JP2012113836A - Insulation coating conductor wire and rotary electric machine - Google Patents

Insulation coating conductor wire and rotary electric machine Download PDF

Info

Publication number
JP2012113836A
JP2012113836A JP2010259343A JP2010259343A JP2012113836A JP 2012113836 A JP2012113836 A JP 2012113836A JP 2010259343 A JP2010259343 A JP 2010259343A JP 2010259343 A JP2010259343 A JP 2010259343A JP 2012113836 A JP2012113836 A JP 2012113836A
Authority
JP
Japan
Prior art keywords
void
voltage
resin film
conductor wire
void diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010259343A
Other languages
Japanese (ja)
Inventor
Yasushi Tamura
康 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010259343A priority Critical patent/JP2012113836A/en
Publication of JP2012113836A publication Critical patent/JP2012113836A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation coating conductor wire capable of sufficiently reducing the dielectric constant of a resin coating, improving PDIV and preventing partial discharge without increasing the film thickness of the resin coating, and a rotary electric machine using the insulation coating conductor wire for the winding of a winding coil.SOLUTION: An insulation coating conductor wire 10 includes a conductor wire 11, and a porous resin coating 12 coating the surface of the conductor wire 11. Also, on the porous resin coating 12, many voids 13 are uniformly distributed, and the maximum void diameter is smaller than a critical void diameter dc corresponding to the intersection point of a void voltage characteristic line indicating the relation between a void voltage, which is a voltage applied to the voids 13, and a void diameter, and a Paschen curve.

Description

本発明は、絶縁被覆導線および回転電機に関し、より詳しくは、導線と導線表面を被覆する樹脂皮膜とを備える絶縁被覆導線および当該絶縁被覆導線を巻線コイルの巻線に用いた回転電機に関する。   The present invention relates to an insulation coated conductor and a rotating electrical machine, and more particularly to an insulation coated conductor including a conductor and a resin film that covers the surface of the conductor, and a rotating electrical machine using the insulation coated conductor as a winding of a winding coil.

巻線コイルの巻線には、導線の表面にフッ素系樹脂(例えば、ポリテトラフロオロエチレン)等の樹脂皮膜が設けられた絶縁被覆導線(エナメル線とも称される)が用いられる。絶縁被覆導線を巻線として用いた巻線コイルにおいて、樹脂皮膜中又は巻線間に微小な空隙が存在すると、その空隙で部分放電が発生して樹脂皮膜が劣化し、最終的に絶縁崩壊に至る場合がある。
部分放電の発生を防止して絶縁性能を高めるために、樹脂皮膜の膜厚を増加させることが考えられるが、膜厚を増加させるとコイルの線積率が低下して回転電機のトルク効率が悪化するという問題がある。
For the winding of the winding coil, an insulation-coated conductive wire (also referred to as enameled wire) in which a resin film such as a fluorine resin (for example, polytetrafluoroethylene) is provided on the surface of the conductive wire is used. In a wound coil using an insulation-coated conductor as a winding, if there is a minute gap in the resin film or between the windings, a partial discharge occurs in the gap and the resin film deteriorates, eventually resulting in insulation breakdown. Sometimes.
In order to prevent the occurrence of partial discharge and increase the insulation performance, it is conceivable to increase the film thickness of the resin film. However, if the film thickness is increased, the coil line area ratio decreases and the torque efficiency of the rotating electrical machine decreases. There is a problem of getting worse.

そこで、樹脂皮膜の膜厚を増加させることなく部分放電の発生を防止する手段が求められており、その有力な手段として、樹脂皮膜の誘電率を下げることが考えられる。樹脂皮膜の誘電率を下げると、ダーキン式(式1)に示すように、PDIV(Partial Discharge Inception Voltage;以下、PDIVとする)を高くすることができ、部分放電の発生を防止することが可能になる。
(式1)PDIV(peak)=162×(t/ε)0.46×√2
t;樹脂皮膜の厚み
ε;樹脂皮膜の誘電率
Therefore, there is a demand for means for preventing the occurrence of partial discharge without increasing the film thickness of the resin film, and it is conceivable to lower the dielectric constant of the resin film as an effective means. When the dielectric constant of the resin film is lowered, PDIV (Partial Discharge Intake Voltage; hereinafter referred to as PDIV) can be increased and the occurrence of partial discharge can be prevented as shown in the Darkin formula (Formula 1). become.
(Formula 1) PDIV (peak) = 162 × (t / ε) 0.46 × √2
t: thickness of resin film
ε: dielectric constant of resin film

本発明に関連する技術として、内部に中空あるいは多孔質を有する無機微粒子を含むオルガノゾルから選ばれる少なくとも1種を塗料中へ分散させて得られる耐部分放電性エナメル線用塗料が特許文献1に開示されている。   As a technique related to the present invention, Patent Document 1 discloses a partial discharge resistant enameled wire paint obtained by dispersing at least one selected from organosols containing inorganic fine particles having hollow or porous inside in a paint. Has been.

特開2009‐212034号公報JP 2009-212034 A

上記特許文献1に開示された耐部分放電性エナメル線用塗料によれば、中空あるいは多孔質を有する無機微粒子を塗料中に分散しておくことで、エナメル塗膜中に中空あるいは多孔質構造を導入することができる。しかしながら、特許文献1の塗料を用いた場合には、エナメル塗膜中に有機材料よりも誘電率の高い無機材料からなる微粒子が含まれることになるので、エナメル塗膜の誘電率を十分に低減することができない。   According to the partial discharge resistant enameled wire paint disclosed in Patent Document 1, the hollow or porous structure is formed in the enamel coating film by dispersing hollow or porous inorganic fine particles in the paint. Can be introduced. However, when the paint of Patent Document 1 is used, the enamel coating film contains fine particles made of an inorganic material having a dielectric constant higher than that of the organic material, so that the dielectric constant of the enamel coating film is sufficiently reduced. Can not do it.

本発明の目的は、樹脂皮膜の誘電率を十分に低減させることができ、樹脂皮膜の膜厚を増加させることなく、PDIVを高めて部分放電の発生を防止することが可能な絶縁被覆導線および当該絶縁被覆導線を巻線コイルの巻線に用いた回転電機を提供することである。   An object of the present invention is to provide an insulating coated conductor capable of sufficiently reducing the dielectric constant of a resin film and capable of preventing the occurrence of partial discharge by increasing PDIV without increasing the film thickness of the resin film. An object of the present invention is to provide a rotating electrical machine in which the insulation-coated conductive wire is used for winding of a winding coil.

本発明に係る絶縁被覆導線は、導線と、導線表面を被覆して設けられ、ボイドを含む多孔質樹脂皮膜と、を備え、最大ボイド径は、ボイドにかかる電圧であるボイド電圧とボイド径との関係を示すボイド電圧特性線と、パッシェンカーブとが交差する点に対応する臨界ボイド径未満であることを特徴とする。
当該構成によれば、樹脂皮膜がボイドを含む多孔質構造であるため、樹脂皮膜の誘電率を大幅に低減させることができる。したがって、樹脂皮膜の膜厚を増加させることなく、PDIVを高めて部分放電の発生を防止することができる。また、寄生容量を低減することもでき、絶縁性能を高めることができる。そして、最大ボイド径は、ボイドにかかる電圧であるボイド電圧とボイド径との関係を示すボイド電圧特性線と、パッシェンカーブとが交差する点に対応する臨界ボイド径未満である、つまりボイド電圧がパッシェンの火花電圧未満となるように最大ボイド径が設定されるため、多孔質構造を形成するボイドに起因して部分放電が発生することがない。
The insulated coated conductor according to the present invention includes a conductor and a porous resin film that covers the surface of the conductor and includes a void. The maximum void diameter is a void voltage and a void diameter that are voltages applied to the void. It is less than the critical void diameter corresponding to the point where the void voltage characteristic line showing the above relationship and the Paschen curve intersect.
According to the said structure, since the resin film is a porous structure containing a void, the dielectric constant of a resin film can be reduced significantly. Therefore, PDIV can be raised and partial discharge can be prevented without increasing the film thickness of the resin film. In addition, parasitic capacitance can be reduced, and insulation performance can be improved. The maximum void diameter is less than the critical void diameter corresponding to the point where the void voltage characteristic line indicating the relationship between the void voltage and the void diameter, which is the voltage applied to the void, and the Paschen curve intersect, that is, the void voltage is Since the maximum void diameter is set so as to be less than the Paschen spark voltage, partial discharge does not occur due to voids forming a porous structure.

本発明に係る回転電機は、巻線コイルを備えた回転電機において、巻線コイルの巻線は、導線と、導線表面を被覆して設けられ、ボイドを含む多孔質樹脂皮膜と、を備えた絶縁被覆導線であって、最大ボイド径は、ボイドにかかる電圧であるボイド電圧とボイド径との関係を示すボイド電圧特性線と、パッシェンカーブとが交差する点に対応する臨界ボイド径未満であることを特徴とする。
当該構成によれば、樹脂皮膜の膜厚を増加させることなく、樹脂皮膜の誘電率を大幅に低減して絶縁性能を高めた絶縁被覆導線を巻線コイルの巻線に用いるので、巻線コイルの線積率を維持してトルク効率を確保しながら、PDIVを高めて部分放電の発生を防止することができる。
A rotating electrical machine according to the present invention is a rotating electrical machine provided with a winding coil, wherein the winding of the winding coil includes a conductive wire and a porous resin film provided on the surface of the conductive wire and including a void. It is an insulation coated conductor, and the maximum void diameter is less than the critical void diameter corresponding to the point where the void voltage characteristic line indicating the relationship between the void voltage and the void diameter, which is the voltage applied to the void, and the Paschen curve. It is characterized by that.
According to this configuration, since the insulation-coated conductive wire having a significantly reduced dielectric constant of the resin film and an improved insulation performance is used for the winding coil without increasing the film thickness of the resin film. While maintaining the linear product ratio and securing the torque efficiency, the PDIV can be increased to prevent the occurrence of partial discharge.

本発明に係る絶縁被覆導線によれば、樹脂皮膜の誘電率を十分に低減させることができ、樹脂皮膜の膜厚を増加させることなく、PDIVを高めて部分放電の発生を防止することが可能である。
また、本発明に係る回転電機によれば、巻線コイルの線積率を維持してトルク効率を確保しながら、PDIVを高めて部分放電の発生を防止することができる。
According to the insulated coated conductor according to the present invention, the dielectric constant of the resin film can be sufficiently reduced, and the occurrence of partial discharge can be prevented by increasing PDIV without increasing the film thickness of the resin film. It is.
In addition, according to the rotating electrical machine of the present invention, it is possible to prevent the occurrence of partial discharge by increasing PDIV while maintaining the line product ratio of the winding coil and ensuring the torque efficiency.

本発明の実施形態である絶縁被覆導線の断面を示す図である。It is a figure which shows the cross section of the insulation coating conducting wire which is embodiment of this invention. 本発明の実施形態である絶縁被覆導線において、ボイド電圧とボイド径との関係を示すボイド電圧特性線である。FIG. 3 is a void voltage characteristic line showing a relationship between a void voltage and a void diameter in the insulation-coated conductor wire according to the embodiment of the present invention. パッシェンカーブを示す図である。It is a figure which shows a Paschen curve. パッシェンカーブにボイド電圧特性線を重ねた図である。It is the figure which superimposed the void voltage characteristic line on the Paschen curve.

図面を用いて、本発明の実施形態につき、以下詳細に説明する。
なお、以下では、本発明の実施形態である絶縁被覆導線10の使用形態として、HV車両駆動用モータの巻線コイルの巻線を例示するが、本発明の絶縁被覆導線の用途はこれに限定されない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In addition, below, although the coil | winding of the winding coil of the motor for a HV vehicle drive is illustrated as a usage pattern of the insulated conductor 10 which is embodiment of this invention, the use of the insulated conductor of this invention is limited to this. Not.

図示しない回転電機としては、例えば、三相モータが例示できる。三相モータは、円筒状のステータと、ステータの中心に配置されたロータと、を備えている。ステータは、複数の電磁鋼板を積層して形成されたステータコアと、ステータコアに巻回されたU相、V相、W相に対応する巻線コイルとを有する。そして、巻線コイルの巻線には、以下に詳述する絶縁被覆導線10が用いられる。   As a rotating electric machine (not shown), for example, a three-phase motor can be exemplified. The three-phase motor includes a cylindrical stator and a rotor disposed in the center of the stator. The stator has a stator core formed by laminating a plurality of electromagnetic steel plates, and winding coils corresponding to the U phase, V phase, and W phase wound around the stator core. And the insulation coating conducting wire 10 explained in full detail below is used for the coil | winding of a winding coil.

図1は、絶縁被覆導線10の断面を示す図である。
図1に示すように、絶縁被覆導線10は、導線11と、導線11の表面を被覆する多孔質樹脂皮膜12と、を備える。多孔質樹脂皮膜12は、導線11の軸方向に沿って、その外周面に隙間なく密着している。また、多孔質樹脂皮膜12には、多数のボイド13が均一に分散している。
FIG. 1 is a view showing a cross section of an insulation coated conductor 10.
As shown in FIG. 1, the insulation-coated conductive wire 10 includes a conductive wire 11 and a porous resin film 12 that covers the surface of the conductive wire 11. The porous resin film 12 is in close contact with the outer peripheral surface of the conductive wire 11 along the axial direction without any gap. Further, a large number of voids 13 are uniformly dispersed in the porous resin film 12.

導線11は、電気伝導性を有する線状部材であって、例えば、銅線、アルミ線、銀線、ニッケル線等が例示できる。なお、巻線コイルの巻線用途では、一般的に、銅線が用いられる。また、図1に例示する導線11の形態は、断面形状が矩形形状の平型導線であるが、導線11の形状としてはこれに限定されず丸型であってもよい。   The conducting wire 11 is a linear member having electrical conductivity, and examples thereof include a copper wire, an aluminum wire, a silver wire, and a nickel wire. In general, copper wires are used for winding coils. Moreover, although the form of the conducting wire 11 illustrated in FIG. 1 is a flat conducting wire having a rectangular cross-sectional shape, the shape of the conducting wire 11 is not limited to this and may be round.

多孔質樹脂皮膜12は、導線11の表面を被覆して短絡を防止するための皮膜であって、多孔質構造の絶縁樹脂、即ち多数のボイド13を含む絶縁樹脂から構成される皮膜である。多孔質樹脂皮膜12は、導線11の表面に絶縁樹脂を含むワニスを塗布し焼き付けた後、後述のボイド13を形成することで得られる。   The porous resin film 12 is a film for covering the surface of the conducting wire 11 to prevent a short circuit, and is a film composed of an insulating resin having a porous structure, that is, an insulating resin containing a large number of voids 13. The porous resin film 12 is obtained by forming a void 13 described later after applying and baking a varnish containing an insulating resin on the surface of the conductive wire 11.

多孔質樹脂皮膜12を構成する絶縁樹脂は、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリアミドイミド(PAI)、ポリイミド(PI)、およびポリフェニルスルフィド(PPS)等が好適な樹脂として例示できる。特に、導線11との密着性や耐熱性等の観点から、PAI、PIが好ましい。なお、各絶縁樹脂の誘電率は、一般的に、PTFEが2.0、PAIが4.0、PIが3.4、PPSが4.6である。   The insulating resin constituting the porous resin film 12 is not particularly limited, but polytetrafluoroethylene (PTFE), polyamideimide (PAI), polyimide (PI), polyphenyl sulfide (PPS), etc. are exemplified as suitable resins. it can. In particular, PAI and PI are preferable from the viewpoints of adhesion to the lead wire 11 and heat resistance. The dielectric constant of each insulating resin is generally 2.0 for PTFE, 4.0 for PAI, 3.4 for PI, and 4.6 for PPS.

ボイド13は、多孔質樹脂皮膜12中に含まれる空孔である。ボイド13は、例えば、
導線11の表面に形成された上記絶縁樹脂の皮膜に超臨界状態又は亜臨界状態の流体を含侵させた後、圧力を急減して流体をガス化させる方法、上記絶縁樹脂の皮膜中にミクロ相分離構造を形成し、溶剤や超臨界流体、熱分解等により選択的に一部の相を除去する方法、発泡剤を使用する方法、溶剤除去等が可能な界面活性剤ミセルや微粒子を鋳型として使用する方法等によって、上記絶縁樹脂中に直接形成することができる。つまり、ボイド13は、その周囲を絶縁樹脂に囲まれており、ボイド13と絶縁樹脂との界面に誘電率の高い無機材料等が存在しない。
なお、上記超臨界状態又は亜臨界状態の流体としては、超臨界二酸化炭素が好適である。また、ミクロ相分離構造としては、例えば、一部のセグメントが溶剤等で選択的に溶解除去可能なブロック共重合体を用いることができる。
The void 13 is a hole included in the porous resin film 12. The void 13 is, for example,
A method of impregnating a fluid in a supercritical state or a subcritical state in the insulating resin film formed on the surface of the conductive wire 11 and then gasifying the fluid by rapidly reducing the pressure; Forming phase-separated structure, selectively removing some phases by solvent, supercritical fluid, thermal decomposition, etc., using foaming agent, surfactant micelle and fine particles capable of solvent removal, etc. as template It can be directly formed in the insulating resin by the method used as the above. That is, the void 13 is surrounded by an insulating resin, and there is no inorganic material having a high dielectric constant at the interface between the void 13 and the insulating resin.
Note that supercritical carbon dioxide is suitable as the fluid in the supercritical state or subcritical state. As the microphase separation structure, for example, a block copolymer in which some segments can be selectively dissolved and removed with a solvent or the like can be used.

ボイド13の形態としては、後述するボイド径の制限の観点から、隣接するボイド13が互いに連通した連続気泡形態よりも、各ボイド13がつながることなく独立に存在する独立気泡形態であることが好ましい。また、個々のボイド13の形状は、通常、球状又は球状に近い形状であるが、凹凸のある異形形状であってもよい。   The form of the void 13 is preferably a closed cell form in which the voids 13 exist independently without being connected to each other, rather than an open cell form in which adjacent voids 13 communicate with each other, from the viewpoint of limiting the void diameter described later. . Moreover, although the shape of each void 13 is usually a spherical shape or a shape close to a spherical shape, it may be an irregular shape with irregularities.

また、ボイド13の含有率は、多孔質樹脂皮膜12の誘電率を十分に低減するために、多孔質樹脂皮膜12の機械的強度等に問題のない範囲で高い方が好ましい。つまり、ボイド13の誘電率は1.0として多孔質樹脂皮膜12の誘電率を算出することができるので、ボイド13の含有率を増加させるほど、多孔質樹脂皮膜12の誘電率を低減することができる。   The void 13 content is preferably as high as possible without causing a problem in the mechanical strength of the porous resin film 12 in order to sufficiently reduce the dielectric constant of the porous resin film 12. That is, since the dielectric constant of the void 13 can be calculated with the dielectric constant of the porous resin film 12 being 1.0, the dielectric constant of the porous resin film 12 is reduced as the content of the void 13 is increased. Can do.

また、ボイド13は、その最大ボイド径が、ボイド電圧とボイド径との関係を示すボイド電圧特性線(図2参照)と、パッシェンカーブ(図3参照)とが交差する点に対応する臨界ボイド径dc(図4参照)未満である。以下、図2〜4を用いて、ボイド径について詳説する。   The void 13 has a critical void corresponding to a point where the maximum void diameter intersects a void voltage characteristic line (see FIG. 2) indicating the relationship between the void voltage and the void diameter and a Paschen curve (see FIG. 3). It is less than the diameter dc (see FIG. 4). Hereinafter, the void diameter will be described in detail with reference to FIGS.

上記ボイド電圧とは、導線11に電圧を印加したとき、即ち導線11に電流を流したときに、ボイド13にかかる電圧である。
図2に、ボイド電圧(縦軸)とボイド径(横軸)との関係であるボイド電圧特性線を示す。図2に示すように、ボイド電圧は、ボイド径に応じて電圧レベルが変化し、ボイド径に比例して大きくなる。
図2のボイド電圧特性線は、電界強度とボイド径に基づき、電界解析結果に従って得られたものである。ここで、電界強度とは、導線11に印加される電圧レベルを意味する。なお、電界強度が増加すると、ボイド電圧特性線の傾きも大きくなる。
The void voltage is a voltage applied to the void 13 when a voltage is applied to the conducting wire 11, that is, when a current is passed through the conducting wire 11.
FIG. 2 shows a void voltage characteristic line which is a relationship between the void voltage (vertical axis) and the void diameter (horizontal axis). As shown in FIG. 2, the voltage level of the void voltage changes according to the void diameter, and increases in proportion to the void diameter.
The void voltage characteristic line in FIG. 2 is obtained according to the electric field analysis result based on the electric field strength and the void diameter. Here, the electric field strength means a voltage level applied to the conducting wire 11. As the electric field strength increases, the slope of the void voltage characteristic line also increases.

上記パッシェンカーブとは、電極間距離(d)と電極間に充填されるガスの圧力(p)との積であるpd値(mm*mmHg)を横軸とし、平行な電極間で火花放電が生じる電圧である火花電圧(V)を縦軸として、pd値と火花放電(パッシェンの火花電圧)との関係を示す曲線である。
図3に、充填ガスが空気で、大気圧(760mmHg)の条件におけるパッシェンカーブを示す。図3のパッシェンカーブは、最も火花放電が起こり易いピーク値(最低火花電圧)を示し、当該最低火花電圧を示すpd値から離れるほど、特にpd値が小さくなる、つまり電極間距離が小さくなるほど火花電圧が大きくなり、火花放電が発生し難くなることを示している。
The Paschen curve refers to the pd value (mm * mmHg), which is the product of the distance (d) between electrodes and the pressure (p) of the gas filled between the electrodes, and spark discharge occurs between parallel electrodes. It is a curve which shows the relationship between pd value and a spark discharge (spark voltage of Paschen) by making the spark voltage (V) which is a generated voltage a vertical axis.
FIG. 3 shows a Paschen curve under the condition that the filling gas is air and atmospheric pressure (760 mmHg). The Paschen curve in FIG. 3 shows the peak value (lowest spark voltage) at which spark discharge is most likely to occur. The further away from the pd value indicating the lowest spark voltage, the smaller the pd value, that is, the smaller the distance between the electrodes, the smaller the spark. This shows that the voltage increases and spark discharge hardly occurs.

図4に、図3のパッシェンカーブに図2の電圧特性線を重ねた図を示す。なお、ボイド径(μm)=pd値(mm*mmHg)×(1000/760)で換算できる。
図4に示すように、ボイド電圧特性線とパッシェンカーブとが交差する交差点が存在し、この交差点のpd値に対応するボイド径である臨界ボイド径dc未満となるように、つまりボイド電圧がパッシェンの火花電圧未満となるように、最大ボイド径が設定される。なお、ボイド径は、断面電子顕微鏡観察(断面SEM観察)や部分放電の観察等により測定することができる。
FIG. 4 shows a diagram in which the voltage characteristic line of FIG. 2 is superimposed on the Paschen curve of FIG. The void diameter (μm) = pd value (mm * mmHg) × (1000/760) can be converted.
As shown in FIG. 4, there is an intersection where the void voltage characteristic line and the Paschen curve intersect, and the void voltage is less than the critical void diameter dc, which is the void diameter corresponding to the pd value of this intersection. The maximum void diameter is set so as to be less than the spark voltage. The void diameter can be measured by cross-sectional electron microscope observation (cross-sectional SEM observation), partial discharge observation, or the like.

なお、導線11に印加される電圧レベルが高くなるほど、ボイド電圧特性線の傾きが大きくなってボイド電圧特性線とパッシェンカーブとの交差点は低pd値側にシフトすることから、ボイド径をさらに小さくする必要がある。また、パッシェンカーブには、最低火花電圧が存在し、最低火花電圧を示すpd値未満で火花電圧が特に大きくなることから、最大ボイド径は、最低火花電圧を示すpd値に対応するボイド径未満であることが特に好ましい。   As the voltage level applied to the conducting wire 11 increases, the slope of the void voltage characteristic line increases and the intersection of the void voltage characteristic line and the Paschen curve shifts to the low pd value side, so the void diameter is further reduced. There is a need to. Further, the Paschen curve has a minimum spark voltage, and the spark voltage is particularly large when the spark voltage is less than the pd value indicating the minimum spark voltage. Therefore, the maximum void diameter is less than the void diameter corresponding to the pd value indicating the minimum spark voltage. It is particularly preferred that

ここで、上記構成を備える絶縁被覆導線10の作用効果について以下説明する。   Here, the function and effect of the insulating coated conductor 10 having the above-described configuration will be described below.

第1に、絶縁被覆導線10は、樹脂皮膜がボイド13を含む多孔質構造の多孔質樹脂皮膜12であるため、樹脂皮膜の誘電率を大幅に低減することができる。したがって、樹脂皮膜の膜厚を増加させることなく、PDIVを高めて部分放電の発生を防止することができる。また、寄生容量を低減することもでき、絶縁性能を高めることができる。   1stly, since the insulation coating conducting wire 10 is the porous resin film 12 of the porous structure where the resin film contains the void 13, the dielectric constant of a resin film can be reduced significantly. Therefore, PDIV can be raised and partial discharge can be prevented without increasing the film thickness of the resin film. In addition, parasitic capacitance can be reduced, and insulation performance can be improved.

第2に、第ボイド電圧とボイド径との関係を示すボイド電圧特性線と、パッシェンカーブとが交差する点に対応する臨界ボイド径未満であるため、多孔質構造を形成するボイド13に起因して部分放電が発生することがない。つまり、部分放電は、樹脂皮膜中又は巻線間に存在する微小な空隙で発生するので、ボイド13における部分放電の発生が懸念されるが、最大ボイド径が上記のように設定された多孔質樹脂皮膜12によれば部分放電の発生を防止できる。   Second, since the void voltage characteristic line indicating the relationship between the first void voltage and the void diameter is less than the critical void diameter corresponding to the point where the Paschen curve intersects, it is caused by the void 13 forming the porous structure. Partial discharge does not occur. In other words, since partial discharge occurs in a minute gap existing in the resin film or between the windings, there is a concern about the occurrence of partial discharge in the void 13, but the maximum void diameter is set as described above. The resin film 12 can prevent partial discharge.

なお、絶縁被覆導線10を巻線コイルの巻線に用いた回転電機は、巻線コイルの線積率を維持してトルク効率を確保しながら、PDIVを高めて部分放電の発生を防止することができる。   In addition, the rotating electrical machine using the insulation-coated conductive wire 10 for the winding of the winding coil can increase the PDIV and prevent the occurrence of partial discharge while maintaining the line area ratio of the winding coil and ensuring the torque efficiency. Can do.

10 絶縁被覆導線、11 導線、12 多孔質樹脂皮膜、13 ボイド。   10 Insulation coated conductor, 11 Conductor, 12 Porous resin film, 13 Void.

Claims (2)

導線と、
導線表面を被覆して設けられ、ボイドを含む多孔質樹脂皮膜と、
を備え、
最大ボイド径は、ボイドにかかる電圧であるボイド電圧とボイド径との関係を示すボイド電圧特性線と、パッシェンカーブとが交差する点に対応する臨界ボイド径未満であることを特徴とする絶縁被覆導線。
Lead wires,
A porous resin film provided on the surface of the conductive wire and containing voids;
With
Insulation coating characterized in that the maximum void diameter is less than the critical void diameter corresponding to the point where the void voltage characteristic line indicating the relationship between the void voltage and the void diameter, which is the voltage applied to the void, and the Paschen curve intersect Conducting wire.
巻線コイルを備えた回転電機において、
巻線コイルの巻線は、導線と、導線表面を被覆して設けられ、ボイドを含む多孔質樹脂皮膜と、を備えた絶縁被覆導線であって、
最大ボイド径は、ボイドにかかる電圧であるボイド電圧とボイド径との関係を示すボイド電圧特性線と、パッシェンカーブとが交差する点に対応する臨界ボイド径未満であることを特徴とする回転電機。
In rotating electrical machines with winding coils,
The winding of the winding coil is an insulating coated conductor provided with a conductive wire and a porous resin film provided on the surface of the conductive wire and containing voids,
The maximum void diameter is less than the critical void diameter corresponding to the point where the void voltage characteristic line indicating the relationship between the void voltage and the void diameter, which is the voltage applied to the void, and the Paschen curve intersect. .
JP2010259343A 2010-11-19 2010-11-19 Insulation coating conductor wire and rotary electric machine Withdrawn JP2012113836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010259343A JP2012113836A (en) 2010-11-19 2010-11-19 Insulation coating conductor wire and rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259343A JP2012113836A (en) 2010-11-19 2010-11-19 Insulation coating conductor wire and rotary electric machine

Publications (1)

Publication Number Publication Date
JP2012113836A true JP2012113836A (en) 2012-06-14

Family

ID=46497844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259343A Withdrawn JP2012113836A (en) 2010-11-19 2010-11-19 Insulation coating conductor wire and rotary electric machine

Country Status (1)

Country Link
JP (1) JP2012113836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060808A2 (en) 2012-10-19 2014-04-24 Toyota Jidosha Kabushiki Kaisha Stator of rotary electric machine
WO2014103665A1 (en) * 2012-12-28 2014-07-03 古河電気工業株式会社 Insulated wire, electrical device, and method for producing insulated wire
WO2014123122A1 (en) * 2013-02-07 2014-08-14 古河電気工業株式会社 Insulated electric wire and motor
WO2014123123A1 (en) 2013-02-07 2014-08-14 古河電気工業株式会社 Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same
JP2016207741A (en) * 2015-04-17 2016-12-08 株式会社東芝 Manufacturing method of mold coil, and manufacturing system of mold coil
DE102020100714A1 (en) 2019-01-28 2020-07-30 Toyota Jidosha Kabushiki Kaisha Coated electrical winding wire

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060808A2 (en) 2012-10-19 2014-04-24 Toyota Jidosha Kabushiki Kaisha Stator of rotary electric machine
JPWO2014103665A1 (en) * 2012-12-28 2017-01-12 古河電気工業株式会社 Insulated wire, electrical equipment, and method of manufacturing insulated wire
WO2014103665A1 (en) * 2012-12-28 2014-07-03 古河電気工業株式会社 Insulated wire, electrical device, and method for producing insulated wire
CN109273139A (en) * 2012-12-28 2019-01-25 古河电气工业株式会社 The manufacturing method of insulated electric conductor, electrical equipment and insulated electric conductor
CN104185879A (en) * 2012-12-28 2014-12-03 古河电气工业株式会社 Insulated wire, electrical device, and method for producing insulated wire
US9728296B2 (en) 2012-12-28 2017-08-08 Furukawa Electric Co., Ltd. Insulated wire, electrical equipment, and method of producing insulated wire
JP2017050292A (en) * 2012-12-28 2017-03-09 古河電気工業株式会社 Insulation wire, electrical device and manufacturing method of insulation wire
WO2014123123A1 (en) 2013-02-07 2014-08-14 古河電気工業株式会社 Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same
TWI498925B (en) * 2013-02-07 2015-09-01 Furukawa Electric Co Ltd Insulated wires and motors
CN104321832A (en) * 2013-02-07 2015-01-28 古河电气工业株式会社 Insulated electric wire and motor
WO2014123122A1 (en) * 2013-02-07 2014-08-14 古河電気工業株式会社 Insulated electric wire and motor
US10418151B2 (en) 2013-02-07 2019-09-17 Furukawa Electric Co., Ltd. Enamel resin-insulating laminate, inverter surge-resistant insulated wire using the same and electric/electronic equipment
JP2016207741A (en) * 2015-04-17 2016-12-08 株式会社東芝 Manufacturing method of mold coil, and manufacturing system of mold coil
DE102020100714A1 (en) 2019-01-28 2020-07-30 Toyota Jidosha Kabushiki Kaisha Coated electrical winding wire
US10777335B2 (en) 2019-01-28 2020-09-15 Toyota Jidosha Kabushiki Kaisha Coated electric wire for winding

Similar Documents

Publication Publication Date Title
JP2012113836A (en) Insulation coating conductor wire and rotary electric machine
JP5019594B2 (en) Insulated wire
CN112166542A (en) Electrical lead for use in an electrical machine
CN107039159A (en) Electric winding, the dry-type transformer with electric winding and the method for manufacturing electric winding
JP2000173836A (en) Electrostatic induction equipment
EP2810358B1 (en) High voltage stator coil with reduced power tip-up
JP2010108843A (en) Insulation-coated electric wire
US10777335B2 (en) Coated electric wire for winding
US20150243409A1 (en) Insulated winding wire containing semi-conductive layers
US20180323688A1 (en) Resistively graded insulation for stators
EP3179482A1 (en) Conductor arrangement with insulation for an electrical machine
US10763005B2 (en) Insulation for conductors
JP7086090B2 (en) Intermediate frequency transformer with dry core
US20200014274A1 (en) Stator for electric motor
WO2018206222A1 (en) Insultated wire of a stator winding comprising grounding by conducting layer
US20240088737A1 (en) Magent wire with high partial discharge inception voltage (pdiv)
JP2019033202A (en) Winding structure, coil, current transformer, and rotary machine
WO2021256405A1 (en) Layered body of conductor and insulation film, coil, rotating electric machine, insulation coating, and insulation film
WO2022195916A1 (en) Stator and rotating electric machine having same
JP2010262788A (en) Insulated wire, and coil
JP6519497B2 (en) Instrument transformer
JP2004254457A (en) Surge resistant motor
EP3402050A1 (en) Insultated wire of a coil for a random-wound stator
EP3402051A1 (en) Electric machine with semi-conducting layer on winding for grounding
WO2018224163A1 (en) Electrical machine with a conductor arrangement and insulation therefore

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140204