とする方法が知られているが、該方法の場合、ポリアミド酸の電着用ワニス(電着液)は、ポリアミド酸が容易に分解するために保存安定性が悪く、これが電着後の塗膜物性に悪影響を及ぼす場合がある。従って、本発明では、次の方法を用いる。   The insulated wire of the present invention is obtained by electrodepositing the siloxane bond-containing block copolymerized polyimide varnish (that is, a varnish containing a siloxane bond-containing block copolymerized polyimide as a resin component) on the outer periphery of a conductor wire. Manufactured by baking. Regarding the preparation of a polyimide varnish (electrodeposition liquid) and the formation of an electrodeposition film, for example, polyimides described in JP-A-49-52252, JP-A-52-32943, JP-A-63-11111, etc. A method is known in which an electrode is deposited using a varnish (electrodeposition liquid) in which a poor solvent and water are added to an organic polar solvent in which the polyamic acid, which is a precursor of A, is dissolved, and then the electrodeposition film is heated to form an imide film. However, in the case of this method, the polyamic acid electrodeposition varnish (electrodeposition liquid) has poor storage stability because the polyamic acid is easily decomposed, which adversely affects the physical properties of the coating film after electrodeposition. There is a case. Therefore, in the present invention, the following method is used.

すなわち、アニオン基(カルボン酸基、スルホン酸基等)を導入したシロキサン結合含有ブロック共重合ポリイミドを有機極性溶媒に溶解した溶液を得、該溶液に水とポリイミドに対する貧溶媒とポリイミドを中和塩とするための中和剤(塩基性化合物)とをさらに添加した溶液分散型ワニスを調製し、かかる溶液分散型ワニスを被着体に電着、焼付けして被膜を形成する。この方法によれば、前記の従来方法のような欠点がなく、横断面形状が平角状の導体線に対しても、ピンホールを発生することなく、導体線外周の平坦部だけでなくコーナー部をも良好に被覆した電着被膜を形成することができる。   That is, a solution in which a siloxane bond-containing block copolymerized polyimide having an anion group (carboxylic acid group, sulfonic acid group, etc.) introduced therein is dissolved in an organic polar solvent is obtained, and water and a poor solvent for polyimide and a polyimide are neutralized to the solution. A solution-dispersed varnish to which a neutralizing agent (basic compound) is further added is prepared, and the solution-dispersed varnish is electrodeposited and baked on the adherend to form a film. According to this method, there are no disadvantages as in the conventional method described above, and even for a conductor wire having a flat cross-sectional shape, not only a flat portion on the outer periphery of the conductor wire but also a corner portion without generating pinholes. It is possible to form an electrodeposition film that is well coated.

本発明において、シロキサン結合含有ブロック共重合ポリイミドは、電線の絶縁被覆(絶縁層)用であることから、十分な耐熱性を有する必要があり、通常、ジアミン成分にはシロキサン結合含有ジアミン化合物とともに芳香族ジアミンが使用される。芳香族ジアミンとしては、例えば、m−フェニレンジアミン、p−フェニレンジアミン、2,4−ジアミノトルエン、4,4’−ジアミノ−3,3’−ジメチル−1,1’−ビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフィド、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、3,5−ジアミノ安息香酸、3,3’−ジカルボキシ−4,4’−ジアミノフェニルメタン、2,4−ジアミノフェニル酢酸、2,5−ジアミノテレフタル酸、3,5−ジアミノパラトルイル酸、3,5−ジアミノ−2−ナフタレンカルボン酸、1,4−ジアミノ−2−ナフタレンカルボン酸、2,6−ジアミノピリジン、2,6−ジアミノ−4−メチルピリジン、4,4’−(9−フリオレニリデン)ジアニリン、4,4’−ジアミノジフェニルスルホン、α,α−ビス(4−アミノフェニル)−1,3−ジイソプロピルベンゼン等が挙げられる。これらの化合物は、何れか一種を単独で使用しても、2種以上を混合して使用してもよい。   In the present invention, since the siloxane bond-containing block copolymerized polyimide is used for insulating coatings (insulating layers) of electric wires, it is necessary to have sufficient heat resistance. Usually, the diamine component is aromatic together with the siloxane bond-containing diamine compound. Group diamines are used. Examples of the aromatic diamine include m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 4,4′-diamino-3,3′-dimethyl-1,1′-biphenyl, and 4,4 ′. -Diamino-3,3'-dihydroxy-1,1'-biphenyl, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-amino) Phenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 2,2′-bis [4- (4-aminophenyl) Noxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) ) Phenyl] sulfone, 3,5-diaminobenzoic acid, 3,3′-dicarboxy-4,4′-diaminophenylmethane, 2,4-diaminophenylacetic acid, 2,5-diaminoterephthalic acid, 3,5- Diaminoparatoluic acid, 3,5-diamino-2-naphthalenecarboxylic acid, 1,4-diamino-2-naphthalenecarboxylic acid, 2,6-diaminopyridine, 2,6-diamino-4-methylpyridine, 4,4 '-(9-Fluorenylidene) dianiline, 4,4'-diaminodiphenylsulfone, α, α-bis (4-aminophenyl) -1, - diisopropylbenzene, and the like. These compounds may be used alone or in combination of two or more.

なお、前記したように、本発明において、シロキサン結合含有ブロック共重合ポリイミドは、ワニス中で中和塩とするために、カルボン酸基、スルホン酸基等のアニオン性基を導入したポリイミドとすることが必要であり、そのため、シロキサン結合含有ジアミン化合物以外のジアミン化合物の少なくとも一部には、カルボン酸基、スルホン酸基等のアニオン性基を有するものが使用される。従って、上記例示の芳香族ジアミンのうち、カルボン酸基含有芳香族ジアミン(芳香族ジアミノカルボン酸)又は/及びスルホン酸基含有芳香族ジアミン(芳香族ジアミノスルホン酸)が少なくとも使用される。カルボン酸基含有芳香族ジアミン(芳香族ジアミノカルボン酸)は、上記のうち、3,5−ジアミノ安息香酸、3,3’−ジカルボキシ−4,4’−ジアミノフェニルメタン、2,4−ジアミノフェニル酢酸、2,5−ジアミノテレフタル酸、3,5−ジアミノパラトルイル酸、3,5−ジアミノ−2−ナフタレンカルボン酸、1,4−ジアミノ−2−ナフタレンカルボン酸であり、スルホン酸基含有芳香族ジアミン(芳香族ジアミノスルホン酸)は2,5−ジアミノベンゼンスルホン酸、4,4’−ジアミノ−2,2’−スチルベンジスルホン、o−トリジンジスルホン酸である。   In addition, as described above, in the present invention, the siloxane bond-containing block copolymerized polyimide is a polyimide into which an anionic group such as a carboxylic acid group or a sulfonic acid group is introduced in order to obtain a neutralized salt in the varnish. Therefore, what has anionic groups, such as a carboxylic acid group and a sulfonic acid group, is used for at least one part of diamine compounds other than a siloxane bond containing diamine compound. Therefore, among the aromatic diamines exemplified above, at least a carboxylic acid group-containing aromatic diamine (aromatic diaminocarboxylic acid) and / or a sulfonic acid group-containing aromatic diamine (aromatic diaminosulfonic acid) is used. Among the above, carboxylic acid group-containing aromatic diamine (aromatic diaminocarboxylic acid) is 3,5-diaminobenzoic acid, 3,3′-dicarboxy-4,4′-diaminophenylmethane, 2,4-diamino. Phenylacetic acid, 2,5-diaminoterephthalic acid, 3,5-diaminoparatoluic acid, 3,5-diamino-2-naphthalene carboxylic acid, 1,4-diamino-2-naphthalene carboxylic acid, containing sulfonic acid group The aromatic diamine (aromatic diaminosulfonic acid) is 2,5-diaminobenzenesulfonic acid, 4,4′-diamino-2,2′-stilbene disulfone, o-tolidine disulfonic acid.

本発明において、シロキサン結合含有ブロック共重合ポリイミド中のカルボン酸基含有芳香族ジアミン(芳香族ジアミノカルボン酸)又は/及びスルホン酸基含有芳香族ジアミン(芳香族ジアミノスルホン酸)の含有量は、ジアミン成分全体に対して10モル%以上、さらには15モル%以上である。   In the present invention, the content of the carboxylic acid group-containing aromatic diamine (aromatic diaminocarboxylic acid) or / and the sulfonic acid group-containing aromatic diamine (aromatic diaminosulfonic acid) in the siloxane bond-containing block copolymerized polyimide is diamine. It is 10 mol% or more with respect to the whole component, Furthermore, it is 15 mol% or more.

本発明において、シロキサン結合含有ブロック共重合ポリイミド中のテトラカルボン酸ジ無水物成分としては、ポリイミドの耐熱性、長期安定性、電着性能、金属との密着性等の観点から、通常、芳香族テトラカルボン酸ジ無水物が使用される。該芳香族テトラカルボン酸ジ無水物の具体例としては、例えば、ピロメリット酸ジ無水物、3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物、ビス−(3,4−ジカルボキシフェニル)エーテルジ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジ無水物、2,2−ビス−(3,4−ジカルボキシフェニル)ヘキサフルオロプロパンジ無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸ジ無水物、ビシクロ[2,2,2,]オクト−7−エン−2,3,5,6−テトラカルボン酸ジ無水物等が挙げられる。これらは何れか一種の化合物を単独で使用しても2種以上を混合して使用してもよい。これらの中でも、耐熱性、導体線との密着性、シロキサン結合含有ジアミン化合物との相溶性、ポリイミドの重合速度等の観点から、3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物、ビス−(3,4−ジカルボキシフェニル)エーテルジ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジ無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸ジ無水物が特に好ましく使用される。   In the present invention, the tetracarboxylic dianhydride component in the siloxane bond-containing block copolymerized polyimide is usually aromatic from the viewpoint of the heat resistance, long-term stability, electrodeposition performance, adhesion to metal, etc. of the polyimide. Tetracarboxylic dianhydride is used. Specific examples of the aromatic tetracarboxylic dianhydride include, for example, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis- (3,4-di Carboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2-bis- (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 3,3 Examples include ', 4,4'-biphenylsulfonetetracarboxylic dianhydride, bicyclo [2,2,2,] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, and the like. These may be used alone or in combination of two or more. Among these, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride from the viewpoints of heat resistance, adhesion to conductor wires, compatibility with siloxane bond-containing diamine compounds, polymerization rate of polyimide, etc. Bis- (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic acid dianhydride Anhydrides are particularly preferably used.

本発明において、シロキサン結合含有ブロック共重合ポリイミドは、固有対数粘度(25℃)が20wt%のNMP(N−メチル−2−ピロリドン)溶液時において、5,000〜50,000mPa・sであるのが好ましく、5,000〜15,000mPa・sがより好ましい。固有対数粘度が50,000mPa・sを超える場合、作製される電着被膜の塗膜均一性が損なわれる傾向にある。   In the present invention, the siloxane bond-containing block copolymerized polyimide is 5,000 to 50,000 mPa · s when the intrinsic logarithmic viscosity (25 ° C.) is 20 wt% in an NMP (N-methyl-2-pyrrolidone) solution. Is preferable, and 5,000 to 15,000 mPa · s is more preferable. When the intrinsic log viscosity exceeds 50,000 mPa · s, the coating uniformity of the produced electrodeposition film tends to be impaired.

また、シロキサン結合含有ブロック共重合ポリイミドの重量平均分子量(Mw)は、ポリスチレン換算で、20,000〜150,000が好ましく、45,000〜90,000が特に好ましい。重量平均分子量が20,000未満の場合、電着被膜の耐熱性が劣り、また、被膜表面が荒れて、絶縁電線の審美性が低下し、商品価値が低下してしまうおそれがある。また、重量平均分子量が150,000より大きくなると高粘度化や溶液中でゲル化が進行して、電着性能の支障を来たすおそれがある。また、シロキサン結合含有ブロック共重合ポリイミドにおける数平均分子量(Mn)は、ポリスチレン換算で1,000〜70,000が好ましく、より好ましくは20,000〜40,000である。数平均分子量が1,000未満の場合、電着効率が悪く、所望膜厚の電着被膜を得るまでに時間がかかり、絶縁電線の生産性が低下する傾向となり、また、絶縁電線の耐熱性、耐電圧性についても必要な要件を満たすことができなくなるおそれがある。数平均分子量が70,000を超える場合、固有粘度が高くなり、泡切れ性が低下(塗膜中に取り込まれた気泡が取れなくなる)し、作業性が低下する傾向にある。   The weight average molecular weight (Mw) of the siloxane bond-containing block copolymerized polyimide is preferably 20,000 to 150,000, and particularly preferably 45,000 to 90,000 in terms of polystyrene. When the weight average molecular weight is less than 20,000, the heat resistance of the electrodeposition coating is inferior, the coating surface is roughened, the aesthetics of the insulated wire is lowered, and the commercial value may be lowered. On the other hand, if the weight average molecular weight is larger than 150,000, viscosity increase or gelation may progress in the solution, which may impair electrodeposition performance. Further, the number average molecular weight (Mn) in the siloxane bond-containing block copolymerized polyimide is preferably 1,000 to 70,000, more preferably 20,000 to 40,000 in terms of polystyrene. When the number average molecular weight is less than 1,000, the electrodeposition efficiency is poor, it takes time to obtain an electrodeposition film with a desired film thickness, and the productivity of the insulated wire tends to decrease, and the heat resistance of the insulated wire Moreover, there is a possibility that the necessary requirements for the voltage resistance cannot be satisfied. When the number average molecular weight exceeds 70,000, the intrinsic viscosity becomes high, the foaming property is lowered (the bubbles taken into the coating film cannot be removed), and the workability tends to be lowered.

ここでいう、重量平均分子量及び数平均分子量はGPCによるポリスチレン換算値であり、GPC装置として東ソー社製HLC−8220、カラムにTSK−gel Super HM−M(Column No.−D0038)を使用して、測定した値である。   Here, the weight average molecular weight and the number average molecular weight are polystyrene-converted values by GPC, using HLC-8220 manufactured by Tosoh Corporation as a GPC apparatus, and TSK-gel Super HM-M (Column No.-D0038) as a column. The measured value.

本発明において、シロキサン結合含有ブロック共重合ポリイミドを含むワニス(電着液)の調製は、具体的には、次のようにして行う。
先ず、NMP、DMF、DMAc、γ−ブチロラクトン、DMSO、アニソール、シクロヘキサノン、テトラメチル尿素及びスルホラン等から選ばれる少なくとも一種の有機極性溶媒中、酸触媒の存在下、ジアミン化合物とテトラカルボン酸ジ無水物とを160〜180℃で加熱し、生成する水を共沸によって留去しながら反応させて、オリゴマーを生成させる(第1段階反応)。次に、テトラカルボン酸ジ無水物又は/及びジアミン化合物をさらに加えて160〜180℃に加熱して、第2段階反応(加熱)を行う。このとき、第1段階又は/及び第2段階で用いるジアミン化合物として、シロキサン結合含有ジアミン化合物を使用することで、主鎖中にシロキサン結合を含有する、ブロック共重合ポリイミドが得られる。こうして得られる反応溶液の固形分濃度は10〜40重量%が好ましく、より好ましくは20〜30重量%である。次に、極性溶媒中に溶解したブロック共重合ポリイミドを塩基性化合物で中和し、さらに水及びポリイミドの貧溶媒を加えて電着液とする。塩基性化合物には、N,N−ジメチルエタノールアミン、トリエチルアミン、トリエタノールアミン、N−ジメチルベンジルアミン、N−メチルモルホリン等が使用される。塩基性化合物の使用量はポリイミドが水溶液中に安定に溶解または分散する程度であり、通常、理論中和量の30〜200モル%程度である。また、貧溶媒は、フェニル基、フルフリル基またはナフチル基を有するアルコールが好適であり、具体的には、ベンジルアルコール、2−フェニルエチルアルコール、4−メチルベンジルアルコール、4−メトキシベンジルアルコール、4−クロルベンジルアルコール、4−ニトロベンジルアルコール、フェノキシ−2−エタノール、シンナミルアルコール、フルフリルアルコールおよびナフチルカルビノール等が挙げられる。なお、ワニス(電着液)中の極性溶媒の量はポリイミド1重量部当たり1.5〜10重量部が好ましく、より好ましくは2.4〜6重量部であり、水の量はポリイミド1重量部当たり0.1〜5重量部が好ましく、より好ましくは1〜3重量部である。
In the present invention, the preparation of the varnish (electrodeposition liquid) containing the siloxane bond-containing block copolymerized polyimide is specifically performed as follows.
First, a diamine compound and a tetracarboxylic dianhydride in the presence of an acid catalyst in at least one organic polar solvent selected from NMP, DMF, DMAc, γ-butyrolactone, DMSO, anisole, cyclohexanone, tetramethylurea, sulfolane and the like Are reacted at 160-180 ° C. while distilling off the water produced by azeotropic distillation to produce oligomers (first stage reaction). Next, a tetracarboxylic dianhydride or / and a diamine compound are further added and heated to 160 to 180 ° C. to perform a second stage reaction (heating). At this time, the block copolymerization polyimide which contains a siloxane bond in a principal chain is obtained by using a siloxane bond containing diamine compound as a diamine compound used at a 1st step or / and a 2nd step. The solid content concentration of the reaction solution thus obtained is preferably 10 to 40% by weight, more preferably 20 to 30% by weight. Next, the block copolymerized polyimide dissolved in the polar solvent is neutralized with a basic compound, and water and a poor solvent for polyimide are added to obtain an electrodeposition solution. As the basic compound, N, N-dimethylethanolamine, triethylamine, triethanolamine, N-dimethylbenzylamine, N-methylmorpholine and the like are used. The amount of the basic compound used is such that the polyimide is stably dissolved or dispersed in the aqueous solution, and is usually about 30 to 200 mol% of the theoretical neutralization amount. The poor solvent is preferably an alcohol having a phenyl group, a furfuryl group or a naphthyl group. Specifically, benzyl alcohol, 2-phenylethyl alcohol, 4-methylbenzyl alcohol, 4-methoxybenzyl alcohol, 4-methoxybenzyl alcohol, Examples include chlorobenzyl alcohol, 4-nitrobenzyl alcohol, phenoxy-2-ethanol, cinnamyl alcohol, furfuryl alcohol, and naphthyl carbinol. The amount of the polar solvent in the varnish (electrodeposition liquid) is preferably 1.5 to 10 parts by weight, more preferably 2.4 to 6 parts by weight, and more preferably 2.4 to 6 parts by weight of polyimide. 0.1 to 5 parts by weight per part is preferable, and more preferably 1 to 3 parts by weight.

本発明において、導体線の外周にポリイミドワニスの電着被膜を形成する際の電着条件としては、定電流法または定電圧法であればよい。定電流法の場合、例えば、電流値は50mA固定で、直流電圧の上限は50〜250V、好ましくは100〜200Vである。電着電圧の上限が50Vよりも低いと、電着によって塗膜を形成させることが困難となる傾向にあり、250Vよりも高いと、被塗布物からの酸素の発生、および銅イオンの溶出が激しくなり、均一な塗膜形成が困難となる傾向がある。定電圧法の場合、電圧値を50〜250V、好ましくは100〜200Vで固定すればよく、50Vよりも低い電圧値に固定すると、電着によって塗膜を形成させることが困難となる傾向にあり、250Vよりも高い電圧値に固定すると、被塗布物からの酸素の発生及び銅イオンの溶出が激しくなり、均一な塗膜形成が困難となる傾向がある。電着時間は、定電流法、定電圧法のいずれにおいても、通常15〜120秒、好ましくは30〜90秒程度であり、電着の際のワニス(電着液)の温度は、定電流法、定電圧法のいずれにおいても、好ましくは20〜70℃、より好ましくは25〜30℃である。   In the present invention, the electrodeposition conditions for forming an electrodeposition film of polyimide varnish on the outer periphery of the conductor wire may be a constant current method or a constant voltage method. In the case of the constant current method, for example, the current value is fixed at 50 mA, and the upper limit of the DC voltage is 50 to 250 V, preferably 100 to 200 V. When the upper limit of the electrodeposition voltage is lower than 50V, it tends to be difficult to form a coating film by electrodeposition, and when it is higher than 250V, generation of oxygen from the coating object and elution of copper ions occur. It tends to be intense and difficult to form a uniform coating film. In the case of the constant voltage method, the voltage value may be fixed at 50 to 250 V, preferably 100 to 200 V, and if it is fixed at a voltage value lower than 50 V, it tends to be difficult to form a coating film by electrodeposition. When the voltage value is higher than 250 V, the generation of oxygen from the coated object and the elution of copper ions become violent, and it tends to be difficult to form a uniform coating film. The electrodeposition time is usually 15 to 120 seconds, preferably about 30 to 90 seconds, in either the constant current method or the constant voltage method. The temperature of the varnish (electrodeposition liquid) during electrodeposition is constant current. In any of the method and the constant voltage method, the temperature is preferably 20 to 70 ° C, more preferably 25 to 30 ° C.

電着によって形成した塗膜の焼付けは、70〜110℃で10〜60分の第1段階の焼付け処理を行った後、160〜180℃で10〜60分の第2段階の焼付け処理を行い、さらに200〜220℃で30〜60分の第3段階の焼付け処理を行うのが好ましい。このような3段階の焼付け処理を行うことで、導体線に対して高い密着力で密着した、十分に硬化したポリイミドの被膜を形成することができる。   Baking of the coating film formed by electrodeposition is performed by performing the first stage baking process at 70 to 110 ° C. for 10 to 60 minutes, and then performing the second stage baking process at 160 to 180 ° C. for 10 to 60 minutes. Further, it is preferable to perform a third stage baking process at 200 to 220 ° C. for 30 to 60 minutes. By performing such a three-stage baking process, it is possible to form a sufficiently cured polyimide film that adheres to the conductor wire with high adhesion.

本発明において、ワニスの電着、焼付け作業は、たとえば図2に示すような装置で行うのが好ましい。すなわち、ロール10に巻き線された導体線11を引き出し、交流電源の陽極側に接続した状態で、ワニス(電着液)13で満たされた電着バス12中を通過させる。電着バス12中には、陰極管14が配置され、導体線11の通過時に前記した電圧の印加により、陽極である導体線11と陰極である陰極管14間の電位差により、ポリイミドが導体線11上に略均一に析出する。電着バス12の後、導体線11を乾燥装置15内を通過させる。該乾燥装置15内で、導体線11上に析出したポリイミド中の水が蒸発する。乾燥装置15を通過した後、焼付け炉16を通過させポリイミドからなる被膜(絶縁層)が形成し、絶縁導線をロール20で巻き取っていく。かかる装置によって、ワニスの電着、焼付け作業を行うことで、目的の絶縁電線を連続的に製造することができる。   In the present invention, the varnish electrodeposition and baking operations are preferably performed, for example, with an apparatus as shown in FIG. That is, the conductor wire 11 wound around the roll 10 is pulled out and passed through the electrodeposition bus 12 filled with the varnish (electrodeposition liquid) 13 while being connected to the anode side of the AC power source. A cathode tube 14 is disposed in the electrodeposition bus 12, and polyimide is applied to the conductor wire due to the potential difference between the conductor wire 11 serving as the anode and the cathode tube 14 serving as the cathode due to the application of the voltage when passing through the conductor wire 11. 11 is deposited almost uniformly. After the electrodeposition bus 12, the conductor wire 11 is passed through the drying device 15. In the drying device 15, the water in the polyimide deposited on the conductor wire 11 evaporates. After passing through the drying device 15, a coating film (insulating layer) made of polyimide is formed by passing through a baking furnace 16, and the insulated conductor is wound up by a roll 20. By performing the electrodeposition and baking operations of the varnish with such an apparatus, the target insulated wire can be continuously manufactured.

本発明において、絶縁電線の導体線の材質は、特に限定されないが、導電性の点から、銅、銅合金、銅クラッドアルミニウム、アルミニウム、亜鉛めっき鉄、銀等が挙げられ、なかでも、銅が好ましい。また、絶縁電線の形状も特に限定されず、横断面形状が円形である円形絶縁電線(すなわち、横断面形状が円形の導体線の外周に電着被膜による絶縁層を設けた絶縁電線)であっても、横断面形状が平角状である平角絶縁電線(すなわち、横断面形状が平角状の導体線の外周に電着被膜による絶縁層を設けた絶縁電線)であってもよく、絶縁電線の具体的用途に応じて円形絶縁電線とするか平角絶縁電線とするかを選択する。なお、本発明でいう「平角(状)」とは、矩形若しくは正方形(状)を意味する。本発明の絶縁電線において、円形絶縁電線は、例えば、汎用モーター、電磁コイル等の用途に使用される。また、平角絶縁電線は、例えば、各種電気機器の駆動モーター部、軽量、高出力を活かした携帯電話等の携帯精密機器のコイル等の用途に使用される。   In the present invention, the material of the conductor wire of the insulated wire is not particularly limited, but from the viewpoint of conductivity, copper, copper alloy, copper clad aluminum, aluminum, galvanized iron, silver and the like are mentioned. preferable. Also, the shape of the insulated wire is not particularly limited, and is a circular insulated wire having a circular cross-sectional shape (that is, an insulated wire in which an insulating layer made of an electrodeposition coating is provided on the outer periphery of a conductor wire having a circular cross-sectional shape). However, it may be a flat insulated wire having a flat cross-sectional shape (that is, an insulated wire having an insulating layer formed by an electrodeposition coating on the outer periphery of a conductor wire having a flat cross-sectional shape). Depending on the specific application, a round insulated wire or a flat insulated wire is selected. The “flat angle (shape)” in the present invention means a rectangle or a square (shape). In the insulated wire of the present invention, the circular insulated wire is used for applications such as general-purpose motors and electromagnetic coils. In addition, the flat insulated wires are used for applications such as drive motors of various electric devices, coils of portable precision devices such as mobile phones utilizing light weight and high output.

本発明の絶縁電線は、導体線の外周を覆う絶縁層がポリイミドの主鎖中にシロキサン結合を有するポリイミドの電着被膜で形成されているため、絶縁層が導体線の外周をピンホールを生じることなく一様に被覆し、しかも、可撓性に富む絶縁層が高い密着力で導体線に密着した絶縁電線となる。特に横断面形状が円形の導体線だけでなく、横断面形状が平角状の導体線に対しても、絶縁層が高い密着力でその外周を一様に被覆したものとなり、導体線外周の平坦部だけでなくコーナー部をもポリイミドの被膜が良好に被覆した平角絶縁電線が得られる。よって、本発明の絶縁電線は、良好な耐熱性および耐電圧性を有するとともに、絶縁電線に曲げ加工を施した時の絶縁層(電着被膜)の剥がれや割れが起こりにくい、優れた加工耐性を有するものとなる。   In the insulated wire of the present invention, since the insulating layer covering the outer periphery of the conductor wire is formed of a polyimide electrodeposition film having a siloxane bond in the main chain of the polyimide, the insulating layer generates a pinhole in the outer periphery of the conductor wire Insulated electric wires that are uniformly coated and have a flexible insulating layer that is in close contact with the conductor wire with high adhesion. In particular, not only for conductor wires having a circular cross-sectional shape but also for conductor wires having a flat cross-sectional shape, the insulating layer uniformly coats the outer periphery with high adhesion, and the outer periphery of the conductor wire is flat. As a result, a rectangular insulated wire in which not only the corners but also the corners are well coated with the polyimide coating can be obtained. Therefore, the insulated wire of the present invention has good heat resistance and voltage resistance, and is excellent in processing resistance, in which the insulating layer (electrodeposition coating) is not easily peeled off or cracked when the insulated wire is bent. It will have.

本発明の絶縁電線において、円形絶縁電線の場合の導体線の外径(直径)は、好ましくは0.05〜20mm、より好ましくは0.1〜10mmである。また、ポリイミドワニスの電着被膜(絶縁層)の厚みは、好ましくは1.5〜30μm、より好ましくは5〜20μmである。絶縁層の厚みが1.5μm未満であると、充分なAC(交流)耐電圧の効果を得ることが困難となり、30μmを超えても顕著なAC耐電圧の効果の向上は見られず、さらに得られる絶縁電線のサイズが大型化してしまう。   In the insulated wire of the present invention, the outer diameter (diameter) of the conductor wire in the case of a circular insulated wire is preferably 0.05 to 20 mm, more preferably 0.1 to 10 mm. The thickness of the electrodeposited coating (insulating layer) of the polyimide varnish is preferably 1.5 to 30 μm, more preferably 5 to 20 μm. When the thickness of the insulating layer is less than 1.5 μm, it is difficult to obtain a sufficient AC (alternating current) withstand voltage effect, and even if the thickness exceeds 30 μm, no significant improvement in the AC withstand voltage effect is observed. The size of the insulated wire obtained will become large.

また、図1は本発明の平角絶縁電線の横断面(絶縁電線の長手方向と直交する方向の断面)を簡略化して示した図であり、本発明の平角絶縁電線1における平角状の導体線2の厚み(図1中のt1)は好ましくは0.005〜1.0mm、より好ましくは0.01〜0.50mmであり、幅(図1中のw1)は好ましくは0.1〜20mmである。また、ポリイミドワニスの電着被膜による絶縁層3の厚みは、導体線2外周の平坦部では、好ましくは1.5〜30μm、より好ましくは5〜20μmである。該厚みが1.5μm未満であると、充分なAC(交流)耐電圧の効果を得ることが困難となり、30μmを超えても顕著なAC耐電圧の効果の向上は見られなく、さらに得られる絶縁電線のサイズが大型化するだけである。一方、導体線2外周のコーナー部は、コーナー部でのAC耐電圧の低下を防ぐために(コーナー部は、電界集中が起りやすいので、耐電圧特性に影響する。)、少なくとも平坦部の厚みの0.8倍以上の厚みを有しているのが好ましく、特には0.9倍以上が好ましい。具体的なコーナー部の厚みは、耐電圧特性と絶縁電線(絶縁電線を使用したコイル)の小型化・軽量化の観点から、平坦部の厚みの0.8〜2倍、好ましくは0.9〜1.5倍、さらに好ましくは1.0倍〜1.2倍である。導体線外周のコーナー部での厚みが平坦部での厚みの0.8倍未満であると、コーナー部でのAC耐電圧が電界集中により大きく低下する。また、導体線外周のコーナー部での厚みが、平坦部での厚みの2倍を超えると小型化・軽量化が困難になる傾向にある。なお、本発明において、平角状導体線の外周を覆う絶縁層の厚みとは、図1に示すように、平角状導体線2の矩形状の横断面における長辺の中心点での絶縁層3の厚み(図1中のD1)をいい、平角状導体線の外周のコーナー部での絶縁層の厚みとは、平角状導体線2の矩形状の横断面における長辺と短辺の間の角部を覆う絶縁層3の厚み(図1中のD2)をいう。   FIG. 1 is a diagram showing a simplified cross section of a flat insulated wire of the present invention (cross section in a direction perpendicular to the longitudinal direction of the insulated wire), and a flat conductor wire in the flat insulated wire 1 of the present invention. 2 (t1 in FIG. 1) is preferably 0.005 to 1.0 mm, more preferably 0.01 to 0.50 mm, and the width (w1 in FIG. 1) is preferably 0.1 to 20 mm. It is. Moreover, the thickness of the insulating layer 3 by the electrodeposition coating of the polyimide varnish is preferably 1.5 to 30 μm, more preferably 5 to 20 μm at the flat portion on the outer periphery of the conductor wire 2. When the thickness is less than 1.5 μm, it is difficult to obtain a sufficient AC (alternating current) withstand voltage effect, and even if the thickness exceeds 30 μm, a significant improvement in the AC withstand voltage effect is not seen and further obtained. It only increases the size of the insulated wire. On the other hand, the corner portion on the outer periphery of the conductor wire 2 has a thickness of at least a flat portion in order to prevent a decrease in AC withstand voltage at the corner portion (the corner portion is liable to cause electric field concentration and thus has an influence on withstand voltage characteristics). The thickness is preferably 0.8 times or more, particularly 0.9 times or more. Specifically, the thickness of the corner portion is 0.8 to 2 times the thickness of the flat portion, preferably 0.9 from the viewpoint of withstand voltage characteristics and miniaturization and weight reduction of the insulated wire (coil using the insulated wire). It is -1.5 times, More preferably, it is 1.0 times -1.2 times. When the thickness at the corner portion on the outer periphery of the conductor wire is less than 0.8 times the thickness at the flat portion, the AC withstand voltage at the corner portion is greatly reduced due to electric field concentration. Further, when the thickness at the corner portion of the outer periphery of the conductor wire exceeds twice the thickness at the flat portion, it tends to be difficult to reduce the size and weight. In the present invention, the thickness of the insulating layer covering the outer periphery of the rectangular conductor wire means the insulating layer 3 at the center point of the long side in the rectangular cross section of the rectangular conductor wire 2 as shown in FIG. (D1 in FIG. 1), and the thickness of the insulating layer at the corner of the outer periphery of the flat conductor wire is the length between the long side and the short side in the rectangular cross section of the flat conductor wire 2 The thickness (D2 in FIG. 1) of the insulating layer 3 covering the corner portion is meant.

本発明の絶縁コイルは、前記した本発明の絶縁電線における平角絶縁電線をエッジワイズ巻き、整列巻き、アルファ(α)巻などの公知の方法で巻いた絶縁コイルである。かかる本発明の絶縁コイルにおいて、使用する平角絶縁電線のサイズは特に限定されず、絶縁コイルの用途に応じて、種々のサイズのものが使用される。また、本発明の絶縁コイルは、可撓性を有する電着被膜を絶縁層として有した絶縁電線から成っているので、絶縁コイルとする際の加工(特にエッジワイズ巻き)に対しても、絶縁層が剥がれたり、割れたりすることはない。   The insulated coil of the present invention is an insulated coil obtained by winding the flat insulated wire in the insulated wire of the present invention described above by a known method such as edgewise winding, aligned winding, and alpha (α) winding. In the insulated coil of the present invention, the size of the rectangular insulated wire to be used is not particularly limited, and various sizes are used according to the application of the insulated coil. In addition, since the insulating coil of the present invention is composed of an insulated wire having a flexible electrodeposition coating as an insulating layer, it is also insulated against processing (particularly edgewise winding) when forming an insulating coil. The layer will not peel off or crack.

本発明の絶縁コイルは、巻き線した平角絶縁電線が優れた耐熱性および耐電圧性を有するとともに、曲げ加工されても絶縁被覆(絶縁層)が導体線から剥がれにくいものであることから、耐熱性および耐電圧性が良好であるだけでなく、著しく耐久性が向上した絶縁コイルとなる。本発明の絶縁コイルの具体的用途としては、モーター用コイル、トランス用コイル、基板実装部品(SMD)用コイル、小型高性能モーター用コイル、小型電子機器用コイル等が挙げられる。中でも、小型化が要求される小型高性能モーター用コイル、小型電子機器用コイルとして好適である。コイルのピッチやコイル外径等は種々の対応する製品によって異なり、それに応じて適宜決定される。   The insulated coil of the present invention has excellent heat resistance and voltage resistance as a flat insulated wire wound, and the insulation coating (insulation layer) is not easily peeled off from the conductor wire even when bent. As a result, the insulation coil has not only good performance and voltage resistance but also significantly improved durability. Specific applications of the insulating coil of the present invention include a motor coil, a transformer coil, a substrate mounting component (SMD) coil, a small high performance motor coil, a small electronic device coil, and the like. Among them, it is suitable as a coil for a small high-performance motor and a coil for a small electronic device that are required to be downsized. The pitch of the coil, the outer diameter of the coil, and the like vary depending on various corresponding products and are appropriately determined accordingly.

本発明は線状導体の外周に特定のポリイミドワニスの電着被膜を設けた絶縁電線であるが、本発明で使用する特定のポリイミドワニス(すなわち、シロキサン結合含有ブロック共重合ポリイミドのワニス(電着液))は、板状(例えば、断面形状が平角状であり、平面形状が開放部を有するリング状)の導電板を絶縁被覆した絶縁板(絶縁コイル板)及びそれを積層した絶縁コイルの絶縁被覆にも適用できる。すなわち、板状(例えば、断面形状が平角状であり、平面形状が開放部を有するリング状の導電板)をシロキサン結合含有ブロック共重合ポリイミドのワニスの電着被膜で被覆することで、絶縁板(絶縁コイル板)及びそれを積層した絶縁コイルを達成できる。   The present invention is an insulated wire in which a specific polyimide varnish electrodeposition coating is provided on the outer periphery of a linear conductor. The specific polyimide varnish used in the present invention (that is, a siloxane bond-containing block copolymerized polyimide varnish (electrodeposition) (Liquid)) is an insulating plate (insulating coil plate) in which a plate-like (for example, a cross-sectional shape is a rectangular shape and a planar shape is a ring shape having an open portion) is coated with an insulating plate (insulating coil plate) and an insulating coil obtained by laminating the insulating plate. It can also be applied to insulation coating. That is, an insulating plate is obtained by covering a plate shape (for example, a ring-shaped conductive plate having a flat cross-sectional shape and an open portion in a planar shape) with a varnish electrodeposited coating of a block copolymerized polyimide containing siloxane bond. (Insulating coil plate) and an insulating coil in which it is laminated can be achieved.

以下、本発明を実施例により具体的に説明するが、本発明は下記の実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the following Example.

実施例1
シロキサン結合含有ブロック共重合ポリイミド溶液の作製
ガラス製のセパラブル三口フラスコを使用し、これに攪拌機、窒素導入管及び冷却管の下部にストップコックを備えた水分受容器を取付けた。窒素を流通させ、さらに攪拌しながら反応器をシリコーン油浴中に漬けて加熱し反応を行った。まず、フラスコに3,4,3’,4’−ビフェニルテトラカルボン酸二無水物58.84g(0.2モル)、ビス(γ−アミノプロピル)ポリジメチルシロキサン(信越化学工業社製のKF−8010)97.2g(0.1モル)、バレロラクロン4g(0.04モル)、ピリジン6.3g(0.08モル)、NMP(N−メチル−2−ピロリドン)500g及びトルエン80gを入れ、室温で30分間攪拌し、次いで、昇温し、180℃において1時間、200rpmで攪拌しながら反応を行った。反応後、トルエン−水留出分30mlを除いた。残留物を空冷して、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物64.45g(0.2モル)、3,5−ジアミノ安息香酸30.43g(0.2モル)、ビス−[4−(3−アミノフェノキシ)フェニル]スルホン43.25g(0.1モル)、NMP500g及びトルエン100gを添加し、室温で1時間攪拌(200rpm)し、次いで昇温して180℃で1時間、過熱攪拌した。トルエン−水留出分15mlを除き、以降は留出分を系外に除きながら、180℃で3時間、攪拌を行った。次いで、無水フタル酸1.1g及びNMP113gを添加し反応を1時間行い終了した。これにより20%ポリイミドワニスを得た。ブロック共重合ポリイミドの重量平均分子量及び数平均分子量はそれぞれ66,000及び34,000であった。
Example 1
Production of Block Copolymerization Polyimide Solution Containing Siloxane Bond A separable three-necked flask made of glass was used, and a water acceptor equipped with a stopcock was attached to the lower part of a stirrer, a nitrogen introducing tube and a cooling tube. Nitrogen was circulated, and the reactor was immersed in a silicone oil bath with further stirring and heated to carry out the reaction. First, 58.84 g (0.2 mol) of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and bis (γ-aminopropyl) polydimethylsiloxane (KF- manufactured by Shin-Etsu Chemical Co., Ltd.) were placed in a flask. 8010) 97.2 g (0.1 mol), valerolaclone 4 g (0.04 mol), pyridine 6.3 g (0.08 mol), NMP (N-methyl-2-pyrrolidone) 500 g and toluene 80 g were added at room temperature. For 30 minutes, and then the temperature was raised and the reaction was carried out at 180 ° C. for 1 hour with stirring at 200 rpm. After the reaction, 30 ml of toluene-water distillate was removed. The residue was air-cooled to give 64.45 g (0.2 mol) of 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 30.43 g (0.2 mol) of 3,5-diaminobenzoic acid. Bis- [4- (3-aminophenoxy) phenyl] sulfone 43.25 g (0.1 mol), NMP 500 g and toluene 100 g were added, stirred at room temperature for 1 hour (200 rpm), then heated to 180 ° C. And stirred for 1 hour. Stirring was performed at 180 ° C. for 3 hours while removing 15 ml of toluene-water distillate and thereafter removing the distillate from the system. Subsequently, 1.1 g of phthalic anhydride and 113 g of NMP were added and the reaction was carried out for 1 hour to complete the reaction. As a result, a 20% polyimide varnish was obtained. The weight average molecular weight and number average molecular weight of the block copolymerized polyimide were 66,000 and 34,000, respectively.

上記で得られた20%ポリイミド溶液100gにトリエチルアミン3g(中和率100モル%)を加え攪拌した後、NMP62.5gを加え、アセトフェノン55g、シクロヘキサノン56g及び攪拌しながら2−エトキシエタノール72g及びフェノキシエタノール20gを加え、水32gを滴下して、固形分濃度5.0%、pH8.7、電気伝導度9.8ms/mの電着液組成物(電着用ワニス)を調製した。   To 100 g of the 20% polyimide solution obtained above, 3 g of triethylamine (neutralization rate 100 mol%) was added and stirred, and then 62.5 g of NMP was added. Then, 32 g of water was added dropwise to prepare an electrodeposition liquid composition (electrodeposition varnish) having a solid content concentration of 5.0%, pH 8.7, and electrical conductivity of 9.8 ms / m.

次に、下記の電着条件で横断面が直径(φ)1.2cmの円形の銅線(全長30cm)の外周に上記の電着用組成物(ワニス)を電着した。
極間距離:3.0cm
電着電圧:定電流法(50mA)−電圧(Max160V)
電着時間:60秒
Next, the electrodeposition composition (varnish) was electrodeposited on the outer periphery of a circular copper wire (total length 30 cm) having a diameter (φ) of 1.2 cm in cross section under the following electrodeposition conditions.
Distance between electrodes: 3.0cm
Electrodeposition voltage: Constant current method (50 mA) -Voltage (Max 160 V)
Electrodeposition time: 60 seconds

次に、こうしてポリイミド組成物を電着した銅線を電着浴から取り出し、水洗後、90℃×30分間、さらに170℃×30分間、さらに220℃×30分間焼付けることで、シロキサン結合含有ブロック共重合ポリイミドによる絶縁層(平均厚み17μm)を有する円形絶縁銅線を得た。
なお、絶縁層の被覆厚みは、マイクロメーターにて全長30cm区間のうち5箇所を測定し、その算術平均値を平均厚さとした(1箇所につき、2方向から測定した)。なお、下記の比較例1〜4中の円形絶縁銅線の絶縁層の被覆厚み(平均厚み)も同様にして得た。
Next, the copper wire electrodeposited with the polyimide composition in this manner is taken out of the electrodeposition bath, washed with water, and then baked at 90 ° C. for 30 minutes, further at 170 ° C. for 30 minutes, and further at 220 ° C. for 30 minutes. A circular insulated copper wire having an insulating layer (average thickness: 17 μm) made of block copolymerized polyimide was obtained.
In addition, the coating thickness of the insulating layer was measured at five locations in a 30 cm length section with a micrometer, and the arithmetic average value was defined as the average thickness (measured from two directions per location). In addition, the coating thickness (average thickness) of the insulating layer of the circular insulated copper wire in the following Comparative Examples 1 to 4 was obtained in the same manner.

また、上記と同様の電着条件及び焼付け条件で、横断面が1.8mm×0.08mmの平角銅線(全長30cm)の外周に上記のポリイミド組成物を電着し、焼付けを行い、シロキサン結合含有ブロック共重合ポリイミドによる絶縁層を有する絶縁平角銅線を得た。絶縁層の平角銅線の平坦部を覆う部分の平均厚み(D1)は15μm、コーナー部を覆う部分の平均厚み(D2)は13μmであった。なお、ここでの平均厚み(D1)は平角絶縁銅線の全長30cm区間の5箇所の断面での銅線断面(矩形)の2つの長辺のそれぞれの中点での絶縁層の厚み(合計10箇所の厚み)の平均値であり、コーナー部を覆う部分の平均厚み(D2)は、上記5箇所の断面での銅線断面(矩形)の4つのコーナー部での絶縁層の厚み(合計20箇所の厚み)の平均値である。絶縁層の厚み測定は、マイクロスコープによる断面写真より、画像処理によって行った。   Further, under the same electrodeposition conditions and baking conditions as described above, the polyimide composition is electrodeposited on the outer periphery of a flat copper wire (total length 30 cm) having a cross section of 1.8 mm × 0.08 mm, and baked to obtain siloxane. An insulated rectangular copper wire having an insulating layer made of a bond-containing block copolymerized polyimide was obtained. The average thickness (D1) of the portion covering the flat portion of the flat copper wire of the insulating layer was 15 μm, and the average thickness (D2) of the portion covering the corner portion was 13 μm. The average thickness (D1) here is the thickness of the insulating layer at the midpoint of each of the two long sides of the cross section of the copper wire (rectangle) at the five cross sections of the 30 cm length of the flat insulated copper wire (total) The average thickness (D2) of the portion covering the corner portion is the thickness of the insulating layer at the four corner portions of the copper wire cross section (rectangle) at the five cross sections (total). The average value of 20 thicknesses). The thickness of the insulating layer was measured by image processing from a cross-sectional photograph using a microscope.

比較例1
アクリロニトリル5モル、アクリル酸1モル、グリシジルメタクリレート0.3モルをイオン交換水760g、ラウリル硫酸エステルソーダ7.5g、過硫酸ソーダ0.13gと共にフラスコに入れて室温、窒素気流下15〜30分間撹拌したのち、その混合物を50〜60℃の温度で3時間反応させて得た乳化重合液(エポキシ・アクリル系水分散ワニス)を用意した。かかる乳化重合液を電着用組成物として、実施例1と同様の条件で、実施例1で使用したものと同じ、横断面が円形の銅線と平角状の銅線にそれぞれ電着して焼付け、エポキシ変性アクリル樹脂による絶縁層(平均厚み17μm)を有する円形絶縁銅線と、エポキシ変性アクリル樹脂による絶縁層の平角銅線の平坦部を覆う部分の平均厚み(D1)が15μm、コーナー部を覆う部分の平均厚み(D2)が23μmの平角絶縁銅線を得た。
Comparative Example 1
Acrylonitrile (5 mol), acrylic acid (1 mol), and glycidyl methacrylate (0.3 mol) are placed in a flask together with ion-exchange water (760 g), lauryl sulfate ester soda (7.5 g) and sodium persulfate (0.13 g). After that, an emulsion polymerization liquid (epoxy / acrylic water dispersion varnish) obtained by reacting the mixture at a temperature of 50 to 60 ° C. for 3 hours was prepared. Using this emulsion polymerization solution as an electrodeposition composition, the same conditions as in Example 1 were used, and the same electrodeposited and baked on a copper wire having a circular cross section and a rectangular copper wire, respectively, as used in Example 1. The round insulation copper wire having an insulating layer (average thickness 17 μm) made of epoxy-modified acrylic resin and the average thickness (D1) of the flat portion of the flat copper wire of the insulating layer made of epoxy-modified acrylic resin is 15 μm and the corner portion is A flat rectangular insulated copper wire having an average thickness (D2) of the covering portion of 23 μm was obtained.

比較例2
撹拌機、チッ素導入管及び冷却管の下部にストップコックのついた水分受容器を取り付けたガラス製のセパラブル三つ口フラスコを使用し、窒素を流しながら、さらに撹拌しながら反応器をシリコーン油中につけて加熱して下記の反応を行った。すなわち、3,4,3’,4’−ベンゾフェノンテトラカルボン酸ジ無水物64.44g(0.2モル)、ビス−[4−(3−アミノフェノキシ)フェニル]スルホン43.25g(0.1モル)、バレロラクトン3g(0.03モル)、ピリジン4.8g(0.06モル)、NMP(N−メチル−2−ピロリドンの略)400g及びトルエン90gを加えて、室温で30分間撹拌し、ついで昇温し、180℃において1時間、200rpmで撹拌しながら反応を行った。反応後、トルエン−水留出分30mlを除いた。残留物を空冷して、3,4,3’,4’−ベンゾフェノンテトラカルボン酸ジ無水物32.22g(0.1モル)、3,5−ジアミノ安息香酸15.22g(0.1モル)、2,6−ジアミノピリジン11.01g(0.1モル)、NMP222g及びトルエン45gを添加し、室温で1時間撹拌(200rpm)、次いで昇温して180℃で1時間、加熱撹拌した。トルエン−水留出分15mlを除き、以後は留出分を系外に除きながら、180℃、3時間、加熱、撹拌して反応を終了し、20%ポリイミド溶液を得た。こうして得たポリイミド溶液100gにNMP70gを加え、アニソール55g、シクロヘキサンノン45g及びN−メチルモルホリン2.6g(中和率200モル%)を加え、攪拌しながら水30gを滴下して、固形分濃度6.6%、pH7.8の電着用ポリイミドエマルジョン組成物(ワニス)を得た。そして、該組成物を実施例1と同様の条件で、実施例1で使用したものと同じ、横断面が円形の銅線と平角状の銅線にそれぞれ電着して焼付け、ブロック共重合ポリイミドによる絶縁層(平均厚み17μm)を有する円形絶縁銅線と、ブロック共重合ポリイミドによる絶縁層の平角銅線の平坦部を覆う部分の平均厚み(D1)が15μm、コーナー部を覆う部分の平均厚み(D2)が12μmの平角絶縁銅線を得た。
Comparative Example 2
Use a glass separable three-necked flask equipped with a water acceptor with a stopcock at the bottom of the stirrer, nitrogen inlet tube, and cooling tube. The following reaction was carried out with heating inside. That is, 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride 64.44 g (0.2 mol), bis- [4- (3-aminophenoxy) phenyl] sulfone 43.25 g (0.1 Mol), 3 g (0.03 mol) of valerolactone, 4.8 g (0.06 mol) of pyridine, 400 g of NMP (abbreviation of N-methyl-2-pyrrolidone) and 90 g of toluene, and stirred at room temperature for 30 minutes. Then, the temperature was raised, and the reaction was carried out at 180 ° C. for 1 hour with stirring at 200 rpm. After the reaction, 30 ml of toluene-water distillate was removed. The residue was air-cooled, and 3,22,3 ', 4'-benzophenonetetracarboxylic dianhydride (32.22 g, 0.1 mol), 3,5-diaminobenzoic acid (15.22 g, 0.1 mol) Then, 11.01 g (0.1 mol) of 2,6-diaminopyridine, 222 g of NMP and 45 g of toluene were added, and the mixture was stirred at room temperature for 1 hour (200 rpm), then heated to 180 ° C. for 1 hour with stirring. After removing 15 ml of toluene-water distillate and removing the distillate from the system, the reaction was terminated by heating and stirring at 180 ° C. for 3 hours to obtain a 20% polyimide solution. 70 g of NMP was added to 100 g of the polyimide solution thus obtained, 55 g of anisole, 45 g of cyclohexanenone and 2.6 g of N-methylmorpholine (neutralization rate 200 mol%) were added, and 30 g of water was added dropwise with stirring to obtain a solid concentration of 6 An electrodeposition polyimide emulsion composition (varnish) having a pH of 6.8% was obtained. Then, under the same conditions as in Example 1, the composition was electrodeposited and baked on a copper wire having a circular cross section and a rectangular copper wire, the same as that used in Example 1, and a block copolymerized polyimide. The average thickness (D1) of the part covering the flat part of the rectangular copper wire having the insulating layer (average thickness 17 μm) by the block copolymer polyimide and the rectangular copper wire of the block copolymerized polyimide is 15 μm, and the average thickness of the part covering the corner part A flat rectangular insulated copper wire having (D2) of 12 μm was obtained.

比較例3
3,4,3’,4’−ベンゾフェノンテトラカルボン酸ジ無水物128.9g(0.4モル)と1,3−ビス−(4−アミノフェノキシ)ベンゼン116.9g(0.4モル)をN−メチル−2−ピロリドン(NMP)983gに溶かし、室温でイカリ型撹拌機を用いて、200rpmに撹拌しながら10時間反応し、20%ポリアミド酸溶液(ポリアミド酸の固有対数粘度0.78)を得た。この20%ポリアミド酸溶液にNMP、ベンジルアルコールを加え、さらに次いで中和剤を加え、さらに純水を加え、ポリアミド酸の固形分量6.8%、NMP41%、ベンジルアルコール16%、N−メチルモルホリン0.9%、純水35.3%の電着用組成物を調製した。こうして得た電着用組成物を実施例1と同様の条件で、実施例1で使用したものと同じ、横断面が円形の銅線と平角状の銅線にそれぞれ電着し、焼付け、ポリイミドによる絶縁層(平均厚み17μm)を有する円形絶縁銅線と、ポリイミドによる絶縁層の平角銅線の平坦部を覆う部分の平均厚み(D1)が14μm、コーナー部を覆う部分の平均厚み(D2)が12μmの平角絶縁銅線を得た。
Comparative Example 3
128.9 g (0.4 mol) of 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride and 116.9 g (0.4 mol) of 1,3-bis- (4-aminophenoxy) benzene Dissolved in 983 g of N-methyl-2-pyrrolidone (NMP) and reacted for 10 hours at room temperature with stirring at 200 rpm using a squid type stirrer, 20% polyamic acid solution (intrinsic logarithmic viscosity of polyamic acid 0.78) Got. NMP and benzyl alcohol are added to this 20% polyamic acid solution, then a neutralizing agent is added, pure water is further added, the solid content of polyamic acid is 6.8%, NMP is 41%, benzyl alcohol is 16%, and N-methylmorpholine. An electrodeposition composition of 0.9% and pure water 35.3% was prepared. The electrodeposition composition thus obtained was electrodeposited on a copper wire having a circular cross section and a rectangular copper wire, the same as that used in Example 1 under the same conditions as in Example 1, baking, and polyimide. The average thickness (D1) of the portion covering the flat portion of the round copper wire having the insulating layer (average thickness 17 μm) and the flat copper wire of the insulating layer made of polyimide is 14 μm, and the average thickness (D2) of the portion covering the corner portion is A 12 μm flat rectangular insulated copper wire was obtained.

比較例4
ランダム共重合体においてポリシロキサンを含有するポリアミドとして特開2000−178481号公報に準拠して作製されたポリイミド電着液を実施例1と同様の条件で、実施例1で使用したものと同じ、横断面が円形の銅線と平角状の銅線にそれぞれ電着し、焼付け、ポリイミドによる絶縁層(平均厚み17μm)を有する円形絶縁銅線と、ポリイミドによる絶縁層の平角銅線の平坦部を覆う部分の平均厚み(D1)が15μm、コーナー部を覆う部分の平均厚み(D2)が12μmの平角絶縁銅線を得た。
実施例1及び比較例1〜4で作製した絶縁銅線について以下の評価試験を行った。
Comparative Example 4
A polyimide electrodeposition solution prepared in accordance with JP 2000-178481 A as a polyamide containing polysiloxane in a random copolymer is the same as that used in Example 1 under the same conditions as in Example 1. A copper wire having a circular cross section is electrodeposited on each of a copper wire and a flat copper wire, and is baked to form a circular insulating copper wire having a polyimide insulating layer (average thickness 17 μm) and a flat portion of the polyimide insulating layer flat copper wire. A flat insulated copper wire having an average thickness (D1) of the covered portion of 15 μm and an average thickness (D2) of the portion covering the corner portion of 12 μm was obtained.
The following evaluation tests were performed on the insulated copper wires produced in Example 1 and Comparative Examples 1 to 4.

(耐熱性試験)
JIS C 3003に準拠した温度指数評価法によって、耐熱性を評価した。
(Heat resistance test)
The heat resistance was evaluated by a temperature index evaluation method based on JIS C 3003.

(ピンホール試験)
JIS C 3003に準拠して、絶縁丸銅線(n=5)と絶縁平角銅線(n=5)に対してピンホールの有無を調査した。
5個の絶縁丸銅線(30cm長さ)と5個の絶縁平角銅線(30cm長さ)のいずれにもピンホールが確認されなかったものを合格(○)、10個のうちの1個でもピンホールが確認され場合は不合格(×)とした。
(Pinhole test)
Based on JIS C 3003, the presence or absence of a pinhole was investigated with respect to the insulated round copper wire (n = 5) and the insulated flat copper wire (n = 5).
If no pinholes were found in any of the 5 insulated round copper wires (30 cm length) and the 5 insulated flat copper wires (30 cm length), pass (○), 1 out of 10 However, when a pinhole was confirmed, it was determined as rejected (x).

(可撓性試験)
(1)自己径巻付けでの被覆剥離の有無
同一巻枠から適切な長さの試験片3本を採り、それぞれについて試験片自身の周囲に線と線が接触するように緊密に10回巻き付けたとき、被膜に導体が見える亀裂が生じるかを目視で調べた。
(Flexibility test)
(1) Presence / absence of coating peeling by self-diameter winding Take three test pieces of the appropriate length from the same reel, and wind them ten times tightly so that the wires come into contact with each other around the test piece itself. The film was visually inspected for cracks where the conductor could be seen.

(2)エッジワイズコイル巻での被覆剥離の有無。
同一巻枠から長さ約20cmの試験片2本を採り、規定の径をもつ丸棒の外周に沿って一平面内にあるように保ちながら、中央部をそれぞれフラットワイズ及びエッジワイズに180°曲げたとき、被膜に導体が見える亀裂が生じるかを目視で調べた。
(2) Presence / absence of coating peeling in edgewise coil winding.
Two test pieces of about 20cm in length are taken from the same reel, and the central part is flatwise and edgewise at 180 ° while keeping it in one plane along the outer periphery of a round bar having a specified diameter. When bent, the film was visually inspected for cracks where the conductor could be seen.

(AC破壊電圧)
絶縁丸銅線に対して、JIS C 3003に準拠して、AC破壊電圧を測定した。すなわち、1cmのスズ箔を絶縁上巻き付け、導体−すず箔間にて測定した(n=3)。そして、各板に交流電圧発生装置を接続し、電圧を上昇させて、短絡した電圧を破壊電圧とする。破壊電圧が2.0kV以上を合格(〇)とし、破壊電圧が2.0kV未満の場合を不合格(×)とした。
(AC breakdown voltage)
The AC breakdown voltage was measured based on JIS C 3003 for the insulated round copper wire. That is, 1 cm of tin foil was wound on insulation and measured between the conductor and tin foil (n = 3). And an alternating voltage generator is connected to each board, a voltage is raised, and the short-circuited voltage is made into a breakdown voltage. A breakdown voltage of 2.0 kV or higher was accepted (◯), and a breakdown voltage of less than 2.0 kV was rejected (x).

(絶縁コーナーカバー性)
絶縁平角銅線の断面コーナー部の絶縁層の平均厚さ(D2)が平坦部の絶縁層の平均厚さ(D1)の0.8倍以上である場合を合格(○)、0.8倍未満である場合を不合格(×)とした。
(Insulation corner cover)
When the average thickness (D2) of the insulating layer at the corner of the cross section of the insulated rectangular copper wire is 0.8 times or more than the average thickness (D1) of the insulating layer at the flat portion, the pass (○), 0.8 times The case where it was less than was made into the disqualification (x).

Figure 0004594615
Figure 0004594615

本発明の平角絶縁電線の断面の模式図である。It is a schematic diagram of the cross section of the flat insulated wire of this invention. 本発明の絶縁電線の製造方法におけるワニス(電着液)の電着工程で使用される一例の装置の模式図である。It is a schematic diagram of an apparatus of an example used at the electrodeposition process of the varnish (electrodeposition liquid) in the manufacturing method of the insulated wire of this invention.

符号の説明Explanation of symbols

1 平角絶縁電線
2 導体線
3 絶縁層

1 Flat rectangular insulated wire 2 Conductor wire 3 Insulating layer

Claims (11)

ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミドであって、重量平均分子量(Mw)が45,000〜90,000、数平均分子量(Mn)が20,000〜40,000であるブロック共重合ポリイミドの電着被膜を導体線外周の絶縁層として設けたことを特徴とする絶縁電線。 A block copolymer polyimide containing a siloxane bond in the main chain of the polyimide and having an anionic group in the molecule, the weight average molecular weight (Mw) is 45,000 to 90,000, and the number average molecular weight (Mn) is An insulated wire comprising an electrodeposition coating of 20,000 to 40,000 block copolymerized polyimide as an insulating layer on the outer periphery of a conductor wire. ブロック共重合ポリイミドの固有対数粘度(25℃)が20wt%のNMP(N−メチル−2−ピロリドン)溶液時において、5,000〜50,000mPa・sである、請求項1記載の絶縁電線 The insulated wire according to claim 1, wherein the intrinsic logarithmic viscosity (25 ° C) of the block copolymerized polyimide is 5,000 to 50,000 mPa · s when the NMP (N-methyl-2-pyrrolidone) solution is 20 wt% . ポリイミドの主鎖中のシロキサン結合が、シロキサン結合含有ジアミン化合物由来のシロキサン結合であり、当該シロキサン結合含有ジアミン化合物が、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1,1,3,3−テトラメチルジシロキサン、及び下記の一般式(I)で表される化合物よりなる群から選ばれる1種又は2種以上である、請求項1又は2記載の絶縁電線。
Figure 0004594615

(式中、Rは、それぞれ独立して、アルキル基、シクロアルキル基、フェニル基、又は1個乃至3個のアルキル基若しくはアルコキシル基で置換されたフェニル基を表し、l及びmはそれぞれ独立して1〜4の整数を表し、nは1〜20の整数を表す。)
The siloxane bond in the main chain of the polyimide is a siloxane bond derived from a siloxane bond-containing diamine compound, and the siloxane bond-containing diamine compound is bis (4-aminophenoxy) dimethylsilane, 1,3-bis (4-aminophenoxy). ) -1,1,3,3-tetramethyldisiloxane, and a following general formula (I) in one or more selected from the group consisting of compounds represented, according to claim 1 or 2, wherein Insulated wire.
Figure 0004594615

(In the formula, each R independently represents an alkyl group, a cycloalkyl group, a phenyl group, or a phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, and l and m are each independently And n represents an integer of 1 to 20.)
ブロック共重合ポリイミドのジアミン成分がシロキサン結合含有ジアミン化合物及び芳香族ジアミンからなり、テトラカルボン酸ジ無水物成分が芳香族テトラカルボン酸ジ無水物からなる、請求項1〜3のいずれか1項記載の絶縁電線。 Diamine component polyimide block copolymer is composed of siloxane bond-containing diamine compound and an aromatic diamine, tetracarboxylic dianhydride component composed of an aromatic tetracarboxylic dianhydride, according to any one of claims 1 to 3 Insulated wires. 芳香族ジアミンが、芳香族ジアミノカルボン酸及び/又は芳香族ジアミノスルホン酸を少なくとも含有する、請求項記載の絶縁電線。 The insulated wire according to claim 4 , wherein the aromatic diamine contains at least an aromatic diaminocarboxylic acid and / or an aromatic diaminosulfonic acid. 芳香族テトラカルボン酸ジ無水物が、3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物、ビス−(3,4−ジカルボキシフェニル)エーテルジ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジ無水物、及び3,3’,4,4’−ビフェニルスルホンテトラカルボン酸ジ無水物から選ばれる少なくとも1種からなる、請求項又は記載の絶縁電線。 Aromatic tetracarboxylic dianhydride is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis- (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4, The insulated wire according to claim 4 or 5 , comprising at least one selected from 4'-benzophenonetetracarboxylic dianhydride and 3,3 ', 4,4'-biphenylsulfonetetracarboxylic dianhydride. 導体線の横断面形状が平角状である、請求項1〜のいずれか1項に記載の絶縁電線。 Cross-sectional shape of the conductor wires is rectangular-shaped, insulated wire according to any one of claims 1-6. 導体線が銅または銅合金からなる、請求項1〜のいずれか1項に記載の絶縁電線。 Conductor wire is made of copper or a copper alloy, insulated wire according to any one of claims 1-7. 導体線外周の平坦面に形成された絶縁被膜の厚みが1.5〜30μmである、請求項に記載の絶縁電線。 The insulated wire according to claim 7 , wherein the thickness of the insulating coating formed on the flat surface of the outer periphery of the conductor wire is 1.5 to 30 µm. ブロック共重合ポリイミドの電着被膜が、該ブロック共重合ポリイミドを有機極性溶媒に溶解した溶液に水とポリイミドに対する貧溶媒とポリイミドを中和塩とするための中和剤とをさらに添加した溶液分散型ワニスを導体線外周に電着、焼付けして形成したものである、請求項1〜9のいずれか1項記載の絶縁電線。  Electrodeposition coating of block copolymerized polyimide is a solution in which water, a poor solvent for polyimide, and a neutralizing agent for making polyimide a neutralizing salt are further added to a solution obtained by dissolving the block copolymerized polyimide in an organic polar solvent. The insulated wire according to any one of claims 1 to 9, wherein the varnish is formed by electrodeposition and baking on the outer periphery of the conductor wire. 請求項1〜10のいずれか1項に記載の絶縁電線をエッジワイズコイル巻きまたは整列巻きした絶縁コイル。 Insulating coils of insulated wire were wound edgewise coil winding or alignment according to any one of claims 1-10.
JP2003408227A 2003-12-05 2003-12-05 Insulated wire and insulated coil Expired - Lifetime JP4594615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408227A JP4594615B2 (en) 2003-12-05 2003-12-05 Insulated wire and insulated coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003408227A JP4594615B2 (en) 2003-12-05 2003-12-05 Insulated wire and insulated coil

Publications (2)

Publication Number Publication Date
JP2005174561A JP2005174561A (en) 2005-06-30
JP4594615B2 true JP4594615B2 (en) 2010-12-08

Family

ID=34729981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408227A Expired - Lifetime JP4594615B2 (en) 2003-12-05 2003-12-05 Insulated wire and insulated coil

Country Status (1)

Country Link
JP (1) JP4594615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109427439A (en) * 2017-08-22 2019-03-05 三菱综合材料株式会社 Insulation flat conductor, its manufacturing method and coil with high aspect ratio

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737938B2 (en) * 2004-02-13 2011-08-03 株式会社ピーアイ技術研究所 Method for manufacturing ring-shaped insulating plate for coil
JP2007066815A (en) * 2005-09-01 2007-03-15 Suncall Corp Insulation coated conductor and its manufacturing method, as well as insulation coated coductor mold product and its manufacturing method
EP2017854B1 (en) 2006-04-28 2020-02-12 Mitsubishi Cable Industries, Ltd. Linear member, and stator structure
JP2008041568A (en) * 2006-08-09 2008-02-21 Mitsubishi Cable Ind Ltd Straight angle electric wire having semiconductive layer, and manufacturing method therefor
JP2008085077A (en) * 2006-09-27 2008-04-10 Mitsubishi Cable Ind Ltd Ring-shaped insulating coil board and its manufacturing method
TW200910385A (en) * 2007-05-07 2009-03-01 Mitsubishi Cable Ind Ltd Insulation members
TWI441878B (en) * 2007-05-07 2014-06-21 Mitsubishi Cable Ind Ltd Coating composition for electrodeposition and method therefor
JP2009016319A (en) * 2007-07-09 2009-01-22 Sumitomo Metal Mining Co Ltd Insulated coating metal thin wire
JP5464838B2 (en) * 2008-10-31 2014-04-09 三菱電線工業株式会社 Insulating member manufacturing method
JP5399685B2 (en) * 2008-10-31 2014-01-29 三菱電線工業株式会社 Electronic component with lead wire and insulation coating method for lead wire
JP5624716B2 (en) * 2008-10-31 2014-11-12 三菱電線工業株式会社 Probe pin and insulation method thereof
JP5543845B2 (en) * 2009-05-28 2014-07-09 住友電気工業株式会社 Insulated wire and manufacturing method thereof
JP5555063B2 (en) * 2010-06-10 2014-07-23 三菱電線工業株式会社 Polyimide electrodeposition paint and method for producing the same
JP2013191356A (en) * 2012-03-13 2013-09-26 Hitachi Cable Ltd Insulation electric wire and coil formed by using the same
JP2017016956A (en) * 2015-07-03 2017-01-19 三菱電線工業株式会社 Insulated wire and manufacturing method thereof
JP6874785B2 (en) * 2019-03-27 2021-05-19 三菱マテリアル株式会社 Insulated copper wire and electric coil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680274U (en) * 1993-04-22 1994-11-08 山武ハネウエル株式会社 Connector retaining structure
JP2000178481A (en) * 1998-12-16 2000-06-27 Dainippon Printing Co Ltd Liquid for forming electrodeposited film for transcription
JP2002343152A (en) * 2001-05-15 2002-11-29 Totoku Electric Co Ltd Manufacturing method of square insulated wire and square insulated wire
JP2003151257A (en) * 2001-11-12 2003-05-23 Toshiba Corp Static electricity sensor mounted disk storage device and static electricity application detecting method of the device
JP2003272916A (en) * 2002-03-15 2003-09-26 Totoku Electric Co Ltd Edgewise coil with resin insulation coating, its manufacturing method, flat electric wire with resin insulation coating, and manufacturing method of the same
JP2003317549A (en) * 2002-04-26 2003-11-07 Mitsubishi Cable Ind Ltd Rectangular insulated wire and coil using the same
JP2003317547A (en) * 2002-04-26 2003-11-07 Totoku Electric Co Ltd Rectangular sectional magnet wire and its manufacturing method
JP2005162954A (en) * 2003-12-05 2005-06-23 Pi R & D Co Ltd Electrodeposition coating material composition and electrodepositing method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213237B2 (en) * 1972-08-25 1977-04-13
US4997908A (en) * 1989-11-13 1991-03-05 Occidental Chemical Corporation Solvent resistant polymidesiloxane
JPH04108879A (en) * 1990-08-30 1992-04-09 Nippon Steel Chem Co Ltd Polyimide resin coating agent composition
JP3089195B2 (en) * 1995-10-12 2000-09-18 大日本塗料株式会社 Polyimide composition for electrodeposition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680274U (en) * 1993-04-22 1994-11-08 山武ハネウエル株式会社 Connector retaining structure
JP2000178481A (en) * 1998-12-16 2000-06-27 Dainippon Printing Co Ltd Liquid for forming electrodeposited film for transcription
JP2002343152A (en) * 2001-05-15 2002-11-29 Totoku Electric Co Ltd Manufacturing method of square insulated wire and square insulated wire
JP2003151257A (en) * 2001-11-12 2003-05-23 Toshiba Corp Static electricity sensor mounted disk storage device and static electricity application detecting method of the device
JP2003272916A (en) * 2002-03-15 2003-09-26 Totoku Electric Co Ltd Edgewise coil with resin insulation coating, its manufacturing method, flat electric wire with resin insulation coating, and manufacturing method of the same
JP2003317549A (en) * 2002-04-26 2003-11-07 Mitsubishi Cable Ind Ltd Rectangular insulated wire and coil using the same
JP2003317547A (en) * 2002-04-26 2003-11-07 Totoku Electric Co Ltd Rectangular sectional magnet wire and its manufacturing method
JP2005162954A (en) * 2003-12-05 2005-06-23 Pi R & D Co Ltd Electrodeposition coating material composition and electrodepositing method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109427439A (en) * 2017-08-22 2019-03-05 三菱综合材料株式会社 Insulation flat conductor, its manufacturing method and coil with high aspect ratio

Also Published As

Publication number Publication date
JP2005174561A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4594615B2 (en) Insulated wire and insulated coil
JP5422381B2 (en) Insulating material
JP5513109B2 (en) Electrodeposition coating composition and electrodeposition method
JP5296493B2 (en) Insulating material
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
JP5464838B2 (en) Insulating member manufacturing method
US9843233B2 (en) Insulated electric wire and coil
JP2012224697A (en) Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same
JP2013253124A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP4737938B2 (en) Method for manufacturing ring-shaped insulating plate for coil
JP2005162954A (en) Electrodeposition coating material composition and electrodepositing method using the same
WO2012153636A1 (en) Polyimide resin varnish, insulated electric wire using same, electric coil, and motor
JP2013051030A (en) Insulated wire and armature coil using the same, motor
JP2010107420A (en) Probe pin and method for insulating the same
JP2017075206A (en) Polyimide for electrodeposition and electrodeposition coating composition containing the same
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP2013234257A (en) Electrodeposition paint composition and electrodeposition method and insulation member
JP2013101759A (en) Insulation wire, electric machine coil using the same, and motor
JP5706268B2 (en) Electrodeposition coating composition and insulating member using the same
JP2017071193A (en) Metal-clad laminate, printed wiring board and electronic apparatus using the same
JP2017095594A (en) Resin varnish and insulation wire
JP5399685B2 (en) Electronic component with lead wire and insulation coating method for lead wire
JP6515571B2 (en) Polyimide paint and insulated wire
JP5876176B2 (en) Electrodeposition coating composition and insulating member using the same
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4594615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term