JP2008041568A - Straight angle electric wire having semiconductive layer, and manufacturing method therefor - Google Patents

Straight angle electric wire having semiconductive layer, and manufacturing method therefor Download PDF

Info

Publication number
JP2008041568A
JP2008041568A JP2006217412A JP2006217412A JP2008041568A JP 2008041568 A JP2008041568 A JP 2008041568A JP 2006217412 A JP2006217412 A JP 2006217412A JP 2006217412 A JP2006217412 A JP 2006217412A JP 2008041568 A JP2008041568 A JP 2008041568A
Authority
JP
Japan
Prior art keywords
electric wire
semiconductive
semiconductive layer
paint
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006217412A
Other languages
Japanese (ja)
Inventor
Itaru Gosho
至 御書
Masanori Fujii
政徳 藤井
Hiromasa Honjo
宏昌 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2006217412A priority Critical patent/JP2008041568A/en
Publication of JP2008041568A publication Critical patent/JP2008041568A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Insulating Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a straight angle electric wire having a thinned semiconductive layer of excellent high-frequency characteristic. <P>SOLUTION: This straight angle electric wire 10 of the present invention has a conductor 1 with a straight angle cross section, and the semiconductive layer 2 formed in an outer circumference thereof, and a relation A≥0.6×B is satisfied in the semiconductive layer 2, where A represents a film thickness of a corner part 3 and B represents a film thickness of a flat part 4. The film thickness B is preferably 130μm or less, and a volume resistivity of the semiconductive layer is preferably 10<SP>2</SP>-10<SP>10</SP>Ωcm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導電層を有する平角状電線及びその製造方法に関し、より詳細には高周波特性に優れ、かつ薄膜化された半導電層を有する平角状電線及びその製造方法に関する。   The present invention relates to a rectangular electric wire having a semiconductive layer and a method for manufacturing the same, and more particularly to a flat electric wire having excellent high frequency characteristics and having a thinned semiconductive layer and a method for manufacturing the same.

従来、電気絶縁を目的として、導体上に絶縁層を設けたエナメル電線が使用されてきた。近年、電気機器や産業用モータ等は、省エネルギーの推進や小型化高性能化の要求に伴い、高電圧でインバータ制御により使用される傾向にある。しかし、インバータ制御を採用した電気機器では、過大なサージ電圧が発生しコロナ放電によるエナメル線の劣化や、放電による絶縁破壊等の問題が生ずる。また、オーディオ、コンピュータディスプレイ、モニターテレビ等は高周波信号で動作しており、例えば、100kHz前後の高周波電圧が用いられることが多く、このような高周波がエナメル線に印加されると、コロナ放電が発生し局所的な温度上昇や発生したオゾンの作用によりエナメル線の絶縁層を劣化させる。   Conventionally, an enameled wire having an insulating layer provided on a conductor has been used for the purpose of electrical insulation. In recent years, electric devices, industrial motors, and the like tend to be used by inverter control at high voltage in accordance with demands for energy saving and miniaturization and high performance. However, in electrical equipment that employs inverter control, an excessive surge voltage is generated, causing problems such as degradation of enameled wire due to corona discharge and dielectric breakdown due to discharge. Audio, computer displays, monitor televisions, etc. operate with high-frequency signals. For example, a high-frequency voltage around 100 kHz is often used, and when such a high frequency is applied to an enameled wire, corona discharge occurs. However, the insulating layer of the enamel wire is deteriorated by the local temperature rise and the action of the generated ozone.

このような問題を解決するために、高周波用あるいは高電圧用電線として、断面丸形の導体と、該導体の外表面に半導電性塗料を直接塗布焼付けして形成した半導電層と、該半導電層の外表面に絶縁塗料を直接塗布焼付けした絶縁層とを有する電線が提案されている(特許文献1及び2)。かかる電線によれば、高周波電圧下における使用に対しても寿命の低下の少ない、高周波特性や耐圧電圧特性に優れる丸形電線が得られる。しかし、電気機器の軽量小型化の要望に対応すべく、断面丸形の導体を断面平角状の導体に代えて、その外表面に半導電性塗料を直接塗布焼付けして半導電層の形成を試みると、導体のコーナー部において必要厚の半導電層を形成することが困難になる。そのため、必要厚を有する半導電層を得るために半導電性塗料の塗布焼付けを繰り返す必要があり、製造効率が著しく低下する。さらに、半導電性塗料を導体に直接塗布焼付けして半導電層を形成する方法では、半導電層を薄膜とすることも困難であるため、電気機器を十分に軽量小型化するに至っていない。
特開2005−251573号公報 特開平08−96625号公報
In order to solve such problems, as a high-frequency or high-voltage electric wire, a conductor having a round cross section, a semiconductive layer formed by directly applying and baking a semiconductive paint on the outer surface of the conductor, There has been proposed an electric wire having an insulating layer obtained by directly applying and baking an insulating paint on the outer surface of a semiconductive layer (Patent Documents 1 and 2). According to such an electric wire, a round electric wire with excellent high-frequency characteristics and withstand voltage characteristics can be obtained with little decrease in life even when used under a high-frequency voltage. However, in order to meet the demand for lighter and smaller electrical equipment, the conductor with a round cross section is replaced with a conductor with a rectangular cross section, and a semiconductive paint is directly applied and baked on the outer surface to form a semiconductive layer. When it is attempted, it becomes difficult to form a semiconductive layer having a required thickness at the corner portion of the conductor. Therefore, in order to obtain a semiconductive layer having a necessary thickness, it is necessary to repeatedly apply and bake the semiconductive paint, and the production efficiency is remarkably lowered. Furthermore, in the method in which a semiconductive layer is formed by directly applying and baking a semiconductive paint on a conductor, it is difficult to make the semiconductive layer into a thin film, so that the electric device has not been sufficiently reduced in weight and size.
JP 2005-251573 A Japanese Patent Application Laid-Open No. 08-96625

本発明はこのような実情に鑑みなされたものであり、その解決しようとする課題は高周波特性に優れ、かつ薄膜化された半導電層を有する平角状電線を提供することにある。   The present invention has been made in view of such circumstances, and a problem to be solved is to provide a rectangular electric wire having excellent high-frequency characteristics and having a thinned semiconductive layer.

本発明者らは上記課題を解決するため鋭意研究を重ねた結果、平角状導体の外周に電着により半導電層を形成し、その半導電層の平坦部及びコーナー部の膜厚を特定の関係を満たす平角状電線とすることで上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors formed a semiconductive layer by electrodeposition on the outer periphery of a flat rectangular conductor, and specified the film thickness of the flat portion and the corner portion of the semiconductive layer. The present inventors have found that the above problems can be solved by using a flat electric wire satisfying the relationship, and have completed the present invention.

すなわち、本発明は以下のとおりである。
(1)断面平角状の導体と、その外周に形成された半導電層とを有し、半導電層のコーナー部の膜厚Aと、半導電層の平坦部の膜厚Bとが
A≧0.6×Bの関係を満たす、半導電層を有する平角状電線。
(2)膜厚Bが30μm以下である(1)記載の平角状電線。
(3)半導電層の体積抵抗率が10〜1010Ω・cmである(1)又は(2)記載の平角状電線。
(4)半導電層が半導電性塗料の電着により形成したものである(1)〜(3)のいずれかに記載の平角状電線。
(5)半導電性塗料が導電性材料を含有する絶縁塗料である(4)記載の平角状電線。
(6)半導電性塗料の全固形分に占める導電性材料の割合が35〜55重量%である(5)記載の半導電層を有する平角状電線。
(7)断面平角状の導体の外周に、半導電性塗料を電着し焼付け処理して半導電層を形成する、半導電層を有する平角状電線の製造方法。
(8)半導電性塗料として導電性材料を含有する絶縁塗料を用いる(7)記載の製造方法。
(9)半導電性塗料の全固形分に占める導電性材料の割合が35〜55重量%である(8)記載の製造方法。
That is, the present invention is as follows.
(1) A conductor having a rectangular cross section and a semiconductive layer formed on the outer periphery thereof, and the thickness A of the corner portion of the semiconductive layer and the thickness B of the flat portion of the semiconductive layer are A ≧ A flat electric wire having a semiconductive layer that satisfies a relationship of 0.6 × B.
(2) The flat electric wire according to (1), wherein the film thickness B is 30 μm or less.
(3) The rectangular electric wire according to (1) or (2), wherein the semiconductive layer has a volume resistivity of 10 2 to 10 10 Ω · cm.
(4) The flat electric wire according to any one of (1) to (3), wherein the semiconductive layer is formed by electrodeposition of a semiconductive paint.
(5) The flat electric wire according to (4), wherein the semiconductive paint is an insulating paint containing a conductive material.
(6) A rectangular electric wire having a semiconductive layer according to (5), wherein the ratio of the conductive material to the total solid content of the semiconductive paint is 35 to 55% by weight.
(7) A method for producing a rectangular electric wire having a semiconductive layer, in which a semiconductive paint is electrodeposited and baked on the outer periphery of a conductor having a rectangular cross section to form a semiconductive layer.
(8) The production method according to (7), wherein an insulating paint containing a conductive material is used as the semiconductive paint.
(9) The production method according to (8), wherein the proportion of the conductive material in the total solid content of the semiconductive paint is 35 to 55% by weight.

本発明によれば、平角状導体の外周に、平坦部だけでなくコーナー部においても十分な膜厚を有し、しかも薄膜化された半導電層を有する平角状電線を提供することができる。これにより、コロナ放電や絶縁破壊等による電線の劣化が防止可能になるため、本発明の平角状電線は高周波用電線、耐絶縁破壊用電線として有用である。   ADVANTAGE OF THE INVENTION According to this invention, the rectangular electric wire which has sufficient film thickness not only in a flat part but in a corner part on the outer periphery of a rectangular conductor, and also has the semiconductive layer thinned can be provided. This makes it possible to prevent deterioration of the electric wire due to corona discharge, dielectric breakdown, and the like, and therefore the flat electric wire of the present invention is useful as a high-frequency electric wire and a dielectric breakdown-resistant electric wire.

以下、本発明をその好適な実施形態に即して詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図示の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。本発明は図面に示された形態に限定されない。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. For the convenience of illustration, the dimensional ratios in the drawings do not necessarily match those described. The present invention is not limited to the form shown in the drawings.

(半導電層を有する平角状電線)
図1は、本発明の半導電層を有する平角状電線の一実施形態を示す断面図である。本実施形態に係る平角状電線10は、断面平角状の導体1と、その外周に形成された半導電層2とを備える。半導電層2は、四隅を構成するコーナー部3と、四辺を構成する平坦部4とを有しており、コーナー部3の膜厚Aと平坦部4の膜厚Bとが下記式(I)の関係を満たすことを特徴とする。
A≧0.6×B (I)
一方、被膜特性の安定性という観点からは膜厚Aは膜厚Bと同等(A=B)に近いことが好ましいが、一般的なコイルに要求される特性からみた場合、上記式(I)を満たしていれば十分である。
(Square wire with semiconductive layer)
FIG. 1 is a cross-sectional view showing an embodiment of a flat electric wire having a semiconductive layer of the present invention. A flat electric wire 10 according to the present embodiment includes a conductor 1 having a flat cross section and a semiconductive layer 2 formed on the outer periphery thereof. The semiconductive layer 2 has a corner portion 3 constituting four corners and a flat portion 4 constituting four sides, and the film thickness A of the corner portion 3 and the film thickness B of the flat portion 4 are expressed by the following formula (I ) Is satisfied.
A ≧ 0.6 × B (I)
On the other hand, from the viewpoint of the stability of the film characteristics, the film thickness A is preferably close to the film thickness B (A = B), but when viewed from the characteristics required for a general coil, the above formula (I) Is sufficient.

ここで、コーナー部3の膜厚Aとは、図1に示すとおり、導体1を構成する2辺の交点5から半導電層表面6までの最短距離をいう。また、平坦部4の膜厚Bとは、導体1を構成する一辺7から半導電層表面6までの最短距離をいう。また、膜厚Bは好ましくは30μm以下、より好ましくは1.5〜10μmであり、耐外傷性の観点からさらに好ましくは8〜10μmである。前記範囲内であれば半導電層2の電気的特性が十分に確保できるとともにケーブルサイズの小型化(小径化)を図ることができる。   Here, the film thickness A of the corner portion 3 means the shortest distance from the intersection 5 of the two sides constituting the conductor 1 to the surface of the semiconductive layer 6 as shown in FIG. Further, the film thickness B of the flat portion 4 refers to the shortest distance from one side 7 constituting the conductor 1 to the semiconductive layer surface 6. Further, the film thickness B is preferably 30 μm or less, more preferably 1.5 to 10 μm, and further preferably 8 to 10 μm from the viewpoint of the resistance to trauma. If it is in the said range, the electrical property of the semiconductive layer 2 can be sufficiently secured, and the cable size can be reduced (smaller diameter).

さらに、半導電層2の体積抵抗率は好ましくは10〜1010Ω・cm、より好ましくは10〜10Ω・cmである。体積抵抗率が上記範囲内であれば導体間の渦電流の影響を大幅にキャンセルできるという利点がある。なお、一般的には体積抵抗率は低ければ低いほど好ましい。本発明では、半導電層2の体積抵抗率を測定するために、平角状電線10の外周に幅Lの金属箔(図示せず)を巻き付け、導体1と金属箔との間の抵抗値Rを実測する。半導体層2の体積抵抗率ρ(Ω・cm)は、(2×π×L×R)÷(L(D/d)として算出される。ここで、L(D/d)は(D/d)の自然対数であり、Dは平角状電線10の断面積と同じ面積をもつ円の直径であり、dは導体1の断面積と同じ面積をもつ円の直径である。 Furthermore, the volume resistivity of the semiconductive layer 2 is preferably 10 2 to 10 10 Ω · cm, more preferably 10 2 to 10 6 Ω · cm. If the volume resistivity is within the above range, there is an advantage that the influence of the eddy current between the conductors can be largely canceled. In general, the lower the volume resistivity, the better. In the present invention, in order to measure the volume resistivity of the semiconductive layer 2, a metal foil (not shown) having a width L is wound around the outer periphery of the flat electric wire 10, and a resistance value R between the conductor 1 and the metal foil is measured. Is actually measured. The volume resistivity ρ (Ω · cm) of the semiconductor layer 2 is calculated as (2 × π × L × R) ÷ (L N (D / d), where L N (D / d) is ( D / d) is a natural logarithm, D is the diameter of a circle having the same area as the cross-sectional area of the flat wire 10, and d is the diameter of a circle having the same area as the cross-sectional area of the conductor 1.

平角状導体の材質としては良導電性金属が好適に使用されるが、具体的には、銅、アルミニウム、銅合金、銅クラッドアルミニウム、ニッケルめっき銅等が挙げられる。
平角状導体の寸法は適宜選択することが可能であるが、通常、厚さが500μm以下(好ましくは10〜200μm)であり、幅が0.1〜10mm(好ましくは0.1〜5mm)であり、アスペクト比が1:3〜1:100(好ましくは1:5〜1:30)のものが使用される。
As the material for the flat rectangular conductor, a highly conductive metal is preferably used, and specifically, copper, aluminum, copper alloy, copper clad aluminum, nickel-plated copper and the like can be mentioned.
The dimensions of the flat rectangular conductor can be appropriately selected, but usually the thickness is 500 μm or less (preferably 10 to 200 μm) and the width is 0.1 to 10 mm (preferably 0.1 to 5 mm). The aspect ratio is 1: 3 to 1: 100 (preferably 1: 5 to 1:30).

また、半導電層は半導電性塗料の電着により好適に形成されるが、半導電性塗料としては半導電性を示すものであれば特に限定されることなく使用することができる。半導電性塗料としては、例えば、導電性材料を絶縁塗料中に混練したものが好適に使用される。ベースとなる絶縁塗料としては、アクリル系塗料、ポリビニルホルマール、ポリウレタン、ポリエステル、ポリエステルイミド、ポリアミドイミド、ポリイミド等が挙げられ、これらは水分散型樹脂ワニスの形態で好適に使用される。中でも、ポリウレタン、アクリル系塗料が好ましい。また、導電性材料としては、カーボンブラックや銀などの金属粉末が挙げられ、中でもカーボンブラックが好ましい。かかる導電性材料は、半導電性塗料の全固形分の好ましくは35〜55重量%を占める。含有量が上記範囲内であれば、塗料の電着性を損なうことなく均一な被膜を形成することができる点で有利である。
半導電性塗料の全固形分とは、半導電性塗料を十分に乾燥(200℃で30分間)したときに揮発せずに残る成分のことであり、少なくとも導電性材料および絶縁塗料に含まれる樹脂を含む。半導電性塗料の全固形分濃度は好ましくは15〜25重量%であり、より好ましくは18〜22重量%である。
The semiconductive layer is suitably formed by electrodeposition of a semiconductive paint, but any semiconductive paint can be used without particular limitation as long as it exhibits semiconductivity. As the semiconductive paint, for example, a kneaded conductive material in an insulating paint is preferably used. Examples of the base insulating paint include acrylic paint, polyvinyl formal, polyurethane, polyester, polyesterimide, polyamideimide, polyimide, and the like, and these are preferably used in the form of a water-dispersed resin varnish. Among these, polyurethane and acrylic paint are preferable. In addition, examples of the conductive material include metal powders such as carbon black and silver, and carbon black is particularly preferable. Such a conductive material preferably accounts for 35 to 55% by weight of the total solid content of the semiconductive paint. If the content is within the above range, it is advantageous in that a uniform film can be formed without impairing the electrodeposition properties of the paint.
The total solid content of the semiconductive paint is a component that does not evaporate when the semiconductive paint is sufficiently dried (at 200 ° C. for 30 minutes), and is contained in at least the conductive material and the insulating paint. Contains resin. The total solid concentration of the semiconductive paint is preferably 15 to 25% by weight, more preferably 18 to 22% by weight.

以上、本発明に係る平角状電線をその実施形態に基づいて詳細に説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、平角状導体の外周に形成された半導電層上に膜厚が1.0〜10μm程度の絶縁層を一層以上設けてもよい。これにより、高周波特性により一層優れた平角状電線を提供することが可能になり、このようにして得られた平角状電線は電気コイルやケーブル等として有用である。   As mentioned above, although the flat electric wire which concerns on this invention was demonstrated in detail based on the embodiment, this invention is not limited to the said embodiment. The present invention can be variously modified without departing from the gist thereof. For example, one or more insulating layers having a thickness of about 1.0 to 10 μm may be provided on the semiconductive layer formed on the outer periphery of the rectangular conductor. As a result, it is possible to provide a flat electric wire that is more excellent in high-frequency characteristics, and the flat electric wire thus obtained is useful as an electric coil, a cable, or the like.

(半導電層を有する平角状電線の製造方法)
図2は、本発明の半導電層を有する平角状電線の製造工程の一例を示す模式断面図である。本発明の半導電層を有する平角状電線の製造方法は、断面平角状の導体の外周に、半導電性塗料を電着し焼付け処理して半導電層を形成することを特徴とするが、以下、図2を参照しつつ詳細に説明する。
(Manufacturing method of a flat electric wire having a semiconductive layer)
FIG. 2 is a schematic cross-sectional view showing an example of a manufacturing process of a flat electric wire having a semiconductive layer of the present invention. The method for producing a rectangular electric wire having a semiconductive layer according to the present invention is characterized in that a semiconductive layer is formed by electrodeposition and baking treatment of a semiconductive paint on the outer periphery of a conductor having a rectangular cross section. Hereinafter, it will be described in detail with reference to FIG.

先ず、平角状導体1を準備する。平角状導体1としては、上記した材質のものが使用され、適宜選択することが可能である。   First, the flat conductor 1 is prepared. The flat conductor 1 is made of the above-described material, and can be appropriately selected.

次いで、平角状導体1上に半導電層2を形成すべく電着処理する。電着処理は、例えば、電着液11を収容し、白金板からなる円筒状の陰極12が設置された電着槽13内で行なわれる。電着液11として、導電性材料を含む絶縁塗料が通常使用され、絶縁塗料として水分散型樹脂ワニスが好適に使用される。電着処理は、具体的には、直流電源(図示せず)の陽極側に接続された平角状導体1を、ロール14を介して電着槽13内に設置された円筒状の陰極12内を通過させて行なう。これにより、陽極である平角状導体1と陰極間の電位差により平角状導体1上に電着樹脂層を平坦部だけでなく、コーナー部においても必要厚を有し、かつその膜厚を可及的に薄膜化して被覆することが可能になる。   Next, an electrodeposition process is performed to form the semiconductive layer 2 on the flat rectangular conductor 1. The electrodeposition process is performed, for example, in an electrodeposition tank 13 that contains an electrodeposition liquid 11 and is provided with a cylindrical cathode 12 made of a platinum plate. As the electrodeposition liquid 11, an insulating paint containing a conductive material is usually used, and a water-dispersed resin varnish is suitably used as the insulating paint. Specifically, in the electrodeposition process, a rectangular conductor 1 connected to the anode side of a DC power source (not shown) is placed in a cylindrical cathode 12 installed in an electrodeposition tank 13 via a roll 14. To pass through. As a result, the electrodeposition resin layer on the rectangular conductor 1 has a necessary thickness not only in the flat portion but also in the corner portion due to the potential difference between the rectangular conductor 1 serving as the anode and the cathode, and the film thickness can be made as large as possible. Therefore, it becomes possible to make a thin film and coat it.

その際、コーナー部の膜厚Aと平坦部の膜厚Bとが上記式(I)の関係を満たすように電着樹脂層を形成する。上記式(I)の関係を満たすように膜厚を制御する手段としては、例えば、電着条件を適宜調整する方法が挙げられ、別の手段としては、絶縁塗料として使用する水分散ワニスの濃度を調整することも挙げられる。   At that time, the electrodeposition resin layer is formed so that the film thickness A of the corner portion and the film thickness B of the flat portion satisfy the relationship of the above formula (I). As a means for controlling the film thickness so as to satisfy the relationship of the above formula (I), for example, there is a method of appropriately adjusting the electrodeposition conditions, and as another means, the concentration of the water-dispersed varnish used as the insulating paint It is also possible to adjust.

本実施形態においては水分散タイプのワニスを使用するが、溶液タイプのワニスを使用すると、焼付け時に表面張力によりコーナー部の電着樹脂層が流出しやすく、場合によってはコーナー部の膜厚が実質0となることがある。したがって、水分散タイプのワニスを使用することが好ましいが、コーナー部に十分な厚さの被膜を形成できるのであれば溶液タイプのワニスを使用してもよい。導電性材料の好適な含有量は上記したとおりである。   In this embodiment, a water dispersion type varnish is used. However, when a solution type varnish is used, the electrodeposition resin layer at the corner portion tends to flow out due to surface tension during baking, and in some cases, the thickness of the corner portion is substantially reduced. May be zero. Therefore, it is preferable to use a water-dispersed varnish, but a solution-type varnish may be used as long as a sufficiently thick film can be formed at the corner. The preferred content of the conductive material is as described above.

電着処置後、直ちに電着樹脂層を乾燥し、焼付け処理を行なってもよいが、かかる処理前に有機溶剤15を収容した溶剤槽16中を通過させることが好ましい。有機溶剤15としては、水を少なくとも約1重量%、好ましくは少なくとも約10重量%溶解し、且つ平角状導体1上の乾燥及び焼付け前の半硬化状態またはその状態に至る前の電着樹脂層を膨潤、好ましくは溶解するものが用いられる。具体的には、メタノール、エタノール、プロパール、エチレングリコール、グリセリン等の1価又は多価アコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジエチルエーテル、エーテルグリコールジブチルエーテル、エーテルグリコールモノフェニルエーテル等のセロソルブ類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の含窒素溶剤;ジメチルスルホキシド等の含イオン溶剤が挙げられる。中でも、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシドが好ましい。かかる溶媒処理により、電着樹脂層中の樹脂粒子同士を焼付け時に効果的に融合させて、ピンホールのない均一な膜厚を形成することができる。なお、電着樹脂層を形成させた平角状電線を有機溶剤の蒸気やミスト中を通過させても同様な効果を得ることができる。   Immediately after the electrodeposition treatment, the electrodeposition resin layer may be dried and baked, but it is preferable to pass through the solvent tank 16 containing the organic solvent 15 before such treatment. As the organic solvent 15, water is dissolved at least about 1% by weight, preferably at least about 10% by weight, and the electrodeposited resin layer is in a semi-cured state before drying and baking on the rectangular conductor 1 or before reaching the state. Those that swell, preferably dissolve are used. Specifically, monovalent or polyvalent alcohols such as methanol, ethanol, propall, ethylene glycol, glycerin; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether, ethylene glycol diethyl ether Cellosolves such as ether glycol dibutyl ether and ether glycol monophenyl ether; nitrogen-containing solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; ion-containing solvents such as dimethyl sulfoxide Is mentioned. Among these, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and dimethyl sulfoxide are preferable. By such solvent treatment, the resin particles in the electrodeposited resin layer can be effectively fused at the time of baking to form a uniform film thickness without pinholes. It should be noted that the same effect can be obtained even when a rectangular electric wire on which an electrodeposited resin layer is formed is allowed to pass through an organic solvent vapor or mist.

また、電着槽13及び溶剤槽16における平角状電線の出口に、例えばエアーワイパー、ローラーワイパー等のワイピング装置を設け、電着樹脂層上の過剰なワニスや処理液を除去してもよい。特に高速で電着処理を行った場合には、電着樹脂層に付着した未電着のワニス等が焼付け工程で発泡し、高速作業を妨げることがある。このため、上記したワイピング方法によりワニス等を除去すれば、発泡が防止され、例えば、50m/min以上といった高速作業が可能になる。   Further, a wiping device such as an air wiper or a roller wiper may be provided at the outlet of the rectangular electric wire in the electrodeposition tank 13 and the solvent tank 16 to remove excess varnish and treatment liquid on the electrodeposition resin layer. In particular, when the electrodeposition treatment is performed at a high speed, unelectrodeposited varnish or the like adhering to the electrodeposited resin layer may foam during the baking process, thereby hindering the high-speed operation. For this reason, if varnish etc. are removed with the above-mentioned wiping method, foaming will be prevented and high-speed operation | work of 50 m / min or more will be attained, for example.

次いで、電着樹脂層の乾燥、焼付け処理を行なう。乾燥工程と焼付け工程は一連の加熱装置を介して行なうことができるが、別個の加熱装置を介して行なうことができる。本実施形態においては、図2に示すとおり、後者の方式を採用する。平角状導体1を乾燥装置17に導入する。これにより、平角状導体1は加熱され、電着樹脂層中の有機溶剤及び水が蒸発除去される。乾燥装置17の温度は有機溶剤の種類によって適宜選択することができるが、一般に約60〜300℃、好ましくは約100〜250℃である。乾燥工程、その前段階において、液体の蒸発の促進と、あるいは平角状導体1上の電着樹脂層の半硬化又は完全硬化を同時に行うために、例えば約200〜500℃の高温処理を適用してもよい。   Next, the electrodeposition resin layer is dried and baked. The drying and baking steps can be performed through a series of heating devices, but can be performed through separate heating devices. In the present embodiment, the latter method is adopted as shown in FIG. The flat conductor 1 is introduced into the drying device 17. Thereby, the rectangular conductor 1 is heated, and the organic solvent and water in the electrodeposition resin layer are removed by evaporation. Although the temperature of the drying apparatus 17 can be suitably selected according to the kind of organic solvent, it is generally about 60-300 degreeC, Preferably it is about 100-250 degreeC. In the drying step, the preceding stage, for example, a high temperature treatment of about 200 to 500 ° C. is applied in order to simultaneously promote the evaporation of the liquid or to perform semi-curing or complete curing of the electrodeposited resin layer on the rectangular conductor 1. May be.

乾燥終了後、焼付け処理を行なう。焼付け処理は、焼付け炉18にて電着樹脂層を硬化処理して半導電層を形成せしめる。焼付温度は通常100〜700℃、好ましくは150〜600℃、より好ましくは170〜200℃である。なお、乾燥処理において焼付硬化まで充分行われたものは焼付炉18での焼付、硬化を省略することが可能な場合もある。
このようにして、平角状導体上に半導電層が形成された平角状電線が得られ、得られた平角状電線は、巻き取機19により巻き取られる。このようにして得られた平角状電線は、その半導電層が10〜1010Ω・cmという優れた体積抵抗率を有することができる。
After drying, a baking process is performed. In the baking process, the electrodeposition resin layer is cured in the baking furnace 18 to form a semiconductive layer. The baking temperature is usually 100 to 700 ° C, preferably 150 to 600 ° C, more preferably 170 to 200 ° C. It should be noted that baking and curing in the baking furnace 18 may be omitted if the baking process is sufficiently performed in the drying process.
In this way, a flat electric wire having a semiconductive layer formed on the flat electric conductor is obtained, and the obtained flat electric wire is wound up by the winder 19. The flat electric wire thus obtained can have an excellent volume resistivity of 10 2 to 10 10 Ω · cm in its semiconductive layer.

以上、本発明に係る平角状電線の製造方法について説明したが、本発明においては、上述のとおり半導電層上に絶縁層を一層以上設けることができ、かかる絶縁層は上記したポリウレタン等の絶縁塗料を半導電層上に上記と同様の電着処理により形成することが可能である。さらに、コイル巻作業の容易化を目的として、絶縁層上に自己融着層を設けることもできる。自己融着層の形成は、例えば、ワニスをディップ塗装した後、フェルト等でワニス絞りする方式等適宜な方法で行うことができる。   As mentioned above, although the manufacturing method of the rectangular electric wire which concerns on this invention was demonstrated, in this invention, one or more insulating layers can be provided on a semiconductive layer as mentioned above, and this insulating layer is insulation of above-mentioned polyurethane etc. The paint can be formed on the semiconductive layer by the same electrodeposition treatment as described above. Furthermore, for the purpose of facilitating coil winding work, a self-bonding layer can be provided on the insulating layer. The self-bonding layer can be formed by an appropriate method such as a method in which varnish is dip-coated and then varnished with felt or the like.

以下、本発明の実施例についてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.

(実施例1)
幅2mm、厚さ200μmの銅製平角状導体を陽極側として線速20m/分で電着装置に導入し、電着樹脂層を形成した。電着条件は、以下のとおりである。
・陰極:白金、
・直流電圧:80V、
・ワニス温度:25℃。
電着樹脂層の形成には、半導電性塗料として、カーボンブラック粉末を混練したポリウレタン水分散ワニス(日本ポイント社製、ウレタン電着塗料(型番:PSQ))を用いた。カーボンブラック粉末は半導電性塗料の全固形分の38重量%を占め、半導電性塗料の全固形分濃度は20重量%であった。
(Example 1)
A copper rectangular conductor having a width of 2 mm and a thickness of 200 μm was introduced into the electrodeposition apparatus at a linear speed of 20 m / min on the anode side to form an electrodeposition resin layer. The electrodeposition conditions are as follows.
・ Cathode: Platinum,
DC voltage: 80V
-Varnish temperature: 25 ° C.
For the formation of the electrodeposition resin layer, a polyurethane water dispersion varnish (manufactured by Nihon Point Co., Ltd., urethane electrodeposition paint (model number: PSQ)) kneaded with carbon black powder was used as a semiconductive paint. The carbon black powder accounted for 38% by weight of the total solid content of the semiconductive paint, and the total solid content of the semiconductive paint was 20% by weight.

次いで、電着樹脂層を形成した平角状導体を、100℃で乾燥させ、次いで180℃で焼付け処理して、コーナー部の膜厚Aが7.5μmであり、平坦部の膜厚Bが9.0μmである半導電層を有する平角状電線を得た。なお、半導電層の体積抵抗率は、4.0×10Ω・cmであった。 Next, the rectangular conductor on which the electrodeposited resin layer is formed is dried at 100 ° C. and then baked at 180 ° C., so that the film thickness A at the corner is 7.5 μm and the film thickness B at the flat portion is 9 μm. A flat electric wire having a semiconductive layer of 0.0 μm was obtained. The volume resistivity of the semiconductive layer was 4.0 × 10 5 Ω · cm.

(実施例2)
実施例1の半導電性塗料の代わりに、カーボンブラック粉末が半導電性塗料の全固形分の54重量%を占め、半導電性塗料の全固形分濃度が20重量%である半導電性塗料を用いたことの他は実施例1と同様にして平角状電線を得た。得られた電線では、コーナー部の膜厚Aが9.5μmであり、平坦部の膜厚Bが11.0μmであり、半導電層の体積抵抗率は、2.0×10Ω・cmであった。
(Example 2)
Instead of the semiconductive paint of Example 1, the carbon black powder accounts for 54% by weight of the total solid content of the semiconductive paint, and the total solid content of the semiconductive paint is 20% by weight. A rectangular electric wire was obtained in the same manner as in Example 1 except that was used. In the obtained electric wire, the film thickness A of the corner portion is 9.5 μm, the film thickness B of the flat portion is 11.0 μm, and the volume resistivity of the semiconductive layer is 2.0 × 10 3 Ω · cm. Met.

(比較例1)
電着ではなく、ポリウレタン系のディッピング用塗料を用いたディッピングによって樹脂層を銅製平角状導体の周囲に形成したことの他は実施例1と同様にして平角状電線を得た。得られた電線では、コーナー部の膜厚Aが1.5μmであり、平坦部の膜厚Bが8.0μmであり、半導電層の体積抵抗率は、8.0×10Ω・cmであった。
(Comparative Example 1)
A rectangular electric wire was obtained in the same manner as in Example 1 except that the resin layer was formed around the copper rectangular conductor by dipping using polyurethane-based dipping paint instead of electrodeposition. In the obtained electric wire, the film thickness A of the corner portion is 1.5 μm, the film thickness B of the flat portion is 8.0 μm, and the volume resistivity of the semiconductive layer is 8.0 × 10 7 Ω · cm. Met.

本発明の半導電層を有する平角状電線の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the flat electric wire which has a semiconductive layer of this invention. 本発明の半導電層を有する平角状電線の製造工程の一例を示す模式断面図である。It is a schematic cross section which shows an example of the manufacturing process of the flat electric wire which has a semiconductive layer of this invention.

符号の説明Explanation of symbols

1…断面平角状の導体、2…半導電層、3…コーナー部、4…平坦部、5…導体を構成する2辺の交点、6…半導電層表面、7…導体を構成する一辺、10…半導電層を有する平角状電線、A…コーナー部の膜厚、B…平坦部の膜厚   DESCRIPTION OF SYMBOLS 1 ... Conductor with a flat rectangular shape, 2 ... Semiconductive layer, 3 ... Corner part, 4 ... Flat part, 5 ... Intersection of 2 sides which comprise a conductor, 6 ... Semiconductive layer surface, 7 ... One side which comprises a conductor, 10: Flat electric wire having a semiconductive layer, A: Film thickness of corner portion, B: Film thickness of flat portion

Claims (9)

断面平角状の導体と、その外周に形成された半導電層とを有し、
半導電層のコーナー部の膜厚Aと、半導電層の平坦部の膜厚Bとが、
A≧0.6×Bの関係を満たす、半導電層を有する平角状電線。
A conductor having a rectangular cross section and a semiconductive layer formed on the outer periphery thereof,
The film thickness A of the corner portion of the semiconductive layer and the film thickness B of the flat portion of the semiconductive layer are
A flat electric wire having a semiconductive layer that satisfies the relationship of A ≧ 0.6 × B.
膜厚Bが30μm以下である、請求項1の平角状電線。   The flat electric wire according to claim 1, wherein the film thickness B is 30 μm or less. 半導電層の体積抵抗率が10〜1010Ω・cmである、請求項1又は2の平角状電線。 The flat electric wire according to claim 1 or 2, wherein the semiconductive layer has a volume resistivity of 10 2 to 10 10 Ω · cm. 半導電層が半導電性塗料の電着により形成したものである、請求項1〜3のいずれか一項の平角状電線。   The flat electric wire according to any one of claims 1 to 3, wherein the semiconductive layer is formed by electrodeposition of a semiconductive paint. 半導電性塗料が導電性材料を含有する絶縁塗料である、請求項4の平角状電線。   The flat electric wire according to claim 4, wherein the semiconductive paint is an insulating paint containing a conductive material. 半導電性塗料の全固形分に占める導電性材料の割合が35〜55重量%である、請求項5の平角状電線。   The rectangular electric wire according to claim 5, wherein the ratio of the conductive material to the total solid content of the semiconductive paint is 35 to 55 wt%. 断面平角状の導体の外周に、半導電性塗料を電着し焼付け処理して半導電層を形成する、半導電層を有する平角状電線の製造方法。   A method for producing a rectangular electric wire having a semiconductive layer, in which a semiconductive paint is electrodeposited and baked on the outer periphery of a conductor having a rectangular cross section to form a semiconductive layer. 半導電性塗料として導電性材料を含有する絶縁塗料を用いる、請求項7の製造方法。   The manufacturing method of Claim 7 using the insulating coating material containing an electroconductive material as a semiconductive coating material. 半導電性塗料の全固形分に占める導電性材料の割合が35〜55重量%である、請求項8の製造方法。   The manufacturing method of Claim 8 whose ratio of the electroconductive material which occupies for the total solid of a semiconductive coating material is 35 to 55 weight%.
JP2006217412A 2006-08-09 2006-08-09 Straight angle electric wire having semiconductive layer, and manufacturing method therefor Pending JP2008041568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217412A JP2008041568A (en) 2006-08-09 2006-08-09 Straight angle electric wire having semiconductive layer, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217412A JP2008041568A (en) 2006-08-09 2006-08-09 Straight angle electric wire having semiconductive layer, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2008041568A true JP2008041568A (en) 2008-02-21

Family

ID=39176338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217412A Pending JP2008041568A (en) 2006-08-09 2006-08-09 Straight angle electric wire having semiconductive layer, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2008041568A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259139A (en) * 2009-04-21 2010-11-11 Fuji Electric Systems Co Ltd Insulating bus bar and power converter using the same
JP2012195212A (en) * 2011-03-17 2012-10-11 Mitsubishi Shindoh Co Ltd Square insulating conductor material for coil and method of manufacturing the same
JP2012204257A (en) * 2011-03-28 2012-10-22 Hitachi Cable Ltd Square insulated electric wire
EP3447172A1 (en) * 2017-08-22 2019-02-27 Mitsubishi Materials Corporation Insulated flat conductive wire having high aspect ratio, method for manufacturing same, and coil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150504A (en) * 1984-01-17 1985-08-08 第一電工株式会社 Heat resistant insulated wire
JPH03241609A (en) * 1990-02-20 1991-10-28 Mitsubishi Cable Ind Ltd Flat-type superthin film insulated wire
JP2004342329A (en) * 2003-05-12 2004-12-02 Nippon Paint Co Ltd Coating method of electric wire having edge part, and insulated wire
JP2004337646A (en) * 2003-05-12 2004-12-02 Nippon Paint Co Ltd Insulating method and insulated metallic product
JP2005174561A (en) * 2003-12-05 2005-06-30 Pi R & D Co Ltd Insulated electric wire and insulated coil
JP2005209378A (en) * 2004-01-20 2005-08-04 Mitsubishi Cable Ind Ltd Manufacturing method of flat insulated wire
JP2006134813A (en) * 2004-11-09 2006-05-25 Sumitomo Electric Ind Ltd Insulated covering material and insulating coating conductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150504A (en) * 1984-01-17 1985-08-08 第一電工株式会社 Heat resistant insulated wire
JPH03241609A (en) * 1990-02-20 1991-10-28 Mitsubishi Cable Ind Ltd Flat-type superthin film insulated wire
JP2004342329A (en) * 2003-05-12 2004-12-02 Nippon Paint Co Ltd Coating method of electric wire having edge part, and insulated wire
JP2004337646A (en) * 2003-05-12 2004-12-02 Nippon Paint Co Ltd Insulating method and insulated metallic product
JP2005174561A (en) * 2003-12-05 2005-06-30 Pi R & D Co Ltd Insulated electric wire and insulated coil
JP2005209378A (en) * 2004-01-20 2005-08-04 Mitsubishi Cable Ind Ltd Manufacturing method of flat insulated wire
JP2006134813A (en) * 2004-11-09 2006-05-25 Sumitomo Electric Ind Ltd Insulated covering material and insulating coating conductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259139A (en) * 2009-04-21 2010-11-11 Fuji Electric Systems Co Ltd Insulating bus bar and power converter using the same
JP2012195212A (en) * 2011-03-17 2012-10-11 Mitsubishi Shindoh Co Ltd Square insulating conductor material for coil and method of manufacturing the same
JP2012204257A (en) * 2011-03-28 2012-10-22 Hitachi Cable Ltd Square insulated electric wire
EP3447172A1 (en) * 2017-08-22 2019-02-27 Mitsubishi Materials Corporation Insulated flat conductive wire having high aspect ratio, method for manufacturing same, and coil
CN109427439A (en) * 2017-08-22 2019-03-05 三菱综合材料株式会社 Insulation flat conductor, its manufacturing method and coil with high aspect ratio
US10706992B2 (en) 2017-08-22 2020-07-07 Mitsubishi Materials Corporation Insulated flat conductive wire having high aspect ratio, method for manufacturing same, and coil

Similar Documents

Publication Publication Date Title
WO2017175516A1 (en) Insulated wire, coil, and electric/electronic apparatus
JP5243880B2 (en) Insulated wire
EP3584293B1 (en) Electrodeposition solution and method for producing conductor with insulating film using same
TW201434650A (en) Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same
JP2008041568A (en) Straight angle electric wire having semiconductive layer, and manufacturing method therefor
JP4914769B2 (en) Conductive paste for solid electrolytic capacitor electrode and method for producing electrode of solid electrolytic capacitor using the conductive paste
KR102661175B1 (en) Laminates of conductors and insulating films, coils, rotating electrics, insulating paints, and insulating films
US20150243409A1 (en) Insulated winding wire containing semi-conductive layers
JP2012113836A (en) Insulation coating conductor wire and rotary electric machine
JPWO2019188898A1 (en) Insulated wire
WO2015124656A1 (en) High voltage lead-through device and method of manufacturing the same
WO2020240990A1 (en) Insulated electrical wire, coil, and electrical and electronic instrument
JP2017157463A (en) Insulated wire and method for manufacturing the same
JP2010108843A (en) Insulation-coated electric wire
JPWO2020049784A1 (en) Laminates of conductors and insulation coatings, coils, rotary machines, insulation paints, and insulation films
JP2005285755A (en) Insulation-coated electric wire, its manufacturing method and coil using the wire
US10777335B2 (en) Coated electric wire for winding
JP2008085077A (en) Ring-shaped insulating coil board and its manufacturing method
JP2018147582A (en) Insulation wire, manufacturing method therefor and coil
US12046423B2 (en) Wound electrical component with layers of a high permittivity material
JP2013089585A (en) Insulated electric wire
WO2021256405A1 (en) Layered body of conductor and insulation film, coil, rotating electric machine, insulation coating, and insulation film
JP5108251B2 (en) Insulated wire and electric coil using the same
WO2023153063A1 (en) Insulated electrical wire and method for manufacturing insulated electrical wire
JP7216555B2 (en) Insulated wire with high heat dissipation and coil using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A977 Report on retrieval

Effective date: 20110722

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Effective date: 20111129

Free format text: JAPANESE INTERMEDIATE CODE: A02