WO2022195916A1 - Stator and rotating electric machine having same - Google Patents

Stator and rotating electric machine having same Download PDF

Info

Publication number
WO2022195916A1
WO2022195916A1 PCT/JP2021/030908 JP2021030908W WO2022195916A1 WO 2022195916 A1 WO2022195916 A1 WO 2022195916A1 JP 2021030908 W JP2021030908 W JP 2021030908W WO 2022195916 A1 WO2022195916 A1 WO 2022195916A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating coating
stator
coil
windings
neutral point
Prior art date
Application number
PCT/JP2021/030908
Other languages
French (fr)
Japanese (ja)
Inventor
孝仁 村木
慎司 山崎
源三 岩城
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180095387.1A priority Critical patent/CN116998091A/en
Publication of WO2022195916A1 publication Critical patent/WO2022195916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a stator and a rotating electric machine having the same.
  • Patent Literature 1 discloses a technique for realizing both miniaturization, high voltage, and high output of a rotating electrical machine by configuring the slots and coil end portions with different insulating layer thicknesses or different insulating materials. ing.
  • Patent Document 2 discloses a technique for increasing the insulation resistance by increasing the thickness of the insulating coating at a predetermined portion of the conductor, and ensuring the insulation performance between the joint and the adjacent segment conductor when the segment conductors are joined together. is disclosed.
  • Non-Patent Document 1 describes the principle of surge generation in an inverter-driven motor, the surge entering the motor and the voltage between turns, etc.
  • Non-Patent Document 1 describes that when a surge enters a motor coil, most of the surge voltage is applied to the first turn of the coil, that the voltage rise time may be 50 ns or less, and that the voltage pulse and the turn in the first turn It is described that a voltage between adjacent turns is generated due to a difference from the delayed voltage pulse after passage.
  • Non-Patent Document 1 it is generally known that a voltage between adjacent turns is generated. has not been clarified.
  • the object of the present invention is to prevent dielectric breakdown in a specific range where the potential difference is large in the windings that make up the coils of the stator.
  • the present invention is a stator that constitutes a rotating electric machine, and includes a stator core and a coil, and the coil has a plurality of phase windings, a lead wire, and a plurality of phase windings electrically connected to each other.
  • the winding includes a conductor, a first insulating coating and a second insulating coating covering the conductor, the second insulating coating being greater than the first insulating coating
  • the range of the second insulating coating covering the conductor is 20 to 50% of the total length of the winding on the neutral point side.
  • FIG. 1 is a cross-sectional view showing a rotating electric machine according to an embodiment
  • FIG. 1 is a perspective view showing a stator of a rotary electric machine according to an embodiment
  • FIG. 3 is a schematic configuration diagram showing a coil having star connection
  • FIG. 4 is a schematic configuration diagram showing a coil having four reciprocating windings
  • the present disclosure relates to a stator having a structure with excellent insulating properties and a rotating electric machine having the same.
  • the present inventors proceeded with measurements of the voltage sharing ratio of the stator, etc., and found that due to the propagation delay of the potential, in a specific range from the neutral point of the windings constituting the stator coil , that the potential is significantly different from that of the lead wire.
  • the surge resistance of the second insulating coating is made higher than that of the first insulating coating, and the second It has been found that it is desirable to cover the conductor with the insulating coating of 20 to 50% of the total length of the winding on the neutral point side.
  • the insulating coating used for the windings that constitute the stator of the present disclosure will be described in detail below.
  • Both the first insulating coating and the second insulating coating contain an electrically insulating resin.
  • resins include polyvinyl formal, polyester, polyesterimide, polyamideimide, polyimide, nylon, polyoxymethylene, polyphenylene sulfide, polyetheretherketone, and polytetrafluoroethylene.
  • polyester, polyesterimide, polyamideimide and polyimide are preferred from the viewpoint of heat resistance, workability and adhesiveness.
  • the resin may be used singly or may be used by laminating a plurality of resins.
  • the multi-layer means is not particularly limited, and existing techniques such as baking coating and multi-layer extrusion can be used. It is desirable that these resins are the same within one segment coil before welding. In other words, the segment coil desirably has only one of the first insulating coating and the second insulating coating.
  • Component that improves surge resistance Techniques for improving surge resistance include adding inorganic particles and lowering the dielectric constant.
  • Inorganic particles may be electrically insulating, such as silica, alumina, and mica. These may be used singly or in combination of two or more.
  • Examples of the addition of inorganic particles include the method of using polyamide-imide for the first insulating coating and nano-silica particle-added polyamide-imide for the second insulating coating.
  • the base material resin is selected from the above resin group, and may be used singly or in multiple types.
  • the dielectric constant there is a method of using polyamide-imide with a dielectric constant of 4 for the first insulating coating and polyimide with a dielectric constant of 3.5 for the second insulating coating.
  • the combination of these resins is not particularly limited as long as the dielectric constant of the second insulating coating is lower than that of the first insulating coating.
  • the portions to which the second insulating coating is applied are the lead wire that is the input portion of the power source, and are between the lead wire and the neutral point and are adjacent to the neutral point of the encircling winding portion that constitutes the encircling winding. It is preferable that it is the side and is a portion of 20 to 50% of the total length of the winding portion. This portion is a portion where the potential difference increases due to the rise of the pulse when power is input.
  • the resin thickness that improves the surge resistance of the second insulating coating is preferably 5% or more and less than 100% of the whole, more preferably 20% or more. less than 60%.
  • the film thickness of both the first insulating film and the second insulating film is not particularly limited as long as the film thickness is selected to be suitable for the power supply voltage.
  • the electric motor used for a hybrid vehicle is used as an example of a rotary electric machine.
  • axial direction refers to the direction along the rotating shaft of the rotating electric machine.
  • circumferential direction refers to the direction along the rotation direction of the rotating electric machine.
  • Ring direction refers to a radial direction (radial direction) around the rotating shaft of the rotating electric machine.
  • inner peripheral side refers to the radially inner side (inner diameter side)
  • the “outer peripheral side” refers to the opposite direction, that is, the radial outer side (outer diameter side).
  • FIG. 1 is a cross-sectional view showing an example of a rotating electric machine according to an embodiment.
  • the rotating electrical machine 10 includes a rotor 11 , a stator 20 and a housing 50 .
  • Rotor 11 includes rotor core 12 and rotating shaft 13 .
  • the rotor 11 is provided with permanent magnets 18 and end rings (not shown).
  • the stator 20 includes a stator core 21 (stator core).
  • a stator 20 having a coil 40 is fixed to the inner peripheral side of the housing 50 .
  • a rotor 11 is rotatably installed on the inner peripheral side of the stator 20 .
  • the housing 50 forms a cylindrical outer cover of the rotating electric machine 10 by cutting a ferrous material such as carbon steel, by casting cast steel or an aluminum alloy, or by pressing.
  • the housing 50 is also called a frame or frame.
  • a liquid cooling jacket 130 is installed on the outer peripheral side of the housing 50 .
  • a gap provided between the inner peripheral wall of the liquid cooling jacket 130 and the outer peripheral wall of the housing 50 is a coolant passage 153 for a liquid coolant 157 such as oil.
  • the refrigerant passage 153 is configured so as not to leak.
  • Liquid cooling jacket 130 has bearings 144, 145 and may also be referred to as a "bearing bracket.”
  • coolant 157 flows through coolant passage 153 and flows out from coolant outlets 154 and 155 toward stator 20 to cool stator 20 . Thereafter, refrigerant 157 is temporarily stored in refrigerant reservoir 150 and circulated by a pump installed outside.
  • the stator core 21 has a structure in which thin silicon steel plates are laminated.
  • the heat generated by the coils 40 installed in the stator 20 is transmitted to the housing 50 via the stator core 21, transferred to the outside by the coolant 157 flowing through the liquid cooling jacket 130, and radiated.
  • the rotor core 12 has a structure in which thin silicon steel plates are laminated.
  • a rotating shaft 13 of the rotor 11 is fixed to the center of the rotor core 12 .
  • the rotating shaft 13 is rotatably supported by bearings 144 and 145 attached to the liquid cooling jacket 130 .
  • the rotor 11 rotates at a predetermined position inside the stator 20 and at a position facing the stator 20 .
  • the stator 20 is inserted inside the housing 50 and attached to the inner peripheral wall of the housing 50 in advance, and then the rotor 11 is inserted into the stator 20 .
  • the rotating shaft 13 is assembled to the liquid cooling jacket 130 so that the bearings 144 and 145 are fitted.
  • FIG. 2 is a perspective view showing an example of the stator of the rotary electric machine according to the embodiment.
  • the stator 20 includes a stator core 21 and a stator coil 60.
  • the stator coil 60 is wound around a number of slots 15 provided in the inner circumference of the stator core 21 .
  • the stator 20 includes a stator core 21 and stator coils 60 wound in a number of slots 15 provided in the inner periphery of the stator core 21 .
  • the stator coil 60 is made of a conductor having a substantially rectangular cross section and has an insulating coating.
  • the conductor is made of a copper alloy.
  • a slot liner 301 is provided in each slot 15, and an insulating paper 300 is provided around the outer periphery of the stator core 21 to ensure electrical insulation and adhesion between the stator core 21 and the stator coil 60 and the like.
  • the slot liner 301 is formed in a square shape, a B shape, or an S shape so as to wrap the copper wire.
  • a stator coil 60 is formed by inserting a segmented coil into the slot 15 provided with the slot liner 301 and welding it. Thereafter, the slots 15 are impregnated with a bonding varnish and heated to bond the coils. That is, the windings of the stator coil 60 are composed of segment coils.
  • the stator coil 60 has lead wires 26 a , 26 b , 26 c and a neutral point 27 .
  • the lead wires 26a, 26b, 26c and the neutral point 27 are arranged close to each other.
  • the rotor can be not only the permanent magnet type but also the induction type. , synchronous reluctance, claw magnetic pole type, etc.
  • the winding method is the wave winding method, any winding method having similar characteristics can be applied.
  • the adductor type has been described, it is also applicable to the abductor type.
  • FIG. 3 is a schematic configuration diagram showing a coil with star connection.
  • the stator coil 40 has lead wires 26a, 26b, 26c and a neutral point 27.
  • the lead wires 26a, 26b, 26c and the neutral point 27 are connected by three-phase windings. Moreover, the lead wires 26a, 26b, 26c and the neutral point 27 are actually arranged close to each other.
  • a second insulating coating 402 covers the windings in range. That is, 25% of the entire winding is covered with the second insulating coating 402 from the neutral point 27 .
  • the remaining portion of the winding indicated by the dashed line (75% range from the lead wire 26a) is covered with the first insulating coating 401.
  • the lead wires 26 a , 26 b , 26 c and the neutral point 27 are also covered with the second insulating coating 402 .
  • FIG. 4 is a schematic configuration diagram showing a coil having four reciprocating windings.
  • the coil 40 shown in this figure is schematically represented as having a lead wire 46 and a neutral point 47 for one of the three phases in order to clarify the reciprocating structure of the windings.
  • the coil 40 has a configuration including a first turn 41, a second turn 42, a third turn 43 and a fourth turn 44 from the lead wire 46 toward the neutral point 47. Each of these turns constitutes one round trip winding.
  • the present inventor conducted extensive experimental studies on applying a pulse voltage on the order of MHz to a coil, and found that 20 to 50% of the entire winding from the neutral point can be covered with the second insulating coating. I have come to the conclusion that it is desirable. In other words, it is desirable that the area covered by the second insulating coating in the round winding is 20 to 50% of the total length of the round winding on the neutral point side.
  • the lower limit of the range covered by the second insulating coating is based on the results of dielectric breakdown life tests in Examples, Comparative Examples, etc. described later.
  • the upper limit of the range it goes without saying that if the range covered by the second insulating film is widened, a sufficient life can be obtained. If the range covered with the insulating film is made wider than necessary, it is against not only the cost but also the weight reduction of the coil. Therefore, the upper limit of the range is preferably 50%. More preferably, it is 40%, and particularly preferably 30%. This is because, as will be described later, even at 25%, the same level of dielectric breakdown life as in the case of 100% coverage was obtained.
  • FIG. 4 shows a coil having four round trip windings, but in the case where the coil has eight round trip windings, similarly, the range covered with the second insulating coating in the round winding is 20 to 50% of the total length of the center point side is desirable. That is, if the winding of the coil has eight reciprocations, it is sufficient to cover about two reciprocations of the windings on the neutral point side with the second insulating coating.
  • the ends of the lead wires and the neutral point, and of the windings (circular windings) forming the coil located between the lead wires and the neutral point, the neutral point side A predetermined portion is covered with a second insulating coating, and the rest of the circular winding is covered with a first insulating coating.
  • the second insulating coating has better surge resistance than the first insulating coating.
  • the thickness (film thickness) of the first insulating coating and the second insulating coating is equal to 70 ⁇ m.
  • Polyamide-imide containing no inorganic fine particles was used as the first insulating coating.
  • the second insulating coating 60% of the total film thickness used polyamide-imide containing nanosilica fine particles. That is, for a thickness of 70 ⁇ m, a polyamide-imide containing no inorganic particles is used for a thickness of 28 ⁇ m, and a polyamide-imide containing inorganic particles is used for a thickness of 42 ⁇ m.
  • the area covered with the second insulating film in the round winding was set to 25% of the entire length of the round winding on the neutral point side (the same portion as in FIG. 3).
  • the first insulating coating 20% of the total film thickness used polyamide-imide containing nanosilica fine particles.
  • the second insulating coating 60% of the total film thickness used polyamide-imide containing nanosilica fine particles.
  • the area covered by the second insulating film in the round winding was set to 25% of the entire length of the round winding on the neutral point side.
  • the second insulating coating 60% of the total film thickness used polyamide-imide containing nanosilica fine particles.
  • the area covered with the second insulating film in the round winding was set to 15% of the total length of the round winding on the neutral point side.
  • Polyamide-imide containing nanosilica fine particles in 60% of the total film thickness was used as the insulating coating in the entire range of the winding wire. That is, the entire range was covered with the second insulating coating without using the first insulating coating.
  • the portion to which the first insulating coating is applied and the portion to which the second insulating coating is applied are, respectively, the segment coil having the first insulating coating and the second insulating coating. Since either one of the segment coils having the insulating coating can be appropriately selected when inserting the core, it is possible to manufacture using conventional manufacturing equipment.
  • Table 1 shows the test results.
  • stator according to the present disclosure and the rotary electric machine having the same can reduce the amount of the high-cost, surge-resistant insulating coating and improve the insulating properties.
  • stator and the rotating electric machine having the same according to the present disclosure are not limited to the above examples, and include various modifications.
  • the above embodiments are described in detail for easy understanding of the configurations of the stator and the like according to the present disclosure, and are not necessarily limited to those having all the configurations described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

This stator constitutes a rotating electric machine and comprises a stator core and coils, wherein the coils have windings having a plurality of phases, a lead-out wire, and a neutral point to which the windings having the plurality of phases are electrically connected. The windings include a conductor and first and second insulating coats covering the conductor. The second insulating coat has higher anti-surge properties than the first insulating coat, and an area within which the second insulating coat covers the conductor is a portion of 20 to 50% of the total length of the windings on the neutral point side. This makes it possible to prevent insulation breakdown in a specific area in which the potential difference becomes larger in the windings constituting the coil of the stator.

Description

固定子及びこれを有する回転電機Stator and rotary electric machine having the same
 本発明は、固定子及びこれを有する回転電機に関する。 The present invention relates to a stator and a rotating electric machine having the same.
 近年、自動車の電動化の進展に伴い、電気機器、特に回転電機の高出力密度化が求められている。そして、高出力密度化の手法の一つである高電圧化が各自動車メーカにおいて進められている。これに対応するため、回転電機においては、高電圧化に対応した絶縁信頼性に優れた固定子が種々検討されている。 In recent years, with the progress of electrification of automobiles, there is a demand for higher output density of electrical equipment, especially rotating electric machines. Automobile manufacturers are proceeding with increasing the voltage, which is one of the techniques for increasing the power density. In order to cope with this, various stators with excellent insulation reliability corresponding to higher voltages are being studied in rotary electric machines.
 例えば、特許文献1には、スロット部とコイルエンド部の絶縁層の厚み又は絶縁材料が異なる構成とすることにより、回転電機の小型化と、高電圧、高出力化を両立する技術が開示されている。 For example, Patent Literature 1 discloses a technique for realizing both miniaturization, high voltage, and high output of a rotating electrical machine by configuring the slots and coil end portions with different insulating layer thicknesses or different insulating materials. ing.
 特許文献2には、導体の所定の部位の絶縁被膜を厚くすることにより絶縁抵抗を大きくして、セグメント導体同士を接合する場合に、接合部と隣接するセグメント導体との絶縁性能を確保する技術が開示されている。 Patent Document 2 discloses a technique for increasing the insulation resistance by increasing the thickness of the insulating coating at a predetermined portion of the conductor, and ensuring the insulation performance between the joint and the adjacent segment conductor when the segment conductors are joined together. is disclosed.
 また、インバータの高速化により、モータに対する入力電圧の立ち上がり速度も高速化が進展している。入力電圧の立ち上がり速度が速まることにより、同一コイル内においても電位差が生じるため、絶縁に対する新たな課題となっている。 In addition, due to the speeding up of the inverter, the rise speed of the input voltage to the motor is also increasing. As the rising speed of the input voltage increases, a potential difference occurs even within the same coil, which poses a new problem for insulation.
 非特許文献1には、インバータ駆動モータにおけるサージの発生原理、サージのモータ進入とターン間電圧等についての解説が記載されている。非特許文献1には、モータコイルにサージが進入するとコイルの第一ターンにサージ電圧の大半が加わること、電圧立ち上がり時間が50ns以下になる場合があること、第一ターンでの電圧パルスとターン通過後の遅れ電圧パルスとの差が生じることにより隣接ターン間電圧が生じること等が記載されている。 Non-Patent Document 1 describes the principle of surge generation in an inverter-driven motor, the surge entering the motor and the voltage between turns, etc. Non-Patent Document 1 describes that when a surge enters a motor coil, most of the surge voltage is applied to the first turn of the coil, that the voltage rise time may be 50 ns or less, and that the voltage pulse and the turn in the first turn It is described that a voltage between adjacent turns is generated due to a difference from the delayed voltage pulse after passage.
特開2008-236924号公報JP 2008-236924 A 国際出願第二の019/107515号International Application No. 019/107515
 特許文献1及び2に記載の技術では、絶縁被膜の厚さを変えることにより絶縁性の向上を図っている。しかしながら、コイルの絶縁性を高める必要がある範囲、すなわち、コイルを構成する巻線のうちどの部分について絶縁性を高める必要があるのかについては明確にされていない。 In the techniques described in Patent Documents 1 and 2, the insulation is improved by changing the thickness of the insulating coating. However, the extent to which the insulation of the coil needs to be improved, that is, which part of the windings constituting the coil needs to be improved in insulation has not been clarified.
 また、非特許文献1に記載されているように、隣接ターン間電圧が生じることについては一般に知られているが、具体的に隣接ターン間電圧の影響で絶縁対策が必要となるコイル内の範囲については明確にされていない。 In addition, as described in Non-Patent Document 1, it is generally known that a voltage between adjacent turns is generated. has not been clarified.
 よって、従来の例においては、不必要な範囲にまで絶縁対策を施すことになっていたと考えられる。 Therefore, in the conventional example, it is considered that insulation measures were taken to an unnecessary extent.
 本発明の目的は、固定子のコイルを構成する巻線において電位差が大きくなる特定の範囲について絶縁破壊を防止することにある。 The object of the present invention is to prevent dielectric breakdown in a specific range where the potential difference is large in the windings that make up the coils of the stator.
 本発明は、回転電機を構成する固定子であって、固定子鉄心と、コイルと、を備え、コイルは、複数相の巻線と、口出し線と、複数相の巻線が電気的に接続される中性点と、を有し、巻線は、導体と、導体を覆う第一の絶縁被膜及び第二の絶縁被膜と、を含み、第二の絶縁被膜は、第一の絶縁被膜よりも耐サージ性が高く、第二の絶縁被膜が導体を覆う範囲は、巻線の全長のうち中性点側の20~50%の部分である。 The present invention is a stator that constitutes a rotating electric machine, and includes a stator core and a coil, and the coil has a plurality of phase windings, a lead wire, and a plurality of phase windings electrically connected to each other. the winding includes a conductor, a first insulating coating and a second insulating coating covering the conductor, the second insulating coating being greater than the first insulating coating The range of the second insulating coating covering the conductor is 20 to 50% of the total length of the winding on the neutral point side.
 本発明によれば、固定子のコイルを構成する巻線において電位差が大きくなる特定の範囲について絶縁破壊を防止することができる。 According to the present invention, it is possible to prevent dielectric breakdown in a specific range where the potential difference is large in the windings that make up the coils of the stator.
実施形態に係る回転電機を示す断面図である。1 is a cross-sectional view showing a rotating electric machine according to an embodiment; FIG. 実施形態に係る回転電機の固定子を示す斜視図である。1 is a perspective view showing a stator of a rotary electric machine according to an embodiment; FIG. スター結線を有するコイルを示す模式構成図である。FIG. 3 is a schematic configuration diagram showing a coil having star connection; 四往復の巻線を有するコイルを示す模式構成図である。FIG. 4 is a schematic configuration diagram showing a coil having four reciprocating windings;
 本開示は、絶縁性に優れた構造を有する固定子及びこれを有する回転電機に関する。 The present disclosure relates to a stator having a structure with excellent insulating properties and a rotating electric machine having the same.
 本発明者は、固定子の電圧分担率の測定などを進め、鋭意研究を重ねた結果、電位の伝播遅延により、固定子のコイルを構成する巻線のうち中性点から特定の範囲においては、その電位が口出し線の電位に比べ、大きく異なることを見出した。 As a result of intensive research, the present inventors proceeded with measurements of the voltage sharing ratio of the stator, etc., and found that due to the propagation delay of the potential, in a specific range from the neutral point of the windings constituting the stator coil , that the potential is significantly different from that of the lead wire.
 この結果から、当該範囲に適用する絶縁被膜の耐サージ性を高めることが効果的であるとの着想に至った。 From this result, we came up with the idea that it would be effective to increase the surge resistance of the insulating coating applied to this area.
 具体的には、当該巻線を構成する導体を覆う第一の絶縁被膜及び第二の絶縁被膜のうち、第二の絶縁被膜の耐サージ性を第一の絶縁被膜よりも高くし、第二の絶縁被膜が導体を覆う範囲を、巻線の全長のうち中性点側の20~50%の部分とすることが望ましいことを見出した。 Specifically, of the first insulating coating and the second insulating coating covering the conductors constituting the winding, the surge resistance of the second insulating coating is made higher than that of the first insulating coating, and the second It has been found that it is desirable to cover the conductor with the insulating coating of 20 to 50% of the total length of the winding on the neutral point side.
 以下、本開示の固定子を構成する巻線に用いる絶縁被膜について詳細に説明する。 The insulating coating used for the windings that constitute the stator of the present disclosure will be described in detail below.
 (絶縁被膜の構成)
 絶縁被膜は、第一の絶縁被膜及び第二の絶縁被膜ともに、電気絶縁性を有する樹脂を含む。樹脂の具体例としては、ポリビニルホルマール、ポリエステル、ポリエステルイミド、ポリアミドイミド、ポリイミド、ナイロン、ポリオキシメチレン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレンなどが挙げられる。これらのうち、耐熱性、加工性及び接着性の観点から、ポリエステル、ポリエステルイミド、ポリアミドイミド及びポリイミドが好ましい。また、樹脂は、単体で用いても、複数の樹脂を複層して用いてもよい。複層手段は、焼き付け塗布や多層押し出しなどの既存の手法を用いることができ、特に限定されるものではない。なお、これらの樹脂は、溶接前の1個のセグメントコイル内では同一であることが望ましい。言い換えると、セグメントコイルは、第一の絶縁被膜及び第二の絶縁被膜のうちいずれか一方のみを有することが望ましい。
(Structure of insulating coating)
Both the first insulating coating and the second insulating coating contain an electrically insulating resin. Specific examples of resins include polyvinyl formal, polyester, polyesterimide, polyamideimide, polyimide, nylon, polyoxymethylene, polyphenylene sulfide, polyetheretherketone, and polytetrafluoroethylene. Among these, polyester, polyesterimide, polyamideimide and polyimide are preferred from the viewpoint of heat resistance, workability and adhesiveness. In addition, the resin may be used singly or may be used by laminating a plurality of resins. The multi-layer means is not particularly limited, and existing techniques such as baking coating and multi-layer extrusion can be used. It is desirable that these resins are the same within one segment coil before welding. In other words, the segment coil desirably has only one of the first insulating coating and the second insulating coating.
 (耐サージ性を向上する成分)
 耐サージ性向上の手法としては、無機粒子の添加や低誘電率化が挙げられる。
(Component that improves surge resistance)
Techniques for improving surge resistance include adding inorganic particles and lowering the dielectric constant.
 無機粒子としては、電気絶縁性を有すればよく、シリカ、アルミナ、マイカなどが挙げられる。これらは単体でも、2種類以上を組み合わせて用いてもよい。  Inorganic particles may be electrically insulating, such as silica, alumina, and mica. These may be used singly or in combination of two or more.
 無機粒子の添加の例としては、第一の絶縁被膜にポリアミドイミドを、第二の絶縁被膜にナノシリカ粒子添加ポリアミドイミドを用いる手法などが挙げられる。 Examples of the addition of inorganic particles include the method of using polyamide-imide for the first insulating coating and nano-silica particle-added polyamide-imide for the second insulating coating.
 基材となる樹脂については、上記の樹脂群から選択され、単体でも、複数種類用いてもよい。 The base material resin is selected from the above resin group, and may be used singly or in multiple types.
 低誘電率化の例としては、第一の絶縁被膜に誘電率4のポリアミドイミドを、第二の絶縁被膜に誘電率3.5のポリイミドを用いる手法などが挙げられる。これらの樹脂の組み合わせは、第二の絶縁被膜の誘電率が第一の絶縁被膜の誘電率より低ければよく、特に限定されるものではない。 As an example of lowering the dielectric constant, there is a method of using polyamide-imide with a dielectric constant of 4 for the first insulating coating and polyimide with a dielectric constant of 3.5 for the second insulating coating. The combination of these resins is not particularly limited as long as the dielectric constant of the second insulating coating is lower than that of the first insulating coating.
 (第二の絶縁被膜の適用部位)
 第二の絶縁被膜の適用部位は、電源の入力部位である口出し線と、口出し線と中性点との間であって周回巻線を構成する周回巻線部の前記中性点に隣接する側であって当該周回巻線部の全長に対し20~50%の部分であることが好ましい。この部位は、電源入力時のパルス立ち上がりにより、電位差が大きくなる部位である。また、焼き付け塗布により絶縁被膜を形成する場合、第二の絶縁被膜の耐サージ性を向上させる樹脂厚は、全体の5%以上100%未満であることが好ましく、さらに好ましいのは、20%以上60%未満である。20%より薄い場合は耐サージ性が不十分である可能性となり、60%より厚い場合は導体や被膜間の接着力が弱まる可能性がある。また、第一の絶縁被膜及び第二の絶縁被膜ともに、その被膜厚さは電源電圧に対して適した厚さを選定すればよく、特に制限はされない。
(Applied portion of the second insulating coating)
The portions to which the second insulating coating is applied are the lead wire that is the input portion of the power source, and are between the lead wire and the neutral point and are adjacent to the neutral point of the encircling winding portion that constitutes the encircling winding. It is preferable that it is the side and is a portion of 20 to 50% of the total length of the winding portion. This portion is a portion where the potential difference increases due to the rise of the pulse when power is input. Further, when the insulating coating is formed by baking coating, the resin thickness that improves the surge resistance of the second insulating coating is preferably 5% or more and less than 100% of the whole, more preferably 20% or more. less than 60%. If it is thinner than 20%, the surge resistance may be insufficient, and if it is thicker than 60%, the adhesion between conductors and coatings may be weakened. Moreover, the film thickness of both the first insulating film and the second insulating film is not particularly limited as long as the film thickness is selected to be suitable for the power supply voltage.
 (回転電機の構成)
 つぎに、回転電機の構成を説明する。以下で説明する実施形態は、あくまでも一例であり、これらの例に限定されるものではない。なお、以下の説明では、回転電機の一例として、ハイブリット自動車に用いられる電動機を用いる。以下の説明において、「軸方向」は、回転電機の回転軸に沿った方向を指すものとする。また、「周方向」は、回転電機の回転方向に沿った方向を指すものとする。「径方向」は、回転電機の回転軸を中心としたときの動径方向(半径方向)を指すものとする。「内周側」は径方向内側(内径側)を指し、「外周側」はその逆方向、すなわち径方向外側(外径側)を指すものとする。
(Configuration of rotating electric machine)
Next, the configuration of the rotating electrical machine will be described. The embodiments described below are merely examples, and are not limited to these examples. In addition, in the following description, the electric motor used for a hybrid vehicle is used as an example of a rotary electric machine. In the following description, "axial direction" refers to the direction along the rotating shaft of the rotating electric machine. Also, the “circumferential direction” refers to the direction along the rotation direction of the rotating electric machine. "Radial direction" refers to a radial direction (radial direction) around the rotating shaft of the rotating electric machine. The "inner peripheral side" refers to the radially inner side (inner diameter side), and the "outer peripheral side" refers to the opposite direction, that is, the radial outer side (outer diameter side).
 図1は、実施形態に係る回転電機の一例を示す断面図である。 FIG. 1 is a cross-sectional view showing an example of a rotating electric machine according to an embodiment.
 本図においては、回転電機10は、回転子11と、固定子20と、ハウジング50と、を備えている。回転子11は、回転子鉄心12と、回転軸13と、を含む。回転子11には、永久磁石18と、エンドリング(図示せず)が設けられている。固定子20は、固定子鉄心21(固定子コア)を含む。 In this figure, the rotating electrical machine 10 includes a rotor 11 , a stator 20 and a housing 50 . Rotor 11 includes rotor core 12 and rotating shaft 13 . The rotor 11 is provided with permanent magnets 18 and end rings (not shown). The stator 20 includes a stator core 21 (stator core).
 ハウジング50の内周側には、コイル40を有する固定子20が固定されている。固定子20の内周側には、回転子11が回転可能に設置されている。ハウジング50は、炭素鋼など鉄系材料の切削により、鋳鋼やアルミニウム合金の鋳造により、または、プレス加工により、円筒状に成形した、回転電機10の外被を構成している。ハウジング50は、枠体或いはフレームとも称されている。 A stator 20 having a coil 40 is fixed to the inner peripheral side of the housing 50 . A rotor 11 is rotatably installed on the inner peripheral side of the stator 20 . The housing 50 forms a cylindrical outer cover of the rotating electric machine 10 by cutting a ferrous material such as carbon steel, by casting cast steel or an aluminum alloy, or by pressing. The housing 50 is also called a frame or frame.
 ハウジング50の外周側には、液冷ジャケット130が設置されている。液冷ジャケット130の内周壁とハウジング50の外周壁との間に設けられた隙間は、油などの液状の冷媒157の冷媒通路153である。冷媒通路153は、液漏れしないように構成されている。液冷ジャケット130は、軸受144、145を有し、「軸受ブラケット」とも呼ぶことができる。 A liquid cooling jacket 130 is installed on the outer peripheral side of the housing 50 . A gap provided between the inner peripheral wall of the liquid cooling jacket 130 and the outer peripheral wall of the housing 50 is a coolant passage 153 for a liquid coolant 157 such as oil. The refrigerant passage 153 is configured so as not to leak. Liquid cooling jacket 130 has bearings 144, 145 and may also be referred to as a "bearing bracket."
 直接液体冷却の場合、冷媒157は、冷媒通路153を通り、冷媒出口154、155から固定子20へ向けて流出し、固定子20を冷却する。その後、冷媒157は、冷媒貯留部150に一時的に貯留され、外部に設置されたポンプにより循環される。 In the case of direct liquid cooling, coolant 157 flows through coolant passage 153 and flows out from coolant outlets 154 and 155 toward stator 20 to cool stator 20 . Thereafter, refrigerant 157 is temporarily stored in refrigerant reservoir 150 and circulated by a pump installed outside.
 固定子鉄心21は、珪素鋼板の薄板が積層された構成を有する。 The stator core 21 has a structure in which thin silicon steel plates are laminated.
 固定子20に設置されたコイル40で発生する熱は、固定子鉄心21を介してハウジング50に伝えられ、液冷ジャケット130内を流通する冷媒157により外部に移動し、放熱される。 The heat generated by the coils 40 installed in the stator 20 is transmitted to the housing 50 via the stator core 21, transferred to the outside by the coolant 157 flowing through the liquid cooling jacket 130, and radiated.
 回転子鉄心12は、珪素鋼板の薄板が積層された構成を有する。回転子11の回転軸13は、回転子鉄心12の中心に固定されている。回転軸13は、液冷ジャケット130に取り付けられた軸受144、145により回転自在に支持されている。これにより、回転子11は、固定子20内の所定の位置で、固定子20に対向した位置で回転する。 The rotor core 12 has a structure in which thin silicon steel plates are laminated. A rotating shaft 13 of the rotor 11 is fixed to the center of the rotor core 12 . The rotating shaft 13 is rotatably supported by bearings 144 and 145 attached to the liquid cooling jacket 130 . As a result, the rotor 11 rotates at a predetermined position inside the stator 20 and at a position facing the stator 20 .
 回転電機10の組立は、予め、固定子20をハウジング50の内側に挿入してハウジング50の内周壁に取付けておき、その後、固定子20内に回転子11を挿入する。次に、回転軸13に軸受144、145が嵌合するようにして液冷ジャケット130に組み付ける。 To assemble the rotating electrical machine 10 , the stator 20 is inserted inside the housing 50 and attached to the inner peripheral wall of the housing 50 in advance, and then the rotor 11 is inserted into the stator 20 . Next, the rotating shaft 13 is assembled to the liquid cooling jacket 130 so that the bearings 144 and 145 are fitted.
 つぎに、固定子20の要部の構成について説明する。 Next, the configuration of the main part of the stator 20 will be explained.
 図2は、実施形態に係る回転電機の固定子の一例を示す斜視図である。 FIG. 2 is a perspective view showing an example of the stator of the rotary electric machine according to the embodiment.
 本図においては、固定子20は、固定子鉄心21と、固定子コイル60と、を含む。固定子コイル60は、固定子鉄心21の内周部に多数個設けられているスロット15に巻回されている。 In this figure, the stator 20 includes a stator core 21 and a stator coil 60. The stator coil 60 is wound around a number of slots 15 provided in the inner circumference of the stator core 21 .
 固定子20は、固定子鉄心21と、固定子鉄心21の内周部に多数個設けられているスロット15に巻回された固定子コイル60と、を含む。固定子コイル60は、断面が略矩形形状の導体で形成されたものであって、絶縁被膜を有する。本実施例においては、導体は、銅合金で形成されている。固定子コイル60の導体の断面形状を略矩形形状とすることにより、スロット15内における導体の占積率を向上させ、回転電機10の効率を向上させることができる。 The stator 20 includes a stator core 21 and stator coils 60 wound in a number of slots 15 provided in the inner periphery of the stator core 21 . The stator coil 60 is made of a conductor having a substantially rectangular cross section and has an insulating coating. In this embodiment, the conductor is made of a copper alloy. By making the cross-sectional shape of the conductors of the stator coil 60 substantially rectangular, the space factor of the conductors in the slots 15 can be improved, and the efficiency of the rotating electric machine 10 can be improved.
 また、各スロット15にはスロットライナー301が、固定子鉄心21の外周部には絶縁紙300が配設され、固定子鉄心21と固定子コイル60等との電気的絶縁および接着を確実にしている。スロットライナー301は、銅線を包装するように口字形状、B字形状又はS字形状に成形されている。 A slot liner 301 is provided in each slot 15, and an insulating paper 300 is provided around the outer periphery of the stator core 21 to ensure electrical insulation and adhesion between the stator core 21 and the stator coil 60 and the like. there is The slot liner 301 is formed in a square shape, a B shape, or an S shape so as to wrap the copper wire.
 セグメント状のコイルをスロットライナー301が配設されたスロット15に挿入し、溶接することにより、固定子コイル60とする。その後、スロット15内に固着ワニスを含浸し、加熱することにより、コイルを固着する。すなわち、固定子コイル60の巻線は、セグメントコイルで構成されている。 A stator coil 60 is formed by inserting a segmented coil into the slot 15 provided with the slot liner 301 and welding it. Thereafter, the slots 15 are impregnated with a bonding varnish and heated to bond the coils. That is, the windings of the stator coil 60 are composed of segment coils.
 固定子コイル60は、口出し線26a、26b、26cと、中性点27と、を有する。口出し線26a、26b、26cと中性点27とは、近接して配置されている。 The stator coil 60 has lead wires 26 a , 26 b , 26 c and a neutral point 27 . The lead wires 26a, 26b, 26c and the neutral point 27 are arranged close to each other.
 以上の説明は、永久磁石式の回転電機についてであるが、本開示に係る回転電機の特徴は、固定子のコイル絶縁に関するものであるため、回転子は、永久磁石式以外にも、インダクション式や、シンクロナスリラクタンス、爪磁極式等にも適用可能である。また、巻線方式は、波巻方式であるが、同様の特徴を持つ巻線方式であれば、適用可能である。また、内転型について説明をしているが、外転型においても同様に適用可能である。 The above description is about the permanent magnet type rotating electric machine, but since the feature of the rotating electric machine according to the present disclosure relates to the coil insulation of the stator, the rotor can be not only the permanent magnet type but also the induction type. , synchronous reluctance, claw magnetic pole type, etc. Moreover, although the winding method is the wave winding method, any winding method having similar characteristics can be applied. Moreover, although the adductor type has been described, it is also applicable to the abductor type.
 図3は、スター結線を有するコイルを示す模式構成図である。 FIG. 3 is a schematic configuration diagram showing a coil with star connection.
 本図に示すように、固定子のコイル40は、口出し線26a、26b、26cと、中性点27と、を有する。口出し線26a、26b、26cと中性点27とは、三相の巻線で接続されている。また、口出し線26a、26b、26cと中性点27とは、実際には近接して配置されている。 As shown in this figure, the stator coil 40 has lead wires 26a, 26b, 26c and a neutral point 27. The lead wires 26a, 26b, 26c and the neutral point 27 are connected by three-phase windings. Moreover, the lead wires 26a, 26b, 26c and the neutral point 27 are actually arranged close to each other.
 本図においては、U相の巻線を表す口出し線26aと中性点27とを結ぶ線分の全体の長さを100とした場合に、中性点27から太い実線で示す長さ25の範囲にある巻線を第二の絶縁被膜402で覆っている。すなわち、巻線全体のうち、中性点27から25%の範囲を第二の絶縁被膜402で覆っている。一方、破線で示す巻線の残りの部分(口出し線26aから75%の範囲)は、第一の絶縁被膜401で覆っている。V相及びW相についても同様である。口出し線26a、26b、26c及び中性点27も、第二の絶縁被膜402で覆っている。 In this figure, when the total length of the line segment connecting the lead wire 26a representing the U-phase winding and the neutral point 27 is 100, the length 25 indicated by the thick solid line from the neutral point 27 is A second insulating coating 402 covers the windings in range. That is, 25% of the entire winding is covered with the second insulating coating 402 from the neutral point 27 . On the other hand, the remaining portion of the winding indicated by the dashed line (75% range from the lead wire 26a) is covered with the first insulating coating 401. As shown in FIG. The same applies to the V phase and W phase. The lead wires 26 a , 26 b , 26 c and the neutral point 27 are also covered with the second insulating coating 402 .
 なお、本図においては、スター結線の場合について示しているが、本開示の巻線の構成は、これに限定されるものではなく、デルタ結線等、他の結線構造を有する固定子にも適用可能である。 In this figure, the case of star connection is shown, but the configuration of the windings of the present disclosure is not limited to this, and can also be applied to stators having other connection structures such as delta connection. It is possible.
 図4は、四往復の巻線を有するコイルを示す模式構成図である。 FIG. 4 is a schematic configuration diagram showing a coil having four reciprocating windings.
 本図に示すコイル40は、巻線の往復構造を明瞭にするため、三相のうちの一相について、口出し線46及び中性点47を有する構成として模式的に表している。 The coil 40 shown in this figure is schematically represented as having a lead wire 46 and a neutral point 47 for one of the three phases in order to clarify the reciprocating structure of the windings.
 本図においては、コイル40は、口出し線46から中性点47に向かって、第一ターン41、第二ターン42、第三ターン43及び第四ターン44を含む構成を有する。これらのターンがそれぞれ、一往復の巻線を構成している。 In this figure, the coil 40 has a configuration including a first turn 41, a second turn 42, a third turn 43 and a fourth turn 44 from the lead wire 46 toward the neutral point 47. Each of these turns constitutes one round trip winding.
 一般に、口出し線46にパルス電圧が印加されると、急峻な電流値の変化が生じる。この際、コイル40の巻線には、インダクタンスによる誘導起電力が発生する。このため、巻線の口出し線46から遠い中性点47側の部分には、パルス電圧が伝播しにくい。このため、口出し線46側と中性点47側とで大きな電位差が生じる場合がある。口出し線46側と中性点47側の導体が隣接している場合、電位差のため、絶縁破壊が生じやすくなる。MHzオーダーのパルス電圧の場合、電流の時間変化率も特に顕著となり、誘導起電力も大きくなる傾向がある。 Generally, when a pulse voltage is applied to the lead wire 46, a sharp change in current value occurs. At this time, an induced electromotive force is generated in the winding of the coil 40 due to the inductance. Therefore, it is difficult for the pulse voltage to propagate to the portion of the winding on the side of the neutral point 47 far from the lead wire 46 . Therefore, a large potential difference may occur between the lead wire 46 side and the neutral point 47 side. If the conductors on the lead wire 46 side and the neutral point 47 side are adjacent to each other, dielectric breakdown is likely to occur due to the potential difference. In the case of a pulse voltage on the order of MHz, the time rate of current change is particularly remarkable, and the induced electromotive force tends to increase.
 本発明者は、MHzオーダーのパルス電圧をコイルに印加する実験的検討を鋭意行った結果、巻線全体のうち、中性点から20~50%の範囲を第二の絶縁被膜で覆うことが望ましいという考えに至った。言い換えると、周回巻線において第二の絶縁被膜で覆う範囲は、周回巻線の全長のうち中性点側の20~50%の部分であることが望ましい。 The present inventor conducted extensive experimental studies on applying a pulse voltage on the order of MHz to a coil, and found that 20 to 50% of the entire winding from the neutral point can be covered with the second insulating coating. I have come to the conclusion that it is desirable. In other words, it is desirable that the area covered by the second insulating coating in the round winding is 20 to 50% of the total length of the round winding on the neutral point side.
 ここで、第二の絶縁被膜で覆う範囲の下限値は、後述の実施例、比較例等の絶縁破壊寿命試験の結果に基いている。一方、当該範囲の上限値については、第二の絶縁被膜で覆う範囲を広くすれば十分な寿命が得られることは言うまでもないが、密度の高い無機微粒子等を樹脂に添加するため、第二の絶縁被膜で覆う範囲を必要以上に広くすれば、コストの面だけでなく、コイルの軽量化にも反することになる。したがって、当該範囲の上限値については、50%が望ましい。更に望ましくは40%であり、特に望ましくは30%である。後述のとおり、25%としても、100%覆った場合と同程度の絶縁破壊寿命が得られたからである。 Here, the lower limit of the range covered by the second insulating coating is based on the results of dielectric breakdown life tests in Examples, Comparative Examples, etc. described later. On the other hand, regarding the upper limit of the range, it goes without saying that if the range covered by the second insulating film is widened, a sufficient life can be obtained. If the range covered with the insulating film is made wider than necessary, it is against not only the cost but also the weight reduction of the coil. Therefore, the upper limit of the range is preferably 50%. More preferably, it is 40%, and particularly preferably 30%. This is because, as will be described later, even at 25%, the same level of dielectric breakdown life as in the case of 100% coverage was obtained.
 図4においては、四往復の巻線を有するコイルについて示しているが、コイルの巻線が八往復の場合も、同様に、周回巻線において第二の絶縁被膜で覆う範囲は、周回巻線の全長のうち中性点側の20~50%の部分であることが望ましいことがわかっている。すなわち、コイルの巻線が八往復の場合は、そのうちの中性点側のおよそ二往復の巻線を第二の絶縁被膜で覆えばよい。 FIG. 4 shows a coil having four round trip windings, but in the case where the coil has eight round trip windings, similarly, the range covered with the second insulating coating in the round winding is 20 to 50% of the total length of the center point side is desirable. That is, if the winding of the coil has eight reciprocations, it is sufficient to cover about two reciprocations of the windings on the neutral point side with the second insulating coating.
 以下、実施例及び比較例について説明する。 Examples and comparative examples will be described below.
 実施例等の固定子においては、口出し線の端部及び中性点、並びに口出し線と中性点との間に位置するコイルを構成する巻線(周回巻線)のうち中性点側の所定の部分を第二の絶縁被膜で覆い、それ以外の周回巻線を第一の絶縁被膜で覆った構成としている。第二の絶縁被膜は、第一の絶縁被膜に比べ、耐サージ性に優れている。なお、第一の絶縁被膜及び第二の絶縁被膜の厚さ(膜厚)は等しく、70μmである。 In the stators of the embodiments, the ends of the lead wires and the neutral point, and of the windings (circular windings) forming the coil located between the lead wires and the neutral point, the neutral point side A predetermined portion is covered with a second insulating coating, and the rest of the circular winding is covered with a first insulating coating. The second insulating coating has better surge resistance than the first insulating coating. The thickness (film thickness) of the first insulating coating and the second insulating coating is equal to 70 μm.
 第一の絶縁被膜としては、無機微粒子を含まないポリアミドイミドを用いた。 Polyamide-imide containing no inorganic fine particles was used as the first insulating coating.
 一方、第二の絶縁被膜としては、総膜厚の60%がナノシリカ微粒子を含むポリアミドイミドを用いた。つまり、70μmの厚さに対し、28μmは無機粒子を含まないポリアミドイミドを用い、42μmは無機粒子を含むポリアミドイミドを用いている。周回巻線において第二の絶縁被膜で覆う範囲は、周回巻線の全長のうち中性点側の25%の部分(図3と同様の部分)とした。 On the other hand, as the second insulating coating, 60% of the total film thickness used polyamide-imide containing nanosilica fine particles. That is, for a thickness of 70 μm, a polyamide-imide containing no inorganic particles is used for a thickness of 28 μm, and a polyamide-imide containing inorganic particles is used for a thickness of 42 μm. The area covered with the second insulating film in the round winding was set to 25% of the entire length of the round winding on the neutral point side (the same portion as in FIG. 3).
 第一の絶縁被膜としては、総膜厚の20%がナノシリカ微粒子を含むポリアミドイミドを用いた。 As the first insulating coating, 20% of the total film thickness used polyamide-imide containing nanosilica fine particles.
 一方、第二の絶縁被膜としては、総膜厚の60%がナノシリカ微粒子を含むポリアミドイミドを用いた。周回巻線において第二の絶縁被膜で覆う範囲は、周回巻線の全長のうち中性点側の25%の部分とした。 On the other hand, as the second insulating coating, 60% of the total film thickness used polyamide-imide containing nanosilica fine particles. The area covered by the second insulating film in the round winding was set to 25% of the entire length of the round winding on the neutral point side.
 (比較例1)
 周回巻線の全ての範囲において、絶縁被膜としてナノシリカ微粒子を含まないポリアミドイミドを用いた。すなわち、第二の絶縁被膜を用いることなく、全ての範囲を第一の絶縁被膜で覆った構成とした。
(Comparative example 1)
Polyamide-imide containing no nanosilica fine particles was used as an insulating coating in the entire area of the winding wire. In other words, the entire range was covered with the first insulating coating without using the second insulating coating.
 (比較例2)
 第一の絶縁被膜としては、無機微粒子を含まないポリアミドイミドを用いた。
(Comparative example 2)
Polyamide-imide containing no inorganic fine particles was used as the first insulating coating.
 一方、第二の絶縁被膜としては、総膜厚の60%がナノシリカ微粒子を含むポリアミドイミドを用いた。周回巻線において第二の絶縁被膜で覆う範囲は、周回巻線の全長のうち中性点側の15%の部分とした。 On the other hand, as the second insulating coating, 60% of the total film thickness used polyamide-imide containing nanosilica fine particles. The area covered with the second insulating film in the round winding was set to 15% of the total length of the round winding on the neutral point side.
 (参考例)
 周回巻線の全ての範囲において、絶縁被膜として総膜厚の60%がナノシリカ微粒子を含むポリアミドイミドを用いた。すなわち、第一の絶縁被膜を用いることなく、全ての範囲を第二の絶縁被膜で覆った構成とした。
(Reference example)
Polyamide-imide containing nanosilica fine particles in 60% of the total film thickness was used as the insulating coating in the entire range of the winding wire. That is, the entire range was covered with the second insulating coating without using the first insulating coating.
 なお、これらの固定子は、セグメントコイルを用いているため、第一の絶縁被膜の適用部位及び第二の絶縁被膜の適用部位は、それぞれ、第一の絶縁被膜を有するセグメントコイル及び第二の絶縁被膜を有するセグメントコイルのいずれか一方をコア挿入の際に適宜選択することができるため、従来の製造装置を用いて製造することが可能である。 In addition, since these stators use segment coils, the portion to which the first insulating coating is applied and the portion to which the second insulating coating is applied are, respectively, the segment coil having the first insulating coating and the second insulating coating. Since either one of the segment coils having the insulating coating can be appropriately selected when inserting the core, it is possible to manufacture using conventional manufacturing equipment.
 (効果の検証)
 作製した実施例1及び2、比較例1及び2並びに参考例の固定子について線間課電寿命試験を実施した。この試験においては、パルス電子技術(株)製高圧パルス発生器PG-W15KDを電源として用い、500Hzで2kVをU相口出し線に印加し、V相を接地した。なお、中性点は、事前に切断した。
(Verification of effect)
A line voltage application life test was performed on the manufactured stators of Examples 1 and 2, Comparative Examples 1 and 2, and Reference Example. In this test, a high-voltage pulse generator PG-W15KD manufactured by Pulse Electronic Technology Co., Ltd. was used as a power supply, 2 kV was applied to the U-phase lead wire at 500 Hz, and the V-phase was grounded. In addition, the neutral point was cut in advance.
 表1は、試験結果を示したものである。 Table 1 shows the test results.
Figure JPOXMLDOC01-appb-T000001
 本表から、実施例1及び2並びに参考例の固定子は、耐サージ性に優れた第二の絶縁被膜を有さないコイルのみで作製した比較例1よりも、絶縁破壊に要する時間が1.5倍以上長くなっており、絶縁性に関して寿命が向上していることがわかる。
Figure JPOXMLDOC01-appb-T000001
From this table, it can be seen that the stators of Examples 1 and 2 and the reference example take 1 time longer for dielectric breakdown than Comparative Example 1, which is manufactured only with a coil that does not have a second insulation coating with excellent surge resistance. 0.5 times or more, and it can be seen that the life is improved in terms of insulation.
 また、比較例2においては、第二の絶縁被膜で覆う範囲を15%の部分としているため、実施例1及び2並びに参考例に比べ、絶縁寿命の向上効果が十分でない。 In addition, in Comparative Example 2, since the area covered by the second insulating coating is 15%, compared to Examples 1 and 2 and the Reference Example, the effect of improving the insulation life is not sufficient.
 さらに、実施例1及び2の固定子は、耐サージ性に劣る第一の絶縁被膜を有するコイルを一部に用いているにもかかわらず、耐サージ性に優れた第二の絶縁被膜のみを有するコイルで作製した参考例と同等の絶縁破壊寿命を有している。 Furthermore, although the stators of Examples 1 and 2 partially used the coil having the first insulation coating with poor surge resistance, only the second insulation coating with excellent surge resistance was used. It has a dielectric breakdown life equivalent to that of the reference example produced with the coil having
 このほか、いくつかの実験から、第二の絶縁被膜で覆う範囲を20%の部分としても、実施例1及び2と同等の絶縁破壊寿命を有していることがわかっている。 In addition, it has been found from several experiments that even if the area covered by the second insulating film is 20%, the dielectric breakdown life is equivalent to that of Examples 1 and 2.
 以上より、本開示に係る固定子及びこれを有する回転電機は、高コストな耐サージ性に優れた絶縁被膜の使用量削減と、絶縁特性の向上とを両立することができる。 As described above, the stator according to the present disclosure and the rotary electric machine having the same can reduce the amount of the high-cost, surge-resistant insulating coating and improve the insulating properties.
 なお、本開示に係る固定子及びこれを有する回転電機は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は、本開示に係る固定子等の構成等を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the stator and the rotating electric machine having the same according to the present disclosure are not limited to the above examples, and include various modifications. The above embodiments are described in detail for easy understanding of the configurations of the stator and the like according to the present disclosure, and are not necessarily limited to those having all the configurations described. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration.
 10:回転電機、11:回転子、12:回転子鉄心、13:回転軸、15:スロット、18:永久磁石、20:固定子、21:固定子鉄心、40:コイル、41:第一ターン、42:第二ターン、43:第三ターン、44:第四ターン、46:口出し線、47:中性点、50:ハウジング、60:固定子コイル、130:液冷ジャケット、144、145:軸受、150:冷媒貯留部、153:冷媒通路、154:冷媒出口、155:冷媒出口、401:第一の絶縁被膜、402:第二の絶縁被膜、300:絶縁紙、301:スロットライナー、501:固着ワニス、157:冷媒。 10: Rotary electric machine, 11: Rotor, 12: Rotor core, 13: Rotating shaft, 15: Slot, 18: Permanent magnet, 20: Stator, 21: Stator core, 40: Coil, 41: First turn , 42: Second turn, 43: Third turn, 44: Fourth turn, 46: Lead wire, 47: Neutral point, 50: Housing, 60: Stator coil, 130: Liquid cooling jacket, 144, 145: Bearing 150: Refrigerant reservoir 153: Refrigerant passage 154: Refrigerant outlet 155: Refrigerant outlet 401: First insulating coating 402: Second insulating coating 300: Insulating paper 301: Slot liner 501 : fixing varnish, 157: refrigerant.

Claims (8)

  1.  回転電機を構成する固定子であって、
     固定子鉄心と、
     コイルと、を備え、
     前記コイルは、複数相の巻線と、口出し線と、前記複数相の巻線が電気的に接続される中性点と、を有し、
     前記巻線は、導体と、前記導体を覆う第一の絶縁被膜及び第二の絶縁被膜と、を含み、
     前記第二の絶縁被膜は、前記第一の絶縁被膜よりも耐サージ性が高く、
     前記第二の絶縁被膜が前記導体を覆う範囲は、前記巻線の全長のうち前記中性点側の20~50%の部分である、固定子。
    A stator that constitutes a rotating electric machine,
    a stator core;
    a coil;
    The coil has a multi-phase winding, a lead wire, and a neutral point to which the multi-phase winding is electrically connected,
    The winding includes a conductor, and a first insulating coating and a second insulating coating covering the conductor,
    The second insulating coating has higher surge resistance than the first insulating coating,
    The stator according to claim 1, wherein the range of the second insulating coating covering the conductor is 20 to 50% of the total length of the winding on the neutral point side.
  2.  前記第一の絶縁被膜及び前記第二の絶縁被膜は、ポリイミド、ポリアミドイミド、ポリエステルイミド及びポリエステルのいずれかを含む、請求項1記載の固定子。 The stator according to claim 1, wherein said first insulation coating and said second insulation coating contain any one of polyimide, polyamideimide, polyesterimide and polyester.
  3.  前記第二の絶縁被膜は、無機粒子を含む、請求項1記載の固定子。 The stator according to claim 1, wherein said second insulating coating contains inorganic particles.
  4.  前記第二の絶縁被膜は、前記第一の絶縁被膜よりも前記無機粒子の含有量が高い、請求項3記載の固定子。 The stator according to claim 3, wherein said second insulating coating has a higher content of said inorganic particles than said first insulating coating.
  5.  前記無機粒子は、シリカ、アルミナ及びマイカのうちのいずれか一種類を含む、請求項3記載の固定子。 The stator according to claim 3, wherein the inorganic particles include any one of silica, alumina and mica.
  6.  前記巻線は、セグメントコイルで構成されている、請求項1記載の固定子。 The stator according to claim 1, wherein said windings are composed of segment coils.
  7.  前記セグメントコイルは、前記第一の絶縁被膜及び前記第二の絶縁被膜のうちいずれか一方のみを有する、請求項6記載の固定子。 The stator according to claim 6, wherein said segment coil has only one of said first insulating coating and said second insulating coating.
  8.  請求項1~7のいずれか一項に記載の固定子と、
     回転子と、を備えた、回転電機。
    a stator according to any one of claims 1 to 7;
    A rotating electric machine, comprising a rotor.
PCT/JP2021/030908 2021-03-18 2021-08-24 Stator and rotating electric machine having same WO2022195916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180095387.1A CN116998091A (en) 2021-03-18 2021-08-24 Stator and rotating electrical machine having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-044465 2021-03-18
JP2021044465A JP7460571B2 (en) 2021-03-18 2021-03-18 Stator and rotating electric machine having the same

Publications (1)

Publication Number Publication Date
WO2022195916A1 true WO2022195916A1 (en) 2022-09-22

Family

ID=83322169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030908 WO2022195916A1 (en) 2021-03-18 2021-08-24 Stator and rotating electric machine having same

Country Status (3)

Country Link
JP (1) JP7460571B2 (en)
CN (1) CN116998091A (en)
WO (1) WO2022195916A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253014A (en) * 2007-03-29 2008-10-16 Toshiba Corp Rotating electrical machine for high voltage
JP2012175822A (en) * 2011-02-22 2012-09-10 Toyota Motor Corp Rotating electric machine stator
JP2019033202A (en) * 2017-08-09 2019-02-28 富士電機株式会社 Winding structure, coil, current transformer, and rotary machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253014A (en) * 2007-03-29 2008-10-16 Toshiba Corp Rotating electrical machine for high voltage
JP2012175822A (en) * 2011-02-22 2012-09-10 Toyota Motor Corp Rotating electric machine stator
JP2019033202A (en) * 2017-08-09 2019-02-28 富士電機株式会社 Winding structure, coil, current transformer, and rotary machine

Also Published As

Publication number Publication date
CN116998091A (en) 2023-11-03
JP2022143772A (en) 2022-10-03
JP7460571B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
US6462453B1 (en) Stator for an alternator
RU2638165C1 (en) Stator of rotating electrical machine
KR101247085B1 (en) Two conductor winding for an induction motor circuit
JP4461590B2 (en) Vehicle alternator
JP6771537B2 (en) Axial gap type rotary electric machine
US11605993B2 (en) Rotary motors incorporating flexible printed circuit boards
JP2009268161A (en) Stator for rotary electric machine, and rotary electric machine
JP2010011623A (en) Rotating electrical machine
KR102487162B1 (en) Hairpin winding type stator of driving motor
WO2017038326A1 (en) Rotor, rotating electrical machine provided therewith, and method of manufacturing rotor
CN111835107A (en) Rotor of rotating electric machine
CN212486231U (en) Stator and motor
JP6346112B2 (en) Multi-phase AC motor
JP3476438B2 (en) AC generator for vehicles
JP2015023750A (en) Electric motor
WO2022195916A1 (en) Stator and rotating electric machine having same
CN101330239A (en) AC generator for vehicle
JP6173842B2 (en) Rotating electric machine
US10763005B2 (en) Insulation for conductors
WO2016194829A1 (en) Rotating electrical machine
JP6852639B2 (en) Stator
WO2019138693A1 (en) Stator for rotary electric machine, and rotary electric machine
JP5057144B2 (en) Rotating electric machine stator
JPWO2019208032A1 (en) Stator and rotary machine
JP2020068569A (en) Stator of rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095387.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931660

Country of ref document: EP

Kind code of ref document: A1