JP4591242B2 - Vibration energy absorber - Google Patents

Vibration energy absorber Download PDF

Info

Publication number
JP4591242B2
JP4591242B2 JP2005198170A JP2005198170A JP4591242B2 JP 4591242 B2 JP4591242 B2 JP 4591242B2 JP 2005198170 A JP2005198170 A JP 2005198170A JP 2005198170 A JP2005198170 A JP 2005198170A JP 4591242 B2 JP4591242 B2 JP 4591242B2
Authority
JP
Japan
Prior art keywords
valve seat
chamber
valve
passage
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005198170A
Other languages
Japanese (ja)
Other versions
JP2007016875A (en
Inventor
郁夫 下田
修 河内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2005198170A priority Critical patent/JP4591242B2/en
Priority to TW095148041A priority patent/TW200827588A/en
Publication of JP2007016875A publication Critical patent/JP2007016875A/en
Application granted granted Critical
Publication of JP4591242B2 publication Critical patent/JP4591242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マンション等の集合住宅、事務所ビル、戸建住宅、橋梁等の構造物又はこの構造物を免震化した免震構造物に生じる振動を早期に減衰させるべくその振動エネルギを吸収する振動エネルギ吸収装置及び斯かる装置を備えた構造物に関する。   The present invention absorbs vibration energy in order to quickly attenuate vibrations generated in structures such as apartment buildings such as apartments, office buildings, detached houses, bridges, or seismic isolation structures obtained by isolating this structure. The present invention relates to a vibration energy absorbing device and a structure including such a device.

この種の振動エネルギ吸収装置(ダンパ)としては、粘性ダンパ、摩擦ダンパ、鉛ダンパ、鋼棒ダンパ等が知られており、斯かる振動エネルギ吸収装置は、免震構造物を初期位置に復帰させる、例えばばね装置と共に構造物に適用される。   As this type of vibration energy absorbing device (damper), there are known a viscous damper, a friction damper, a lead damper, a steel rod damper, etc., and such a vibration energy absorbing device returns the seismic isolation structure to the initial position. For example, it is applied to a structure together with a spring device.

特開平2003−287079号公報Japanese Patent Laid-Open No. 2003-287079 中田、家村、五十嵐、「実大連結構造物の擬似負剛性付加型セミアクティブ震動制御実験」、土木学会第56回年次学術講演会論文集、社団法人土木学会、平成13年10月、p162−163Nakata, Iemura, Igarashi, “Pseudo negative stiffness-added semi-active vibration control experiment of full-scale connected structure”, Proc. -163 家永、五十嵐、鈴木、「MRダンパーの疑似負剛性セミアクティブ制御への適用に関する実時間ハイブリッド実験」、日本地震工学会・大会−2003梗概集、p268−269Ionaga, Igarashi, Suzuki, “Real-time hybrid experiment on application of MR damper to quasi-negative stiffness semi-active control”, Japan Earthquake Engineering Society / Conference 2003 Summary, p268-269

ところで、ばね装置と共に粘性ダンパ、摩擦ダンパ等の振動エネルギ吸収装置を構造物、例えば免震構造物に適用すると、振動中、ばね装置の復元力に加えて振動エネルギ吸収装置の抵抗力が免震構造物に負荷されるために、免震構造物は、大きな力を受けることになる結果、振動エネルギ吸収装置の抵抗力とばね装置の復元力とを受ける部位の剛性を大きくせざるを得なくなる。   By the way, when a vibration energy absorbing device such as a viscous damper or a friction damper is applied to a structure such as a seismic isolation structure together with a spring device, the resistance force of the vibration energy absorbing device in addition to the restoring force of the spring device is isolated during vibration. Since the seismic isolation structure is subjected to a large force because it is loaded on the structure, the rigidity of the part that receives the resistance force of the vibration energy absorbing device and the restoring force of the spring device must be increased. .

一方、負の剛性を有した粘性ダンパが提案されているが、提案に係る粘性ダンパは、二つのシリンダをつなぐバイパス管にあるバルブの開度を外部指令により調節するものであるから、大きなスペースを占める虞がある上に,多くの場合には、バルブの開度調節及び外部指令等が電気的になされているために停電が生じると粘性ダンパは負の剛性をもって目的の動作を行わなくなる虞がある。   On the other hand, a viscous damper having negative rigidity has been proposed. However, the proposed viscous damper adjusts the opening degree of a valve in a bypass pipe connecting two cylinders by an external command. In many cases, when the power failure occurs due to the electrical adjustment of the valve opening and the external command, the viscous damper may not perform the intended operation with negative rigidity. There is.

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、抵抗力を受ける構造物又は抵抗力と復帰手段の復元力とを受ける免震構造物の部位の剛性を特に大きくしなくてもよい上に、停電が生じても目的の動作を行い得、しかも、それ程占有スペースを必要としないで小型に構成できる負の剛性を有する振動エネルギ吸収装置及びそれを備えた構造物を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to determine the rigidity of a structure that receives a resistance force or a part of a seismic isolation structure that receives a resistance force and a restoring force of a return means. A vibration energy absorbing device having negative rigidity that can perform a desired operation even if a power failure occurs and that can be configured in a small size without requiring an occupied space, and the vibration energy absorbing device are provided. To provide a structure.

本発明の振動エネルギ吸収装置は、液体を収容する収容体と、この収容体内を二室に区画すると共に収容体に対して可動な区画部材と、この区画部材に固着されていると共に収容体を貫通した振動伝達部材と、オリフィスを有すると共にこのオリフィスを介して収容体内の一方の室と他方の室とを連通する連通手段と、収容体内の一方の室に連通される第一のポート、収容体内の他方の室に連通される第二のポート、収容体内の一方の室に一方の一方向弁及びこの一方の一方向弁に並列に配された一方のオリフィスを介して連通される第三のポート並びに収容体内の他方の室に他方の一方向弁及びこの他方の一方向弁に並列に配された他方のオリフィスを介して連通される第四のポートを有した制御弁とを具備しており、制御弁は、収容体に対する区画部材の相対的な移動におけるその移動方向と移動位置とに基づく第三及び第四のポートに供給される流体圧によって第一及び第二のポートの連通を制御する軸方向に可動な弁体を有している。   The vibration energy absorbing device according to the present invention includes a container that contains a liquid, a compartment member that divides the container body into two chambers and that is movable with respect to the container, and is fixed to the compartment member and includes the container body. A vibration transmitting member that penetrates, a communication means that has an orifice and communicates the one chamber and the other chamber through the orifice, and a first port that communicates with the one chamber in the container. A second port that communicates with the other chamber in the body, a third port that communicates with one chamber within the containing body via one one-way valve and one orifice arranged in parallel with the one-way valve. And a control valve having a fourth port communicating with the other one-way valve in the other chamber of the container and the other orifice arranged in parallel with the other one-way valve. And the control valve An axially movable valve that controls the communication of the first and second ports by the fluid pressure supplied to the third and fourth ports based on the moving direction and the moving position of the relative movement of the partition members Have a body.

本発明の振動エネルギ吸収装置によれば、連通手段に加えて区画部材の変位に応じて弁体により第一及び第二のポートの連通が制御されるようになっているために、負剛性を現出することができる結果、当該振動エネルギ吸収装置を振動伝達部材を介して例えば免震構造物に用いる場合、抵抗力を受ける構造物又は抵抗力と復帰手段の復元力とを受ける免震構造物の部位の剛性を特に大きくしなくてもよい上に、停電が生じても目的の動作を行い得、しかも、それ程占有スペースを必要としなく小型に構成できる。   According to the vibration energy absorbing device of the present invention, since the communication of the first and second ports is controlled by the valve body according to the displacement of the partition member in addition to the communication means, the negative rigidity is reduced. As a result of being able to appear, when the vibration energy absorbing device is used for, for example, a seismic isolation structure via a vibration transmission member, a structure that receives a resistance force or a base isolation structure that receives a resistance force and a restoring force of a return means It is not necessary to increase the rigidity of the part of the object, and it is possible to perform a desired operation even when a power failure occurs. In addition, it can be configured in a small size without requiring an occupied space.

本発明では、制御弁は、第一のポートと第二のポートとに連通された連通路と、第三のポートに連通されていると共に軸方向において一方の方向に可動な一方の弁座部材により二室に区画された一方の受圧室と、第四のポートに連通されていると共に軸方向において他方の方向に可動な他方の弁座部材により二室に区画された他方の受圧室と、一方の弁座部材を軸方向において他方の方向に弾性的に付勢する一方の弾性手段と、他方の弁座部材を軸方向において一方の方向に弾性的に付勢する他方の弾性手段とを有していてもよく、この場合、弁体は、連通路に配されていると共に連通路を開閉する主制御弁体と、この主制御弁体に連結されていると共に一方の受圧室の一方の室の流体圧を受容するように一方の弁座部材の貫通孔において当該一方の弁座部材に着座された一方の制御弁体と、主制御弁体に連結されていると共に他方の受圧室の一方の室の流体圧を受容するように他方の弁座部材の貫通孔において当該他方の弁座部材に着座された他方の制御弁体とを具備しているとよい。   In the present invention, the control valve includes a communication passage communicated with the first port and the second port, and one valve seat member communicated with the third port and movable in one direction in the axial direction. One pressure receiving chamber divided into two chambers by the other, and the other pressure receiving chamber divided into two chambers by the other valve seat member communicated with the fourth port and movable in the other direction in the axial direction, One elastic means for elastically urging one valve seat member in the other direction in the axial direction, and another elastic means for elastically urging the other valve seat member in one direction in the axial direction In this case, the valve body is arranged in the communication path and opens and closes the communication path, and is connected to the main control valve body and one of the pressure receiving chambers. In the through hole of one of the valve seat members so as to receive the fluid pressure of the other chamber. One control valve body seated on one valve seat member, and a through hole of the other valve seat member connected to the main control valve body and receiving the fluid pressure of one chamber of the other pressure receiving chamber And the other control valve body seated on the other valve seat member.

本発明における制御弁は、第一から第四のポート、連通路及び両受圧室が設けられていると共に弁体、両弁座部材及び弾性手段を収容した弁ハウジングと、第一のポート側において弁ハウジングに固定されている一方の固定板と、第二のポート側において弁ハウジングに固定されている他方の固定板とを具備していてもよく、この場合、一方の弁座部材は、一方の受圧室を二室に区画すると共に一方の受圧室の二室に開口した貫通孔を有した一方の弁座本体と、一方の受圧室の二室のうちの他方の室の一定以上の縮小を阻止するように、一方の固定板と一方の弁座本体との間に配されていると共に弁座本体に一体的に設けられた一方の阻止部とを具備しており、他方の弁座部材は、他方の受圧室を二室に区画すると共に他方の受圧室の二室に開口した貫通孔を有した他方の弁座本体と、他方の受圧室の二室のうちの他方の室の一定以上の縮小を阻止するように、他方の固定板と他方の弁座本体との間に配されていると共に他方の弁座本体に一体的に設けられた他方の阻止部とを具備しており、一方の制御弁体は、一端では主制御弁体に固着されていると共に他端では一方の弁座本体の貫通孔の開口端において当該一方の弁座本体に着座しており、且つ一方の固定板を軸方向に摺動自在に貫通しており、他方の制御弁体は、一端では主制御弁体に固着されていると共に他端では他方の弁座本体の貫通孔の開口端において当該他方の弁座本体に着座しており、且つ他方の固定板を軸方向に摺動自在に貫通しているとよい。   The control valve according to the present invention includes a first to a fourth port, a communication path, both pressure receiving chambers and a valve housing that accommodates a valve body, both valve seat members and elastic means, and a first port side. One fixing plate fixed to the valve housing and the other fixing plate fixed to the valve housing on the second port side may be provided. In this case, one valve seat member The pressure receiving chamber is divided into two chambers, and one valve seat body having a through hole opened in two chambers of one pressure receiving chamber, and reduction of the other of the two chambers of one pressure receiving chamber to a certain degree or more The other valve seat is provided between the one fixed plate and the one valve seat body and one blocking portion provided integrally with the valve seat body. The member divides the other pressure receiving chamber into two chambers and is divided into two chambers of the other pressure receiving chamber. The other fixed seat and the other valve seat main body so as to prevent the other chamber seat body having the opened through-hole and the other of the two pressure receiving chambers from being reduced more than a certain amount. The other valve seat body is provided integrally with the other blocking portion, and one control valve body is fixed to the main control valve body at one end and the other At the end, it is seated on the one valve seat body at the opening end of the through hole of one valve seat body, and penetrates one fixing plate so as to be slidable in the axial direction, and the other control valve body is The one end is fixed to the main control valve body, and the other end is seated on the other valve seat body at the opening end of the through hole of the other valve seat body, and the other fixing plate is slid in the axial direction. It should be penetrating freely.

本発明において、一方の弾性手段は、一方の弁座本体と弁ハウジングとの間に配されていてもよく、他方の弾性手段は、他方の弁座本体と弁ハウジングとの間に配されていてもよく、一方の受圧室の二室は、一方の弁座部材又は一方の固定板に設けられた孔を介して相互に連通されていてもよく、他方の受圧室の二室は、他方の弁座部材又は他方の固定板に設けられた孔を介して相互に連通されていてもよく、連通路は、中央通路と、第一のポートに連通された一方の大径通路と、第二のポートに連通された他方の大径通路と、一端では中央通路に他端では一方の大径通路に夫々連通されていると共に中央通路から一方の大径通路に向かうに連れて徐々に拡径された一方の拡径通路と、一端では中央通路に他端では他方の大径通路に夫々連通されていると共に中央通路から他方の大径通路に向かうに連れて徐々に拡径された他方の拡径通路とを具備していてもよく、この場合、主制御弁体は、中央通路を介する一方の拡径通路と他方の拡径通路との連通を制御するように中央通路の径と実質的に同一外径を有しているとよい。   In the present invention, one elastic means may be disposed between one valve seat body and the valve housing, and the other elastic means is disposed between the other valve seat body and the valve housing. The two chambers of one pressure receiving chamber may be communicated with each other through a hole provided in one valve seat member or one fixing plate, and the two chambers of the other pressure receiving chamber may May be communicated with each other through a hole provided in the valve seat member or the other fixing plate, and the communication passage includes a central passage, one large-diameter passage communicated with the first port, and a first passage. The other large-diameter passage communicated with the second port and the central passage at one end and the one large-diameter passage at the other end and gradually expand from the central passage toward the one large-diameter passage. One diameter-expanded passage is communicated with the central passage at one end and the other large-diameter passage at the other end. And the other enlarged passage gradually increased in diameter from the central passage toward the other large-diameter passage. In this case, the main control valve body passes through the central passage. It is preferable that the outer diameter is substantially the same as the diameter of the central passage so as to control the communication between the one enlarged passage and the other enlarged passage.

本発明の好ましい一つの例では、一方の一方向弁は、収容体内の一方の室から第三のポートへの流体の流れを許容するようになっており、他方の一方向弁は、収容体内の他方の室から第四のポートへの流体の流れを許容するようになっている。また本発明では、収容体は、液体を収容する円筒シリンダを具備し、円筒シリンダは、円筒部と、円筒部の両端面を閉塞した閉塞部とを具備し、区画部材は、円筒シリンダの円筒部内に軸方向に可動に配されたピストンを具備し、振動伝達部材は、円筒シリンダの各閉塞部を移動自在に貫通していると共にピストンに固着されたピストンロッドを具備していてもよい。   In one preferred example of the invention, one one-way valve is adapted to allow fluid flow from one chamber in the containment to a third port, while the other one-way valve is provided in the containment. Fluid flow from the other chamber to the fourth port. In the present invention, the container includes a cylindrical cylinder that stores a liquid, the cylindrical cylinder includes a cylindrical portion and a closed portion that closes both end surfaces of the cylindrical portion, and the partition member is a cylinder of the cylindrical cylinder. The vibration transmitting member may include a piston rod fixed to the piston while movably penetrating each closed portion of the cylindrical cylinder.

本発明の構造物は、免震構造物と、免震構造物を初期位置に復帰させる復帰手段と、上記のいずれかの態様の振動エネルギ吸収装置とを備えており、この場合、振動伝達部材は、免震構造物の振動を区画部材に伝達するように免震構造物に連結されている。   The structure of the present invention includes a seismic isolation structure, return means for returning the seismic isolation structure to an initial position, and the vibration energy absorbing device according to any one of the above aspects. Is connected to the base isolation structure so as to transmit the vibration of the base isolation structure to the partition member.

また本発明の構造物において、復帰手段は、免震構造物と免震構造物が設置される地盤との間に介在された弾性装置を具備していてもよく、斯かる弾性装置は、積層ゴム支承及びコイルばねのうちの少なくとも一つを具備していてもよい。   In the structure of the present invention, the return means may include an elastic device interposed between the seismic isolation structure and the ground where the seismic isolation structure is installed. At least one of a rubber bearing and a coil spring may be provided.

本発明によれば、抵抗力を受ける構造物又は抵抗力と復帰手段の復元力とを受ける免震構造物の部位の剛性を特に大きくしなくてもよい上に、停電が生じても目的の動作を行い得、しかも、それ程占有スペースを必要としないで小型に構成できる負の剛性を有する振動エネルギ吸収装置及びそれを備えた構造物を提供することができる。   According to the present invention, it is not necessary to particularly increase the rigidity of the structure that receives the resistance force or the seismic isolation structure that receives the resistance force and the restoring force of the return means. It is possible to provide a vibration energy absorbing device having a negative rigidity that can be operated and that can be configured in a small size without requiring an occupied space, and a structure including the same.

次に本発明及びその実施の形態を、図に示す好ましい例に基づいて更に詳細に説明する。なお、本発明はこれら例に何等限定されないのである。   Next, the present invention and its embodiments will be described in more detail based on preferred examples shown in the drawings. The present invention is not limited to these examples.

図1において、本例の振動エネルギ吸収装置1は、オイル等の液体を収容する収容体2と、収容体2内を二室3及び4に区画すると共に収容体2に対してX方向(収容体2の軸方向)に可動な区画部材5と、区画部材5に固着されていると共に収容体2を貫通した振動伝達部材6と、流路抵抗可変のオリフィス7を有すると共にオリフィス7を介して収容体2内の室3と室4とを連通する連通手段8と、収容体2内の室3に配管9を介して連通されるポート10、収容体2内の室4に配管11を介して連通されるポート12、収容体2内の室3に一方向弁13及び一方向弁13に並列に配された流路抵抗可変のオリフィス14を介して連通されるポート15並びに収容体2内の室4に一方向弁16及び一方向弁16に並列に配された流路抵抗可変のオリフィス17を介して連通されるポート18を有した制御弁19とを具備している。   In FIG. 1, the vibration energy absorbing device 1 of the present example includes a container 2 that contains a liquid such as oil, and the container 2 is divided into two chambers 3 and 4 and is also accommodated in the X direction (accommodated with respect to the container 2. A partition member 5 movable in the axial direction of the body 2, a vibration transmission member 6 fixed to the partition member 5 and penetrating the housing body 2, and an orifice 7 having a variable flow path resistance. Communication means 8 for communicating the chamber 3 in the container 2 with the chamber 4, a port 10 communicating with the chamber 3 in the container 2 via the pipe 9, and a pipe 11 for connecting to the chamber 4 in the container 2 via the pipe 11. A port 12 communicated with each other, a port 15 communicated with a chamber 3 in the container 2 via a one-way valve 13 and an orifice 14 having a variable flow resistance arranged in parallel with the one-way valve 13, and the container 2 The one-way valve 16 and the channel resistance arranged in parallel with the one-way valve 16 in the chamber 4 And a control valve 19 having a port 18 which is communicated through the variable orifice 17.

収容体2は、液体Aを内部に収容する円筒シリンダ25を具備しており、円筒シリンダ25は、円筒部26と、円筒部26の両端面を閉塞した閉塞部27とを具備しており、区画部材5は、円筒シリンダ25の円筒部26内にX方向に可動に配されたピストン28を具備しており、振動伝達部材6は、円筒シリンダ25の各閉塞部27をX方向に移動自在に貫通していると共にピストン28に固着されたピストンロッド29と、ピストンロッド29の一端部を免震ビル等の免震構造物150(図11参照)に連結するための取付具30とを具備している。   The container 2 includes a cylindrical cylinder 25 that stores the liquid A therein, and the cylindrical cylinder 25 includes a cylindrical portion 26 and a closed portion 27 that closes both end surfaces of the cylindrical portion 26. The partition member 5 includes a piston 28 that is movably disposed in the X direction within the cylindrical portion 26 of the cylindrical cylinder 25, and the vibration transmitting member 6 is capable of moving each closing portion 27 of the cylindrical cylinder 25 in the X direction. A piston rod 29 fixed to the piston 28 and an attachment 30 for connecting one end of the piston rod 29 to a seismic isolation structure 150 (see FIG. 11) such as a seismic isolation building. is doing.

円筒部26は、室3に連通すると共に配管9の一端が接続されるポート35と、室4に連通すると共に配管11の一端が接続されるポート36とを具備している。   The cylindrical portion 26 includes a port 35 that communicates with the chamber 3 and is connected to one end of the pipe 9, and a port 36 that communicates with the chamber 4 and is connected to one end of the pipe 11.

連通手段8は、オリフィス7が途中に配設されていると共に一端がポート41に他端がポート42に連通された配管43を具備している。連通手段8としては、ポート41とポート42とをオリフィス7を介して連通する代わりに、ポート35とポート36とをオリフィス7を介して直接連通するように、オリフィス7が途中に配設された配管43の一端をポート35にその他端をポート36に直接取り付けてもよく、この場合には、ポート41とポート42とを設ける必要がない。オリフィス7は、配管43を流通する流体Aに調整された通路径に従う抵抗を与えるようになっている。   The communication means 8 includes a pipe 43 in which the orifice 7 is disposed in the middle and one end communicates with the port 41 and the other end communicates with the port 42. As the communication means 8, the orifice 7 is arranged in the middle so that the port 35 and the port 36 are directly communicated via the orifice 7 instead of communicating the port 41 and the port 42 via the orifice 7. One end of the pipe 43 may be directly attached to the port 35, and the other end may be directly attached to the port 36. In this case, it is not necessary to provide the port 41 and the port 42. The orifice 7 gives resistance according to the adjusted passage diameter to the fluid A flowing through the pipe 43.

一方向弁13は、収容体2内の室3からポート15への流体Aの流れを許容する一方その逆の流体Aの流れを禁止するように、一端がポート35に他端がポート15に連通されている配管45の途中に設けられており、一方向弁16は、収容体2内の室4からポート18への流体Aの流れを許容する一方その逆の流体Aの流れを禁止するように、一端がポート36に他端がポート18に連通されている配管46の途中に設けられている。   The one-way valve 13 has one end connected to the port 35 and the other end connected to the port 15 so as to allow the flow of the fluid A from the chamber 3 in the container 2 to the port 15 while prohibiting the reverse flow of the fluid A. The one-way valve 16 is provided in the middle of the pipe 45 that communicates, and allows the flow of the fluid A from the chamber 4 in the container 2 to the port 18 while prohibiting the flow of the fluid A in the opposite direction. Thus, one end is provided in the middle of the pipe 46 communicating with the port 36 and the other end with the port 18.

配管47の途中に設けられたオリフィス14は、配管47を介して一方向弁13に並列に配されており、配管47を流通する流体Aに調整された通路径に従う抵抗を与えるようになっており、配管48の途中に設けられたオリフィス17は、配管48を介して一方向弁16に並列に配されており、配管48を流通する流体Aに調整された通路径に従う抵抗を与えるようになっている。   The orifice 14 provided in the middle of the pipe 47 is arranged in parallel to the one-way valve 13 via the pipe 47, and gives resistance according to the adjusted passage diameter to the fluid A flowing through the pipe 47. The orifice 17 provided in the middle of the pipe 48 is arranged in parallel to the one-way valve 16 via the pipe 48 so that the fluid A flowing through the pipe 48 is given resistance according to the adjusted passage diameter. It has become.

制御弁19は、ポート10、12、15、18、41及び42に加えて、収容体2に対する区画部材5の相対的なX方向の移動におけるその移動方向と移動位置とに基づくポート15及び18に供給される流体圧によってポート10及び12の連通を制御するB方向(制御弁19の軸方向)に可動な弁体51と、ポート10とポート12とに連通された連通路52と、ポート15に連通されていると共にB方向に可動な弁座部材53により二室54及び55に区画された受圧室56と、ポート18に連通されていると共にB方向に可動な弁座部材57により二室58及び59に区画された受圧室60と、弁座部材53をB方向においてB1方向に弾性的に付勢するコイルばねからなる弾性手段61と、弁座部材57をB方向においてB1方向と反対の方向であるB2方向に弾性的に付勢するコイルばねからなる弾性手段62と、ポート10、12、15、18、41及び42、連通路52並びに受圧室56及び60が設けられていると共に弁体51、弁座部材53及び57並びに弾性手段61及び62を収容した弁ハウジング63と、ポート10側において弁ハウジング63に固定されていると共に二室54及び55を相互に連通する孔67が設けられた固定板64と、ポート12側において弁ハウジング63に固定されていると共に二室58及び59を相互に連通する孔68が設けられた固定板65とを具備している。   In addition to the ports 10, 12, 15, 18, 41 and 42, the control valve 19 has ports 15 and 18 based on the movement direction and the movement position in the relative movement of the partition member 5 with respect to the container 2 in the X direction. A valve body 51 movable in the direction B (the axial direction of the control valve 19) for controlling the communication between the ports 10 and 12 by the fluid pressure supplied to the port 10, the communication passage 52 connected to the port 10 and the port 12, and the port 15 and a pressure receiving chamber 56 partitioned into two chambers 54 and 55 by a valve seat member 53 movable in the B direction, and a valve seat member 57 communicated with the port 18 and movable in the B direction. A pressure receiving chamber 60 partitioned into chambers 58 and 59; elastic means 61 comprising a coil spring that elastically biases the valve seat member 53 in the B1 direction in the B direction; and the valve seat member 57 in the B1 direction. There are provided elastic means 62 formed of a coil spring that is elastically biased in the opposite direction B2, the ports 10, 12, 15, 18, 41 and 42, the communication passage 52, and the pressure receiving chambers 56 and 60. A valve housing 63 that houses the valve body 51, valve seat members 53 and 57, and elastic means 61 and 62, and a hole 67 that is fixed to the valve housing 63 on the port 10 side and communicates the two chambers 54 and 55 with each other. And a fixing plate 65 fixed to the valve housing 63 on the port 12 side and provided with a hole 68 that allows the two chambers 58 and 59 to communicate with each other.

弁体51は、連通路52に配されていると共に連通路52を開閉する円板状の主制御弁体75と、主制御弁体75に連結されていると共に受圧室56の室54の流体圧を受容するように弁座部材53の貫通孔76において当該弁座部材53に截頭円錐状の端部で着座された円柱状又はロッド状の制御弁体77と、主制御弁体75に連結されていると共に受圧室60の室58の流体圧を受容するように弁座部材57の貫通孔78において当該弁座部材57に截頭円錐状の先端部で着座された円柱状又はロッド状の制御弁体79とを具備している。   The valve body 51 is arranged in the communication passage 52 and opens and closes the communication passage 52. The valve body 51 is connected to the main control valve body 75 and fluid in the chamber 54 of the pressure receiving chamber 56. A cylindrical or rod-shaped control valve body 77 seated on the valve seat member 53 at a frustoconical end in the through hole 76 of the valve seat member 53 so as to receive pressure, and a main control valve body 75 A cylindrical or rod-like shape that is connected and seated on the valve seat member 57 at the tip of the truncated cone shape in the through hole 78 of the valve seat member 57 so as to receive the fluid pressure in the chamber 58 of the pressure receiving chamber 60. The control valve body 79 is provided.

主制御弁体75は、制御弁体77及び79の外径よりも大きな外径を有しており、通常、連通路52の中央部に位置している。   The main control valve body 75 has an outer diameter larger than the outer diameters of the control valve bodies 77 and 79 and is usually located at the center of the communication path 52.

弁座部材53は、受圧室56を室54及び55に区画すると共に受圧室56の室54及び55に開口した貫通孔76を有した弁座本体81と、室55の一定以上の縮小を阻止するように、固定板64と弁座本体81との間に配されていると共に一端では固定板64に当接し他端で弁座本体81に一体的に設けられた円筒状の阻止部82とを具備しており、阻止部82はその内外を連通する複数の貫通孔83を有している。   The valve seat member 53 divides the pressure receiving chamber 56 into chambers 54 and 55, and has a valve seat body 81 having a through hole 76 opened in the chambers 54 and 55 of the pressure receiving chamber 56, and prevents the chamber 55 from being reduced more than a certain amount. A cylindrical blocking portion 82 disposed between the fixed plate 64 and the valve seat main body 81 and abutting the fixed plate 64 at one end and integrally provided with the valve seat main body 81 at the other end. The blocking portion 82 has a plurality of through holes 83 that communicate with the inside and outside of the blocking portion 82.

弁座部材57は、受圧室60を室58及び59に区画すると共に受圧室60の室58及び59に開口した貫通孔78を有した弁座本体85と、室59の一定以上の縮小を阻止するように、固定板65と弁座本体85との間に配されていると共に一端では固定板65に当接し他端で弁座本体85に一体的に設けられた円筒状の阻止部86とを具備しており、阻止部86はその内外を連通する複数の貫通孔87を有している。   The valve seat member 57 divides the pressure receiving chamber 60 into chambers 58 and 59, and has a valve seat body 85 having a through hole 78 opened in the chambers 58 and 59 of the pressure receiving chamber 60, and prevents the chamber 59 from being reduced beyond a certain level. A cylindrical blocking portion 86 disposed between the fixed plate 65 and the valve seat main body 85 and abutting the fixed plate 65 at one end and integrally provided with the valve seat main body 85 at the other end. The blocking portion 86 has a plurality of through holes 87 communicating between the inside and the outside.

制御弁体77は、一端では主制御弁体75に固着されていると共に截頭円錐状の他端では弁座本体81の貫通孔76の開口端において当該弁座本体81に着座しており、且つ固定板64をB方向に摺動自在に貫通しており、制御弁体79は、一端では主制御弁体75に固着されていると共に截頭円錐状の他端では弁座本体85の貫通孔78の開口端において当該弁座本体85に着座しており、且つ固定板65をB方向に摺動自在に貫通している。   The control valve body 77 is fixed to the main control valve body 75 at one end and is seated on the valve seat body 81 at the open end of the through hole 76 of the valve seat body 81 at the other end of the truncated cone shape. The control valve body 79 is fixed to the main control valve body 75 at one end and penetrates the valve seat body 85 at the other end of the truncated cone shape. The valve 78 is seated on the valve seat body 85 at the opening end of the hole 78 and penetrates the fixing plate 65 slidably in the B direction.

連通路52は、中央通路91と、ポート10及び41に連通された大径通路92と、ポート12及び42に連通された大径通路93と、一端では中央通路91に他端では大径通路92に夫々連通されていると共に中央通路91から大径通路92に向かうに連れて徐々に拡径された拡径通路94と、一端では中央通路91に他端では大径通路93に夫々連通されていると共に中央通路91から大径通路93に向かうに連れて徐々に拡径された拡径通路95とを具備しており、主制御弁体75は、中央通路91を介する拡径通路94と拡径通路95との連通を制御するように中央通路91の径と実質的に同一外径を有している。   The communication passage 52 includes a central passage 91, a large diameter passage 92 communicated with the ports 10 and 41, a large diameter passage 93 communicated with the ports 12 and 42, a central passage 91 at one end, and a large diameter passage at the other end. 92, and a diameter-enlarging passage 94 that gradually increases in diameter from the central passage 91 toward the large-diameter passage 92, and a central passage 91 at one end and a large-diameter passage 93 at the other end. And a diameter-enlarging passage 95 that gradually increases in diameter from the central passage 91 toward the large-diameter passage 93, and the main control valve body 75 includes an enlarged-diameter passage 94 via the central passage 91. The outer diameter of the central passage 91 is substantially the same as that of the central passage 91 so as to control the communication with the enlarged diameter passage 95.

弾性手段61は、その一端で弁座本体81の突起96により、その他端で弁ハウジング63の端面壁部97の凹所98で夫々位置決めされて、弁座本体81と弁ハウジング63の端面壁部97との間に配されており、弾性手段62は、その一端で弁座本体85の突起99により、その他端で弁ハウジング63の端面壁部100の凹所101で夫々位置決めされて、弁座本体85と弁ハウジング63の端面壁部100との間に配されている。   The elastic means 61 is positioned at one end thereof by a projection 96 of the valve seat body 81 and at the other end thereof at a recess 98 of the end face wall portion 97 of the valve housing 63, so that the end face wall portions of the valve seat body 81 and the valve housing 63 are positioned. The elastic means 62 is positioned at one end thereof by the protrusion 99 of the valve seat body 85 and at the other end thereof by the recess 101 of the end face wall portion 100 of the valve housing 63, respectively. It is arranged between the main body 85 and the end face wall portion 100 of the valve housing 63.

弁ハウジング63は、連通路52並びにポート10、12、41及び42を有した中央部111と、中央部111の一方の端面にねじ112により固着されていると共に受圧室56、ポート15及び端面壁部97を有した蓋部113と、中央部111の他方の端面にねじ114により固着されていると共に受圧室60、ポート18及び端面壁部100を有した蓋部115とを具備して三分割体からなる。   The valve housing 63 includes a central portion 111 having the communication passage 52 and the ports 10, 12, 41, and 42. The valve housing 63 is fixed to one end surface of the central portion 111 with a screw 112. A lid portion 113 having a portion 97, a lid portion 115 having a pressure receiving chamber 60, a port 18, and an end surface wall portion 100 and being fixed to the other end surface of the central portion 111 by a screw 114. Consists of the body.

振動エネルギ吸収装置1において、各配管、各ポート、連通路52、受圧室56及び60には収容体2に収容された液体Aと同一の液体Aが充填されている。   In the vibration energy absorbing device 1, each pipe, each port, the communication path 52, the pressure receiving chambers 56 and 60 are filled with the same liquid A as the liquid A stored in the container 2.

以上の振動エネルギ吸収装置1は、図11に示すような構造物151において、基礎を含む地盤152に対して水平方向Hに可動となるように転動自在なころ153を介して地盤152上に設置された免震構造物150側に振動伝達部材6が取付具30を介して連結される一方、収容体2が地盤151側に固定されて使用される。免震構造物150を初期位置に復帰させる復帰手段は、免震構造物150と免震構造物150が設置される地盤152との間に介在されたコイルばね154からなる弾性装置を具備しており、弾性係数Kを有したコイルばね154は、地震による免震構造物150の水平方向Hの振動において伸縮し、地震が収まると免震構造物150を振動前の初期位置にその復元力(弾性力)により復帰させるようになっている。取付具30を介する振動伝達部材6の免震構造物150側への連結は、免震構造物150に振動が生じていなくコイルばね154により免震構造物150が初期位置に復帰されて静止されている状態で、図1に示すようにピストン28がX方向において円筒部26の略中央に位置するようになされる。   The above-described vibration energy absorbing device 1 has a structure 151 as shown in FIG. 11 on the ground 152 via a roller 153 that can roll in a horizontal direction H with respect to the ground 152 including the foundation. While the vibration transmission member 6 is connected to the installed seismic isolation structure 150 side via the fixture 30, the container 2 is used while being fixed to the ground 151 side. The return means for returning the seismic isolation structure 150 to the initial position includes an elastic device including a coil spring 154 interposed between the base isolation structure 150 and the ground 152 where the seismic isolation structure 150 is installed. The coil spring 154 having the elastic modulus K expands and contracts in the vibration of the seismic isolation structure 150 in the horizontal direction H due to the earthquake, and when the earthquake stops, the base isolation structure 150 is restored to its initial position before the vibration ( It is made to return by elastic force. When the vibration transmitting member 6 is connected to the seismic isolation structure 150 side via the fixture 30, no vibration is generated in the seismic isolation structure 150 and the seismic isolation structure 150 is returned to the initial position by the coil spring 154 and is stopped. In this state, the piston 28 is positioned substantially at the center of the cylindrical portion 26 in the X direction as shown in FIG.

この状態で、免震構造物150が地震により水平方向Hに振動されてピストンロッド29を介してピストン28が最初に図2に示すようにX方向においてX1方向に移動されると、室4の液体Aが増圧される一方、室3の液体Aが減圧される結果、室4の液体Aがオリフィス7を介して室3側に流動すると共に、室4の液体Aの増圧が主として一方向弁16を介して室58に伝達されて室58の液体Aが同じく増圧される一方、室3の液体Aの減圧がオリフィス14を介して室54に伝達されて室54の液体Aが同じく減圧される。ピストン28の最初のX1方向の移動においてその最大変位位置(D=+Max)の近傍までピストン28が移動されても、中央通路91を開通させる程度までは主制御弁体75がB2方向に移動されず、したがって、振動エネルギ吸収装置1は、円筒部26の略中央位置(D=0)からX1方向のピストン28の最大変位位置(D=+Max)の近傍までのピストンロッド29のX1方向の移動では、オリフィス7に基づく図10の曲線121で示す反力(抵抗)Rをピストンロッド29に与えることになる。   In this state, when the seismic isolation structure 150 is vibrated in the horizontal direction H by the earthquake and the piston 28 is first moved in the X direction in the X direction as shown in FIG. While the liquid A is increased in pressure, the liquid A in the chamber 3 is depressurized. As a result, the liquid A in the chamber 4 flows toward the chamber 3 through the orifice 7 and the pressure increase in the liquid A in the chamber 4 is mainly one. The liquid A in the chamber 58 is also increased in pressure by being transmitted to the chamber 58 through the directional valve 16, while the reduced pressure of the liquid A in the chamber 3 is transmitted to the chamber 54 through the orifice 14 and the liquid A in the chamber 54 is Similarly, the pressure is reduced. Even if the piston 28 is moved to the vicinity of the maximum displacement position (D = + Max) in the first movement of the piston 28 in the X1 direction, the main control valve body 75 is moved in the B2 direction until the central passage 91 is opened. Accordingly, the vibration energy absorbing device 1 moves the piston rod 29 in the X1 direction from the substantially central position (D = 0) of the cylindrical portion 26 to the vicinity of the maximum displacement position (D = + Max) of the piston 28 in the X1 direction. Then, the reaction force (resistance) R indicated by the curve 121 in FIG. 10 based on the orifice 7 is applied to the piston rod 29.

更に、X1方向の最大変位位置(D=+Max)の近傍から最大変位位置(D=+Max)までピストン28が移動されると、室58の液体Aの増圧と室54の液体Aの減圧とで、弁体51及び弁座部材53が弾性手段62の伸長及び弾性手段61の縮小の生起と共にB2方向に移動されて図3及び図4に示すように制御弁体79が弁座本体85から離れると共に主制御弁体75が中央通路91から外れて拡径通路94を介して大径通路92側に位置し、而して、中央通路91が開通されて中央通路91、拡径通路94及び95を介する大径通路92と大径通路93との連通がなされ、室4の液体Aの室3側への流動がオリフィス7に代わって中央通路91を介してなされるようになる結果、振動エネルギ吸収装置1は、ピストン28のX1方向の最大変位位置(D=+Max)では、略零の反力Rをピストンロッド29に与えることになる。弁座部材53のB2方向への移動においては、大径通路92から孔67を介して室55に液体Aが導入される結果、室55が負圧になることがない。   Further, when the piston 28 is moved from the vicinity of the maximum displacement position (D = + Max) in the X1 direction to the maximum displacement position (D = + Max), the pressure of the liquid A in the chamber 58 is increased and the pressure of the liquid A in the chamber 54 is decreased. Then, the valve body 51 and the valve seat member 53 are moved in the B2 direction together with the expansion of the elastic means 62 and the contraction of the elastic means 61, and the control valve body 79 is moved from the valve seat body 85 as shown in FIGS. The main control valve body 75 moves away from the central passage 91 and is positioned on the large-diameter passage 92 side through the enlarged-diameter passage 94, and the central passage 91 is opened to open the central passage 91, the enlarged-diameter passage 94, and the like. As a result, the large-diameter passage 92 and the large-diameter passage 93 communicate with each other through 95, and the flow of the liquid A in the chamber 4 toward the chamber 3 is performed via the central passage 91 instead of the orifice 7. The energy absorbing device 1 is the X1 of the piston 28. In the maximum displacement position of the direction (D = + Max), it will give the reaction force R of approximately zero to the piston rod 29. In the movement of the valve seat member 53 in the B2 direction, the liquid A is introduced into the chamber 55 from the large diameter passage 92 through the hole 67, so that the chamber 55 does not become negative pressure.

X1方向の最大変位位置(D=+Max)までピストン28が移動された後に、ピストン28がX方向においてX1方向と反対の方向であるX2方向に移動され始めると、今度は、室3の液体Aが増圧される一方、室4の液体Aが減圧される結果、主として一方向弁13を介する室54の液体Aの増圧とオリフィス17を介する室58の液体Aの減圧とにより、弁体51及び弁座部材57がB2方向と反対の方向であるB1方向に移動されて図5に示すように主制御弁体75が中央通路91に再び位置し、中央通路91が閉鎖されて中央通路91、拡径通路94及び95を介する大径通路92と大径通路93との連通が阻止なされ、室3の液体Aの室4側への流動が中央通路91に代わって再びオリフィス7を介してなされる結果、振動エネルギ吸収装置1は、ピストン28のX1方向の最大変位位置(D=+Max)からX2方向の移動では、オリフィス7に基づく図10の曲線122で示す反力Rをピストンロッド29に与えることになる。弁座部材53のB1方向への移動においては、室55から孔67を介して大径通路92に液体Aが導出される。   After the piston 28 is moved to the maximum displacement position (D = + Max) in the X1 direction, when the piston 28 starts to move in the X2 direction, which is the opposite direction to the X1 direction in the X direction, this time, the liquid A in the chamber 3 As a result, the pressure of the liquid A in the chamber 54 via the one-way valve 13 and the pressure reduction of the liquid A in the chamber 58 via the orifice 17 are mainly reduced. 51 and the valve seat member 57 are moved in the direction B1, which is the direction opposite to the direction B2, and the main control valve body 75 is positioned again in the central passage 91 as shown in FIG. 91, the communication between the large-diameter passage 92 and the large-diameter passage 93 through the enlarged-diameter passages 94 and 95 is blocked, and the flow of the liquid A in the chamber 3 toward the chamber 4 is again performed through the orifice 7 instead of the central passage 91. As a result, vibration energy When the piston 28 moves in the X2 direction from the maximum displacement position (D = + Max) in the X1 direction of the piston 28, the reaction force R indicated by the curve 122 in FIG. . In the movement of the valve seat member 53 in the B1 direction, the liquid A is led from the chamber 55 to the large diameter passage 92 through the hole 67.

ピストン28のX1方向の最大変位位置(D=+Max)からピストン28のX2方向の移動において円筒部26の略中央位置(D=0)の近傍までピストン28が移動されても、図5に示すように中央通路91を開通させる程度までは主制御弁体75がB1方向に移動されず、したがって、振動エネルギ吸収装置1は、X1方向の最大変位位置(D=+Max)から円筒部26の略中央位置(D=0)の近傍までのピストンロッド29のX2方向の移動では、オリフィス7に基づく図10の曲線122で示す反力(抵抗)Rをピストンロッド29に与えることになる。   Even if the piston 28 is moved from the maximum displacement position (D = + Max) of the piston 28 in the X1 direction to the vicinity of the substantially central position (D = 0) of the cylindrical portion 26 in the movement of the piston 28 in the X2 direction, as shown in FIG. Thus, the main control valve body 75 is not moved in the B1 direction until the central passage 91 is opened. Therefore, the vibration energy absorbing device 1 is substantially the same as the cylindrical portion 26 from the maximum displacement position (D = + Max) in the X1 direction. When the piston rod 29 moves in the X2 direction to the vicinity of the central position (D = 0), the reaction force (resistance) R indicated by the curve 122 of FIG.

ピストン28が円筒部26の略中央位置(D=0)から更にX2方向に継続して移動されると、室54の液体Aの増圧と室58の液体Aの減圧とにより弁体51及び弁座部材57が弾性手段61の伸長及び弾性手段62の縮小の生起と共にB1方向に大きく移動されて図6及び図7に示すように制御弁体77が弁座本体81から離れると共に主制御弁体75が中央通路91から外れて拡径通路95を介して大径通路93側に位置し、中央通路91が開通されて中央通路91、拡径通路94及び95を介する大径通路92と大径通路93との連通がなされ、室3の液体Aの室4側への流動がオリフィス7に代わって中央通路91を介してなされる結果、振動エネルギ吸収装置1は、ピストン28のX2方向の略中央位置(D=0)からX2方向の移動では、中央通路91に基づく図10の直線123で示す略零の反力Rをピストンロッド29に与えることになる。弁座部材57のB1方向への移動においては、大径通路93から孔68を介して室59に液体Aが導入される結果、室59が負圧になることがない。   When the piston 28 continues to move further in the X2 direction from the substantially central position (D = 0) of the cylindrical portion 26, the valve body 51 and the pressure are increased by increasing the pressure of the liquid A in the chamber 54 and decreasing the pressure of the liquid A in the chamber 58. The valve seat member 57 is largely moved in the B1 direction along with the expansion of the elastic means 61 and the contraction of the elastic means 62, so that the control valve body 77 moves away from the valve seat body 81 and the main control valve as shown in FIGS. The body 75 deviates from the central passage 91 and is positioned on the large-diameter passage 93 side through the enlarged-diameter passage 95. As a result of the communication with the diameter passage 93 and the flow of the liquid A in the chamber 3 toward the chamber 4 through the central passage 91 instead of the orifice 7, the vibration energy absorbing device 1 can move the piston 28 in the X2 direction. X2 direction from the approximate center position (D = 0) The movement will give a reaction force R of substantially zero as indicated by the straight line 123 of FIG. 10 according to the central passage 91 in the piston rod 29. In the movement of the valve seat member 57 in the B1 direction, the liquid A is introduced into the chamber 59 from the large diameter passage 93 through the hole 68, so that the chamber 59 does not become negative pressure.

図8に示すように円筒部26の略中央位置(D=0)からX2方向の移動でピストン28がX2方向の最大変位位置(D=−Max)に到達後、最大変位位置(D=−Max)から再びX1方向に移動され始めると、室4の液体Aが増圧される一方、室3の液体Aが減圧される結果、主として一方向弁16を介する室58の液体Aの増圧とオリフィス14を介する室54の液体Aの減圧とにより、弁体51及び弁座部材57がB2方向に移動されて図1及び図8に示すように主制御弁体75が中央通路91に再び位置し、中央通路91が閉鎖されて中央通路91、拡径通路94及び95を介する大径通路92と大径通路93との連通が阻止なされ、室4の液体Aの室3側への流動が中央通路91に代わって再びオリフィス7を介してなされる結果、振動エネルギ吸収装置1は、ピストン28のX2方向の最大変位位置(D=−Max)からX1方向の移動では、オリフィス7に基づく図10の曲線124で示す反力Rをピストンロッド29に与えることになる。弁座部材57のB2方向への移動においては、室59から孔68を介して大径通路93に液体Aが導出される。   As shown in FIG. 8, after the piston 28 reaches the maximum displacement position (D = −Max) in the X2 direction by moving in the X2 direction from the substantially central position (D = 0) of the cylindrical portion 26, the maximum displacement position (D = −). When the movement in the X1 direction starts again from Max), the pressure of the liquid A in the chamber 4 is increased, while the liquid A in the chamber 3 is depressurized. As a result, the pressure increase of the liquid A in the chamber 58 mainly via the one-way valve 16 And the pressure reduction of the liquid A in the chamber 54 via the orifice 14 causes the valve body 51 and the valve seat member 57 to move in the B2 direction, and the main control valve body 75 is returned to the central passage 91 again as shown in FIGS. The central passage 91 is closed and the communication between the large-diameter passage 92 and the large-diameter passage 93 via the central passage 91 and the enlarged-diameter passages 94 and 95 is blocked, and the flow of the liquid A in the chamber 4 toward the chamber 3 is performed. Is made via the orifice 7 again instead of the central passage 91. As a result, when the vibration energy absorbing device 1 moves in the X1 direction from the maximum displacement position (D = −Max) of the piston 28 in the X2 direction, the reaction force R indicated by the curve 124 in FIG. Will give. In the movement of the valve seat member 57 in the B2 direction, the liquid A is led from the chamber 59 through the hole 68 to the large diameter passage 93.

ピストン28が円筒部26の略中央位置(D=0)から更にX1方向に継続して移動されると、室58の液体Aの増圧と室54の液体Aの減圧とにより弁体51及び弁座部材53が前記とは逆に弾性手段61の縮小及び弾性手段62の伸長の生起と共にB2方向に大きく再び移動されて図4及び図9に示すように制御弁体79が弁座本体85から離れると共に主制御弁体75が中央通路91から外れて拡径通路94を介して大径通路92側に位置し、中央通路91が開通されて中央通路91、拡径通路94及び95を介する大径通路92と大径通路93との連通がなされ、室4の液体Aの室3側への流動がオリフィス7に代わって中央通路91を介してなされる結果、振動エネルギ吸収装置1は、ピストン28の略中央位置(D=0)からX1方向の移動では、中央通路91に基づく図10の直線125で示す略零の反力Rをピストンロッド29に与えることになる。   When the piston 28 is continuously moved in the X1 direction from the substantially central position (D = 0) of the cylindrical portion 26, the valve body 51 and the pressure increase of the liquid A in the chamber 58 and the pressure reduction of the liquid A in the chamber 54 are performed. Contrary to the above, the valve seat member 53 is largely moved again in the B2 direction with the contraction of the elastic means 61 and the expansion of the elastic means 62, and the control valve body 79 is moved to the valve seat body 85 as shown in FIGS. The main control valve body 75 is separated from the central passage 91 and is positioned on the large diameter passage 92 side via the enlarged diameter passage 94, and the central passage 91 is opened to pass through the central passage 91 and the enlarged diameter passages 94 and 95. As a result of communication between the large diameter passage 92 and the large diameter passage 93 and the flow of the liquid A in the chamber 4 toward the chamber 3 through the central passage 91 instead of the orifice 7, the vibration energy absorbing device 1 From the approximate center position (D = 0) of the piston 28 to X The direction of movement of, will provide a reaction force R of substantially zero as indicated by the straight line 125 of FIG. 10 according to the central passage 91 in the piston rod 29.

X1方向の最大変位位置(D=+Max)まで再びピストン28が移動された以後は、ピストン28がX2及びX1方向に振動する限りにおいて上記の動作を繰り返して、振動エネルギ吸収装置1は、図10に示す曲線122、直線123、曲線124及び直線125で示す減衰ループからなる反力Rをピストンロッド29に与えることになる。そして振動エネルギ吸収装置1では、免震構造物150の地震による水平方向Hの振動の振幅及び速度の減少と共に曲線122、直線123、曲線124及び直線125で示される減衰ループが小さくなって、その減衰ループで示される減衰を免震構造物150の地震による水平方向Hの振動に対して与えることになり、免震構造物150の振動が収まると、コイルばね154の復元力によって免震構造物150は初期位置に配される。   After the piston 28 is moved again to the maximum displacement position (D = + Max) in the X1 direction, the above operation is repeated as long as the piston 28 vibrates in the X2 and X1 directions. The reaction force R including the damping loop indicated by the curve 122, the straight line 123, the curved line 124, and the straight line 125 shown in FIG. In the vibration energy absorbing device 1, the attenuation loop indicated by the curve 122, the straight line 123, the curved line 124, and the straight line 125 is reduced as the amplitude and speed of the vibration in the horizontal direction H due to the earthquake of the seismic isolation structure 150 are reduced. The damping indicated by the damping loop is applied to the vibration in the horizontal direction H caused by the earthquake of the seismic isolation structure 150. When the vibration of the seismic isolation structure 150 is settled, the seismic isolation structure is restored by the restoring force of the coil spring 154. 150 is arranged at the initial position.

ところで、免震構造物150の振動中において免震構造物150には、ピストン28のX方向の各位置Dに対して図10に示す復元力直線130で表されるようなコイルばね154の復元力Rと振動エネルギ吸収装置1の反力Rとが負荷されることになるのであるが、振動エネルギ吸収装置1が免震構造物150の位置Dの変位に対して所謂負の剛性を有したものとなるために、免震構造物150に負荷される振動エネルギ吸収装置1の反力Rとコイルばねの復元力Rとの合力が比較的小さくなり、これら合力を受ける免震構造物150の剛性を特に大きくしなくてもよくなる。   By the way, during the vibration of the base isolation structure 150, the base isolation structure 150 has a restoration of the coil spring 154 as represented by the restoring force straight line 130 shown in FIG. 10 for each position D in the X direction of the piston 28. The force R and the reaction force R of the vibration energy absorbing device 1 are loaded, but the vibration energy absorbing device 1 has a so-called negative rigidity with respect to the displacement of the position D of the base isolation structure 150. Therefore, the resultant force of the reaction force R of the vibration energy absorbing device 1 loaded on the seismic isolation structure 150 and the restoring force R of the coil spring becomes relatively small, and the seismic isolation structure 150 that receives these resultant forces becomes relatively small. It is not necessary to increase the rigidity.

加えて、振動エネルギ吸収装置1では、収容体2に対する区画部材5の相対的なX方向の移動におけるその移動方向と移動位置とに基づくポート15及び18に供給される流体圧によってポート10及び12の連通を制御するB方向に可動な弁体51を有した制御弁19を用いているために、停電が生じても目的の動作を行い得、しかも、それ程占有スペースを必要としないで負の剛性をもって小型に構成できる。   In addition, in the vibration energy absorbing device 1, the ports 10 and 12 are supplied by the fluid pressure supplied to the ports 15 and 18 based on the movement direction and the movement position of the partition member 5 relative to the container 2 in the movement in the X direction. Since the control valve 19 having the valve body 51 movable in the B direction for controlling the communication of the valve is used, the target operation can be performed even if a power failure occurs, and the negative space is not required so much. It can be made compact with rigidity.

上記は、ころ153によって免震化された免震構造物150の例であるが、これに代えて、滑り部材等を介して免震構造物150を地盤152に対して水平方向Hに可動となるように地盤152上に設置してもよく、更には、例えば積層ゴム支承でもって免震化された免震構造物でもよく、この場合には、コイルばね154を省いて、弾性装置としての積層ゴム支承に復帰機能を担わせてもよく、更には、構造物としては免震化されていない構造物であってもよく、この場合には、復帰手段を特に構造物とは別体に設けないで構造物自体に復帰機能を備えさせてもよい。また、オリフィス7、14及び17の流路抵抗を調節して免震構造物又は免震化されていない構造物に図10の曲線131、直線123、曲線132及び直線125又は曲線133、直線123、曲線134及び直線125で表されるような最適な減衰ループが得られるようにしてもよい。なお、図10に示す曲線は、説明のための原理的な曲線であって、実際には曲線122と直線123とは、原点(=0)を通ることなしに結ばれることになり、曲線124と直線125とについても同様である。   The above is an example of the seismic isolation structure 150 that has been seismically isolated by the rollers 153. Instead, the seismic isolation structure 150 is movable in the horizontal direction H with respect to the ground 152 via a sliding member or the like. It may be installed on the ground 152 so as to be, and further, for example, a seismic isolation structure which is seismically isolated with a laminated rubber bearing may be used. In this case, the coil spring 154 is omitted and an elastic device is provided. The laminated rubber support may have a return function, and the structure may be a structure that is not seismically isolated. In this case, the return means is separate from the structure. The structure itself may be provided with a return function without being provided. Further, the flow path resistance of the orifices 7, 14 and 17 is adjusted so that the seismic isolation structure or the structure which is not seismically isolated is added to the curve 131, the straight line 123, the curved line 132 and the straight line 125 or the curved line 133 and the straight line 123 of FIG. The optimum attenuation loop represented by the curve 134 and the straight line 125 may be obtained. The curve shown in FIG. 10 is a theoretical curve for explanation, and in reality, the curve 122 and the straight line 123 are connected without passing through the origin (= 0), and the curve 124 is shown. The same applies to the straight line 125 and the straight line 125.

なお、二室54及び55を相互に連通する孔67を固定板64に、二室58及び59を相互に連通する孔68を固定板65に夫々設ける代わりに、孔67を弁座本体81に、孔68を弁座本体85に夫々設けてもよい。   Instead of providing a hole 67 for communicating the two chambers 54 and 55 with the fixing plate 64 and a hole 68 for communicating the two chambers 58 and 59 with each other on the fixing plate 65, the hole 67 is formed in the valve seat body 81. The holes 68 may be provided in the valve seat body 85, respectively.

本発明の実施の形態の好ましい一例の断面説明図である。It is sectional explanatory drawing of a preferable example of embodiment of this invention. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例を免震構造物に用いた例の説明図である。It is explanatory drawing of the example which used the example shown in FIG. 1 for a seismic isolation structure.

符号の説明Explanation of symbols

1 振動エネルギ吸収装置
2 収容体
3、4 室
5 区画部材
6 振動伝達部材
7、14、17 オリフィス
8 連通手段
10、12、15、18 ポート
13、16 一方向弁
19 制御弁
DESCRIPTION OF SYMBOLS 1 Vibration energy absorption apparatus 2 Container 3, 4 Chamber 5 Compartment member 6 Vibration transmission member 7, 14, 17 Orifice 8 Communication means 10, 12, 15, 18 Port 13, 16 One-way valve 19 Control valve

Claims (10)

液体を収容する収容体と、この収容体内を二室に区画すると共に収容体に対して可動な区画部材と、この区画部材に固着されていると共に収容体を貫通した振動伝達部材と、オリフィスを有すると共にこのオリフィスを介して収容体内の一方の室と他方の室とを連通する連通手段と、収容体内の一方の室に連通される第一のポート、収容体内の他方の室に連通される第二のポート、収容体内の一方の室に一方の一方向弁及びこの一方の一方向弁に並列に配された一方のオリフィスを介して連通される第三のポート並びに収容体内の他方の室に他方の一方向弁及びこの他方の一方向弁に並列に配された他方のオリフィスを介して連通される第四のポートを有した制御弁とを具備しており、制御弁は、収容体に対する区画部材の相対的な移動におけるその移動方向と移動位置とに基づく第三及び第四のポートに供給される流体圧によって第一及び第二のポートの連通を制御する軸方向に可動な弁体と、第一のポートと第二のポートとに連通された連通路と、第三のポートに連通されていると共に軸方向において一方の方向に可動な一方の弁座部材により二室に区画された一方の受圧室と、第四のポートに連通されていると共に軸方向において他方の方向に可動な他方の弁座部材により二室に区画された他方の受圧室と、一方の弁座部材を軸方向において他方の方向に弾性的に付勢する一方の弾性手段と、他方の弁座部材を軸方向において一方の方向に弾性的に付勢する他方の弾性手段とを有しており、弁体は、連通路に配されていると共に連通路を開閉する主制御弁体と、この主制御弁体に連結されていると共に一方の受圧室の一方の室の流体圧を受容するように一方の弁座部材の貫通孔において当該一方の弁座部材に着座された一方の制御弁体と、主制御弁体に連結されていると共に他方の受圧室の一方の室の流体圧を受容するように他方の弁座部材の貫通孔において当該他方の弁座部材に着座された他方の制御弁体とを具備している振動エネルギ吸収装置。   A container for storing a liquid; a partition member that divides the container into two chambers and that is movable with respect to the container; a vibration transmission member that is fixed to the partition member and penetrates the container; and an orifice. And a communication means for communicating one chamber in the container with the other chamber through the orifice, a first port communicated with the one chamber in the container, and the other chamber in the container. A second port, a third port communicating with one chamber in the container through one orifice and one orifice arranged in parallel with the one-way valve, and the other chamber in the container; And a control valve having a fourth port communicating with the other one-way valve through the other orifice arranged in parallel with the other one-way valve. The relative movement of the partition member with respect to An axially movable valve body for controlling communication of the first and second ports by fluid pressure supplied to the third and fourth ports based on the moving direction and the moving position, and the first port, A communication passage communicated with the second port, one pressure receiving chamber defined by two valve chambers by one valve seat member communicated with the third port and movable in one direction in the axial direction; The other pressure receiving chamber is divided into two chambers by the other valve seat member communicated with the fourth port and movable in the other direction in the axial direction, and the one valve seat member in the other direction in the axial direction. One elastic means for elastically urging and the other elastic means for elastically urging the other valve seat member in one direction in the axial direction, and the valve body is disposed in the communication path. And a main control valve body that opens and closes the communication path and the main control valve And a control valve body seated on the one valve seat member in the through hole of the one valve seat member so as to receive the fluid pressure of one chamber of the one pressure receiving chamber, and a main control The other control valve body seated on the other valve seat member in the through hole of the other valve seat member so as to be connected to the valve body and receive the fluid pressure of one chamber of the other pressure receiving chamber. A vibration energy absorbing device. 制御弁は、第一から第四のポート、連通路及び両受圧室が設けられていると共に弁体、両弁座部材及び弾性手段を収容した弁ハウジングと、第一のポート側において弁ハウジングに固定されている一方の固定板と、第二のポート側において弁ハウジングに固定されている他方の固定板とを具備しており、一方の弁座部材は、一方の受圧室を二室に区画すると共に一方の受圧室の二室に開口した貫通孔を有した一方の弁座本体と、一方の受圧室の二室のうちの他方の室の一定以上の縮小を阻止するように、一方の固定板と一方の弁座本体との間に配されていると共に弁座本体に一体的に設けられた一方の阻止部とを具備しており、他方の弁座部材は、他方の受圧室を二室に区画すると共に他方の受圧室の二室に開口した貫通孔を有した他方の弁座本体と、他方の受圧室の二室のうちの他方の室の一定以上の縮小を阻止するように、他方の固定板と他方の弁座本体との間に配されていると共に他方の弁座本体に一体的に設けられた他方の阻止部とを具備しており、一方の制御弁体は、一端では主制御弁体に固着されていると共に他端では一方の弁座本体の貫通孔の開口端において当該一方の弁座本体に着座しており、且つ一方の固定板を軸方向に摺動自在に貫通しており、他方の制御弁体は、一端では主制御弁体に固着されていると共に他端では他方の弁座本体の貫通孔の開口端において当該他方の弁座本体に着座しており、且つ他方の固定板を軸方向に摺動自在に貫通している請求項1に記載の振動エネルギ吸収装置。   The control valve is provided with a first to fourth port, a communication passage, both pressure receiving chambers and a valve housing containing a valve body, both valve seat members and elastic means, and a valve housing on the first port side. One fixed plate fixed and the other fixed plate fixed to the valve housing on the second port side, and one valve seat member divides one pressure receiving chamber into two chambers In addition, one valve seat body having a through hole opened in two chambers of one pressure receiving chamber and one of the two chambers of one pressure receiving chamber, The blocking plate is disposed between the fixed plate and the one valve seat body and is provided integrally with the valve seat body, and the other valve seat member includes the other pressure receiving chamber. The other valve having a through hole that is divided into two chambers and opens in two chambers of the other pressure receiving chamber The other valve seat is arranged between the other fixing plate and the other valve seat body so as to prevent the main body and the other of the two pressure receiving chambers from shrinking beyond a certain level. And a control valve body fixed to the main control valve body at one end and a through hole of one valve seat body at the other end. It is seated on the one valve seat body at the open end and penetrates one fixed plate so as to be slidable in the axial direction, and the other control valve body is fixed to the main control valve body at one end. The other end seats on the other valve seat body at the open end of the through hole of the other valve seat body, and penetrates the other fixing plate so as to be slidable in the axial direction. The vibration energy absorbing device as described. 一方の弾性手段は、一方の弁座本体と弁ハウジングとの間に配されており、他方の弾性手段は、他方の弁座本体と弁ハウジングとの間に配されている請求項2に記載の振動エネルギ吸収装置。   The one elastic means is disposed between one valve seat body and the valve housing, and the other elastic means is disposed between the other valve seat body and the valve housing. Vibration energy absorbing device. 一方の受圧室の二室は、一方の弁座部材又は一方の固定板に設けられた孔を介して相互に連通されており、他方の受圧室の二室は、他方の弁座部材又は他方の固定板に設けられた孔を介して相互に連通されている請求項2又は3に記載の振動エネルギ吸収装置。   Two chambers of one pressure receiving chamber are communicated with each other through a hole provided in one valve seat member or one fixing plate, and two chambers of the other pressure receiving chamber are connected to the other valve seat member or the other The vibration energy absorbing device according to claim 2 or 3, wherein the vibration energy absorbing device is in communication with each other through a hole provided in the fixed plate. 連通路は、中央通路と、第一のポートに連通された一方の大径通路と、第二のポートに連通された他方の大径通路と、一端では中央通路に他端では一方の大径通路に夫々連通されていると共に中央通路から一方の大径通路に向かうに連れて徐々に拡径された一方の拡径通路と、一端では中央通路に他端では他方の大径通路に夫々連通されていると共に中央通路から他方の大径通路に向かうに連れて徐々に拡径された他方の拡径通路とを具備しており、主制御弁体は、中央通路を介する一方の拡径通路と他方の拡径通路との連通を制御するように中央通路の径と実質的に同一外径を有している請求項1から4のいずれか一項に記載の振動エネルギ吸収装置。   The communication passage includes a central passage, one large-diameter passage communicated with the first port, the other large-diameter passage communicated with the second port, a central passage at one end and one large-diameter at the other end. One enlarged passage that is communicated with the passage and gradually increases in diameter from the central passage toward one large-diameter passage, and communicates with the central passage at one end and the other large-diameter passage at the other end. And the other enlarged passage gradually increased in diameter from the central passage toward the other large-diameter passage, and the main control valve body has one enlarged-diameter passage through the central passage. 5. The vibration energy absorbing device according to claim 1, wherein the vibration energy absorbing device has an outer diameter substantially the same as a diameter of the central passage so as to control communication between the first passage and the other enlarged passage. 一方の一方向弁は、収容体内の一方の室から第三のポートへの流体の流れを許容するようになっており、他方の一方向弁は、収容体内の他方の室から第四のポートへの流体の流れを許容するようになっている請求項1から5のいずれか一項に記載の振動エネルギ吸収装置。   One one-way valve is adapted to allow fluid flow from one chamber in the container to the third port, and the other one-way valve is provided from the other chamber in the container to the fourth port. The vibration energy absorbing device according to any one of claims 1 to 5, wherein a fluid flow to the fluid is allowed. 収容体は、液体を収容する円筒シリンダを具備しており、円筒シリンダは、円筒部と、円筒部の両端面を閉塞した閉塞部とを具備しており、区画部材は、円筒シリンダの円筒部内に軸方向に可動に配されたピストンを具備しており、振動伝達部材は、円筒シリンダの各閉塞部を移動自在に貫通していると共にピストンに固着されたピストンロッドを具備している請求項1から6のいずれか一項に記載の振動エネルギ吸収装置。   The container includes a cylindrical cylinder that stores liquid. The cylindrical cylinder includes a cylindrical portion and a closed portion that closes both end surfaces of the cylindrical portion, and the partition member is disposed in the cylindrical portion of the cylindrical cylinder. The vibration transmitting member includes a piston rod fixed to the piston and movably penetrating each closed portion of the cylindrical cylinder. The vibration energy absorbing device according to any one of 1 to 6. 免震構造物と、免震構造物を初期位置に復帰させる復帰手段と、請求項1から7のいずれか一項に記載の振動エネルギ吸収装置とを具備しており、振動伝達部材は、免震構造物の振動を区画部材に伝達するように免震構造物に連結されている構造物。   A vibration isolating structure, return means for returning the seismic isolation structure to the initial position, and the vibration energy absorbing device according to any one of claims 1 to 7, wherein the vibration transmitting member A structure that is connected to the seismic isolation structure so that the vibration of the seismic structure is transmitted to the partition member. 復帰手段は、免震構造物と免震構造物が設置される地盤との間に介在された弾性装置を具備している請求項8に記載の構造物。   The structure according to claim 8, wherein the return means includes an elastic device interposed between the base isolation structure and the ground where the base isolation structure is installed. 弾性装置は、積層ゴム支承及びコイルばねのうちの少なくとも一つを具備している請求項9に記載の構造物。   The structure according to claim 9, wherein the elastic device includes at least one of a laminated rubber support and a coil spring.
JP2005198170A 2005-07-06 2005-07-06 Vibration energy absorber Active JP4591242B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005198170A JP4591242B2 (en) 2005-07-06 2005-07-06 Vibration energy absorber
TW095148041A TW200827588A (en) 2005-07-06 2006-12-20 Vibrational energy absorbing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198170A JP4591242B2 (en) 2005-07-06 2005-07-06 Vibration energy absorber

Publications (2)

Publication Number Publication Date
JP2007016875A JP2007016875A (en) 2007-01-25
JP4591242B2 true JP4591242B2 (en) 2010-12-01

Family

ID=37754212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198170A Active JP4591242B2 (en) 2005-07-06 2005-07-06 Vibration energy absorber

Country Status (1)

Country Link
JP (1) JP4591242B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072324A1 (en) * 2006-12-13 2008-06-19 Oiles Corporation Vibration energy absorbing device
JP2008138868A (en) * 2006-11-02 2008-06-19 Mitsubishi Heavy Ind Ltd Vibration absorber and shaft vertical vibration damping device
JP4939308B2 (en) * 2007-06-01 2012-05-23 カヤバ工業株式会社 Shock absorber
DE102014107708A1 (en) * 2014-06-02 2015-12-03 Lisega SE Valve for hydraulic damper
CN115949761B (en) * 2023-02-24 2023-08-22 江苏恒双自控设备制造有限公司 Vacuum pneumatic butterfly valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293440U (en) * 1985-12-02 1987-06-15
JP2000104785A (en) * 1998-09-29 2000-04-11 Mitsubishi Steel Mfg Co Ltd Trigger device having damper function for building base isolation
JP2004138103A (en) * 2002-10-16 2004-05-13 Kayaba Ind Co Ltd Damping device
JP2004301306A (en) * 2003-04-01 2004-10-28 Hirokazu Iemura Vibrational energy absorber having negative rigidity and structure therewith

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145711U (en) * 1986-03-05 1987-09-14

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293440U (en) * 1985-12-02 1987-06-15
JP2000104785A (en) * 1998-09-29 2000-04-11 Mitsubishi Steel Mfg Co Ltd Trigger device having damper function for building base isolation
JP2004138103A (en) * 2002-10-16 2004-05-13 Kayaba Ind Co Ltd Damping device
JP2004301306A (en) * 2003-04-01 2004-10-28 Hirokazu Iemura Vibrational energy absorber having negative rigidity and structure therewith

Also Published As

Publication number Publication date
JP2007016875A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP6370405B2 (en) Valve for hydraulic damper
JP4591242B2 (en) Vibration energy absorber
JP2014159877A (en) Damper with digital valve
JPS59211203A (en) Device for electromagnetically operating regulator
JP2018511751A (en) Energy transmission device and method of use
JP2006161842A (en) Shock absorber
JP4417823B2 (en) Shock absorber
JP6263032B2 (en) damper
JP4258254B2 (en) Vibration energy absorbing device having negative rigidity and structure including the same
JP6894769B2 (en) Seismic isolation damper
WO2008072324A1 (en) Vibration energy absorbing device
WO2018084098A1 (en) Valve block
JP2006194372A (en) Vibration control hydraulic damper
JP6565442B2 (en) Cylinder device
TWI378191B (en)
JP2013050174A (en) Oil damper, and building structure
JP2003148545A (en) Hydraulic damping device
JP2000291716A (en) Pressure governing valve and hydraulic vibration control device
JP2000104785A (en) Trigger device having damper function for building base isolation
JP6738528B2 (en) Vibration reduction device
JP2000220692A (en) Restriction/releasing type vibration control device
JP2015166617A (en) Pressure buffer device
JP6875961B2 (en) Seismic isolation damper
JP2004132451A (en) Lock mechanism of shock absorber
JP2011094691A (en) Shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4591242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250