JP2017016956A - Insulated wire and manufacturing method thereof - Google Patents
Insulated wire and manufacturing method thereof Download PDFInfo
- Publication number
- JP2017016956A JP2017016956A JP2015134557A JP2015134557A JP2017016956A JP 2017016956 A JP2017016956 A JP 2017016956A JP 2015134557 A JP2015134557 A JP 2015134557A JP 2015134557 A JP2015134557 A JP 2015134557A JP 2017016956 A JP2017016956 A JP 2017016956A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- wire
- varnish
- water
- insulated wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Insulated Conductors (AREA)
- Organic Insulating Materials (AREA)
Abstract
Description
本発明は絶縁電線及びその製造方法に関する。 The present invention relates to an insulated wire and a method for manufacturing the same.
電気・電子機器分野では、高性能化、軽薄短小化、省電力化等が急速に進展している。これに伴って電子基板上に実装されるコイル、ノイズフィルタ、インダクタ、リアクトル等の一層の小型化が求められている。そこで、断面積当たりの導体の占有面積を高めるべく、断面形状を扁平にした平角導線が実用化されている。かかる平角導線は、通常、外周面が樹脂製の樹脂絶縁層で被覆された絶縁電線として用いられる。そして、平角導線の外周面の樹脂絶縁層での被覆を電着塗装で行うことが知られている。例えば、特許文献1には、平角導線の外周面を被覆する樹脂絶縁層を、主鎖中にシロキサン結合を含有すると共に、分子中にアニオン性基を有するブロック共重合ポリイミド樹脂で形成することが開示されている。 In the field of electric and electronic equipment, high performance, lightness and miniaturization, power saving, etc. are rapidly progressing. Along with this, further miniaturization of coils, noise filters, inductors, reactors and the like mounted on an electronic board is required. Therefore, in order to increase the area occupied by the conductor per cross-sectional area, a rectangular conductor wire having a flat cross-sectional shape has been put into practical use. Such a rectangular conducting wire is usually used as an insulated wire whose outer peripheral surface is covered with a resin insulating layer made of resin. And it is known that the coating of the outer peripheral surface of the flat conducting wire with the resin insulating layer is performed by electrodeposition coating. For example, Patent Document 1 discloses that a resin insulating layer covering the outer peripheral surface of a rectangular conductor wire is formed of a block copolymerized polyimide resin containing a siloxane bond in the main chain and having an anionic group in the molecule. It is disclosed.
平角導線の外周面を電着塗装により樹脂絶縁層で被覆する場合、確実な絶縁性を得るためには、いずれの面の樹脂絶縁層も十分な厚さを有することが必要である。 In the case where the outer peripheral surface of the flat conducting wire is coated with a resin insulating layer by electrodeposition coating, in order to obtain a reliable insulating property, it is necessary that the resin insulating layer on any surface has a sufficient thickness.
本発明の課題は、外周面に平行な一対の平坦面を含む導線におけるいずれの面も確実な絶縁性を得るために十分な厚さの樹脂絶縁層で被覆することである。 An object of the present invention is to cover any surface of a conducting wire including a pair of flat surfaces parallel to the outer peripheral surface with a resin insulating layer having a sufficient thickness in order to obtain reliable insulation.
本発明の絶縁電線の製造方法は、外周面に平行な一対の平坦面を含む導線をワニスに通して電着塗装することにより前記導線の外周面を樹脂絶縁層で被覆する絶縁電線の製造方法であって、前記ワニスは、塗装用樹脂と、水と、前記塗装用樹脂に対して良溶媒である水溶性溶媒とを含み、前記ワニスにおける水の含有量が55〜75質量%である。 The method for producing an insulated wire according to the present invention is a method for producing an insulated wire in which a conductive wire including a pair of flat surfaces parallel to the outer peripheral surface is electrodeposited through a varnish to coat the outer peripheral surface of the conductive wire with a resin insulating layer. And the said varnish contains the resin for coating, water, and the water-soluble solvent which is a good solvent with respect to the said resin for coating, The content of the water in the said varnish is 55-75 mass%.
本発明の絶縁電線は、扁平な断面形状を有する平角導線と、前記平角導線の外周面を被覆する樹脂絶縁層とを備えた絶縁電線であって、前記樹脂絶縁層は、前記平角導線の扁平な断面形状における短辺に対応する部分の厚さが長辺に対応する部分の厚さよりも厚い。 The insulated wire of the present invention is an insulated wire comprising a flat conducting wire having a flat cross-sectional shape and a resin insulating layer covering an outer peripheral surface of the flat conducting wire, wherein the resin insulating layer is a flat conductor of the flat conducting wire. The thickness of the portion corresponding to the short side in a simple cross-sectional shape is larger than the thickness of the portion corresponding to the long side.
本発明によれば、電着塗装に用いるワニスが、塗装用樹脂と、水と、塗装用樹脂に対して良溶媒である水溶性溶媒とを含み、そして、ワニスにおける水の含有量が55〜75質量%であることにより、外周面に平行な一対の平坦面を含む導線におけるいずれの面も確実な絶縁性を得るために十分な厚さの樹脂絶縁層で被覆することができる。 According to the present invention, the varnish used for electrodeposition coating contains a coating resin, water, and a water-soluble solvent that is a good solvent for the coating resin, and the water content in the varnish is 55 to 55. By being 75 mass%, any surface of the conducting wire including a pair of flat surfaces parallel to the outer peripheral surface can be covered with a resin insulating layer having a sufficient thickness to obtain reliable insulation.
以下、実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail.
実施形態に係る絶縁電線の製造方法は、図1に示すように、伸線加工工程、冷間加工工程、焼鈍工程、油分除去工程、及び電着塗装工程を含む。なお、これらの工程は、それぞれの工程をバッチ式で行ってもよく、また、全ての工程を連続式で行ってもよく、更には、例えば伸線加工工程及び冷間加工工程を連続式で行った後、焼鈍工程のみをバッチ式で行い、それ以降の油分除去工程及び電着塗装工程を連続式で行う場合のようにバッチ式と連続式とを組み合わせて行ってもよい。 As shown in FIG. 1, the method for manufacturing an insulated wire according to the embodiment includes a wire drawing process, a cold working process, an annealing process, an oil removing process, and an electrodeposition coating process. In addition, these processes may perform each process by a batch type, and may perform all the processes by a continuous type. Furthermore, for example, a wire drawing process and a cold working process are performed by a continuous type. After performing, only an annealing process may be performed by a batch type, and it may carry out combining a batch type and a continuous type like the case where the oil removal process and electrodeposition coating process after that are performed by a continuous type.
<伸線加工工程>
伸線加工工程では、母線としての荒引線を細径化して横断面が円形の丸線に伸線加工する。荒引線には、例えば純度4N以上の高純度銅のものを用いる。伸線加工としては、一般的には、荒引線を伸線ダイスに通す加工が挙げられる。荒引線の外径は例えば8.0mmであり、伸線後の丸線の外径は例えば0.05〜0.2mmである。なお、伸線加工は通常は多段階で行い、例えば、まず外径が8.0mmの荒引き線を外径が2.6〜3.2mmとなるように伸線し、次いで0.6〜0.8mmとなるように伸線し、さらに0.05〜0.2mmとなるように伸線する。
<Wire drawing process>
In the wire drawing process, the rough drawn wire as a bus bar is reduced in diameter and drawn into a round wire having a circular cross section. For the rough drawn wire, for example, high purity copper having a purity of 4N or more is used. In general, the drawing process includes a process of passing a rough drawing wire through a drawing die. The outer diameter of the rough drawn wire is, for example, 8.0 mm, and the outer diameter of the round wire after drawing is, for example, 0.05 to 0.2 mm. Note that the wire drawing is usually performed in multiple stages. For example, first, a rough drawing wire having an outer diameter of 8.0 mm is drawn so that the outer diameter is 2.6 to 3.2 mm, and then 0.6 to The wire is drawn to 0.8 mm, and further drawn to 0.05 to 0.2 mm.
<冷間加工工程>
冷間加工工程では、伸線工程で伸線した丸線を、外周面に平行な一対の平坦面を含む導線に冷間加工する。冷間加工としては、例えば、丸線を圧延機のローラー間に通す圧延加工、丸線をダイスに通す加工等が挙げられる。冷間加工によって得られる導線は、図2Aに示すような上下面及び両側面が平坦面に形成された断面形状が扁平な矩形の平角導線11であってもよい。このような平角導線11は、例えば、丸線を厚さ方向及び幅方向のそれぞれで圧延加工することにより得ることができる。また、冷間加工によって得られる導線は、図2Bに示すような上下面が平坦面に形成され且つ両側面が外側に膨出した曲面に形成された断面形状が扁平な平角導線11であってもよい。このような平角導線11は、例えば、丸線を厚さ方向のみで圧延加工することにより得ることができる。これらの平角導線11は、例えば、厚さが0.01〜1mm及び幅が0.2〜4.0mmであり、厚さに対する幅の比(幅/厚さ)が1/1〜25/1である。なお、冷間加工によって得られる導線は、外周面に平行な一対の平坦面を含むものであれば、特に限定されるものではなく、例えば、厚さ方向及び幅方向の寸法が等しい断面形状が正方形のものであってもよい。
<Cold working process>
In the cold working step, the round wire drawn in the drawing step is cold worked into a conductive wire including a pair of flat surfaces parallel to the outer peripheral surface. Examples of cold working include rolling that passes a round wire between rollers of a rolling mill, processing that passes a round wire through a die, and the like. The conducting wire obtained by the cold working may be a rectangular conducting
<焼鈍工程>
焼鈍工程では、熱処理により、導線を形成する金属の結晶粒度や0.2%耐力等の物性調整を行う。
<Annealing process>
In the annealing process, physical properties such as crystal grain size and 0.2% proof stress of the metal forming the conducting wire are adjusted by heat treatment.
焼鈍工程は、長さ方向の特性を均一化させる観点からはバッチ式で行うことが好ましく、その場合、冷間加工工程後の導線を巻回したボビンを熱処理炉に投入後、所定の昇温速度で炉内の温度を所定の保持温度まで高め、その保持温度で所定の保持時間を保持した後、所定の降温速度で炉内の温度を低下させることが好ましい。このとき、昇温速度は、例えば20〜2000℃/hである。保持温度(焼鈍温度)は、例えば150〜1000℃である。保持時間(焼鈍時間)は、例えば1秒間〜100時間である。降温速度は、例えば10〜2000℃/hである。また、焼鈍工程を連続式で行う場合、熱処理条件は好ましくは焼鈍温度500〜900℃で焼鈍時間1〜60秒、より好ましくは焼鈍温度600〜800℃で焼鈍時間1〜10秒である。焼鈍工程は、窒素ガス等の不活性ガス雰囲気で行うことが好ましい。 The annealing process is preferably performed batchwise from the viewpoint of uniformizing the characteristics in the length direction. In that case, a predetermined temperature increase is performed after the bobbin around which the wire after the cold working process is wound is put into a heat treatment furnace. It is preferable to increase the temperature in the furnace to a predetermined holding temperature at a speed, hold the predetermined holding time at the holding temperature, and then lower the temperature in the furnace at a predetermined temperature drop rate. At this time, the temperature rising rate is, for example, 20 to 2000 ° C./h. The holding temperature (annealing temperature) is, for example, 150 to 1000 ° C. The holding time (annealing time) is, for example, 1 second to 100 hours. The temperature drop rate is, for example, 10 to 2000 ° C./h. Moreover, when performing an annealing process by a continuous type, Preferably heat treatment conditions are annealing temperature 500-900 degreeC, annealing time 1-60 seconds, More preferably, annealing temperature 600-800 degreeC and annealing time 1-10 seconds. The annealing step is preferably performed in an inert gas atmosphere such as nitrogen gas.
<油分除去工程>
油分除去工程では、導線の表面に付着した油分を洗浄除去する。この洗浄は、例えば、導線を洗浄液に浸漬して引き上げた後、窒素ガス等の不活性ガスを吹き付けて導線に付着した洗浄液を飛散させることにより行うことができる。
<Oil removal process>
In the oil removal step, the oil attached to the surface of the conducting wire is washed away. This cleaning can be performed, for example, by immersing the conducting wire in a cleaning solution and pulling it up, and then spraying an inert gas such as nitrogen gas to scatter the cleaning solution adhering to the conducting wire.
ここで、洗浄液としては、例えば、水(温水)、有機溶剤等が挙げられる。洗浄液を水とする場合、水温は例えば10〜60℃である。洗浄液には洗剤を含めてもよい。 Here, examples of the cleaning liquid include water (warm water), an organic solvent, and the like. When the cleaning liquid is water, the water temperature is, for example, 10 to 60 ° C. The cleaning liquid may contain a detergent.
<電着塗装工程>
電着塗装工程では、導線の表面に電着塗装を施して電着皮膜の絶縁被覆層を設ける。具体的には、導線をワニスに連続して通過させると共に導線を一方の電極としてワニスに電圧を印加することにより導線の表面に絶縁被膜を付着させ、そして、それを焼付炉に通して導線に付着した絶縁被膜を焼き付けることにより絶縁被覆層を形成する。
<Electrodeposition painting process>
In the electrodeposition coating process, an electrodeposition coating is applied to the surface of the conductive wire to provide an insulating coating layer of an electrodeposition coating. Specifically, the conductive wire is continuously passed through the varnish and a voltage is applied to the varnish by using the conductive wire as one electrode, and an insulating film is attached to the surface of the conductive wire, and then it is passed through a baking furnace to the conductive wire. An insulating coating layer is formed by baking the attached insulating coating.
ここで、電着塗装に用いるワニスは、塗装用樹脂と、水と、水溶性溶媒とを含む。ワニスは、アニオン型のものであっても、また、カチオン型のものであっても、どちらでもよい。ワニスは、水溶液の塗装用樹脂が水に溶解した水溶液であっても、また、塗装用樹脂の粒子が水に分散した分散液であっても、どちらでもよい。 Here, the varnish used for electrodeposition coating includes a coating resin, water, and a water-soluble solvent. The varnish may be either an anionic type or a cationic type. The varnish may be either an aqueous solution in which an aqueous coating resin is dissolved in water or a dispersion in which coating resin particles are dispersed in water.
塗装用樹脂としては、例えば、ポリイミド樹脂を骨格とするポリイミド系樹脂、ポリアミドイミド樹脂を骨格とするポリアミドイミド系樹脂、ポリエステルイミド樹脂を骨格とするポリエステルイミド系樹脂、アクリル樹脂を骨格とするアクリル系樹脂、エポキシ樹脂を骨格とするエポキシ系樹脂、エポキシアクリレート樹脂を骨格とするエポキシアクリレート系樹脂、ポリウレタン樹脂を骨格とするポリウレタン系樹脂、ポリエステル樹脂を骨格とするポリエステル系樹脂等が挙げられる。塗装用樹脂として、これらのうちの1種又は2種以上を用いることが好ましい。絶縁被覆層の耐熱性及び硬度を高める観点からは、塗装用樹脂として、ポリイミド系樹脂及び/又はポリアミドイミド系樹脂を用いることがより好ましい。ワニスにおける塗装用樹脂を含む固形分の濃度は、好ましくは1質量%以上、より好ましくは5質量%以上であり、また、好ましくは15質量%以下、より好ましくは10質量%以下である。 Examples of the coating resin include a polyimide resin having a polyimide resin skeleton, a polyamide imide resin having a polyamide imide resin as a skeleton, a polyester imide resin having a polyester imide resin as a skeleton, and an acrylic resin having an acrylic resin as a skeleton. Examples thereof include resins, epoxy resins having an epoxy resin as a skeleton, epoxy acrylate resins having an epoxy acrylate resin as a skeleton, polyurethane resins having a polyurethane resin as a skeleton, polyester resins having a polyester resin as a skeleton, and the like. Of these, it is preferable to use one or more of these as the coating resin. From the viewpoint of increasing the heat resistance and hardness of the insulating coating layer, it is more preferable to use a polyimide resin and / or a polyamideimide resin as the coating resin. The density | concentration of solid content containing the resin for coating in a varnish becomes like this. Preferably it is 1 mass% or more, More preferably, it is 5 mass% or more, Preferably it is 15 mass% or less, More preferably, it is 10 mass% or less.
ワニスは水を含むが、その含有量は55〜75質量%である。このようにワニスにおける水の含有量が55〜75質量%であることにより、外周面に平行な一対の平坦面を含む導線におけるいずれの面も確実な絶縁性を得るために十分な厚さの樹脂絶縁層で被覆することができる。かかる観点から、ワニスにおける水の含有量は、好ましくは60質量%以上であり、また、好ましくは70質量%以下である。 The varnish contains water, but its content is 55 to 75% by mass. As described above, when the water content in the varnish is 55 to 75% by mass, any surface of the conducting wire including a pair of flat surfaces parallel to the outer peripheral surface has a sufficient thickness to obtain reliable insulation. It can be coated with a resin insulating layer. From this viewpoint, the content of water in the varnish is preferably 60% by mass or more, and preferably 70% by mass or less.
水溶性溶媒は、塗装用樹脂に対しての良溶媒であることが必要である。ここで、「水溶性溶媒」とは、水に対して親和性を有し、水と混合した際に相分離することなく相溶して均一な単一相となる溶媒をいう。また、「塗装用樹脂に対する良溶媒」とは、塗装用樹脂に対する溶解性が高い溶媒、具体的には、25℃における溶媒1kgに対する塗装用樹脂の溶解量が100g以上である溶媒をいう。かかる水溶性溶媒としては、例えば、塗装用樹脂をポリイミド系樹脂やポリアミドイミド系樹脂とした場合におけるN−メチル−2−ピロリドン(NMP)が挙げられる。かかる溶剤は、単一種のみが含まれていても、また、複数種が含まれていても、どちらでもよい。ワニスにおけるかかる水溶性溶媒の含有量は、絶縁被覆層の成膜性及び電着塗装後に絶縁被覆層を膨潤させる処理が不要となるという観点から、好ましくは24質量%以上、より好ましくは26質量%以上であり、また、いずれの面も確実な絶縁性を得るために十分な厚さの樹脂絶縁層を得る観点から、好ましくは32質量%以下、より好ましくは30質量%以下である。 The water-soluble solvent needs to be a good solvent for the coating resin. Here, the “water-soluble solvent” refers to a solvent that has an affinity for water and becomes a uniform single phase by mixing with water without phase separation. The “good solvent for the coating resin” refers to a solvent having high solubility in the coating resin, specifically, a solvent in which the amount of the coating resin dissolved in 1 kg of solvent at 25 ° C. is 100 g or more. Examples of such a water-soluble solvent include N-methyl-2-pyrrolidone (NMP) in the case where the coating resin is a polyimide resin or a polyamideimide resin. Such a solvent may contain either a single species or a plurality of species. The content of the water-soluble solvent in the varnish is preferably 24% by mass or more, more preferably 26% by mass, from the viewpoint of film forming properties of the insulating coating layer and the need to swell the insulating coating layer after electrodeposition coating. In addition, from the viewpoint of obtaining a resin insulating layer having a sufficient thickness for obtaining reliable insulation on any surface, it is preferably 32% by mass or less, more preferably 30% by mass or less.
ワニスには、その他に中和剤や着色剤等が含まれていてもよい。 In addition, the varnish may contain a neutralizing agent, a coloring agent, and the like.
ワニスの粘度は、B型粘度計により測定されるが、例えば1〜100mPa・sである。ワニスのpHは、pHメーターにより測定されるが、例えば7〜9である。 Although the viscosity of a varnish is measured with a B-type viscometer, it is 1-100 mPa * s, for example. The pH of the varnish is measured with a pH meter, and is, for example, 7-9.
ワニスへの電圧印加は、定電流法で行っても、また、定電圧法で行っても、どちらでもよい。その印加電圧は、例えば40〜100Vである。 The voltage application to the varnish may be performed by a constant current method or a constant voltage method. The applied voltage is, for example, 40 to 100V.
ワニスの液温は、例えば10〜30℃である。導線のワニスへの浸漬時間は、例えば5〜120秒である。この浸漬時間は、導線の走行速度の設定によって調節することができる。 The liquid temperature of a varnish is 10-30 degreeC, for example. The immersion time of the conducting wire in the varnish is, for example, 5 to 120 seconds. This immersion time can be adjusted by setting the traveling speed of the conducting wire.
電着塗装工程では、ワニスを入れた槽を隔室に収容し、低真空雰囲気(100Pa以上)或いは窒素ガス雰囲気で導線のワニスへの浸漬を行ってもよい。 In the electrodeposition coating process, the tank containing the varnish may be housed in a compartment, and the conductor may be immersed in the varnish in a low vacuum atmosphere (100 Pa or more) or a nitrogen gas atmosphere.
焼付処理温度、つまり、焼付炉の炉内温度は、例えば100〜600℃である。焼付処理時間は、例えば300〜1800秒である。焼付処理時間は、導線の走行速度の設定によって調節することができる。 The baking temperature, that is, the furnace temperature of the baking furnace is, for example, 100 to 600 ° C. The baking process time is, for example, 300 to 1800 seconds. The baking process time can be adjusted by setting the traveling speed of the conducting wire.
焼付処理は、単一の焼付処理温度により一段階で行っても、また、相互に異なる焼付処理温度の多段階で行っても、どちらでもよい。後者の場合、例えば、各段階での焼付処理時間を100〜600秒の一定としつつ、第1段階では焼付処理温度を150〜180℃とし、第2段階では第1段階よりも焼付処理温度を高く設定して180〜210℃とし、第3段階では第2段階よりもさらに焼付処理温度を高く設定して210〜240℃とし、最後に室温まで冷却する焼付処理が挙げられる。このように焼付処理温度を順次高く設定することにより絶縁被覆層における発泡を抑制することができる。 The baking process may be performed in one stage depending on a single baking process temperature, or may be performed in multiple stages at different baking process temperatures. In the latter case, for example, the baking process temperature in each stage is fixed to 100 to 600 seconds, the baking process temperature is set to 150 to 180 ° C. in the first stage, and the baking process temperature is set to be higher than that in the first stage in the second stage. A higher baking temperature is set to 180 to 210 ° C., and a third baking temperature is set to a higher baking temperature than the second temperature to 210 to 240 ° C., and finally the baking temperature is cooled to room temperature. Thus, foaming in the insulating coating layer can be suppressed by sequentially setting the baking temperature higher.
以上のような実施形態に係る絶縁電線の製造方法によれば、電着塗装に用いるワニスが、塗装用樹脂と、水と、塗装用樹脂に対して良溶媒である水溶性溶媒とを含み、そして、上述した通り、ワニスにおける水の含有量が55〜75質量%であることにより、外周面に平行な一対の平坦面を含む導線におけるいずれの面も確実な絶縁性を得るために十分な厚さの樹脂絶縁層で被覆することができる。樹脂絶縁層の厚さは、好ましくは1.5μm以上、より好ましくは3μm以上であり、また、好ましくは30μm以下、より好ましくは25μm以下である。 According to the method for manufacturing an insulated wire according to the embodiment as described above, the varnish used for electrodeposition coating includes a coating resin, water, and a water-soluble solvent that is a good solvent for the coating resin, And as above-mentioned, since content of the water in a varnish is 55-75 mass%, it is enough in order to acquire reliable insulation of any surface in the conducting wire containing a pair of flat surface parallel to an outer peripheral surface. It can be covered with a thick resin insulation layer. The thickness of the resin insulating layer is preferably 1.5 μm or more, more preferably 3 μm or more, and preferably 30 μm or less, more preferably 25 μm or less.
また、特に、導体が図2A及びBに示すような扁平な断面形状を有する平角導線11の場合、従来、電着塗装により形成される樹脂絶縁層において、扁平な断面形状における短辺に対応する短辺対応部分の厚さが極端に薄く形成されるため、短辺対応部分が高圧を受けるような用途では、十分な絶縁性が得られないということがあった。しかしながら、実施形態に係る絶縁電線の製造方法によれば、導体が図2A及びBに示すような扁平な断面形状を有する平角導線11の場合、図3A及びBに示すように、得られる絶縁電線10では、樹脂絶縁層12において、平角導線11の扁平な断面形状における短辺に対応する短辺対応部分12a及び長辺に対応する長辺対応部分12bのいずれも確実な絶縁性を得るために十分な厚さを有し、しかも、短辺対応部分12aの厚さが長辺対応部分12bの厚さよりも厚く形成される。このように短辺対応部分12aの厚さが長辺対応部分12bの厚さよりも厚く形成されると、短辺対応部分12aが高圧を受けるような用途であっても、確実に十分な絶縁性を得ることができる。短辺対応部分12aの厚さの長辺対応部分12bに対する比は、好ましくは1.0よりも大、より好ましくは1.2以上であり、また、好ましくは1.4以下、より好ましくは1.3以下である。なお、短辺対応部分12a及び長辺対応部分12bの厚さは、それぞれの最も薄い部分の厚さである。
In particular, in the case where the conductor is a
(絶縁電線)
以下の実施例1〜7及び比較例1〜2の絶縁電線の作製を行った。それぞれで用いたワニスの組成については表1に示す。
(Insulated wire)
The insulated wires of Examples 1 to 7 and Comparative Examples 1 and 2 below were produced. The composition of the varnish used in each is shown in Table 1.
<実施例1>
塗装用樹脂としてのポリイミド系樹脂を含む固形分3.0質量%、水68.6質量%、メトキシプロパノール4.4質量%、NMP24.0質量%、及び中和剤0.03質量%を含むワニスを調製した。
<Example 1>
Including 3.0% by weight of solid content including polyimide resin as a coating resin, 68.6% by weight of water, 4.4% by weight of methoxypropanol, 24.0% by weight of NMP, and 0.03% by weight of neutralizing agent A varnish was prepared.
上下面及び両側面が平坦面に形成された断面形状が扁平な矩形である高純度銅の平角導線(厚さ0.025mm及び幅0.25mm)を上記ワニスに通して電着塗装し、平角導線の外周面を絶縁被覆層で被覆することにより絶縁電線を作製した。これを実施例1とした。 High-purity copper flat conductors (thickness 0.025 mm and width 0.25 mm) having a flat rectangular shape with flat top and bottom surfaces and both side faces are electrodeposited through the varnish and flattened. An insulated wire was produced by coating the outer peripheral surface of the conducting wire with an insulating coating layer. This was designated Example 1.
<実施例2>
水の含有量を64.6質量%及びNMPの含有量を28.0質量%としたワニスを用いたことを除いて実施例1と同一条件で絶縁電線を作製した。これを実施例2とした。
<Example 2>
An insulated wire was produced under the same conditions as in Example 1 except that a varnish having a water content of 64.6% by mass and an NMP content of 28.0% by mass was used. This was designated Example 2.
<実施例3>
水の含有量を60.6質量%及びNMPの含有量を32.0質量%としたワニスを用いたことを除いて実施例1と同一条件で絶縁電線を作製した。これを実施例3とした。
<Example 3>
An insulated wire was produced under the same conditions as in Example 1 except that a varnish having a water content of 60.6% by mass and an NMP content of 32.0% by mass was used. This was designated as Example 3.
<実施例4>
塗装用樹脂としてのポリイミド系樹脂を含む固形分8.0質量%、水61.3質量%、メトキシプロパノール4.2質量%、及びNMP26.5質量%を含むワニスを用いたことを除いて実施例1と同一条件で絶縁電線を作製した。これを実施例4とした。
<Example 4>
Except for using a varnish containing 8.0% by mass of a polyimide resin as a coating resin, 61.3% by mass of water, 4.2% by mass of methoxypropanol, and 26.5% by mass of NMP. An insulated wire was produced under the same conditions as in Example 1. This was designated Example 4.
<実施例5>
塗装用樹脂としてのポリイミド系樹脂を含む固形分1.0質量%、水65.9質量%、メトキシプロパノール4.5質量%、及びNMP28.6質量%を含むワニスを用いたことを除いて実施例1と同一条件で絶縁電線を作製した。これを実施例5とした。
<Example 5>
Implemented except that a varnish containing 1.0% by mass of a polyimide resin as a coating resin, 65.9% by mass of water, 4.5% by mass of methoxypropanol, and 28.6% by mass of NMP was used. An insulated wire was produced under the same conditions as in Example 1. This was designated as Example 5.
<実施例6>
水の含有量を60.6質量%、メトキシプロパノールの含有量を8.4質量%、及びNMPの含有量を28.0質量%としたワニスを用いたことを除いて実施例1と同一条件で絶縁電線を作製した。これを実施例6とした。
<Example 6>
The same conditions as in Example 1 except that a varnish with a water content of 60.6% by mass, a methoxypropanol content of 8.4% by mass, and an NMP content of 28.0% by mass was used. Insulated wires were produced. This was designated Example 6.
<実施例7>
水の含有量を72.6質量%及びNMPの含有量を20.0質量%としたワニスを用いたことを除いて実施例1と同一条件で絶縁電線を作製した。これを実施例7とした。
<Example 7>
An insulated wire was produced under the same conditions as in Example 1 except that a varnish with a water content of 72.6% by mass and an NMP content of 20.0% by mass was used. This was designated as Example 7.
<比較例1>
水の含有量を52.6質量%及びNMPの含有量を40.0質量%としたワニスを用いたことを除いて実施例1と同一条件で絶縁電線を作製した。これを比較例1とした。
<Comparative Example 1>
An insulated wire was produced under the same conditions as in Example 1 except that a varnish having a water content of 52.6% by mass and an NMP content of 40.0% by mass was used. This was designated as Comparative Example 1.
<比較例2>
水の含有量を47.6質量%及びNMPの含有量を45.0質量%としたワニスを用いたことを除いて実施例1と同一条件で絶縁電線を作製した。これを比較例2とした。
<Comparative example 2>
An insulated wire was produced under the same conditions as in Example 1 except that a varnish having a water content of 47.6% by mass and an NMP content of 45.0% by mass was used. This was designated as Comparative Example 2.
<参考例>
水の含有量を77.6質量%及びNMPの含有量を15.0質量%としたワニスを用いたが電着塗装による成膜ができなかった。
<Reference example>
A varnish with a water content of 77.6% by mass and an NMP content of 15.0% by mass was used, but no film could be formed by electrodeposition coating.
(試験方法)
<樹脂絶縁層の厚さ>
実施例1〜7及び比較例1〜2のそれぞれで作製した絶縁電線の切断断面をマイクロスコープで拡大して観察し、平角導線の外周面を被覆する樹脂絶縁層における上下一対の長辺対応部分のそれぞれの最も薄い部分の厚さを測定して平均した。また、同様に、樹脂絶縁層における両側一対の短辺対応部分のそれぞれの最も薄い部分の厚さを測定して平均した。そして、長辺対応部分の厚さの平均値に対する短辺対応部分の厚さの平均値の比(短辺対応部分の厚さの平均値/長辺対応部分の厚さの平均値)を算出した。
(Test method)
<Thickness of resin insulation layer>
A section of the insulated wire produced in each of Examples 1 to 7 and Comparative Examples 1 and 2 was observed with an enlarged microscope, and a pair of upper and lower long sides corresponding to the resin insulating layer covering the outer peripheral surface of the flat conducting wire The thickness of each thinnest part was measured and averaged. Similarly, the thicknesses of the thinnest portions of the pair of short sides on both sides in the resin insulating layer were measured and averaged. Then, the ratio of the average thickness of the short side corresponding portion to the average thickness of the long side corresponding portion (average thickness of the short side corresponding portion / average thickness of the long side corresponding portion) is calculated. did.
<絶縁破壊電圧値>
実施例1〜7及び比較例1〜2のそれぞれで作製した絶縁電線について、「JIS C3216−5:2011 JA.4.2c)金属はく法」に基づいて、樹脂絶縁層が破壊するときの電圧である絶縁破壊電圧値を測定した。そして、試行を10回行い、その平均値が800V以上の場合をA、400V以上800V未満の場合をB、及び400V未満の場合をCと評価した。
<Dielectric breakdown voltage value>
About the insulated wire produced in each of Examples 1 to 7 and Comparative Examples 1 and 2, when the resin insulation layer breaks based on “JIS C3216-5: 2011 JA.4.2c) metal foil method” The dielectric breakdown voltage value, which is a voltage, was measured. Then, the trial was performed 10 times, and the case where the average value was 800 V or more was evaluated as A, the case where it was 400 V or more and less than 800 V, B, and the case where it was less than 400 V was evaluated as C.
<コイル絶縁破壊電圧値>
実施例1〜7及び比較例1〜2のそれぞれで作製した絶縁電線について、コイル巻きしてテストピースを作製した。
<Coil breakdown voltage value>
About the insulated wire produced in each of Examples 1-7 and Comparative Examples 1-2, it coiled and produced the test piece.
図4に示すように、ホットプレート上に載置された導電体上にコイル状のテストピースを載せ、その上に絶縁板を介して質量100gの錘を載せた。そして、テストピースの絶縁導線の平角導線と導電体との間に電圧を印加し、電圧を徐々に上昇させて樹脂絶縁層、特には樹脂絶縁層における短辺対応部分が破壊するときの電圧であるコイル絶縁破壊電圧値を測定した。昇圧条件は「JIS C3216−5:2011 JA.4.2c)金属はく法」に準じた。 As shown in FIG. 4, a coil-shaped test piece was placed on a conductor placed on a hot plate, and a weight of 100 g was placed thereon via an insulating plate. Then, a voltage is applied between the flat conductor of the insulated conductor of the test piece and the conductor, and the voltage is gradually increased to reduce the resin insulating layer, in particular, the short side corresponding portion of the resin insulating layer. A certain coil breakdown voltage value was measured. The pressurizing conditions were in accordance with “JIS C3216-5: 2011 JA.4.2c) metal foil method”.
まず、ホットプレートによる加熱を行わずに測定を行った。そして、試行を15回行い、その最低値が800V以上の場合をA、400V以上800V未満の場合をB、及び400V未満の場合をCと評価した。 First, the measurement was performed without heating with a hot plate. Then, the trial was performed 15 times, and the case where the minimum value was 800 V or higher was evaluated as A, the case where 400 V or higher and lower than 800 V was evaluated as B, and the case where it was lower than 400 V was evaluated as C.
次に、ホットプレートを250℃に加熱し、テストピース上に絶縁板を介して錘を載せて2分間保持した後に測定を行った。そして、試行を15回行い、その最低値が500V以上の場合をA、300V以上500V未満の場合をB、及び300V未満の場合をCと評価した。 Next, the hot plate was heated to 250 ° C., a weight was placed on the test piece via an insulating plate and held for 2 minutes, and measurement was performed. Then, the trial was performed 15 times, and the case where the minimum value was 500 V or more was evaluated as A, the case where 300 V or more and less than 500 V was evaluated as B, and the case where it was less than 300 V was evaluated as C.
(試験評価結果)
試験結果を表1に示す。
(Test evaluation results)
The test results are shown in Table 1.
これによれば、ワニスにおける水の含有量を55〜75質量%とした実施例1〜7では、樹脂絶縁層における短辺対応部分の厚さが長辺対応部分の厚さよりも厚く形成され、そのため、いずれもコイル絶縁破壊電圧値が高いことが分かる。実施例7では、絶縁破壊電圧値がやや低いが、これは、ワニスにおける水の含有量が比較的低いため、長辺対応部分の厚さがやや薄く形成されたものであると考えられる。 According to this, in Examples 1 to 7 in which the content of water in the varnish is 55 to 75% by mass, the thickness of the short side corresponding part in the resin insulating layer is formed thicker than the thickness of the long side corresponding part, Therefore, it turns out that all have a high coil dielectric breakdown voltage value. In Example 7, although the dielectric breakdown voltage value is slightly low, it is considered that this is because the thickness of the long side corresponding portion is formed slightly thin because the water content in the varnish is relatively low.
一方、ワニスにおける水の含有量を52.6質量%及び47.6質量%とした比較例1〜2では、樹脂絶縁層における短辺対応部分の厚さが長辺対応部分の厚さよりも薄く形成され、絶縁破壊電圧の水準は高いものの、いずれもコイル絶縁破壊電圧値が非常に低いことが分かる。 On the other hand, in Comparative Examples 1 and 2 in which the water content in the varnish is 52.6 mass% and 47.6 mass%, the thickness of the short side corresponding portion in the resin insulating layer is thinner than the thickness of the long side corresponding portion. Although the dielectric breakdown voltage level is high, the coil breakdown voltage value is very low.
本発明は絶縁電線及びその製造方法の技術分野において有用である。 The present invention is useful in the technical field of an insulated wire and a manufacturing method thereof.
10 絶縁電線
11 平角導線
12 樹脂絶縁層
12a 短辺対応部分
12b 長辺対応部分
21 ホットプレート
22 導電体
23 絶縁板
24 錘
T テストピース
DESCRIPTION OF
Claims (5)
前記ワニスは、塗装用樹脂と、水と、前記塗装用樹脂に対して良溶媒である水溶性溶媒と、を含み、
前記ワニスにおける水の含有量が55〜75質量%である絶縁電線の製造方法。 A method for producing an insulated wire in which a conductive wire including a pair of flat surfaces parallel to the outer peripheral surface is passed through a varnish and electrodeposited to coat the outer peripheral surface of the conductive wire with a resin insulating layer,
The varnish includes a coating resin, water, and a water-soluble solvent that is a good solvent for the coating resin,
The manufacturing method of the insulated wire whose content of the water in the said varnish is 55-75 mass%.
前記導線が扁平な断面形状を有する平角導線である絶縁電線の製造方法。 In the manufacturing method of the insulated wire described in Claim 1,
The manufacturing method of the insulated wire whose said conducting wire is a flat conducting wire which has a flat cross-sectional shape.
前記ワニスにおける前記水溶性溶媒の含有量が24〜32質量%である絶縁電線の製造方法。 In the manufacturing method of the insulated wire described in Claim 1 or 2,
The manufacturing method of the insulated wire whose content of the said water-soluble solvent in the said varnish is 24-32 mass%.
前記塗装用樹脂がポリイミド系樹脂又はポリアミドイミド系樹脂であり、且つ前記水溶性溶媒がN−メチル−2−ピロリドンである絶縁電線の製造方法。 In the manufacturing method of the insulated wire in any one of Claims 1 thru | or 3,
A method for producing an insulated wire, wherein the coating resin is a polyimide resin or a polyamideimide resin, and the water-soluble solvent is N-methyl-2-pyrrolidone.
前記樹脂絶縁層は、前記平角導線の扁平な断面形状における短辺に対応する部分の厚さが長辺に対応する部分の厚さよりも厚い絶縁電線。
An insulated wire comprising a flat conducting wire having a flat cross-sectional shape, and a resin insulating layer covering an outer peripheral surface of the flat conducting wire,
The resin insulation layer is an insulated wire in which the thickness of the portion corresponding to the short side in the flat cross-sectional shape of the flat wire is thicker than the thickness of the portion corresponding to the long side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015134557A JP2017016956A (en) | 2015-07-03 | 2015-07-03 | Insulated wire and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015134557A JP2017016956A (en) | 2015-07-03 | 2015-07-03 | Insulated wire and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017016956A true JP2017016956A (en) | 2017-01-19 |
Family
ID=57830985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015134557A Pending JP2017016956A (en) | 2015-07-03 | 2015-07-03 | Insulated wire and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017016956A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114420379A (en) * | 2022-01-24 | 2022-04-29 | 松田电工(台山)有限公司 | Manufacturing method of micro-insulated square wire |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4952252A (en) * | 1972-06-23 | 1974-05-21 | ||
JP2005174561A (en) * | 2003-12-05 | 2005-06-30 | Pi R & D Co Ltd | Insulated electric wire and insulated coil |
JP2013012401A (en) * | 2011-06-29 | 2013-01-17 | Toyota Motor Corp | Flat electric wire |
-
2015
- 2015-07-03 JP JP2015134557A patent/JP2017016956A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4952252A (en) * | 1972-06-23 | 1974-05-21 | ||
JP2005174561A (en) * | 2003-12-05 | 2005-06-30 | Pi R & D Co Ltd | Insulated electric wire and insulated coil |
JP2013012401A (en) * | 2011-06-29 | 2013-01-17 | Toyota Motor Corp | Flat electric wire |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114420379A (en) * | 2022-01-24 | 2022-04-29 | 松田电工(台山)有限公司 | Manufacturing method of micro-insulated square wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106232843B (en) | Copper alloy wire, copper-alloy stranded conductor and electric wire for automobiles | |
JP6079818B2 (en) | Aluminum alloy wire, aluminum alloy twisted wire and manufacturing method thereof, automotive electric wire and wire harness | |
US20140360756A1 (en) | Electrically insulated wire | |
WO2018173608A1 (en) | Insulated electric wire, production method therefor, coil and coil production method using same | |
JPS58193392A (en) | Method and device for cladding elongated metal member with metal layer | |
JP5726157B2 (en) | Rectangular electric wire for coil, method for manufacturing the same, and coil using the same | |
JPH052940A (en) | Material for electric contact and manufacture the same | |
WO2015125350A1 (en) | Copper alloy material for connector terminals and method for producing copper alloy material for connector terminals | |
JP2017016956A (en) | Insulated wire and manufacturing method thereof | |
EP3447172A1 (en) | Insulated flat conductive wire having high aspect ratio, method for manufacturing same, and coil | |
JP6036205B2 (en) | Insulation coated aluminum conductor and method of manufacturing the same | |
JP5522117B2 (en) | Insulating coated aluminum conductor, insulating coating and method for forming the same | |
CN105981112A (en) | Stranded conductor and insulated wire | |
JP2013117052A (en) | Method for manufacturing coated conductive wire | |
JP2014116204A (en) | Insulated wire and method of producing the same | |
US2327256A (en) | Carbon-steel alternating-current conductor | |
KR20170072695A (en) | Method for the preparation of graphene composite conducting line | |
JP6153225B2 (en) | Insulated wire manufacturing method | |
JP2012190615A (en) | Aluminum coated thin steel wire for heat-resistant electric wire | |
JP2015230773A (en) | Insulated wire and method for producing the same | |
JP7301930B2 (en) | enamelled wire | |
JP7011773B2 (en) | Enamel wire and manufacturing method of enamel wire | |
JP2008276963A (en) | Insulated wire | |
JP2017079187A (en) | Colored insulating wire and method for producing the same | |
JP6708192B2 (en) | Insulated wire manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181225 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190625 |