JP2004254457A - Surge resistant motor - Google Patents

Surge resistant motor Download PDF

Info

Publication number
JP2004254457A
JP2004254457A JP2003043761A JP2003043761A JP2004254457A JP 2004254457 A JP2004254457 A JP 2004254457A JP 2003043761 A JP2003043761 A JP 2003043761A JP 2003043761 A JP2003043761 A JP 2003043761A JP 2004254457 A JP2004254457 A JP 2004254457A
Authority
JP
Japan
Prior art keywords
motor
conductive
winding
film
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003043761A
Other languages
Japanese (ja)
Inventor
Koji Ohata
功治 尾畑
Yoshishige Fukushi
慶滋 福士
Ryozo Takeuchi
良三 武内
Takeshi Komata
剛 小俣
Hideyuki Kikuchi
英行 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Hitachi Magnet Wire Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Hitachi Magnet Wire Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd, Hitachi Magnet Wire Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2003043761A priority Critical patent/JP2004254457A/en
Publication of JP2004254457A publication Critical patent/JP2004254457A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor that does not cause partial discharge and deterioration due to the partial discharge between windings even in driving an inverter, is equal to a conventional commercial frequency driven motor in the period of a voltage-applied service life, and does not cause short-circuiting between welded spots and between different phases of the motor windings. <P>SOLUTION: This surge resistant motor is constituted such that: the windings of a plurality of turns are constituted of compound coated strands having insulating coatings formed on conductor strands and conductive coatings formed on surfaces of the insulating coatings; and a difference in potential between insulating coatings of the adjacent windings is alleviated by the contact of the compound strands that are adjacent via the conductive coatings. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複合皮膜素線を用いた巻線を備えたインバータ駆動モータに関する。
【0002】
【従来の技術】
近年、省エネルギー化を目的にモータの駆動にインバータ電源が広く用いられている。しかしながら、モータをインバータ電源で駆動する場合、インバータの発する急峻なサージ電圧が原因となり、モータの巻線ターン間に従来の商用周波電源駆動時に比し高い電圧が発生することが報告されている。このような報告例には、例えば電気学会技術報告第739号、p.14〜20(非特許文献1)がある。
【0003】
従来、インバータサージに伴うモータ巻線ターン間の分担電圧増加問題には、例えば電気学会技術報告第739号、p.43〜46にあるように、巻線に使用する絶縁電線の絶縁皮膜の厚さを厚くする、ワニス処理をする、耐コロナ性に優れた絶縁電線を使用するなどの対策が行なわれてきた。
【0004】
また、特開平10−41122号公報(特許文献1)のように、電線に導電性皮膜を設けるかモータ巻線に導電性ワニスを含浸し、部分放電電荷量を抑制、分担電圧を平等化する方法も報告されている。この文献記載の発明においては、巻線の絶縁皮膜の耐コロナ性を向上するために、導電性皮膜を絶縁皮膜上に形成するものである。導電性皮膜の例として、ポリイミド樹脂に四三酸化鉄、タルク、シリカを混合したものが記載されている。そしてそれらの体積抵抗率は10MΩ・cm以上である。
【特許文献1】
特開平10−41122号公報(要約、段落(0050)、図8)
【非特許文献1】
電気学会技術報告第739号、p.14〜20、p.43〜46
【0005】
【発明が解決しようとする課題】
しかしながら、モータ巻線の絶縁皮膜を厚くする場合、巻線を納めるスロット寸法を大きくしなければならず、この結果、従来の商用周波駆動モータに比しモータ寸法が大きくなるという問題があった。また、ワニス処理により対策する場合、占積率が高いモータ巻線スロット部にワニスを十分含浸するためには、新たに真空加圧含浸装置等を設置する必要があった。さらに、耐コロナ電線で対策する場合でも、前記電気学会技術報告第739号、p.46にあるように、シールド層に工夫を施さなければ、電線を巻線に加工する際の引っ張りや曲げ応力に伴い絶縁皮膜の課電劣化寿命が低下するという課題があった。
【0006】
一方、電線に導電性皮膜を設けるかモータに導電性ワニスを含浸し部分放電電荷量を抑制する場合でも、電荷量が小さくとも部分放電および部分放電劣化が生じるため、巻線ターン間で部分放電が生じない商用周波駆動モータに比し課電寿命が低下する課題があった。
【0007】
また、電線の表面に導電性皮膜を形成するかあるいはモータ巻線に導電性のワニスを含浸した場合、導電性皮膜あるいは導電性ワニスの抵抗値が低いと、巻線の溶接部間やU,V,W各相の口出し間が、導電性皮膜あるいは導電性ワニスが作る導電路を介して短絡する恐れがあった。
【0008】
さらに、特に導電性ワニスをモータに含浸する場合、導電性ワニスの含浸不良が発生し、部分放電電荷量や発生頻度が増加する課題があった。一般にモータの巻線の占積率は高く設計されるため、固定子スロット部では電線間の空隙は極めて少ない。このため、導電性ワニスをモータに含浸しようとしても、ワニスがスロットの中央部付近には十分到達せずボイドが残留する場合があった。そのためスロットの中央部付近にしばしば残留ボイドが認められる。
【0009】
ところで導電性ワニスをモータに含浸した場合、導電性ワニスの大部分は固定子コアに接触するため、導電性ワニスの電位は大略アース電位となる。このため、電線には巻線間だけでなく巻線−コア間の対地電圧も印加される。ところが、この際、電線近傍にボイドが残留すると、ボイドは前記の二つの電圧で放電する。この結果、部分放電発生頻度および部分放電電荷量が増加し、従来の非導電性ワニスを含浸した場合に比しても絶縁劣化が速く進行する恐れがあった。
【0010】
以上の理由から、従来の方法ではインバータ駆動モータの巻線ターン間分担電圧の増加問題に十分対策することができなかった。本発明の目的は、インバータ駆動時にも巻線間で部分放電および部分放電劣化が発生せず課電寿命が従来の商用周波駆動モータと同等であり、かつ、モータ巻線の溶接部や異相間が短絡しないモータを提供することにある。
【0011】
【課題を解決するための手段】
本発明は、導体素線上に形成された絶縁皮膜と、その表面に形成された導電性皮膜を有する複合皮膜素線により複数ターンの巻線が構成され、上記導電性皮膜を介して隣接する複合皮膜素線が接触して、隣接する巻線の絶縁皮膜間の電位差を緩和するように構成した耐サージモータを提供する。
本発明における複合皮膜素線とは、導体素線上に絶縁皮膜を形成し、その上に更に導電性皮膜を有するものである。
本発明の具体例としては、素線の絶縁皮膜の表面に表面抵抗が1MΩ以下の導電性皮膜あるいは導電性ワニスが存在し、かつモータの定格電圧に応じ巻線導体の導通部分と導電性皮膜との間に絶縁距離を設け、導電性皮膜あるいは導電性ワニスと絶縁皮膜の境界部分には絶縁ワニスを塗布した複合皮膜素線を用いて構成したモータ巻線を有する耐サージモータである。このモータ巻線は複数ターンを有し、タスロットに挿入される。
また、本発明のモータは、絶縁皮膜の表面に表面抵抗が1MΩ以下の導電性皮膜を有する絶縁電線を用いてモータ巻線を製作し、モータスロットに挿入される巻線部を除いて、モータの定格電圧に応じた長さ以上の導電性皮膜を溶剤などで除去し、導電性皮膜と絶縁皮膜の境界部分には絶縁ワニスを塗布する。
【0012】
また、モータの定格電圧に応じた絶縁距離以上離れた部分の絶縁皮膜表面に表面抵抗が1MΩ以下の導電性ワニスを塗布し、導電性皮膜あるいは導電性ワニスと絶縁皮膜の境界部分には絶縁ワニスを塗布してモータ巻線をスロットに収めることでも製造できる。
【0013】
本発明において、複合皮膜素線の接続部とは、モータ巻線の溶接接続部やUVW相間の接続部である。
【0014】
【発明の実施の形態】
以下、図面を用いて本発明の実施例を説明する。
【0015】
[実施例1]
実施例1の導電性皮膜を有する絶縁電線を、図1に示す。図1は、本発明の複合皮膜素線の構造を示す断面図である。図において、絶縁皮膜11が導体12の表面に形成されており、さらに外層に導電性皮膜10が形成されている。導電性皮膜10には、導電性フィラーとしてカーボンブラックを混合した油性エナメル皮膜を、絶縁皮膜11には、ポリアミドイミド皮膜を使用している。
【0016】
導電性皮膜の表面抵抗は0.1Ωである。なお、導電性皮膜10の導電性フィラーにはカーボンブラックの他に、酸化錫や酸化亜鉛などの金属酸化物フィラー、銀、アルミニウムなどの金属フィラーなどを使用することもできる。また、絶縁皮膜11には他のエナメル皮膜、例えば、ポリエステルイミド、ポリイミド、ポリエステル、ホルマール、ポリウレタン、エポキシ、シリコーン、テフロン(登録商標)皮膜などが使用できる。
【0017】
図2は本発明の複合皮膜素線を用いて構成した複数ターンを有する巻線の構造を示す斜視図であり、図1の複合皮膜素線で製作した400Vrms級モータのモータ巻線を示す。本来、モータ巻線はモータコアに納められているが、ここでは簡単のためモータコアは図示していない。実施例1のモータ巻線は4個の独立したコイル200〜203が直列に配置され、隣接コイルの巻き始めあるいは巻き終わりは溶接部23〜25で溶接されている。
【0018】
各コイル200〜203の表面には導電性皮膜20が配置されているが、各コイル200〜203の絶縁電線表面では、溶接部分あるいは各相の口出しなどの巻線導体との導通部分から30mmまでの導電性皮膜20は除去されている。また、各導電性皮膜と絶縁皮膜の境界部分には絶縁ワニスが塗布されている。
【0019】
図2のモータ巻線の製作方法は次の通りである。図3に図2のコイル200〜203の製作工程を示す。コイル31はボビン34から絶縁電線32を引き出し、巻き型33に巻き付け製作する。製作されたコイル200〜203は、図2では図示しないモータコアのスロットにそれぞれ納められた後、隣接コイルの巻き始めあるいは終わり部が溶接される。
【0020】
その後、各溶接部と各相の口出しから30mm離れた部分まで導電性皮膜20をアルコール、ベンゾール、ガソリン、ナフサ、アセトン、メチルエチルケトンあるいはこれらを混合した溶剤で除去し、絶縁皮膜21部を製作する。また、導電性皮膜20と絶縁皮膜21の端部と導体表面の境界部分には絶縁ワニス27を塗布する。
【0021】
なお、絶縁ワニスには前記のエナメルワニスを塗布することができる。ここでは、トップコート用のナイロンエナメルをコートした。また、モータ巻線にエポキシ、ポリエステルなどの固着用ワニスを含浸する際、導電性皮膜20と絶縁皮膜21の境界部分まで固着用ワニスが含浸されるモータでは、特に絶縁ワニスを塗布しなくともよい。
【0022】
実施例1では、導電性皮膜の除去および絶縁ワニスの塗布は各コイル200〜203の溶接後に実施したが、図3のコイル巻き付け工程で導電性皮膜を除去しても良い。
【0023】
また、図2では、モータ巻線は各コイル200〜203を図3のように個別に製作した後、各コイルを接続し製作したが、モータコアにU,V,W相の一相から他相に向かって連続巻きして製作しても良い。この場合、巻線の途中に溶接部分が無いため、U,V,W相の口出し部分の導電性皮膜だけ除去すれば良い。
【0024】
図4に、以上の方法で製作したモータ巻線の課電寿命試験装置の構成を示す概略図を示す。課電寿命試験では製作したモータ40は、120℃の恒温槽42内に設置した後、巻線43、44間にパルス電源41の出力電圧を印加し、課電後からモータ巻線の絶縁皮膜が破壊するまでの時間を測定した。
【0025】
なお、供試モータでは、並列巻したモータ巻線を巻線43と44に分離し、巻線43を高圧側、巻線44を接地側に接続することで巻線間に電圧を印加した。図5に、上記試験で用いられた試験パルスの電圧波形を示す。モータ巻線間には立ち上がり時間約1μs、パルス幅100μs、繰り返し周波数500Hzの両極性パルス電圧を印加した。
【0026】
図6に、課電寿命試験結果を示す。縦軸は課電電圧、横軸は課電開始から絶縁皮膜が破壊するまでの時間である。電圧軸ではインバータ駆動時の巻線間分担電圧を100%、時間軸では従来の絶縁電線を使用した後述の比較例1の破壊までの時間を100%とした。
【0027】
実施例1のモータでは、比較例1の破壊までの時間の約100倍の時間だけ課電しても、絶縁破壊に至っていない。また、比較例1では部分放電が観測されたが、実施例1では課電電圧100%において部分放電は観測されなかった。以上のことから、実施例1の複合皮膜素線およびこれを用いたモータでは、部分放電および部分放電劣化が発生せず、従来の正弦波駆動モータと同等の寿命が期待できる。
【0028】
また、実施例1のモータ巻線を400Vrms級のインバータで1000時間駆動したが、モータ巻線の溶接部間や異相間は短絡しなかった。
【0029】
図7〜図11を用いて、実施例1の絶縁電線の部分放電抑制作用および沿面破壊防止作用を説明する。図7は、モータ巻線内で隣接した複合皮膜素線の断面を示す。なお、隣接する複合皮膜素線間に電圧Eが生じていることを表すため、電源76を接続している。
【0030】
図のように、従来、複合皮膜素線71、72間に電圧Eが発生すると、複合皮膜素線間の空気72にも電圧が加わり、これが絶縁破壊し、部分放電が発生する。
【0031】
しかしながら、実施例1では絶縁皮膜75の表面に導電性皮膜73、74を配置しているため、絶縁電線71、72間に電圧が発生しても、複合皮膜素線71、72の表面は等電位となり、複合皮膜素線間の空気72には電圧が加わらない。このため、導電性皮膜73、74を絶縁電線表面に配置することによりモータ巻線間の部分放電を防止できる。
【0032】
特に本実施例では導電性皮膜の表面抵抗は0.1Ωであるため空気の分担電圧はほぼ0Vとなる。したがって、モータ巻線の複合皮膜素線間では部分放電は発生しない。
【0033】
図8は導電性皮膜の抵抗値と隣接する複合皮膜素線の表面の電位差との関係を示すグラフである。なお、複合皮膜素線表面の電位差は、部分放電が発生する位置付近の複合皮膜素線表面における値である。導電性皮膜の表面抵抗値を高くすると複合皮膜素線表面の電位差は増加する。
【0034】
しかしながら、導電性皮膜の表面抵抗を1MΩ以下にすれば、複合皮膜素線表面の電位差を複合皮膜素線間の空気の破壊電圧に比し低くでき、部分放電の発生を防止できる。したがって、本発明のインバータ駆動時にも巻線間で部分放電および部分放電劣化が発生せず課電寿命が従来の商用周波駆動モータと同等となるモータを提供する目的を実現するためには、導電性皮膜の表面抵抗を1MΩ以下にすれば良いと考えられる。
【0035】
一方、実施例1のように絶縁電線表面の抵抗値を低くすると、従来技術で先に説明したように、導電性皮膜を通じてモータ巻線の溶接部間や異相間が短絡する問題が発生する。
【0036】
しかしながら、実施例1では、モータの定格電圧に応じ溶接部や各相の口出し部など巻線導体との導通部分と導電性皮膜の間を30mm離し、さらに導電性皮膜と絶縁皮膜の境界部分に絶縁ワニスを塗布しているため、モータ巻線の溶接部間や異相間が短絡しない。
【0037】
図9は、モータ定格電圧に対する巻線の導体接続部と導電性皮膜の端部の絶縁距離の関係を示すグラフである。他のモータでも、図9に従い導電性皮膜を除去し、導電性皮膜と絶縁皮膜の境界部分に絶縁ワニスを塗布した結果、モータ巻線の溶接部間や異相間が短絡しなかった。
【0038】
したがって、本発明のモータ巻線の溶接部や異相間が短絡しないモータを提供するには、モータの定格電圧に応じた距離か(図9に示した)、これ以上の距離(図9の実践より上側)だけ導電性皮膜を除去し、あるいは予めその距離だけ導電性皮膜を形成しないで、導電性皮膜と絶縁皮膜の境界部分に絶縁ワニスを塗布すれば良いと考えられる。
【0039】
[実施例2]
実施例2では、図2の各コイル200〜203の製造方法が実施例1と異なる。図10は導電性ワニスの吹き付けによる複合皮膜素線の製造法を示す斜視図であり、実施例2の600Vrms級モータのコイル製造方法を示す。
【0040】
また、複合皮膜素線表面の導電性皮膜101は、従来の絶縁電線をボビン106から取り出し巻き型105に巻き付ける際に、スプレー102にて導電性ワニス100を拭きつけることで形成する。なお、各コイル200〜203の巻き始めあるいは巻き終わりでは、スプレー102を停止することで、絶縁皮膜部分を40mm作成している。
【0041】
また、導電性皮膜と絶縁皮膜の境界部分にはエポキシ樹脂を塗布した。なお、従来の絶縁電線の絶縁皮膜には、実施例1の絶縁皮膜と同じ材料を使用できる。ここでは、実施例1と同様にポリアミドイミドを使用した。
【0042】
図12に実施例2の方法で製作した複合皮膜素線を用いて作成した巻線をモータスロットに収めた断面図を示す。図12では、モータ固定子130の中央部付近の断面を示す。実施例2の方法では、モータ巻線132をスロット135に納める前に導電性ワニスを塗布しているため、絶縁電線の絶縁皮膜133表面は導電性ワニス131で十分覆われている。
【0043】
このため、実施例1と同様に巻線ターン間で部分放電および部分放電劣化が発生しない。さらに、実施例2では、巻線をスロットに収納する前に導電性ワニスを塗布しているため、スロット絶縁136とコア134の間には導電性ワニスが侵入しない。
【0044】
この結果、対地電圧の大部分は絶縁皮膜133に比し約10倍程度厚いスロット絶縁136で分担されるため、モータ巻線と固定子スロット間でも部分放電および部分放電劣化は発生しない。
【0045】
以上の結果、実施例2の方法で製作したモータは、実施例1と同様に、従来の商用周波駆動モータと同等の寿命が期待でき、かつ、モータ巻線の溶接部や異相間が短絡しないと考えられる。
【0046】
図6に実施例2のモータ巻線の課電寿命試験結果を示す。実施例2のモータ巻線でも、比較例1における破壊までの時間の約100倍の時間だけ課電しても絶縁破壊に至っていない。したがって、実施例2でも実施例1と同様に部分放電および部分放電劣化が発生せず、従来の商用周波駆動モータと同等の寿命が期待できると考えられる。
【0047】
また、実施例2のモータを600Vrms級インバータで1000時間駆動したが、モータ巻線の溶接部や異相間は短絡しなかった。
【0048】
[実施例3]
実施例3では、図2の各コイル200〜203の製造方法が実施例1、2と異なる。
【0049】
図3に示す方法によって、実施例3の400Vrms級モータのコイル製造方法を示す。実施例3では、従来の絶縁電線32をボビン34から取りだし、巻き型に巻き付けてコイル31を製造する。図11にコイルへの導電性ワニスの塗布方法を示す。
【0050】
実施例3では、コイル121を導電性ワニス120が入ったタンクに沈めることで絶縁電線表面に導電性皮膜122を形成している。なお、導電性ワニスにコイル121を沈める際には、コイルの巻き始めおよび巻き終わり部分から30mmには導電性ワニスが付着しない深さまで沈め、絶縁皮膜123部分を形成している。
【0051】
なお、実施例3では、各コイルの溶接部や各相の口出しの絶縁皮膜と導電性皮膜の境界部には絶縁ワニスを予め塗布しないで、これをモータ巻線に含浸する固着ワニスで代用した。実施例3の方法で製作した場合でも、実施例2と同様にモータ巻線をスロットに納める前に導電性ワニスを塗布しているため、絶縁電線の表面には導電性ワニスが十分付着している。
【0052】
このため、部分放電および部分放電劣化が発生せず、従来の商用周波駆動モータと同等の寿命が期待できる。また、巻線導体と導電性皮膜との絶縁距離をとり、さらに固着ワニスで絶縁皮膜と導電性皮膜の境界部を絶縁しているので、モータ巻線の溶接部や異相間も短絡しないと考えられる。
【0053】
[実施例4]
実施例4では、実施例1〜3の導電性皮膜の表面抵抗を1kΩ〜1MΩの範囲とした。図13に、絶縁電線の導電性皮膜の抵抗値を変化させたときの渦電流損にともなう絶縁電線表面の温度上昇を示す。導電性皮膜の表面抵抗を1kΩ〜1MΩの範囲とした場合、モータ運転時における絶縁電線表面の温度上昇は使用した温度測定器の測定限界の0.1℃以下となっており、渦電流損に伴う温度上昇を著しく低下させることができる。
【0054】
したがって、実施例1〜3の導電性皮膜では、特に表面抵抗を1kΩ〜1MΩとすることが望ましい。
【0055】
[実施例5]
実施例5では、実施例1〜3の導電性皮膜あるいは導電性ワニスに導電性高分子のポリアニリンを使用した。表1に、表面抵抗を一定とした場合の実施例1と5の絶縁電線の皮膜厚さを示す。導電性高分子を使用した場合、導電性フィラーをワニスに混合した導電剤を使用した実施例1に比し、皮膜厚さを10%低減できている。
【0056】
【表1】

Figure 2004254457
【0057】
これは、実施例1の導電皮膜には導電性フィラーとバインダで形成されているが、導電性高分子ではそれ自体がバインダを兼ねるため、薄肉化しても導電性フィラーを使用した場合と同等の表面抵抗を実現できるためである。以上のことから、導電性皮膜に導電性高分子を使用した場合、導電性フィラーを使用する場合に比し絶縁電線表面の導電性皮膜を薄くでき、実施例1〜3に比しモータを小型化できると考えられる。
【0058】
なお、導電性高分子には、前記のポリアニリンの他に導電性高分子には、ポリアニリン、ポリピロール、ポリアセチレン、ポリパラフェニレン、ポリパラフェニレンビニレン、ポリエチレンビニレン、ポリ(3,4−エチレンジオキシチオフェン)、ポリフルオレンなどを使用することもできる。また、単独もしくは混合して使用することができる。
【0059】
[比較例1]
比較例1では、従来の絶縁電線を用いたモータ巻線を製作した。絶縁電線には、ポリアミドイミド皮膜を使用した。また、絶縁皮膜厚さは、実施例1の総皮膜厚さと同じとした。
【0060】
図8に本比較例モータ巻線の課電寿命試験結果を、塗りつぶした黒丸および近似直線で表した。比較例1の課電寿命は、実施例1、2に比し1/100以下である。また、比較例1の構成で実施例1、2の課電寿命を得るためには、近似直線の外挿値から考えると課電電圧を1/10にする必要があると考えられる。
【0061】
したがって、比較例1のモータを使用する場合、インバータ駆動電源の出力端にフィルタを設置するなどして急峻サージ電圧を緩和し、モータ巻線間の分担電圧を低減するなどの必要性が生じる。
【0062】
[比較例2]
比較例2では、本発明の範囲外の抵抗値を持つ導電性皮膜を配置した複合皮膜素線を使用しモータ巻線を製作した。絶縁皮膜にはポリアミドイミドを使用した。導電性皮膜はカーボンブラックを少量混ぜたポリアミドイミド皮膜を使用した。なお、導電性皮膜の表面抵抗は10MΩとなるようにした。
【0063】
図6に比較例2のモータ巻線の課電寿命試験結果を示す。課電寿命は比較例1に比し長いが、実施例1、2に比し短い。また、課電電圧100%において部分放電が認められた。これは、導電性皮膜の抵抗値が高く、絶縁電線表面が同電位とならず、絶縁電線間の空気にも課電されたためと考えられる。
【0064】
単に導電性皮膜の抵抗値を1MΩ以下とし、素線導体の接続部に絶縁距離を形成しないときは、インバータ運転中にモータ巻線の溶接部間および異相間が短絡した。
[比較例3]
比較例3では、比較例1と同じモータを製作し、比較例2と同じ導電性ワニスを該モータに常気圧にて含浸した。図6に製作したモータ巻線の課電寿命試験結果を示す。比較例3のモータでは従来の絶縁電線を使用した比較例1に比しても課電寿命が短い。
【0065】
また、課電電圧100%において部分放電が認められた。この原因には、導電性ワニスがモータ巻線とコアの間に十分含浸されていないこと、絶縁電線とアース電位の導電性ワニス間でも部分放電が発生し部分放電発生頻度が増加したことが考えられる。
【0066】
【発明の効果】
本発明によれば、インバータ駆動時にも巻線間で部分放電および部分放電劣化が発生せず課電寿命が従来の商用周波駆動モータと同等であり、かつ、モータ巻線の溶接部や異相間が短絡しないモータを提供することができる。
【図面の簡単な説明】
【図1】本発明の複合皮膜素線の構造を示す断面図。
【図2】本発明による複合皮膜素線を用いて構成したモータ巻線の構造を示す斜視図。
【図3】コイル巻き付け工程を示す斜視図。
【図4】本発明のモータのパルス課電寿命試験装置の構成を示す概略図。
【図5】パルス課電寿命試験におけるパルス電圧波形を示すグラフ。
【図6】パルス電圧課電寿命試験結果を示すグラフ。
【図7】導電性皮膜による隣接素線間の部分放電防止効果の説明図。
【図8】導電性皮膜の抵抗値と隣接する複合皮膜素線の表面間の電位差を示すグラフ。
【図9】モータ定格電圧に対する巻線の導体接続部と導電性皮膜の端部間の絶縁距離の関係を示すグラフ。
【図10】導電性ワニスの吹き付けによる複合皮膜素線の製造法を示す斜視図。
【図11】導電性ワニスの中にコイルを沈めて導電性ワニスを塗布する方法。
【図12】導電性ワニスを予め塗布した複合皮膜素線を用いた巻線をモータスロットに納めた場合のモータスロット断面図。
【図13】導電性皮膜の抵抗値と巻線の温度上昇の関係を示すグラフ。
【符号の説明】
10…導電性皮膜、11…絶縁皮膜、12…絶縁電線の導体、20…モータ巻線表面の導電性皮膜、21…導電性皮膜除去部分、22…モータ巻線各相口出し部1、23…コイル200とコイル201の溶接部、24…コイル201とコイル202の溶接部、25…コイル202とコイル203の溶接部、26…モータ巻線各相口出し部2、200…モータ巻線第1コイル、201…モータ巻線第2コイル、202…モータ巻線第3コイル、203…モータ巻線第4コイル、31…コイル表面の導電性皮膜、32…実施例1の絶縁電線、33…コイルの巻き型。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inverter drive motor provided with a winding using a composite coated wire.
[0002]
[Prior art]
In recent years, inverter power supplies have been widely used for driving motors for the purpose of energy saving. However, it has been reported that when a motor is driven by an inverter power supply, a higher voltage is generated between winding turns of the motor than during conventional driving of a commercial frequency power supply due to a steep surge voltage generated by the inverter. Examples of such reports include, for example, Technical Report No. 739 of the Institute of Electrical Engineers of Japan, p. 14 to 20 (Non-Patent Document 1).
[0003]
Conventionally, the problem of increasing the voltage allotment between motor winding turns due to an inverter surge has been described in, for example, IEEJ Technical Report No. 739, p. As described in 43 to 46, measures such as increasing the thickness of an insulating film of an insulated wire used for winding, performing varnish treatment, and using an insulated wire having excellent corona resistance have been taken.
[0004]
Also, as disclosed in Japanese Patent Application Laid-Open No. 10-41122 (Patent Document 1), a conductive coating is provided on an electric wire or a motor winding is impregnated with a conductive varnish to suppress a partial discharge charge amount and equalize a shared voltage. Methods have also been reported. In the invention described in this document, a conductive film is formed on the insulating film in order to improve the corona resistance of the insulating film of the winding. As an example of the conductive film, a mixture of a polyimide resin with triiron tetroxide, talc, and silica is described. And their volume resistivity is 10 MΩ · cm or more.
[Patent Document 1]
JP-A-10-41122 (abstract, paragraph (0050), FIG. 8)
[Non-patent document 1]
IEEJ Technical Report No. 739, p. 14-20, p. 43-46
[0005]
[Problems to be solved by the invention]
However, when the insulating film of the motor winding is made thicker, the size of the slot for accommodating the winding must be increased. As a result, there is a problem that the motor size becomes larger than that of a conventional commercial frequency drive motor. Further, when measures are taken by varnish treatment, it is necessary to newly install a vacuum pressure impregnating device or the like in order to sufficiently impregnate the varnish into the motor winding slot portion having a high space factor. Further, even when measures are taken with a corona-resistant wire, the IEEJ Technical Report No. 739, p. As described in 46, if the shield layer is not devised, there is a problem that the service life of the insulating coating is deteriorated due to the tensile and bending stress when the electric wire is processed into the winding.
[0006]
On the other hand, even if the electric wire is provided with a conductive coating or the motor is impregnated with a conductive varnish to suppress the partial discharge charge amount, partial discharge and partial discharge deterioration occur even if the charge amount is small, so partial discharge between winding turns There is a problem that the service life is shorter than that of a commercial frequency drive motor in which no occurrence occurs.
[0007]
Further, when a conductive film is formed on the surface of the electric wire or a motor winding is impregnated with a conductive varnish, if the resistance value of the conductive film or the conductive varnish is low, the distance between the welding portions of the windings, U, There is a possibility that short circuit occurs between the outlets of the V and W phases through the conductive path formed by the conductive film or the conductive varnish.
[0008]
Furthermore, in particular, when impregnating a motor with a conductive varnish, there is a problem that impregnation failure of the conductive varnish occurs and the amount of partial discharge charge and the frequency of occurrence increase. Generally, the space factor of the windings of the motor is designed to be high, so that the gap between the electric wires in the stator slot portion is extremely small. For this reason, when trying to impregnate the motor with the conductive varnish, the varnish may not sufficiently reach the vicinity of the center of the slot, and the void may remain. Therefore, residual voids are often observed near the center of the slot.
[0009]
By the way, when the motor is impregnated with the conductive varnish, most of the conductive varnish comes into contact with the stator core, so that the potential of the conductive varnish is substantially the ground potential. Therefore, not only the voltage between the windings but also the voltage between the windings and the core is applied to the electric wire. However, at this time, if a void remains near the electric wire, the void is discharged at the above-mentioned two voltages. As a result, the frequency of occurrence of partial discharge and the amount of partial discharge charge are increased, and there is a possibility that insulation degradation may proceed faster than in the case where a conventional non-conductive varnish is impregnated.
[0010]
For the above reasons, the conventional method cannot sufficiently address the problem of an increase in the voltage shared between turns of the inverter drive motor. It is an object of the present invention to provide a motor having an electric power supply life equivalent to that of a conventional commercial frequency drive motor without partial discharge and partial discharge deterioration between windings even when the inverter is driven, and a motor winding welding part or a different phase. Is to provide a motor that does not short circuit.
[0011]
[Means for Solving the Problems]
According to the present invention, a multi-turn winding is composed of an insulating film formed on a conductor wire and a composite film wire having a conductive film formed on the surface thereof, and the composite film adjacent to the winding via the conductive film is formed. Provided is a surge-resistant motor configured to reduce the potential difference between insulating films of adjacent windings by contacting the film wires.
The composite coated wire in the present invention is a wire in which an insulating film is formed on a conductive wire and a conductive film is further provided thereon.
As a specific example of the present invention, a conductive film or a conductive varnish having a surface resistance of 1 MΩ or less exists on the surface of an insulating film of a wire, and a conductive portion of a winding conductor and a conductive film are formed according to a rated voltage of a motor. And a motor winding formed by using a conductive film or a composite film wire coated with an insulating varnish at a boundary between the conductive varnish and the insulating film. This motor winding has a plurality of turns and is inserted into a slot.
In addition, the motor of the present invention produces a motor winding using an insulated wire having a conductive film having a surface resistance of 1 MΩ or less on the surface of the insulating film. The length of the conductive film corresponding to the rated voltage is removed by a solvent or the like, and an insulating varnish is applied to the boundary between the conductive film and the insulating film.
[0012]
Also, apply a conductive varnish with a surface resistance of 1 MΩ or less to the surface of the insulating film separated by more than the insulation distance according to the rated voltage of the motor, and apply the insulating varnish to the conductive film or the boundary between the conductive varnish and the insulating film. , And the motor winding is put in a slot.
[0013]
In the present invention, the connection portion of the composite coating wire is a welding connection portion of a motor winding or a connection portion between UVW phases.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
[Example 1]
FIG. 1 shows an insulated wire having a conductive film according to the first embodiment. FIG. 1 is a cross-sectional view showing the structure of the composite coating element wire of the present invention. In the figure, an insulating film 11 is formed on the surface of a conductor 12, and a conductive film 10 is formed on an outer layer. The conductive film 10 uses an oil-based enamel film mixed with carbon black as a conductive filler, and the insulating film 11 uses a polyamideimide film.
[0016]
The surface resistance of the conductive film is 0.1Ω. In addition, as the conductive filler of the conductive film 10, in addition to carbon black, a metal oxide filler such as tin oxide or zinc oxide, a metal filler such as silver or aluminum, or the like can be used. Further, as the insulating film 11, other enamel films such as polyester imide, polyimide, polyester, formal, polyurethane, epoxy, silicone, and Teflon (registered trademark) films can be used.
[0017]
FIG. 2 is a perspective view showing a structure of a winding having a plurality of turns constituted by using the composite coated wire of the present invention, and shows a motor winding of a 400 Vrms class motor manufactured with the composite coated wire of FIG. Originally, the motor winding is housed in the motor core, but the motor core is not shown here for simplicity. In the motor winding of the first embodiment, four independent coils 200 to 203 are arranged in series, and the winding start or the winding end of the adjacent coil is welded by welding portions 23 to 25.
[0018]
The conductive film 20 is disposed on the surface of each of the coils 200 to 203. On the surface of the insulated electric wire of each of the coils 200 to 203, a distance from a welding portion or a portion connected to a winding conductor such as a lead of each phase to 30 mm. Has been removed. An insulating varnish is applied to a boundary between each conductive film and the insulating film.
[0019]
The method of manufacturing the motor winding of FIG. 2 is as follows. FIG. 3 shows a manufacturing process of the coils 200 to 203 of FIG. The coil 31 is produced by drawing out the insulated wire 32 from the bobbin 34 and winding it around a winding die 33. After the manufactured coils 200 to 203 are respectively stored in slots of a motor core (not shown in FIG. 2), the winding start or end of an adjacent coil is welded.
[0020]
Thereafter, the conductive film 20 is removed with alcohol, benzol, gasoline, naphtha, acetone, methyl ethyl ketone, or a mixed solvent of these to remove a portion of the conductive film 20 to a position 30 mm away from each weld and each phase. Further, an insulating varnish 27 is applied to the boundary between the end of the conductive film 20 and the insulating film 21 and the conductor surface.
[0021]
The above-mentioned enamel varnish can be applied to the insulating varnish. Here, nylon enamel for a top coat was coated. In addition, when impregnating the motor windings with a fixing varnish such as epoxy or polyester, the motor in which the fixing varnish is impregnated up to the boundary between the conductive film 20 and the insulating film 21 does not need to particularly apply the insulating varnish. .
[0022]
In the first embodiment, the removal of the conductive film and the application of the insulating varnish were performed after welding the coils 200 to 203. However, the conductive film may be removed in the coil winding step of FIG.
[0023]
Also, in FIG. 2, the motor windings are manufactured by individually manufacturing the coils 200 to 203 as shown in FIG. 3 and then connecting the coils. May be continuously wound toward. In this case, since there is no welding portion in the middle of the winding, it is sufficient to remove only the conductive film of the U, V, and W phase lead portions.
[0024]
FIG. 4 is a schematic diagram showing a configuration of a motor winding life test apparatus manufactured by the above method. In the power application life test, the motor 40 manufactured was placed in a thermostat 42 at 120 ° C., and then the output voltage of the pulse power supply 41 was applied between the windings 43 and 44. Was measured until it broke.
[0025]
In the test motor, the motor winding wound in parallel was separated into windings 43 and 44, and a voltage was applied between the windings by connecting the winding 43 to the high voltage side and the winding 44 to the ground side. FIG. 5 shows a voltage waveform of a test pulse used in the above test. A bipolar pulse voltage having a rise time of about 1 μs, a pulse width of 100 μs, and a repetition frequency of 500 Hz was applied between the motor windings.
[0026]
FIG. 6 shows the results of the service life test. The vertical axis represents the applied voltage, and the horizontal axis represents the time from the start of the application of the voltage to the breakage of the insulating film. On the voltage axis, the inter-winding shared voltage at the time of driving the inverter was 100%, and on the time axis, the time until destruction of Comparative Example 1 described later using a conventional insulated wire was 100%.
[0027]
In the motor according to the first embodiment, the dielectric breakdown did not occur even when the power was applied for about 100 times the time until the breakdown in the first comparative example. In Comparative Example 1, partial discharge was observed, but in Example 1, partial discharge was not observed at an applied voltage of 100%. From the above, in the composite coated wire of Example 1 and the motor using the same, partial discharge and partial discharge deterioration do not occur, and the same life as the conventional sine wave drive motor can be expected.
[0028]
Further, the motor winding of Example 1 was driven for 1000 hours by a 400 Vrms class inverter, but no short circuit occurred between the welded portions of the motor winding or between different phases.
[0029]
With reference to FIGS. 7 to 11, the action of suppressing the partial discharge and the action of preventing the creepage of the insulated wire of the first embodiment will be described. FIG. 7 shows a cross section of adjacent composite coating wires in the motor winding. A power source 76 is connected to indicate that a voltage E is generated between the adjacent composite coating strands.
[0030]
As shown in the figure, conventionally, when a voltage E is generated between the composite coating strands 71 and 72, a voltage is also applied to the air 72 between the composite coating strands, which causes a dielectric breakdown and generates a partial discharge.
[0031]
However, in the first embodiment, since the conductive coatings 73 and 74 are disposed on the surface of the insulating coating 75, even if a voltage is generated between the insulated wires 71 and 72, the surfaces of the composite coating wires 71 and 72 are equal. A potential is applied, and no voltage is applied to the air 72 between the composite coating wires. Therefore, by disposing the conductive films 73 and 74 on the surface of the insulated wire, partial discharge between the motor windings can be prevented.
[0032]
In particular, in this embodiment, since the surface resistance of the conductive film is 0.1Ω, the shared voltage of air is almost 0V. Therefore, no partial discharge occurs between the composite coating wires of the motor winding.
[0033]
FIG. 8 is a graph showing the relationship between the resistance value of the conductive film and the potential difference between the surfaces of the adjacent composite film wires. The potential difference on the surface of the composite wire is a value on the surface of the composite wire near the position where the partial discharge occurs. When the surface resistance of the conductive film is increased, the potential difference on the surface of the composite film strand increases.
[0034]
However, if the surface resistance of the conductive film is 1 MΩ or less, the potential difference on the surface of the composite film strand can be made lower than the breakdown voltage of air between the composite film strands, and the occurrence of partial discharge can be prevented. Therefore, in order to achieve the object of providing a motor in which partial discharge and partial discharge deterioration do not occur between windings even when the inverter of the present invention is driven and the application life is equivalent to that of a conventional commercial frequency drive motor, it is necessary to use a conductive motor. It is considered that the surface resistance of the conductive film should be 1 MΩ or less.
[0035]
On the other hand, when the resistance value of the surface of the insulated wire is reduced as in the first embodiment, a short circuit occurs between the welded portions of the motor windings and between different phases through the conductive film as described above in the related art.
[0036]
However, in the first embodiment, the conductive film is separated from the conductive film by a distance of 30 mm, such as a welding portion or a lead-out portion of each phase, according to the rated voltage of the motor. Since the insulating varnish is applied, there is no short circuit between the welded portions of the motor windings or between different phases.
[0037]
FIG. 9 is a graph showing the relationship between the motor rated voltage and the insulation distance between the conductor connection part of the winding and the end of the conductive film. In other motors, the conductive film was removed according to FIG. 9 and the insulating varnish was applied to the boundary between the conductive film and the insulating film. As a result, no short circuit occurred between the welded portions of the motor windings or between the different phases.
[0038]
Therefore, in order to provide the motor of the present invention in which the welded portions of the motor windings and the different phases are not short-circuited, a distance corresponding to the rated voltage of the motor (shown in FIG. 9) or a distance longer than that (shown in FIG. It is considered that the conductive varnish may be applied to the boundary between the conductive film and the insulating film without removing the conductive film only on the upper side) or forming the conductive film in advance by that distance.
[0039]
[Example 2]
In the second embodiment, the method of manufacturing the coils 200 to 203 of FIG. FIG. 10 is a perspective view illustrating a method of manufacturing a composite coated element wire by spraying a conductive varnish, and illustrates a method of manufacturing a coil of a 600 Vrms class motor according to the second embodiment.
[0040]
The conductive film 101 on the surface of the composite film wire is formed by wiping the conductive varnish 100 with a spray 102 when the conventional insulated wire is taken out from the bobbin 106 and wound around the winding die 105. At the beginning or end of winding of each of the coils 200 to 203, the spray 102 is stopped to form an insulating film portion of 40 mm.
[0041]
Epoxy resin was applied to the boundary between the conductive film and the insulating film. The same material as the insulating film of the first embodiment can be used for the insulating film of the conventional insulated wire. Here, polyamideimide was used as in Example 1.
[0042]
FIG. 12 is a cross-sectional view in which a winding formed using the composite coating element wire manufactured by the method of the second embodiment is accommodated in a motor slot. FIG. 12 shows a cross section near the center of the motor stator 130. In the method of the second embodiment, since the conductive varnish is applied before the motor winding 132 is put in the slot 135, the surface of the insulating film 133 of the insulated wire is sufficiently covered with the conductive varnish 131.
[0043]
Therefore, as in the first embodiment, partial discharge and partial discharge deterioration do not occur between winding turns. Further, in the second embodiment, since the conductive varnish is applied before the winding is housed in the slot, the conductive varnish does not enter between the slot insulation 136 and the core 134.
[0044]
As a result, most of the ground voltage is shared by the slot insulation 136, which is about 10 times thicker than the insulating film 133, so that partial discharge and partial discharge deterioration do not occur between the motor winding and the stator slot.
[0045]
As a result, the motor manufactured by the method of the second embodiment can be expected to have the same life as the conventional commercial frequency drive motor as in the first embodiment, and no short-circuit occurs between the welded portions of the motor windings and the different phases. it is conceivable that.
[0046]
FIG. 6 shows the results of the life test of the motor winding of the second embodiment. Even in the motor winding of Example 2, the dielectric breakdown did not occur even when the power was applied for about 100 times the time until the breakdown in Comparative Example 1. Therefore, in the second embodiment, partial discharge and partial discharge deterioration do not occur similarly to the first embodiment, and it is considered that a life equivalent to that of the conventional commercial frequency drive motor can be expected.
[0047]
Further, the motor of Example 2 was driven by a 600 Vrms class inverter for 1000 hours, but no short circuit occurred between the welded portions of the motor windings and between the different phases.
[0048]
[Example 3]
The third embodiment differs from the first and second embodiments in the method of manufacturing the coils 200 to 203 in FIG.
[0049]
Third Embodiment A method for manufacturing a coil of a 400 Vrms class motor according to a third embodiment will be described by the method shown in FIG. In the third embodiment, the coil 31 is manufactured by taking out the conventional insulated wire 32 from the bobbin 34 and winding it around a winding die. FIG. 11 shows a method of applying a conductive varnish to the coil.
[0050]
In the third embodiment, the conductive film 122 is formed on the surface of the insulated wire by sinking the coil 121 into the tank containing the conductive varnish 120. When the coil 121 is immersed in the conductive varnish, the coil 121 is sunk to a depth at which the conductive varnish does not adhere 30 mm from the beginning and end of winding of the coil to form the insulating film 123.
[0051]
In Example 3, an insulating varnish was not applied in advance to a welded portion of each coil or a boundary portion between the insulating film and the conductive film of the lead of each phase, but was replaced with a fixing varnish impregnating the motor winding. . Even in the case of manufacturing by the method of the third embodiment, the conductive varnish is applied to the surface of the insulated wire because the conductive varnish is applied before the motor winding is put in the slot as in the second embodiment. I have.
[0052]
For this reason, partial discharge and partial discharge deterioration do not occur, and a life equivalent to that of a conventional commercial frequency drive motor can be expected. In addition, since the insulation distance between the winding conductor and the conductive film is set, and the boundary between the insulating film and the conductive film is insulated with a fixing varnish, it is considered that there is no short circuit between the welded part of the motor winding and between different phases. Can be
[0053]
[Example 4]
In Example 4, the surface resistance of the conductive films of Examples 1 to 3 was in the range of 1 kΩ to 1 MΩ. FIG. 13 shows the temperature rise on the surface of the insulated wire due to the eddy current loss when the resistance value of the conductive film of the insulated wire is changed. When the surface resistance of the conductive film is in the range of 1 kΩ to 1 MΩ, the temperature rise on the surface of the insulated wire during motor operation is less than the measurement limit of the used temperature measuring device, 0.1 ° C or less. The accompanying temperature rise can be significantly reduced.
[0054]
Accordingly, in the conductive films of Examples 1 to 3, it is particularly desirable that the surface resistance is 1 kΩ to 1 MΩ.
[0055]
[Example 5]
In Example 5, a conductive polymer polyaniline was used for the conductive film or conductive varnish of Examples 1 to 3. Table 1 shows the film thickness of the insulated wires of Examples 1 and 5 when the surface resistance was constant. When the conductive polymer was used, the film thickness could be reduced by 10% as compared with Example 1 in which the conductive agent in which the conductive filler was mixed with the varnish was used.
[0056]
[Table 1]
Figure 2004254457
[0057]
This is because the conductive film of Example 1 is formed of a conductive filler and a binder, but the conductive polymer itself also serves as a binder, so that even if the thickness is reduced, it is equivalent to the case where the conductive filler is used. This is because surface resistance can be realized. From the above, when the conductive polymer is used for the conductive film, the conductive film on the surface of the insulated wire can be made thinner than when the conductive filler is used, and the motor is smaller in size than in Examples 1 to 3. It is thought that it can be converted.
[0058]
Note that, in addition to the above-mentioned polyaniline, conductive polymers include polyaniline, polypyrrole, polyacetylene, polyparaphenylene, polyparaphenylenevinylene, polyethylenevinylene, and poly (3,4-ethylenedioxythiophene). ), Polyfluorene and the like can also be used. Further, they can be used alone or in combination.
[0059]
[Comparative Example 1]
In Comparative Example 1, a motor winding using a conventional insulated wire was manufactured. A polyamide-imide film was used for the insulated wires. The thickness of the insulating film was the same as the total film thickness in Example 1.
[0060]
FIG. 8 shows the results of the life test of the motor winding of this comparative example with solid black circles and approximate straight lines. The charging life of Comparative Example 1 is 1/100 or less as compared with Examples 1 and 2. In addition, in order to obtain the charging life of Examples 1 and 2 with the configuration of Comparative Example 1, it is considered that the charging voltage needs to be reduced to 1/10 in view of the extrapolated value of the approximate straight line.
[0061]
Therefore, when the motor of Comparative Example 1 is used, there is a need to reduce a steep surge voltage by installing a filter at the output terminal of the inverter drive power supply and to reduce a shared voltage between motor windings.
[0062]
[Comparative Example 2]
In Comparative Example 2, a motor winding was manufactured using a composite film element wire on which a conductive film having a resistance value outside the range of the present invention was arranged. Polyamide imide was used for the insulating film. As the conductive film, a polyamideimide film mixed with a small amount of carbon black was used. The conductive film had a surface resistance of 10 MΩ.
[0063]
FIG. 6 shows the results of a service life test of the motor winding of Comparative Example 2. The service life is longer than in Comparative Example 1, but shorter than in Examples 1 and 2. Partial discharge was observed at an applied voltage of 100%. This is probably because the resistance value of the conductive film was high, the surface of the insulated wire was not at the same potential, and the air between the insulated wires was also charged.
[0064]
When the resistance value of the conductive film was simply set to 1 MΩ or less and no insulation distance was formed at the connection portion of the strand conductor, a short circuit occurred between the welding portions of the motor windings and between the different phases during the operation of the inverter.
[Comparative Example 3]
In Comparative Example 3, the same motor as in Comparative Example 1 was manufactured, and the same conductive varnish as in Comparative Example 2 was impregnated into the motor at normal pressure. FIG. 6 shows the results of a power application life test of the manufactured motor winding. The motor of Comparative Example 3 has a shorter charging life than Comparative Example 1 using a conventional insulated wire.
[0065]
Partial discharge was observed at an applied voltage of 100%. This may be because the conductive varnish is not sufficiently impregnated between the motor winding and the core, and partial discharge occurs between the insulated wire and the conductive varnish at the ground potential, increasing the frequency of partial discharge. Can be
[0066]
【The invention's effect】
According to the present invention, even when the inverter is driven, partial discharge and partial discharge deterioration do not occur between the windings, the service life is equivalent to that of a conventional commercial frequency drive motor, and the motor windings are welded or interphased. Can be provided without causing a short circuit.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a composite coated wire of the present invention.
FIG. 2 is a perspective view showing a structure of a motor winding constituted by using a composite coating element wire according to the present invention.
FIG. 3 is a perspective view showing a coil winding step.
FIG. 4 is a schematic view showing a configuration of a motor pulse life test apparatus of the present invention.
FIG. 5 is a graph showing a pulse voltage waveform in a pulse application life test.
FIG. 6 is a graph showing pulse voltage application life test results.
FIG. 7 is an explanatory view of a partial discharge preventing effect between adjacent strands by a conductive film.
FIG. 8 is a graph showing a resistance value of a conductive film and a potential difference between surfaces of adjacent composite film wires.
FIG. 9 is a graph showing a relationship between a motor rated voltage and an insulation distance between a conductor connection portion of a winding and an end of a conductive film.
FIG. 10 is a perspective view showing a method for producing a composite coating element wire by spraying a conductive varnish.
FIG. 11 shows a method of applying a conductive varnish by sinking a coil in the conductive varnish.
FIG. 12 is a cross-sectional view of a motor slot in a case where a winding using a composite coating element wire to which a conductive varnish is applied in advance is accommodated in the motor slot.
FIG. 13 is a graph showing a relationship between a resistance value of a conductive film and a temperature rise of a winding.
[Explanation of symbols]
Reference Signs List 10: conductive film, 11: insulating film, 12: conductor of insulated wire, 20: conductive film on motor winding surface, 21: removed portion of conductive film, 22: motor winding phase lead portions 1, 23 ... Welded part between coil 200 and coil 201, 24 ... welded part between coil 201 and coil 202, 25 ... welded part between coil 202 and coil 203, 26 ... motor winding phase lead parts 2, 200 ... motor winding first coil , 201: motor winding second coil, 202: motor winding third coil, 203: motor winding fourth coil, 31: conductive film on coil surface, 32: insulated wire of Example 1, 33: coil Winding type.

Claims (7)

導体素線上に形成された絶縁皮膜と、その表面に形成された、表面抵抗が1MΩ以下の導電性皮膜を有する複合皮膜素線により複数ターンの巻線が構成され、上記導電性皮膜を介して隣接する複合素線が接触し、かつモータの定格電圧に応じて上記導電性皮膜の端部から巻線導体接続部までの絶縁距離を設けたことを特徴とする耐サージモータ。A winding of a plurality of turns is constituted by an insulating film formed on a conductor wire and a composite film wire having a conductive film having a surface resistance of 1 MΩ or less formed on the surface thereof, and a winding is formed through the conductive film. An anti-surge motor wherein adjacent composite strands are in contact with each other, and an insulation distance is provided from an end of the conductive film to a winding conductor connection portion in accordance with the rated voltage of the motor. 前記巻線の絶縁皮膜上に導電性ワニスを塗布するか、上記巻線のスロット挿入部の空隙に導電性ワニスを含浸して上記導電性皮膜を形成したことを特徴とする請求項1記載の耐サージモータ。2. The conductive coating according to claim 1, wherein a conductive varnish is applied on the insulating coating of the winding, or the conductive varnish is impregnated in a gap of a slot insertion portion of the winding to form the conductive coating. Anti surge motor. 前記巻線の前記導電性皮膜をモータの定格電圧に応じて上記巻線の接続部まで形成し、上記導電性皮膜と絶縁皮膜の少なくとも境界部分に絶縁ワニスが塗布されていることを特徴とする請求項1又は2記載耐サージモータ。The conductive film of the winding is formed up to a connection portion of the winding according to a rated voltage of a motor, and an insulating varnish is applied to at least a boundary portion between the conductive film and the insulating film. The surge resistant motor according to claim 1 or 2. 前記巻線の前記導電性皮膜をモータの定格電圧に応じて除去し、上記導電性皮膜と絶縁皮膜の少なくとも境界部分に絶縁ワニスが塗布されていることを特徴とする請求項1又は2記載の耐サージモータ。The said conductive film of the said winding is removed according to the rated voltage of a motor, The insulating varnish is apply | coated to at least the boundary part between the said conductive film and an insulating film, The Claims 1 or 2 characterized by the above-mentioned. Anti surge motor. 絶縁電線表面の導電性皮膜あるいは導電性ワニスの表面抵抗値を1kΩ〜1MΩの範囲としたことを特徴とする請求項1記載の耐サージモータ。2. The anti-surge motor according to claim 1, wherein the surface resistance of the conductive film or conductive varnish on the surface of the insulated wire is in the range of 1 kΩ to 1 MΩ. 導電性皮膜あるいは導電性ワニスが導電性高分子を含むことを特徴とする請求項1の耐サージモータ。2. The surge motor according to claim 1, wherein the conductive coating or the conductive varnish contains a conductive polymer. 導体素線上に形成された絶縁皮膜と、その表面に形成された導電性皮膜を有する複合皮膜素線により複数ターンの巻線が構成され、上記導電性皮膜を介して隣接する複合皮膜素線が接触して、隣接する巻線の絶縁皮膜間の電位差を緩和するように構成したことを特徴とする耐サージモータ。A winding of a plurality of turns is constituted by an insulating film formed on the conductor wire and a composite film wire having a conductive film formed on the surface thereof, and an adjacent composite film wire is formed via the conductive film. A surge resistant motor characterized in that it is configured so as to be in contact with and to reduce a potential difference between insulating films of adjacent windings.
JP2003043761A 2003-02-21 2003-02-21 Surge resistant motor Pending JP2004254457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043761A JP2004254457A (en) 2003-02-21 2003-02-21 Surge resistant motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043761A JP2004254457A (en) 2003-02-21 2003-02-21 Surge resistant motor

Publications (1)

Publication Number Publication Date
JP2004254457A true JP2004254457A (en) 2004-09-09

Family

ID=33026673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043761A Pending JP2004254457A (en) 2003-02-21 2003-02-21 Surge resistant motor

Country Status (1)

Country Link
JP (1) JP2004254457A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262789A (en) * 2009-04-30 2010-11-18 Sumitomo Electric Wintec Inc Terminal treatment method of insulated wire, terminal treated insulated wire, and coil
CN104426275A (en) * 2013-09-05 2015-03-18 珠海格力电器股份有限公司 Motor and winding short circuit-preventing structure thereof
CN104995822A (en) * 2013-01-07 2015-10-21 三菱电机株式会社 Stator coil for rotating electric machine, method for manufacturing said stator coil, and rotating electrical machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262789A (en) * 2009-04-30 2010-11-18 Sumitomo Electric Wintec Inc Terminal treatment method of insulated wire, terminal treated insulated wire, and coil
CN104995822A (en) * 2013-01-07 2015-10-21 三菱电机株式会社 Stator coil for rotating electric machine, method for manufacturing said stator coil, and rotating electrical machine
CN104426275A (en) * 2013-09-05 2015-03-18 珠海格力电器股份有限公司 Motor and winding short circuit-preventing structure thereof

Similar Documents

Publication Publication Date Title
JP5572055B2 (en) Electrical equipment having a junction insulation structure
CN112166542A (en) Electrical lead for use in an electrical machine
Moghadam et al. Effects of resins on partial discharge activity and lifetime of insulation systems used in eDrive motors and automotive industries
US8575796B1 (en) Heavy duty stator core and coil assembly
JP2012113836A (en) Insulation coating conductor wire and rotary electric machine
CA2861321C (en) High voltage stator coil with reduced power tip-up
JP2004254457A (en) Surge resistant motor
US20170194826A1 (en) Wound conductor arrangement and method for insulating a wound conductor
US6927342B1 (en) Insulation for electrical conductors that produces no partial discharges
CN106716788B (en) Corona shield system for an electric machine
CN115867995A (en) Coil, motor and manufacturing method
Guastavino et al. Behaviour of conventional and nanofilled impregnation resins when subjected to PD activity
WO2018206222A1 (en) Insultated wire of a stator winding comprising grounding by conducting layer
JP6014833B2 (en) Coil for rotating electrical machine
Boughamni et al. Electrical machines insulation: Towards low environmental impact solutions
JP5408763B2 (en) Mold surface treatment method for mold transformer
WO2023082263A1 (en) Motor stator, variable frequency motor, and manufacturing method for motor stator
JP7153437B2 (en) Rotating electric machine
JP2023112905A (en) Rotating machine and manufacturing method of rotating machine
WO2014162959A1 (en) Coil for low-voltage inverter drive motor
KR20230002294A (en) heat-resistant insulated wire
EP3402050A1 (en) Insultated wire of a coil for a random-wound stator
Brithinee et al. Impact of nanoparticles on primary and secondary motor insulation in stators
JP2005078883A (en) Complex enamel wire
JP2022053789A (en) Insulation structure of stator coil