JP2009016319A - Insulated coating metal thin wire - Google Patents

Insulated coating metal thin wire Download PDF

Info

Publication number
JP2009016319A
JP2009016319A JP2007180307A JP2007180307A JP2009016319A JP 2009016319 A JP2009016319 A JP 2009016319A JP 2007180307 A JP2007180307 A JP 2007180307A JP 2007180307 A JP2007180307 A JP 2007180307A JP 2009016319 A JP2009016319 A JP 2009016319A
Authority
JP
Japan
Prior art keywords
resin
mass
polyimide resin
wire
metal wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007180307A
Other languages
Japanese (ja)
Inventor
Shigeru Obinata
茂 小日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007180307A priority Critical patent/JP2009016319A/en
Publication of JP2009016319A publication Critical patent/JP2009016319A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/4569Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated coating metal thin wire having a moderate heat resistance and abrasion resistance, and excellent in joining feature and non-wire-releasing capability in which a carbide is prevented from retaining as a residue when forming a metal ball. <P>SOLUTION: The insulated coating metal thin wire is coated with an organic thin film mainly composed of a copolymerized polyimide resin directly synthesized with an acid anhydride and an aromatic diamine. The organic thin film comprises a compounded resin of the copolymerized polyimide resin and a diallylphthalate resin, or the compound resin of the copolymerized polyimide resin and a benzocyclobutene resin. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体実装時のワイヤボンディング、プリント基板の配線、および、電子回路配線に適用される金属細線、特に、絶縁性材料により被覆された絶縁被覆金属細線に関する。   The present invention relates to a thin metal wire applied to wire bonding at the time of semiconductor mounting, wiring on a printed circuit board, and electronic circuit wiring, and more particularly to an insulating coated thin metal wire coated with an insulating material.

従来、電子機器・電気機器における、高密度化、薄層化、小型化、および高速化に対する要求がさらに高まっている。半導体素子についても例外ではなく、接続する配線数の増加から、より狭い面積に多くの本数のボンディングワイヤを接続する必要が生じている。その結果として、隣接するボンディングワイヤ同士がボンディング後の僅かな外力やモールド樹脂成型時の樹脂流れ圧力によって接触したり、ボンディングワイヤと半導体素子とが接触したりして、短絡の原因となっている。   Conventionally, demands for higher density, thinner layers, smaller size, and higher speed in electronic and electric devices are further increasing. A semiconductor element is no exception, and an increase in the number of wirings to be connected has led to the need to connect a large number of bonding wires to a smaller area. As a result, adjacent bonding wires are brought into contact with each other by a slight external force after bonding or a resin flow pressure at the time of molding resin molding, or a bonding wire and a semiconductor element are in contact with each other, causing a short circuit. .

このような半導体素子とボンディングワイヤとの接触による短絡を防止するために、アルミニウム、銅、金などの金属細線の外周に、有機または無機の絶縁性材料を被覆することが提案されている。   In order to prevent such a short circuit due to contact between the semiconductor element and the bonding wire, it has been proposed to coat an organic or inorganic insulating material on the outer periphery of a fine metal wire such as aluminum, copper, or gold.

例えば、特許文献1には、金属細線の表面に、ポリウレタン樹脂、ポリエチレン樹脂またはエポキシ樹脂などにより、絶縁性・防食性を有する被覆層を形成することが示されている。また、特許文献2および3には、金属細線の外周を被覆する被膜として、ポリオールとイソジアネートとからなるポリウレタン樹脂を用いることが開示されている。   For example, Patent Document 1 discloses that a coating layer having insulating properties and anticorrosive properties is formed on the surface of a thin metal wire using polyurethane resin, polyethylene resin, epoxy resin, or the like. Patent Documents 2 and 3 disclose that a polyurethane resin composed of a polyol and an isocyanate is used as a film covering the outer periphery of a fine metal wire.

さらに、特許文献4には、芳香族ポリエステル樹脂を被覆したボンディングワイヤが、また、特許文献5には、熱可塑性の芳香族樹脂でポリアリレート樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリアミド樹脂、ポリスルホン樹脂および液晶ポリマーの中から選ばれた高分子材料の絶縁膜を被覆したボンディングワイヤが、それぞれ開示されている。   Further, Patent Document 4 discloses a bonding wire coated with an aromatic polyester resin, and Patent Document 5 discloses a thermoplastic aromatic resin such as polyarylate resin, polycarbonate resin, polyether ether ketone resin, polyamide resin, Bonding wires each covering an insulating film of a polymer material selected from a polysulfone resin and a liquid crystal polymer are disclosed.

このように、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂などの熱可塑性樹脂材料を被覆したり、フェノール樹脂、エポキシ樹脂などの熱硬化性樹脂材料を被覆したりすることが行われている。このような絶縁被覆金属細線は、浸漬法により、これらの材料を被覆し、乾燥および硬化することにより、形成される。   In this way, it is possible to coat a thermoplastic resin material such as polyurethane resin, polyester resin, polycarbonate resin or polyetherimide resin, or to coat a thermosetting resin material such as phenol resin or epoxy resin. Yes. Such an insulation-coated metal fine wire is formed by coating these materials by a dipping method, and drying and curing.

しかしながら、ワイヤボンディングなどの金属細線を被覆する材料として、これらの絶縁性材料は必ずしも満足できる特性を有しているとはいえない。例えば、熱可塑性樹脂の場合、分解温度が低く、低温で昇華および分解するため、ワイヤボンディング特性には優れているものの、摩擦係数が大きい。このため、クランパやキャピラリを通過する時に摩擦のために溶解して、クランパやキャピラリに溶解して硬化・半硬化した樹脂が詰まり、ボンディングワイヤの安定した送出しを行うことができず、ワイヤボンディングができなくなったり、ボンディングワイヤが断線したりするなどの問題がある。   However, it cannot be said that these insulating materials have satisfactory characteristics as materials for coating fine metal wires such as wire bonding. For example, a thermoplastic resin has a low decomposition temperature and sublimates and decomposes at a low temperature. Therefore, although it has excellent wire bonding characteristics, it has a large friction coefficient. For this reason, when it passes through the clamper or capillary, it melts due to friction, clogged with the cured or semi-cured resin dissolved in the clamper or capillary, the bonding wire can not be delivered stably, wire bonding There are problems, such as being unable to perform, and the bonding wire being disconnected.

一方、熱硬化樹脂の場合、ボールボンディング時のトーチによる熱で、樹脂が分解および燃焼し、ボールボンディング部、ウェッジボンディング部、およびその周囲に、炭化物や残渣などが残り、リードフレームとの接合時に樹脂が取り除けなかったり、ボンディング強度(ワイヤプル強度)が極めて低下してしまったりするという問題がある。   On the other hand, in the case of thermosetting resins, the resin decomposes and burns due to the heat generated by the torch during ball bonding, leaving carbides and residues in the ball bonding part, wedge bonding part, and the surrounding area. There is a problem that the resin cannot be removed or the bonding strength (wire pull strength) is extremely lowered.

また、特許文献6には、金属細線に芳香族ポリエステル樹脂を被覆し、その上に第2層目として、ポリイミドを被覆したボンディングワイヤが開示されている。また、特許文献7においても、絶縁被覆材料として、ポリイミド樹脂が用いられることが開示されている。   Patent Document 6 discloses a bonding wire in which an aromatic polyester resin is coated on a fine metal wire, and polyimide is coated as a second layer thereon. Patent Document 7 also discloses that a polyimide resin is used as the insulating coating material.

これらに開示されているポリイミド樹脂は、付加重合により生成された汎用ポリイミド樹脂である。汎用ポリイミド樹脂は、原料である酸2無水物と芳香族ジアミンとを等モル、重合させ、ポリイミド樹脂の前駆体であるポリアミック酸を得て、該ポリアミック酸を250〜350℃で加熱することにより得られる。金属細線の被覆に際しては、汎用ポリイミド樹脂は、ポリアミック酸溶液を金属細線に浸漬し、加熱して、その溶液を乾燥させることで、汎用ポリイミド樹脂の絶縁被覆を得ている。汎用ポリイミド樹脂は、耐熱性が高いものの、熱硬化樹脂と同様に、ボールボンディング時に加熱温度で分解せずに、炭化物や残渣などが残るという問題がある(特許文献7参照)。また、被膜にピンホールが発生しやすく、絶縁性の点でも十分な効果を得られないという問題がある。
特開平1−251727号公報 特開平2−40929号公報 特開平3−192738号公報 特開平2−285648号公報 特公平6−58921号公報 特開平3−270142号公報 特開平7−273140号公報
The polyimide resins disclosed in these are general-purpose polyimide resins produced by addition polymerization. The general-purpose polyimide resin is obtained by polymerizing equimolar amounts of raw acid dianhydride and aromatic diamine to obtain a polyamic acid which is a precursor of the polyimide resin, and heating the polyamic acid at 250 to 350 ° C. can get. When coating the fine metal wire, the general-purpose polyimide resin is obtained by immersing a polyamic acid solution in the fine metal wire, heating it, and drying the solution to obtain a general-purpose polyimide resin insulation coating. Although general-purpose polyimide resin has high heat resistance, there is a problem that carbides, residues, and the like remain without being decomposed at the heating temperature at the time of ball bonding as in the case of thermosetting resin (see Patent Document 7). In addition, there is a problem that pinholes are likely to be generated in the film, and a sufficient effect cannot be obtained in terms of insulation.
JP-A-1-251727 Japanese Patent Laid-Open No. 2-40929 Japanese Patent Laid-Open No. 3-192738 JP-A-2-285648 Japanese Patent Publication No. 6-58921 JP-A-3-270142 JP-A-7-273140

耐熱性および耐摩耗性を有し、かつ、接合性、ワイヤ解れ性、作業性に優れた絶縁被覆が施された金属細線を提供することを目的とする。   An object of the present invention is to provide a fine metal wire having a heat resistance and an abrasion resistance and having an insulating coating excellent in bondability, wire unwinding property and workability.

本発明に係る絶縁被覆金属細線は、酸無水物と芳香族ジアミンから直接合成される共重合ポリイミド樹脂を主体とする有機薄膜で被覆されていることを特徴とする。   The insulated thin metal wire according to the present invention is characterized by being coated with an organic thin film mainly composed of a copolymerized polyimide resin directly synthesized from an acid anhydride and an aromatic diamine.

前記有機薄膜は、前記共重合ポリイミド樹脂とジアルフタレート樹脂との混合樹脂からなることが好ましい。この場合、前記混合樹脂における、前記ジアルフタレート樹脂の混合比率は、前記共重合ポリイミド樹脂1.0質量部に対し、0.1〜5.0質量部であることが好ましい。   The organic thin film is preferably made of a mixed resin of the copolymerized polyimide resin and diallyphtalate resin. In this case, the mixing ratio of the diallyphthalate resin in the mixed resin is preferably 0.1 to 5.0 parts by mass with respect to 1.0 part by mass of the copolymerized polyimide resin.

代替的に、前記有機薄膜は、前記共重合ポリイミド樹脂とベンゾシクロブテン樹脂との混合樹脂からなることが好ましい。この場合、前記混合樹脂における、前記ベンゾシクロブテン樹脂の混合比率は、前記共重合ポリイミド1.0質量部に対し、0.1〜10.0質量部であることが好ましい。   Alternatively, the organic thin film is preferably made of a mixed resin of the copolymerized polyimide resin and benzocyclobutene resin. In this case, the mixing ratio of the benzocyclobutene resin in the mixed resin is preferably 0.1 to 10.0 parts by mass with respect to 1.0 part by mass of the copolymerized polyimide.

なお、前記有機薄膜の分解温度は、150〜450℃であることが好ましい。   In addition, it is preferable that the decomposition temperature of the said organic thin film is 150-450 degreeC.

本発明の絶縁被覆金属細線においては、金属細線に被覆される絶縁性材料として、酸無水物と芳香族ジアミンから直接合成される共重合ポリイミド樹脂を主体とする有機薄膜を用いている。該絶縁性材料が、適度な耐熱性および耐摩耗性を有しながら、濡れ性に優れ、かつ、ボールボンディング時に炭化物や残渣として残ることがない。このため、絶縁被覆金属細線として、接合性およびワイヤ解れ性に優れている。また、耐湿性に優れ、被覆にピンホールが発生することがないため、絶縁被覆金属細線として、絶縁性の面でも優れている。   In the insulated thin metal wire of the present invention, an organic thin film mainly composed of a copolymerized polyimide resin directly synthesized from an acid anhydride and an aromatic diamine is used as an insulating material to be coated on the fine metal wire. The insulating material has moderate heat resistance and wear resistance, is excellent in wettability, and does not remain as a carbide or residue during ball bonding. For this reason, as an insulation coating metal fine wire, it is excellent in bondability and wire unwinding property. Moreover, since it is excellent in moisture resistance and a pinhole does not generate | occur | produce in a coating | cover, it is excellent also in terms of insulation as an insulation coating metal fine wire.

本発明の絶縁被覆金属細線は、酸無水物と芳香族ジアミンから直接合成される共重合ポリイミド樹脂を主体とする有機薄膜で被覆されている。   The fine insulating coated metal wire of the present invention is coated with an organic thin film mainly composed of a copolymerized polyimide resin directly synthesized from an acid anhydride and an aromatic diamine.

共重合ポリイミド樹脂は、汎用ポリイミド樹脂と異なり、酸無水物と芳香族ジアミンから触媒を用いて150〜200℃で脱水環化させて直接ポリイミドを合成することにより得られる。   Unlike a general-purpose polyimide resin, the copolymerized polyimide resin is obtained by directly synthesizing a polyimide by dehydration cyclization at 150 to 200 ° C. using a catalyst from an acid anhydride and an aromatic diamine.

酸2無水物+芳香族ジアミン→(触媒と共に加熱(150〜200℃))→ポリイミド+H2Acid dianhydride + aromatic diamine → (heated with catalyst (150 to 200 ° C.)) → polyimide + H 2 O

触媒としては、γ-バレロラクトン、γ-ブチロラクトンおよびピロリジノンなどが使用される。   As the catalyst, γ-valerolactone, γ-butyrolactone, pyrrolidinone and the like are used.

このような共重合ポリイミド樹脂の例としては、下記がある。   Examples of such copolymerized polyimide resins include the following.

Figure 2009016319
Figure 2009016319

Figure 2009016319
Figure 2009016319

Figure 2009016319
Figure 2009016319

共重合ポリイミド樹脂は、極性を有し、極性溶媒に可溶なことから、溶剤の選択範囲が広く、金属細線に対して適度な濡れ性を有する溶剤を選択することが可能である。   Since the copolymerized polyimide resin has polarity and is soluble in a polar solvent, the selection range of the solvent is wide, and it is possible to select a solvent having an appropriate wettability with respect to the thin metal wire.

また、イミド化反応が不要で、保存安定性が良好で、かつ、加水分解しないことから、耐水性の高い塗膜が得られる。   Moreover, since an imidation reaction is unnecessary, storage stability is good, and since it does not hydrolyze, a coating film with high water resistance is obtained.

なお、前述の通り、汎用ポリイミド樹脂は付加重合型で、ポリイミドの前躯体であるポリアミック酸の形で250℃以上に加熱することによりイミド化する。   As described above, the general-purpose polyimide resin is an addition polymerization type, and is imidized by heating to 250 ° C. or higher in the form of polyamic acid, which is a precursor of polyimide.

酸2無水物+芳香族ジアミン→(付加縮合反応)→ポリアミック酸→(加熱250〜350℃)→ポリイミド+H2Acid dianhydride + aromatic diamine → (addition condensation reaction) → polyamic acid → (heating 250 to 350 ° C.) → polyimide + H 2 O

共重合ポリイミド樹脂は、ガラス転位温度が150〜300℃であり、汎用ポリイミド樹脂に比べて30〜50℃程低い。すなわち、塗膜形成温度が低くなるため、金属細線に余分な熱負荷をかけることなく、硬い塗膜の形成が可能となる。また、熱分解温度が200〜350℃と低いことから、ボールボンディング時にトーチ温度で加熱された後に残る炭化物が少なくなる。   The copolymerized polyimide resin has a glass transition temperature of 150 to 300 ° C, which is about 30 to 50 ° C lower than that of a general-purpose polyimide resin. That is, since the coating film forming temperature is lowered, it is possible to form a hard coating film without applying an excessive heat load to the fine metal wires. Further, since the thermal decomposition temperature is as low as 200 to 350 ° C., the amount of carbide remaining after heating at the torch temperature during ball bonding is reduced.

また、共重合ポリイミド樹脂は、〔(A−B)m(C−D)nLであらわされる主に4成分で構成されるのに対し、汎用ポリイミドは(E−F)pと主に2成分で構成されている。なお、A,C,Eは酸2無水物であり、B,D,Fは芳香族ジアミンであり、n,m,l,pは整数である。
すなわち、共重合ポリイミド樹脂と汎用ポリイミド樹脂との分子量が同等である場合、共重合ポリイミド樹脂が分解すると、汎用ポリイミド樹脂より細分化されて分子量が小さくなる。従って、ボールボンディング時にトーチ温度で加熱された後に残る残渣が、共重合ポリイミド樹脂では、汎用ポリイミド樹脂より少ない。さらに、製造工程でポリアミック酸を伴わないので,異性体が混在する割合が極めて低い。そのため、異性体に起因する、分解温度の幅(分解温度域)はより狭くなる。
The copolymerized polyimide resin is mainly composed of four components represented by [(AB) m (CD) n ] L , whereas the general-purpose polyimide is mainly (EF) p. It consists of two components. A, C, and E are acid dianhydrides, B, D, and F are aromatic diamines, and n, m, l, and p are integers.
That is, when the molecular weights of the copolymerized polyimide resin and the general-purpose polyimide resin are equal, when the copolymerized polyimide resin is decomposed, it is subdivided from the general-purpose polyimide resin and the molecular weight is reduced. Therefore, the residue remaining after heating at the torch temperature during ball bonding is less in the copolymer polyimide resin than in the general-purpose polyimide resin. Furthermore, since no polyamic acid is involved in the production process, the proportion of isomers is extremely low. Therefore, the range of the decomposition temperature (decomposition temperature range) due to the isomer becomes narrower.

共重合ポリイミド樹脂の分子量は、10,000〜200,000であることが好ましい。ここで、分子量を定めるのは、より適切な濡れ性と塗膜強度を確保するためである。分子量が200,000を超えると、濡れ性が悪化して、金属細線の表面にムラ、凹凸、およびピンホールが発生しやすくなる。また、塗膜も硬くなり過ぎ、トーチの熱で塗膜を破って金属細線を露出させることが困難になる。一方、分子量が10,000より小さいと、塗膜は柔らかくなり過ぎ、塗膜がクランパ、キャピラリ、およびスプールに付着しやすくなる。よって、金属細線にキズが付いたり、スプールからのワイヤ解れが悪化したり、ボールボンディングの作業性が悪くなったりするおそれがある。   The molecular weight of the copolymerized polyimide resin is preferably 10,000 to 200,000. Here, the molecular weight is determined in order to ensure more appropriate wettability and coating strength. When the molecular weight exceeds 200,000, the wettability is deteriorated, and unevenness, irregularities, and pinholes are easily generated on the surface of the fine metal wire. Also, the coating film becomes too hard, and it becomes difficult to break the coating film with the heat of the torch and expose the fine metal wires. On the other hand, if the molecular weight is less than 10,000, the coating film becomes too soft and the coating film tends to adhere to the clamper, capillary and spool. Therefore, there is a possibility that the fine metal wire is scratched, the wire from the spool is deteriorated, or the workability of the ball bonding is deteriorated.

かかる観点から、共重合ポリイミド樹脂の分子量は、より好ましくは、60,000〜150,000である。   From this viewpoint, the molecular weight of the copolymerized polyimide resin is more preferably 60,000 to 150,000.

なお、共重合ポリイミド樹脂のガラス転位温度は、一般には、150〜300℃の範囲にあるが、ガラス転位温度が150℃より小さいものでは、ボンディングワイヤのワイヤ解れ性が悪化し、ワイヤの流れ性および送り性が低下する。一方、ガラス転位温度が300℃より大きいものでは、熱分解しにくくなり残渣が残るおそれがあるため、好ましくない。すなわち、共重合ポリイミド樹脂の熱分解温度は、200〜350℃であることが好ましい。   The glass transition temperature of the copolymerized polyimide resin is generally in the range of 150 to 300 ° C. However, when the glass transition temperature is lower than 150 ° C., the wire unwinding property of the bonding wire is deteriorated and the flowability of the wire is reduced. In addition, the feedability is reduced. On the other hand, a glass transition temperature higher than 300 ° C. is not preferable because it is difficult to thermally decompose and a residue may remain. That is, the thermal decomposition temperature of the copolymerized polyimide resin is preferably 200 to 350 ° C.

また、汎用ポリイミド樹脂では、製造工程において、系内に水が残存するため、汎用ポリイミド樹脂を用いた有機薄膜では、その後の加熱により、薄膜中の水が蒸発し、ピンホールの原因となるものと考えられる。これに対して、共重合ポリイミド樹脂では、製造工程において、γ-ブチロラクトンなどの触媒と共に、水が系外に排出されることから、水が有機薄膜中に残存することがないため、共重合ポリイミド樹脂を用いた有機薄膜ではピンホールの発生が抑制されることになる。   In general-purpose polyimide resin, water remains in the system during the manufacturing process, so in organic thin films using general-purpose polyimide resin, water in the thin film evaporates due to subsequent heating, causing pinholes. it is conceivable that. On the other hand, in the copolymer polyimide resin, since water is discharged out of the system together with a catalyst such as γ-butyrolactone in the production process, the water does not remain in the organic thin film. In an organic thin film using a resin, the generation of pinholes is suppressed.

本発明に係る絶縁被覆金属細線は、かかる共重合ポリイミド樹脂を主体とする有機薄膜により被覆されていることに特徴があるが、この有機薄膜が、ジアルフタレート樹脂またはベンゾシクロブテン樹脂と、共重合ポリイミド樹脂との混合樹脂からなることが好ましい。   The insulated thin metal wire according to the present invention is characterized in that it is coated with an organic thin film mainly composed of such a copolymerized polyimide resin. This organic thin film is copolymerized with a dialphtalate resin or a benzocyclobutene resin. It is preferably made of a mixed resin with a polyimide resin.

ジアルフタレート樹脂には、ジアリルオルソフタレートモノマーとジアリルイソフタレートモノマーとがあり、ジアリルイソフタレートモノマーの方が耐熱性は高い。加えて塗膜が緻密であり、かつ、硬いというメリットがある。ジアリルフタレート樹脂を使用することで、耐熱性が上がり(分解温度300〜450℃)、高温ワイヤボンディングに適したものとなる。   The diallyl phthalate resin includes diallyl orthophthalate monomer and diallyl isophthalate monomer, and the diallyl isophthalate monomer has higher heat resistance. In addition, there is an advantage that the coating film is dense and hard. By using diallyl phthalate resin, the heat resistance is increased (decomposition temperature 300 to 450 ° C.), which is suitable for high-temperature wire bonding.

一方、ベンゾシクロブテン樹脂は、非極性なので溶剤の選択範囲は広く、金属細線表面にムラなく均一に塗るのに適している。ベンゾシクロブテン樹脂を溶剤で希釈後、酸素を遮断した300℃の雰囲気下において、昇温することにより硬化し、塗膜が形成される。溶剤は、適宜選べるが、例えば、水に不溶でアルコールに可溶なメシチレンを使用することができる。   On the other hand, since benzocyclobutene resin is nonpolar, it has a wide selection range of solvents and is suitable for uniformly coating the surface of fine metal wires. After the benzocyclobutene resin is diluted with a solvent, it is cured by heating in an atmosphere of 300 ° C. in which oxygen is blocked, and a coating film is formed. The solvent can be appropriately selected. For example, mesitylene that is insoluble in water and soluble in alcohol can be used.

これらの樹脂は、共重合ポリイミド樹脂と混合して用いるが、共重合ポリイミド樹脂と交互に層を形成して行き、多層化して使用することも可能である。ただし、混合の方が多層化よりも好ましい。共重合ポリイミド樹脂とジアリルフタレート樹脂とを混合した場合には、混合割合を変化させることで、共重合ポリイミド樹脂の熱分解温度からジアリルフタレート樹脂の熱分解温度までの範囲で、熱分解温度を調整することができるからである。   These resins are used by mixing with a copolymerized polyimide resin, but it is also possible to form a layer alternately with the copolymerized polyimide resin and use it in a multilayered form. However, mixing is preferable to multilayering. When the copolymerized polyimide resin and diallyl phthalate resin are mixed, the thermal decomposition temperature is adjusted in the range from the thermal decomposition temperature of the copolymerized polyimide resin to the thermal decomposition temperature of the diallyl phthalate resin by changing the mixing ratio. Because it can be done.

ただし、熱分解温度が高温(450℃以上)になると、熱分解せずに、その残渣が残るので、混合樹脂がこの熱分解温度を超えないように、ジアリルフタレート樹脂を共重合ポリイミド樹脂と混合させる必要がある。   However, when the thermal decomposition temperature becomes high (450 ° C or higher), the residue remains without thermal decomposition, so the diallyl phthalate resin is mixed with the copolymerized polyimide resin so that the mixed resin does not exceed this thermal decomposition temperature. It is necessary to let

混合の方が多層化よりも好ましいことは、ベンゾシクロブテン樹脂を用いる場合も同様である。ベンゾシクロブテン樹脂を用いる場合、加熱硬化時に酸素を遮断するので、ピンホールの発生が防止され、かつ、耐熱性および分解性に優れたものとなる。   The fact that mixing is preferable to multilayering is the same as in the case of using a benzocyclobutene resin. When a benzocyclobutene resin is used, oxygen is blocked during heat curing, so that pinholes are prevented from being generated and heat resistance and decomposability are excellent.

ここで、ジアリルフタレート樹脂の混合比率は、共重合ポリイミド単体1.0質量部に対し、0.1〜5.0質量部とすることが好ましい。さらには、0.2〜5.0質量部が好ましい。   Here, the mixing ratio of the diallyl phthalate resin is preferably 0.1 to 5.0 parts by mass with respect to 1.0 part by mass of the copolymerized polyimide. Furthermore, 0.2-5.0 mass parts is preferable.

ジアリルフタレート樹脂の割合を0.1質量部より小さくすると、共重合ポリイミド樹脂単体の効果と差がなくなり耐熱性のアップを期待することができない。一方、5.0質量部より大きくすると、ジアリルフタレート樹脂を単体で用いる場合と差がなくなり、ワイヤボンディング時に残渣が残るので好ましくない。   If the ratio of the diallyl phthalate resin is smaller than 0.1 parts by mass, there is no difference from the effect of the copolymerized polyimide resin alone, and it cannot be expected to improve the heat resistance. On the other hand, if it is larger than 5.0 parts by mass, there is no difference from the case where diallyl phthalate resin is used alone, and a residue remains at the time of wire bonding, which is not preferable.

ジアリルフタレートの構造式は次の通りである。   The structural formula of diallyl phthalate is as follows:

Figure 2009016319
Figure 2009016319

なお、ジアリルフタレート樹脂は、ヨウ素価、55〜65の範囲が好ましく、この範囲を外れると硬化物の軟化温度範囲が低下し好ましくない。また、硬化剤はジアルキルパーオキサイド類であればよく、例えば、t-ブチルαクミルパーオキサイドを用いることができる。   The diallyl phthalate resin preferably has an iodine value in the range of 55 to 65, and if it is outside this range, the softening temperature range of the cured product is lowered, which is not preferable. Further, the curing agent may be a dialkyl peroxide, and for example, t-butyl α-cumyl peroxide can be used.

また、ベンゾシクロブテン樹脂の混合比率は、共重合ポリイミド単体1.0質量部に対し0.1〜10.0質量部とすることが好ましい。さらには、0.2〜7.0質量部とすることが好ましい。ベンゾシクロブテン樹脂も同様に、0.1質量部未満や、10.0質量部を超える範囲は好ましくない。   Moreover, it is preferable that the mixing ratio of benzocyclobutene resin shall be 0.1-10.0 mass part with respect to 1.0 mass part of copolymerization polyimide simple substance. Furthermore, it is preferable to set it as 0.2-7.0 mass parts. Similarly, the range of less than 0.1 parts by mass or more than 10.0 parts by mass of the benzocyclobutene resin is not preferable.

ベンゾシクロブテン樹脂の具体例としては、次の構造式のジビニルテトラメチルシロキサンベンゾシクロブテン(DVS−BCB)を用いることができる。   As a specific example of the benzocyclobutene resin, divinyltetramethylsiloxane benzocyclobutene (DVS-BCB) having the following structural formula can be used.

Figure 2009016319
Figure 2009016319

なお、ベンゾシクロブテン樹脂の熱分解温度は300〜400℃であり、一方、ジアリルフタレート樹脂の熱分解温度は、300〜450℃である。   The thermal decomposition temperature of benzocyclobutene resin is 300 to 400 ° C, while the thermal decomposition temperature of diallyl phthalate resin is 300 to 450 ° C.

すなわち、概ねの分解温度は、「共重合ポリイミド樹脂≦ベンゾシクロブテン樹脂+共重合ポリイミド樹脂≦ジアリルフタレート樹脂+共重合ポリイミド樹脂」の順となる。これらを使い分けることで、低温分解領域(熱分解温度150℃近傍)から高温分解領域(熱分解温度450℃近傍)までカバーすることができる。   That is, the approximate decomposition temperature is in the order of “copolymerized polyimide resin ≦ benzocyclobutene resin + copolymerized polyimide resin ≦ diallyl phthalate resin + copolymerized polyimide resin”. By properly using these, it is possible to cover from a low temperature decomposition region (a thermal decomposition temperature of about 150 ° C.) to a high temperature decomposition region (a thermal decomposition temperature of about 450 ° C.).

ここで、「ベンゾシクロブテン樹脂+共重合ポリイミド樹脂」の混合物は、中程度の分解温度領域を細密に調整するのに適し、「ジアリルフタレート樹脂+共重合ポリイミド樹脂」の混合物は、高温分解領域を細密に調整するのに適している。   Here, the mixture of “benzocyclobutene resin + copolymerized polyimide resin” is suitable for finely adjusting the intermediate decomposition temperature region, and the mixture of “diallyl phthalate resin + copolymerized polyimide resin” is a high temperature decomposition region. Suitable for fine adjustment.

トーチ温度とトーチ時間とから、250〜450℃で有機薄膜が熱分解することが好ましいため、共重合ポリイミド樹脂の分解温度がかかる範囲であるのにも関わらず、被覆用の樹脂は、トーチ温度とトーチ時間とから250〜450℃で熱分解するものが好ましいので、有機薄膜の材料としては、共重合ポリイミド樹脂単独のものより、これらの混合樹脂が好適に用いられる。   Since the organic thin film is preferably thermally decomposed at 250 to 450 ° C. from the torch temperature and the torch time, the coating resin has a torch temperature in spite of the decomposition temperature of the copolymerized polyimide resin. And those that thermally decompose at 250 to 450 ° C. from the torch time, these mixed resins are preferably used as the material for the organic thin film rather than the copolymerized polyimide resin alone.

共重合ポリイミドを主体に、ジアリルフタレート樹脂またはベンゾシクロブテン樹脂を使用した混合樹脂を、金属細線の表面に有機薄膜として被覆することにより、該絶縁被覆金属細線は、絶縁性に優れ、ピンホールの発生もなく、ワイヤボンディング時におけるトーチの熱により速やかに熱分化する。よって、炭化物の残渣が少なく、ボンディングワイヤなどの配線において強い接合性が得られる。また、ワイヤボンディングにおけるワイヤ解れ性にも優れており、ワイヤ流れなどの供給安定性、作業性も良好である。特に、ジアリルフタレート樹脂を多く含む場合には、ボンディングによって、半導体デバイスを組み立てた後に酸素プラズマ洗浄を行う際に、酸素と反応しがたいため、耐洗浄性にも優れる結果となる。   By covering the surface of the fine metal wire as an organic thin film with a mixed resin mainly composed of copolymerized polyimide and using diallyl phthalate resin or benzocyclobutene resin, the insulation-coated fine metal wire has excellent insulation properties and pinholes. There is no occurrence, and it is rapidly differentiated by the heat of the torch during wire bonding. Therefore, there is little residue of carbides, and strong bondability can be obtained in wiring such as bonding wires. Moreover, the wire unbonding property in wire bonding is excellent, and supply stability such as wire flow and workability are also good. In particular, when a large amount of diallyl phthalate resin is contained, it is difficult to react with oxygen when performing oxygen plasma cleaning after assembling a semiconductor device by bonding, resulting in excellent cleaning resistance.

金属細線の周囲に形成する有機薄膜の厚さは、10nm〜5μmとする。10nm未満では、ディップ塗布や簡易蒸着の場合、実質的に塗布膜厚が一定にならず、かつ、目標の絶縁性(8V)を保つことができないからである。一方、5μmを越えると絶縁性は保てるものの、塗膜がワイヤボンディング(W/B)の熱で壊れず、ワイヤの接合強度が不足してしまう。さらに好ましくは、40nm〜1000nmである。   The thickness of the organic thin film formed around the fine metal wire is 10 nm to 5 μm. If the thickness is less than 10 nm, the coating film thickness is not substantially constant in the case of dip coating or simple vapor deposition, and the target insulating property (8 V) cannot be maintained. On the other hand, if the thickness exceeds 5 μm, the insulating property can be maintained, but the coating film is not broken by the heat of wire bonding (W / B) and the bonding strength of the wire is insufficient. More preferably, it is 40 nm-1000 nm.

なお、本発明に係る絶縁被覆金属細線を得るためには、以下の工程により行う。   In addition, in order to obtain the insulation coating metal fine wire which concerns on this invention, it carries out by the following processes.

まず、共重合ポリイミド樹脂を所定量、前記触媒に溶解させ、酸2無水物と芳香族ジアミンからなるポリイミド樹脂前駆体の触媒溶液を作成する。触媒溶液の濃度は、0.1〜10%とする。0.1%未満では、塗膜が弱くピンホールを発生するおそれがある。10%を超えると逆に塗膜が強く、ワイヤーボンドの熱で塗膜が破れなくなるため好ましくない。   First, a predetermined amount of a copolymerized polyimide resin is dissolved in the catalyst to prepare a catalyst solution of a polyimide resin precursor composed of an acid dianhydride and an aromatic diamine. The concentration of the catalyst solution is 0.1 to 10%. If it is less than 0.1%, the coating film is weak and pinholes may be generated. On the other hand, if it exceeds 10%, the coating film is strong, and the coating film is not broken by the heat of wire bond, which is not preferable.

ジアリルフタレート樹脂またはベンゾシクロブテン樹脂を混合する場合には、まず、これらの樹脂を所定量、溶媒に溶解させて、溶液を作製する。ジアリルフタレート樹脂の場合には、溶媒として、シクロヘキサノン、アリルアルコール、またはノナールなどを用いることができ、ベンゾシクロブテン樹脂の場合には、溶媒として、メシチレン、イソアミルアルコール、またはn-ヘキサノールなどを用いることができる。これらの溶液を前記ポリイミド樹脂前駆体の触媒溶液と混合させる。   When the diallyl phthalate resin or the benzocyclobutene resin is mixed, first, a predetermined amount of these resins are dissolved in a solvent to prepare a solution. In the case of diallyl phthalate resin, cyclohexanone, allyl alcohol, or nonal can be used as a solvent. In the case of benzocyclobutene resin, mesitylene, isoamyl alcohol, n-hexanol, or the like should be used as a solvent. Can do. These solutions are mixed with the catalyst solution of the polyimide resin precursor.

なお、ジアリルフタレート樹脂の場合には、同時に前記酸化剤も溶液中に添加する。   In the case of diallyl phthalate resin, the oxidizing agent is simultaneously added to the solution.

ポリイミド樹脂前駆体の触媒溶液、または、これと前記樹脂との混合溶液に対して、浸漬塗布装置を使用して、毎分5〜100mの速度で、金属細線を浸漬させる。その後、金属細線を取り出し、該金属細線を、250〜450℃の温度で、10〜60秒の乾燥および硬化を行えばよい。なお、ベンゾシクロブテン樹脂の場合には、加温中に酸化の影響を受けるため、酸素を遮断したN2またはAr雰囲気中で、乾燥および硬化することが好ましい。 A fine metal wire is immersed in a catalyst solution of a polyimide resin precursor or a mixed solution of the resin and the resin using a dip coating apparatus at a speed of 5 to 100 m / min. Thereafter, the fine metal wire is taken out, and the fine metal wire may be dried and cured for 10 to 60 seconds at a temperature of 250 to 450 ° C. In the case of a benzocyclobutene resin, since it is affected by oxidation during heating, it is preferably dried and cured in an N 2 or Ar atmosphere in which oxygen is blocked.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例1)
ブロック共重合型ポリイミド樹脂の前駆体(株式会社ピーアイ技研製、QVR−X0478、平均分子量31,500)5質量%を、ノルマルメチルNピロリジノン(関東化学株式会社製):γ-ブチルラクトン(関東化学株式会社製)=100質量部:40質量部の混合物95質量%で希釈し、粘度10CP(25℃)の溶液を得た。
Example 1
Block copolymer type polyimide resin precursor (PI VR Co., Ltd., QVR-X0478, average molecular weight 31,500) 5% by mass, normal methyl N pyrrolidinone (Kanto Chemical Co., Ltd.): γ-butyllactone (Kanto Chemical) (Made by Co., Ltd.) = 100 parts by mass: The mixture was diluted with 95 parts by mass of 40 parts by mass to obtain a solution having a viscosity of 10 CP (25 ° C.).

この溶液に、浸漬塗布装置(深さ200mm、長さ350mm)を使用して毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、300℃、20秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは400mであった。   In this solution, a metal thin wire (Au wire, φ25 μm) is immersed at a rate of 20 m / min using a dip coating apparatus (depth 200 mm, length 350 mm), and then dried and cured at 300 ° C. for 20 seconds. A coating film was formed on the surface of the fine metal wire. The formation length was 400 m.

(実施例2)
ブロック共重合型ポリイミド樹脂の前駆体(株式会社ピーアイ技研製、QVR−X0478、平均分子量31,500)5質量%を、ノルマルメチルNピロリジノン:γ-ブチルラクトン=100質量部:40質量部の混合物95質量%で希釈した。一方、ジアリルフタレート樹脂(大阪ソーダ株式会社製、ダイソーダップ)100質量部とt-ブチルαクミルパーオキサイド(化薬アクゾ株式会社製)3質量部の混合物7質量%と、93質量%のシクロヘキサノン(関東化学株式会社製)で溶液を作製した。
(Example 2)
Mixture of 5% by mass of block copolymer type polyimide resin precursor (QVR-X0478, average molecular weight 31,500, manufactured by PI Engineering Co., Ltd.), normal methyl N pyrrolidinone: γ-butyllactone = 100 parts by mass: 40 parts by mass Diluted at 95% by weight. On the other hand, 7% by mass of a mixture of 100 parts by mass of diallyl phthalate resin (manufactured by Osaka Soda Co., Ltd., Daisodap) and 3 parts by mass of t-butyl α-cumyl peroxide (manufactured by Kayaku Akzo Co., Ltd.) and 93% by mass of cyclohexanone ( The solution was produced by Kanto Chemical Co., Inc.).

このブロック共重合型ポリイミド樹脂1.0質量部に対し、0.3質量部のジアリルフタレート樹脂を、それぞれノルマルメチルNピロリジノン/γ-ブチルラクトンとt-ブチルαクミルパーオキサイド/シクロヘキサノン適量で希釈した溶液を混合し、粘度12CP(25℃)の混合溶液を得た。   With respect to 1.0 part by mass of this block copolymerization type polyimide resin, 0.3 part by mass of diallyl phthalate resin was diluted with appropriate amounts of normal methyl N-pyrrolidinone / γ-butyllactone and t-butyl α-cumyl peroxide / cyclohexanone, respectively. The solutions were mixed to obtain a mixed solution having a viscosity of 12 CP (25 ° C.).

この混合溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬して、その後、取り出し、300℃、120秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは400mであった。   In this mixed solution, immersing a fine metal wire (Au wire, φ25 μm) at a rate of 20 m / min using a dip coating device, and then taking out, drying and curing at 300 ° C. for 120 seconds to form the surface of the fine metal wire. A coating film was formed. The formation length was 400 m.

(実施例3)
ブロック共重合型ポリイミド樹脂前駆体(株式会社ピーアイ技研製、QVR−X0478、平均分子量31,500)5質量%を、ノルマルメチルNピロリジノン:γ-ブチルラクトン=100質量部:40質量部の混合物95質量%で希釈した。一方、ジアリルフタレート樹脂100質量部とt-ブチルαクミルパーオキサイド3質量部の混合物7質量%と、93質量%のシクロヘキサノン(関東化学株式会社)で溶液を作製した。
(Example 3)
Block copolymer type polyimide resin precursor (manufactured by PI Engineering Co., Ltd., QVR-X0478, average molecular weight 31,500) 5% by mass, normal methyl N pyrrolidinone: γ-butyl lactone = 100 parts by mass: 40 parts by mass of mixture 95 Diluted in weight percent. On the other hand, a solution was prepared with 7% by mass of a mixture of 100 parts by mass of diallyl phthalate resin and 3 parts by mass of t-butyl α-cumyl peroxide and 93% by mass of cyclohexanone (Kanto Chemical Co., Inc.).

このブロック共重合型ポリイミド樹脂1.0質量部に対し、4.5質量部のジアリルフタレート樹脂を、それぞれノルマルメチルNピロリジノン/γ-ブチルラクトンとt-ブチルαクミルパーオキサイド/シクロヘキサノン適量で希釈した溶液を混合した。粘度15CP(25℃)の混合溶液を得た。   4.5 parts by mass of diallyl phthalate resin was diluted with appropriate amounts of normal methyl N-pyrrolidinone / γ-butyllactone and t-butyl α-cumyl peroxide / cyclohexanone with respect to 1.0 part by mass of this block copolymerized polyimide resin. The solution was mixed. A mixed solution having a viscosity of 15 CP (25 ° C.) was obtained.

この混合溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬して、その後、取り出し、300℃、90秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは400mであった。   In this mixed solution, immersing a fine metal wire (Au wire, φ25 μm) at a rate of 20 m / min using a dip coating apparatus, and then taking out, drying and curing at 300 ° C. for 90 seconds, and forming the surface of the fine metal wire. A coating film was formed. The formation length was 400 m.

(実施例4)
ブロック共重合型ポリイミド樹脂前駆体(株式会社ピーアイ技研製、QVR−X0478、平均分子量31,500)5質量%を、ノルマルメチルNピロリジノン:γ-ブチルラクトン=100質量部:40質量部の混合物95質量%で希釈した。一方、ジビニルテトラメチルシロキサンベンゾシクロブテン(日産化学工業株式会社)10質量%を、メシチレン90質量%に溶かし、溶液とした。
Example 4
Block copolymer type polyimide resin precursor (manufactured by PI Engineering Co., Ltd., QVR-X0478, average molecular weight 31,500) 5% by mass, normal methyl N pyrrolidinone: γ-butyl lactone = 100 parts by mass: 40 parts by mass of mixture 95 Diluted in weight percent. On the other hand, 10% by mass of divinyltetramethylsiloxane benzocyclobutene (Nissan Chemical Industry Co., Ltd.) was dissolved in 90% by mass of mesitylene to obtain a solution.

このブロック共重合型ポリイミド樹脂1.0質量部に対し、0.3質量部のジビニルテトラメチルシロキサンベンゾシクロブテン樹脂を、それぞれノルマルメチルNピロリジノン/γ-ブチルラクトンとメシチレン適量で希釈した溶液を混合した。粘度13CP(25℃)の混合溶液を得た。   To 1.0 part by mass of this block copolymerization type polyimide resin, 0.3 parts by mass of divinyltetramethylsiloxane benzocyclobutene resin was mixed with normal methyl N pyrrolidinone / γ-butyllactone and an appropriate amount of mesitylene. did. A mixed solution having a viscosity of 13 CP (25 ° C.) was obtained.

この混合溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬して、その後、取り出し、酸素を遮断したN2中で、250℃、40秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは400mであった。 A thin metal wire (Au wire, φ25 μm) is immersed in this mixed solution at a rate of 20 m per minute using a dip coating apparatus, and then taken out and dried at 250 ° C. for 40 seconds in N 2 where oxygen is blocked. -Cured to form a coating film on the surface of the fine metal wires. The formation length was 400 m.

(実施例5)
ブロック共重合型ポリイミド樹脂前駆体(株式会社ピーアイ技研製、QVR−X0478、平均分子量31,500)5質量%を、ノルマルメチルNピロリジノン:γ-ブチルラクトン=100質量部:40質量部混合物95質量%で希釈した。
(Example 5)
Block copolymer type polyimide resin precursor (QVR-X0478 manufactured by PI Engineering Co., Ltd., average molecular weight 31,500) 5% by mass, normal methyl N pyrrolidinone: γ-butyllactone = 100 parts by mass: 40 parts by mass 95 parts by mass Diluted in%.

ジビニルテトラメチルシロキサンベンゾシクロブテン10質量%を、メシチレン90質量%に溶かし、溶液とした。   10% by mass of divinyltetramethylsiloxane benzocyclobutene was dissolved in 90% by mass of mesitylene to obtain a solution.

このブロック共重合型ポリイミド樹脂1.0質量部に対し、8.5質量部のジビニルテトラメチルシロキサンベンゾシクロブテン樹脂を、それぞれノルマルメチルNピロリジノン/γ-ブチルラクトンとメシチレン適量で希釈した溶液を混合した。粘度19CP(25℃)の混合溶液を得た。   To 1.0 part by mass of this block copolymerization type polyimide resin, 8.5 parts by mass of divinyltetramethylsiloxane benzocyclobutene resin was mixed with normal methyl N-pyrrolidinone / γ-butyllactone and an appropriate amount of mesitylene. did. A mixed solution having a viscosity of 19 CP (25 ° C.) was obtained.

この混合溶液に、前記と同様の浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬して、その後、取り出し、酸素を遮断したN2中で、250℃、60秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは350mであった。 In this mixed solution, a metal thin wire (Au wire, φ25 μm) was dipped at a rate of 20 m / min using the same dip coating apparatus as described above, and then taken out and removed at 250 ° C. in N 2 where oxygen was blocked. The film was dried and cured for 60 seconds to form a coating film on the surface of the fine metal wires. The formation length was 350 m.

(実施例6)
ブロック共重合型ポリイミド樹脂前駆体(株式会社ピーアイ技研製、QVR−X0478、平均分子量31,500)5質量%を、ノルマルメチルNピロリジノン:γ-ブチルラクトン=100質量部:40質量部の混合物95質量%で希釈した。一方、ジアリルフタレート樹脂100質量部とt-ブチルαクミルパーオキサイド3質量部の混合物7質量%を用いて、93質量%のシクロヘキサノンで溶液を作製した。
(Example 6)
Block copolymer type polyimide resin precursor (manufactured by PI Engineering Co., Ltd., QVR-X0478, average molecular weight 31,500) 5% by mass, normal methyl N pyrrolidinone: γ-butyl lactone = 100 parts by mass: 40 parts by mass of mixture 95 Diluted in weight percent. On the other hand, using 7% by mass of a mixture of 100 parts by mass of diallyl phthalate resin and 3 parts by mass of t-butyl α-cumyl peroxide, a solution was prepared with 93% by mass of cyclohexanone.

このブロック共重合型ポリイミド樹脂1.0質量部に対し、0.05質量部のジアリルフタレート樹脂を、それぞれノルマルメチルNピロリジノン/γ-ブチルラクトンとt-ブチルαクミルパーオキサイド/シクロヘキサノン適量で希釈した溶液を混合し、粘度10CP(25℃)の混合溶液を得た。   With respect to 1.0 part by mass of this block copolymerization type polyimide resin, 0.05 part by mass of diallyl phthalate resin was diluted with appropriate amounts of normal methyl N pyrrolidinone / γ-butyl lactone and t-butyl α cumyl peroxide / cyclohexanone, respectively. The solutions were mixed to obtain a mixed solution having a viscosity of 10 CP (25 ° C.).

この混合溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、300℃、120秒で乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは350mであった。   In this mixed solution, a dip coating device is used to immerse a fine metal wire (Au wire, φ25 μm) at a rate of 20 m / min, and then taken out, dried and cured at 300 ° C. for 120 seconds, and applied to the surface of the fine metal wire. A film was formed. The formation length was 350 m.

(実施例7)
ブロック共重合型ポリイミド樹脂前駆体(株式会社ピーアイ技研製、QVR−X0478、平均分子量31,500)5質量%を、ノルマルメチルNピロリジノン:γ-ブチルラクトン=100質量部:40質量部の混合物95質量%で希釈した。一方、ジビニルテトラメチルシロキサンベンゾシクロブテン10質量%を、メシチレン90質量%に溶かし、溶液とした。
(Example 7)
Block copolymer type polyimide resin precursor (manufactured by PI Engineering Co., Ltd., QVR-X0478, average molecular weight 31,500) 5% by mass, normal methyl N pyrrolidinone: γ-butyl lactone = 100 parts by mass: 40 parts by mass of mixture 95 Diluted in weight percent. On the other hand, 10% by mass of divinyltetramethylsiloxane benzocyclobutene was dissolved in 90% by mass of mesitylene to obtain a solution.

このブロック共重合型ポリイミド樹脂1.0質量部に対し、ジビニルテトラメチルシロキサンベンゾシクロブテン樹脂0.05質量部を、それぞれノルマルメチルNピロリジノン/γ-ブチルラクトンとメシチレン適量で希釈した溶液を混合し、粘度9CP(25℃)の混合溶液を得た。   A solution obtained by diluting 0.05 parts by mass of divinyltetramethylsiloxane benzocyclobutene resin with normal methyl N-pyrrolidinone / γ-butyllactone and an appropriate amount of mesitylene is mixed with 1.0 part by mass of this block copolymerization type polyimide resin. A mixed solution having a viscosity of 9 CP (25 ° C.) was obtained.

この混合溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、酸素を遮断したN2中で、250℃、60秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは300mであった。 In this mixed solution, a thin metal wire (Au wire, φ25 μm) is immersed at 20 m / min using a dip coating apparatus, and then taken out and dried at 250 ° C. for 60 seconds in N 2 where oxygen is blocked. Curing was performed to form a coating film on the surface of the fine metal wires. The formation length was 300 m.

(比較例1)
汎用ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製、PIX−1400、ガラス点移転290℃)5質量%を、ノルマルNメチルピロリジノン95質量%で希釈し、粘度16CP(25℃)の溶液を得た。この溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、350℃、20秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは350mであった。
(Comparative Example 1)
5 mass% of general-purpose polyimide resin (Hitachi Chemical DuPont Microsystems, Inc., PIX-1400, glass point transfer 290 ° C.) was diluted with 95 mass% of normal N methylpyrrolidinone to obtain a solution having a viscosity of 16 CP (25 ° C.). . In this solution, a dip coating device is used to immerse a fine metal wire (Au wire, φ25 μm) at a rate of 20 m / min, and then taken out, dried and cured at 350 ° C. for 20 seconds, and a coating film is formed on the surface of the fine metal wire. Formed. The formation length was 350 m.

(比較例2)
ポリシロキサン樹脂(株式会社信越化学製、SiLox、分解温度460℃)10質量%を、シクロヘキサノン(関東化学株式会社製)90質量%で希釈し、粘度14CP(25℃)の溶液を得た。この溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、350℃、20秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは350mであった。
(Comparative Example 2)
10 mass% of polysiloxane resin (manufactured by Shin-Etsu Chemical Co., Ltd., SiLox, decomposition temperature 460 ° C.) was diluted with 90 mass% of cyclohexanone (manufactured by Kanto Chemical Co., Ltd.) to obtain a solution having a viscosity of 14 CP (25 ° C.). In this solution, a dip coating device is used to immerse a fine metal wire (Au wire, φ25 μm) at a rate of 20 m / min, and then taken out, dried and cured at 350 ° C. for 20 seconds, and a coating film is formed on the surface of the fine metal wire. Formed. The formation length was 350 m.

(比較例3)
N−プロピルシリケート樹脂(扶桑化学工業株社製、分子量264.4、シリカ分22.7%、分解温度400℃)30質量%を用い、ジメチルホルムイミド(関東化学株式会社製)70質量%で希釈し、粘度15CP(25℃)の溶液を得た。
(Comparative Example 3)
Using 30% by mass of N-propyl silicate resin (manufactured by Fuso Chemical Industry Co., Ltd., molecular weight 264.4, silica content 22.7%, decomposition temperature 400 ° C.), 70% by mass of dimethylformimide (manufactured by Kanto Chemical Co., Ltd.) Dilution gave a solution with a viscosity of 15 CP (25 ° C.).

この溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、350℃、20秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは300mであった。   In this solution, a dip coating device is used to immerse a fine metal wire (Au wire, φ25 μm) at a rate of 20 m / min. Formed. The formation length was 300 m.

(比較例4)
フッ素コーティング剤(NIマテリアル株式会社製、INT−330、分解温度190℃)10質量%を用い、n−ヘキサン(関東化学株式会社製)90質量%で希釈し、粘度9CP(25℃)の溶液を得た。この溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、350℃、20秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは350mであった。
(Comparative Example 4)
A solution having a viscosity of 9 CP (25 ° C.) diluted with 90% by mass of n-hexane (manufactured by Kanto Chemical Co., Inc.) using 10% by mass of a fluorine coating agent (NI Material Co., Ltd., INT-330, decomposition temperature 190 ° C.). Got. In this solution, a dip coating device is used to immerse a fine metal wire (Au wire, φ25 μm) at a rate of 20 m / min, and then taken out, dried and cured at 350 ° C. for 20 seconds, and a coating film is formed on the surface of the fine metal wire. Formed. The formation length was 350 m.

(比較例5)
特殊アクリル樹脂(荒川化学工業株式会社製、コンポセランAC601、分解温度180℃)18質量%を用い、メチルイソブチルケトン(関東化学株式会社製)82質量%で希釈し、粘度15CP(25℃)の溶液を得た。この溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、200℃、60秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは350mであった。
(Comparative Example 5)
A solution with a viscosity of 15 CP (25 ° C.) diluted with 82% by mass of methyl isobutyl ketone (manufactured by Kanto Chemical Co., Inc.) using 18% by mass of a special acrylic resin (Arakawa Chemical Co., Ltd., Composeran AC601, decomposition temperature 180 ° C.). Got. In this solution, a dip coating device is used to immerse a fine metal wire (Au wire, φ25 μm) at a rate of 20 m / min, and then taken out, dried and cured at 200 ° C. for 60 seconds, and a coating film is formed on the surface of the fine metal wire. Formed. The formation length was 350 m.

(比較例6)
ビスアリールフレオン・エポキシ樹脂(長瀬ケムテックス株式会社製、EX−1040、分解温度280℃)と脂環式酸無水物MH−700(新日本理化株式会社)を100PHR/30PHRで混合し、この混合物8質量%に、ポリプロピレングルコール(関東化学株式会社製)92質量%の溶液とて、粘度14CP(25℃)の溶液を得た。この溶液に、浸漬塗布装置を使用し毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、200℃、60秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは300mであった。
(Comparative Example 6)
Bisaryl Freon epoxy resin (Nagase Chemtex Co., Ltd., EX-1040, decomposition temperature 280 ° C.) and alicyclic acid anhydride MH-700 (Shin Nihon Rika Co., Ltd.) were mixed at 100 PHR / 30 PHR, and this mixture 8 A solution having a viscosity of 14 CP (25 ° C.) was obtained as a solution of 92% by mass of polypropylene glycol (manufactured by Kanto Chemical Co., Inc.) in mass%. In this solution, a fine metal wire (Au wire, φ25 μm) is dipped at 20 m / min using a dip coating device, then taken out, dried and cured at 200 ° C. for 60 seconds, and a coating film is formed on the surface of the fine metal wire did. The formation length was 300 m.

(比較例7)
ブロック共重合型ポリイミド樹脂前駆体(株式会社ピーアイ技研製、QVR−X0478、平均分子量31,500)5質量%を、ノルマルメチルNピロリジノン:γ-ブチルラクトン=100質量部:40質量部の混合物95質量%で希釈した。一方、ジアリルフタレート樹脂100質量部とt-ブチルαクミルパーオキサイド3質量部の混合物7質量%を、93質量%のシクロヘキサノンと混合し、溶液を作製した。
(Comparative Example 7)
Block copolymer type polyimide resin precursor (manufactured by PI Engineering Co., Ltd., QVR-X0478, average molecular weight 31,500) 5% by mass, normal methyl N pyrrolidinone: γ-butyl lactone = 100 parts by mass: 40 parts by mass of mixture 95 Diluted in weight percent. On the other hand, 7 parts by mass of a mixture of 100 parts by mass of diallyl phthalate resin and 3 parts by mass of t-butyl α-cumyl peroxide was mixed with 93% by mass of cyclohexanone to prepare a solution.

このブロック共重合型ポリイミド樹脂1.0質量部に対し、6.5質量部のジアリルフタレート樹脂を、それぞれノルマルメチルNピロリジノン/γ-ブチルラクトンとt-ブチルαクミルパーオキサイド/シクロヘキサノン適量で希釈した溶液を混合し、粘度19CP(25℃)の混合溶液を得た。   6.5 parts by mass of diallyl phthalate resin was diluted with appropriate amounts of normal methyl N pyrrolidinone / γ-butyllactone and t-butyl α-cumyl peroxide / cyclohexanone with respect to 1.0 part by mass of this block copolymerized polyimide resin. The solutions were mixed to obtain a mixed solution having a viscosity of 19 CP (25 ° C.).

この混合溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、300℃、120秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは400mであった。   In this mixed solution, a dip coating device is used to immerse a fine metal wire (Au wire, φ25 μm) at a rate of 20 m / min, and then taken out, dried and cured at 300 ° C. for 120 seconds, and applied to the surface of the fine metal wire. A film was formed. The formation length was 400 m.

(比較例8)
ブロック共重合型ポリイミド樹脂前駆体(株式会社ピーアイ技研製、QVR−X0478、平均分子量31,500)5質量%を、ノルマルメチルNピロリジノン:γ-ブチルラクトン=100質量部:40質量部の混合物95質量%で希釈した。一方、ジビニルテトラメチルシロキサンベンゾシクロブテン10質量%を、メシチレン90質量%に溶かし、溶液とした。
(Comparative Example 8)
Block copolymer type polyimide resin precursor (manufactured by PI Engineering Co., Ltd., QVR-X0478, average molecular weight 31,500) 5% by mass, normal methyl N pyrrolidinone: γ-butyl lactone = 100 parts by mass: 40 parts by mass of mixture 95 Diluted in weight percent. On the other hand, 10% by mass of divinyltetramethylsiloxane benzocyclobutene was dissolved in 90% by mass of mesitylene to obtain a solution.

このブロック共重合型ポリイミド樹脂1.0質量部に対し、ジビニルテトラメチルシロキサンベンゾシクロブテン樹脂11.0質量部を、それぞれノルマルメチルNピロリジノン/γ-ブチルラクトンとメシチレン適量で希釈した溶液を混合し、粘度19CP(25℃)の混合溶液を得た。   A solution obtained by diluting 11.0 parts by mass of divinyltetramethylsiloxane benzocyclobutene resin with normal methyl N pyrrolidinone / γ-butyllactone and an appropriate amount of mesitylene is mixed with 1.0 part by mass of this block copolymerization type polyimide resin. A mixed solution having a viscosity of 19 CP (25 ° C.) was obtained.

共重合型ポリイミド樹脂とジビニルテトラメチルシロキサンベンゾシクロブテン/メシチレン混合物は、酸素を遮断したN2中で加熱硬化させた。この混合溶液に、浸漬塗布装置を使用して、毎分20mで金属細線(Au線、φ25μm)を浸漬し、その後、取り出し、酸素を遮断したN2中で、250℃、60秒の乾燥・硬化を行い、金属細線表面に塗膜を形成した。形成長さは300mであった。 The copolymerized polyimide resin and divinyltetramethylsiloxane benzocyclobutene / mesitylene mixture were heat-cured in N 2 which was blocked from oxygen. In this mixed solution, a thin metal wire (Au wire, φ25 μm) is immersed at 20 m / min using a dip coating apparatus, and then taken out and dried at 250 ° C. for 60 seconds in N 2 where oxygen is blocked. Curing was performed to form a coating film on the surface of the fine metal wires. The formation length was 300 m.

以下の表1,2の符号( 1)〜10)について)の説明をここで予め示す。   The explanation of the following symbols (1) to 10) in Tables 1 and 2 is shown here in advance.

1)SEMによる観察:〜5nm/優、6〜15nm/良、16〜25nm/可、26nm〜/不可
2)SEMによる観察:あり/不可、許容範囲/可、なし/良
3)SEMによる観察:0.05〜0.5μm/優、0.6〜1.0μm/良、1.0〜5.0μm/可、5.0μm〜/不可
4)プル強度1st側(接合性の試験):41g〜/優、36〜40g/良、31〜35g/可、〜30/不可
5)プル強度2nd側:5g以上/◎、3g以上5g未満/○、3g未満/×
6)耐電圧:10V以上/優、10〜2V/可、2V未満/不可
7)絶縁抵抗:5MΩ以上/優、5MΩ〜3MΩ/良、3MΩ〜1MΩ/可、1M未満/不可
8)燃焼残渣:ボールアップ時に燃焼残渣あり/×、僅かにあり/○、なし/◎
9)スプール解れ:300mをスプールに巻いたとき、スプールからのワイヤの解れ、弛み、およびワイヤ同士の接着がないこと
300mで不良数0/優 300mで不良数1/可、300mで不良数2以上/不可
10)連続W/B性: ≧1000m:良、1000〜500m:可、≦500m:不可
1) Observation by SEM: ~ 5 nm / excellent, 6-15 nm / good, 16-25 nm / possible, 26 nm ~ / impossible 2) Observation by SEM: yes / no, acceptable / possible, none / good 3) Observation by SEM : 0.05 to 0.5 μm / excellent, 0.6 to 1.0 μm / good, 1.0 to 5.0 μm / possible, 5.0 μm to / not possible 4) Pull strength 1st side (bondability test): 41 g- / excellent, 36-40 g / good, 31-35 g / possible, -30 / impossible 5) Pull strength 2nd side: 5 g or more / ◎, 3 g or more but less than 5 g / O, less than 3 g / x
6) Dielectric strength: 10V or more / excellent, 10-2V / possible, less than 2V / impossible 7) Insulation resistance: 5MΩ / excellent / excellent, 5MΩ-3MΩ / good, 3MΩ-1MΩ / possible, less than 1M / possible 8) Combustion residue : Combustion residue at the time of ball up / ×, slightly present / ○, none / ◎
9) Unwinding of the spool: When 300m is wound around the spool, the wire from the spool is not loosened, loosened, and the wires are not bonded to each other. The number of defects is 0 / excellent at 300m. The number of defects is 1 / possible at 300m, and the number of defects is 2 at 300m. 10 / continuous W / B property: ≧ 1000 m: good, 1000-500 m: acceptable, ≦ 500 m: not acceptable

Figure 2009016319
Figure 2009016319

Figure 2009016319
Figure 2009016319

Claims (7)

酸無水物と芳香族ジアミンから直接合成される共重合ポリイミド樹脂を主体とする有機薄膜で被覆されていることを特徴とする絶縁被覆金属細線。   An insulating coated metal wire characterized by being coated with an organic thin film mainly composed of a copolymerized polyimide resin directly synthesized from an acid anhydride and an aromatic diamine. 前記有機薄膜は、前記共重合ポリイミド樹脂とジアルフタレート樹脂との混合樹脂からなることを特徴とする請求項1に記載の絶縁被覆金属細線。   2. The insulated thin metal wire according to claim 1, wherein the organic thin film is made of a mixed resin of the copolymerized polyimide resin and a dialphtalate resin. 前記混合樹脂における、前記ジアルフタレート樹脂の混合比率は、前記共重合ポリイミド樹脂1.0質量部に対し、0.1〜5.0質量部であることを特徴とする請求項2に記載の絶縁被覆金属細線。   3. The insulation according to claim 2, wherein a mixing ratio of the dialphthalate resin in the mixed resin is 0.1 to 5.0 parts by mass with respect to 1.0 part by mass of the copolymerized polyimide resin. Coated fine metal wire. 前記有機薄膜は、前記共重合ポリイミド樹脂とベンゾシクロブテン樹脂との混合樹脂からなることを特徴とする請求項1に記載の絶縁被覆金属細線。   2. The insulated thin metal wire according to claim 1, wherein the organic thin film is made of a mixed resin of the copolymerized polyimide resin and benzocyclobutene resin. 前記混合樹脂における、前記ベンゾシクロブテン樹脂の混合比率は、前記共重合ポリイミド樹脂1.0質量部に対し、0.1〜10.0質量部であることを特徴とする請求項4に記載の絶縁被覆金属細線。   The mixing ratio of the benzocyclobutene resin in the mixed resin is 0.1 to 10.0 parts by mass with respect to 1.0 part by mass of the copolymerized polyimide resin. Insulated thin metal wire. 前記共重合ポリイミド樹脂の分子量が、10,000〜200,000の範囲内にあることを特徴とする請求項1〜5のいずれかに記載の絶縁被覆金属細線。   The molecular weight of the said copolymerization polyimide resin exists in the range of 10,000-200,000, The insulation coating metal fine wire in any one of Claims 1-5 characterized by the above-mentioned. 前記有機薄膜の分解温度が、150〜450℃であることを特徴とする請求項1〜5のいずれかに記載の絶縁被覆金属細線。   The insulating thin metal wire according to any one of claims 1 to 5, wherein a decomposition temperature of the organic thin film is 150 to 450 ° C.
JP2007180307A 2007-07-09 2007-07-09 Insulated coating metal thin wire Pending JP2009016319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180307A JP2009016319A (en) 2007-07-09 2007-07-09 Insulated coating metal thin wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180307A JP2009016319A (en) 2007-07-09 2007-07-09 Insulated coating metal thin wire

Publications (1)

Publication Number Publication Date
JP2009016319A true JP2009016319A (en) 2009-01-22

Family

ID=40356949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180307A Pending JP2009016319A (en) 2007-07-09 2007-07-09 Insulated coating metal thin wire

Country Status (1)

Country Link
JP (1) JP2009016319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024385A (en) * 2008-07-22 2010-02-04 Sekisui Chem Co Ltd Method for producing porous resin film, porous resin film, and cell separator
JP2013233520A (en) * 2012-05-10 2013-11-21 Sawahei Co Ltd Method for coating thin wire and coated thin wire produced by the method for coating

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181899A (en) * 1975-01-09 1976-07-17 Inst Erementooruganichesukiifu HORIIMIDOSEIZOHO
JPS63280721A (en) * 1987-05-13 1988-11-17 Nippon Sheet Glass Co Ltd Resin composition for printed circuit board and printed circuit board using same
JPH03199233A (en) * 1989-12-21 1991-08-30 W R Grace & Co Polyimide resin composition and its manufacture
JPH04331230A (en) * 1990-04-06 1992-11-19 W R Grace & Co Three-component polyimide resin composition and its manufacture
JPH05155984A (en) * 1991-12-04 1993-06-22 Meidensha Corp Heat-resistant resin composition
JPH06192420A (en) * 1992-12-25 1994-07-12 P I Zairyo Kenkyusho:Kk Polyimide solution composition and its production
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition
JP2005174561A (en) * 2003-12-05 2005-06-30 Pi R & D Co Ltd Insulated electric wire and insulated coil
JP2006278963A (en) * 2005-03-30 2006-10-12 Tomoegawa Paper Co Ltd Semiconductor device, its manufacturing method and adhesive sheet for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181899A (en) * 1975-01-09 1976-07-17 Inst Erementooruganichesukiifu HORIIMIDOSEIZOHO
JPS63280721A (en) * 1987-05-13 1988-11-17 Nippon Sheet Glass Co Ltd Resin composition for printed circuit board and printed circuit board using same
JPH03199233A (en) * 1989-12-21 1991-08-30 W R Grace & Co Polyimide resin composition and its manufacture
JPH04331230A (en) * 1990-04-06 1992-11-19 W R Grace & Co Three-component polyimide resin composition and its manufacture
JPH05155984A (en) * 1991-12-04 1993-06-22 Meidensha Corp Heat-resistant resin composition
JPH06192420A (en) * 1992-12-25 1994-07-12 P I Zairyo Kenkyusho:Kk Polyimide solution composition and its production
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition
JP2005174561A (en) * 2003-12-05 2005-06-30 Pi R & D Co Ltd Insulated electric wire and insulated coil
JP2006278963A (en) * 2005-03-30 2006-10-12 Tomoegawa Paper Co Ltd Semiconductor device, its manufacturing method and adhesive sheet for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024385A (en) * 2008-07-22 2010-02-04 Sekisui Chem Co Ltd Method for producing porous resin film, porous resin film, and cell separator
JP2013233520A (en) * 2012-05-10 2013-11-21 Sawahei Co Ltd Method for coating thin wire and coated thin wire produced by the method for coating

Similar Documents

Publication Publication Date Title
JP4998725B2 (en) Flexible wiring board for tape carrier package
TWI455671B (en) Printed circuit board manufacturing method
CN107325285B (en) Polyimide, polyimide-based adhesive, adhesive material, adhesive layer, adhesive sheet, laminate, wiring board, and method for producing same
JP4378620B2 (en) Polyamideimide resin, flexible metal-clad laminate and flexible printed circuit board
JP5251508B2 (en) Heat-resistant film metal foil laminate and method for producing the same
TWI321974B (en) Copper clad laminate for chip on film
EP1916098A1 (en) Laminate and process for producing the same
JP6218931B2 (en) Laminated porous film and method for producing the same
TW201336893A (en) Resin composition, layered product, multilayered printed wiring board, multilayered flexible wiring board, and process for producing same
TW200846176A (en) Insulative resin sheet laminate, multi-layered printed wiring board consisting of the insulative resin sheet laminate
TW201004500A (en) Resin sheet having copper layer, multilayer printed board, process for manufacturing multilayer printed board, and semiconductor device
TW201124465A (en) Epoxy resin compositions
JP4986256B2 (en) Prepreg containing modified polyimide resin
WO2013005847A1 (en) Adhesive film, multilayer printed wiring board using adhesive film, and method for manufacturing multilayer printed wiring board
CN107848260A (en) Copper foil, copper-clad laminated board and the printed circuit board (PCB) of resin
CN108141967A (en) The manufacturing method of wiring substrate
JP2015162635A (en) Method for manufacturing printed wiring board
CN109644555B (en) Interlayer insulating film and method for manufacturing same
TW202039678A (en) Liquid composition, powder, and method for producing said powder
JP2009226874A (en) Flexible copper clad laminate
JP2005144816A (en) Flexible metal laminate
US6303230B1 (en) Laminates
JP5165047B2 (en) Polyimide precursor resin solution
KR100599544B1 (en) Laminate and multilayer printed board manufactured by using the same
JP2009016319A (en) Insulated coating metal thin wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629