WO2008072324A1 - Vibration energy absorbing device - Google Patents

Vibration energy absorbing device Download PDF

Info

Publication number
WO2008072324A1
WO2008072324A1 PCT/JP2006/324878 JP2006324878W WO2008072324A1 WO 2008072324 A1 WO2008072324 A1 WO 2008072324A1 JP 2006324878 W JP2006324878 W JP 2006324878W WO 2008072324 A1 WO2008072324 A1 WO 2008072324A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve seat
chamber
valve
passage
port
Prior art date
Application number
PCT/JP2006/324878
Other languages
French (fr)
Japanese (ja)
Inventor
Ikuo Shimoda
Osamu Kochiyama
Original Assignee
Oiles Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corporation filed Critical Oiles Corporation
Priority to PCT/JP2006/324878 priority Critical patent/WO2008072324A1/en
Priority to TW095148041A priority patent/TW200827588A/en
Publication of WO2008072324A1 publication Critical patent/WO2008072324A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/20Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with the piston-rod extending through both ends of the cylinder, e.g. constant-volume dampers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0235Anti-seismic devices with hydraulic or pneumatic damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • F16F9/5126Piston, or piston-like valve elements

Definitions

  • the present invention is a method for quickly attenuating vibrations that occur in structures such as apartment buildings such as condominiums, office buildings, detached houses, bridges, or seismically isolated structures that are seismically isolated. More particularly, the present invention relates to a vibration energy absorbing device that absorbs vibration energy and a structure including such a device.
  • vibration energy absorber there are known viscous dampers, friction dampers, lead dampers, steel bar dampers, etc., and such vibration energy absorbers are used for seismic isolation structures. It is applied to the structure together with a spring device, for example, to return to the initial position.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-287079
  • Non-Patent Document 1 Nakada, Iemura, Igarashi, ⁇ Pseudo negative stiffness-added semi-active vibration control experiment of full-scale connected structure '', Proceedings of the 56th Annual Scientific Lecture, Japan Society of Civil Engineers October 2013, pl62—163
  • Non-Patent Document 2 Ionaga, Igarashi, Suzuki, “Real-time hybrid experiment on application of MR damper to pseudo-negative stiffness semi-active control”, Japan Earthquake Engineering Society ⁇ Conference 2003 Abstracts p268-269
  • the vibration energy absorbing device such as a viscous damper or a friction damper
  • a structure such as a seismic isolation structure together with a spring device
  • the resistance force of the vibration energy absorbing device is added to the restoring force of the spring device during vibration.
  • the seismic isolation structure receives a large force, which increases the rigidity of the part that receives the resistance force of the vibration energy absorbing device and the restoring force of the spring device. I have to do it.
  • a viscous damper having negative rigidity has been proposed, but the proposed viscous damper adjusts the opening of a valve in a bypass pipe connecting two cylinders by an external command.
  • viscous dampers are used when a power failure occurs due to electrical adjustment of the opening of the nozzle and external commands. There is a possibility that the intended operation may not be performed with negative rigidity.
  • the present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a structure that receives a resistance force or a part of a base-isolated structure that receives a resistance force and a restoring force of a return means.
  • an object of the present invention is to provide a structure that receives a resistance force or a part of a base-isolated structure that receives a resistance force and a restoring force of a return means.
  • the vibration energy absorbing device of the present invention includes a container that contains a liquid, a partition member that divides the container into two chambers and is movable with respect to the container, and is fixed to the partition member so that V, And a vibration transmitting member penetrating the container, a communication means having an orifice and communicating one chamber and the other chamber through the orifice, and one chamber of the container.
  • Control valve, and the control valve The communication of the first and second ports is controlled by the fluid pressure supplied to the third and fourth ports based on the moving direction and moving position of the partition member relative to the container. It has a valve body that is movable in the axial direction.
  • the communication of the first and second ports is controlled by the valve body in accordance with the displacement of the partition member in addition to the communication means! Therefore, as a result of exhibiting negative rigidity, when the vibration energy absorbing device is used for, for example, a seismic isolation structure via a vibration transmission member, the structure receiving resistance force or the restoring force and restoring means It is not necessary to increase the rigidity of the part of the seismic isolation structure that receives the force, and the desired operation can be performed even if a power failure occurs, and it can be configured in a small size without requiring much space.
  • the control valve communicates with the first port and the second port, communicates with the third port, and in the axial direction.
  • One pressure receiving chamber divided into two chambers by one movable valve seat member and the other valve seat member which is communicated with the fourth port and which is movable in the other direction in the axial direction The other pressure receiving chamber partitioned into two chambers by one, and one valve seat member is axially biased in the other direction, and one elastic means and the other valve seat member are axially biased in the other direction.
  • the valve element is arranged in the communication path and opens and closes the communication path, and the main control valve element opens and closes the communication path.
  • a through hole in one valve seat member is connected to the main control valve body and receives fluid pressure in one chamber of one pressure receiving chamber.
  • the one control valve body seated on the one valve seat member and the other control valve body are connected to the main control valve body and receive the fluid pressure in one chamber of the other pressure receiving chamber.
  • the other control valve body seated on the other valve seat member may be provided in the through hole of the seat member.
  • the control valve according to the present invention includes a first to fourth port, a communication path, and both pressure receiving chambers, and a valve housing that houses a valve body, both valve seat members, and elastic means, One fixing plate fixed to the valve housing on the port side of the second port, and the other fixing plate fixed to the valve housing on the second port side may be provided.
  • one valve seat member divides one pressure receiving chamber into two chambers and has one valve seat body having a through hole opened in two chambers of one pressure receiving chamber and two chambers of one pressure receiving chamber.
  • One blocking plate disposed between the one fixed plate and the one valve seat body and integrally provided in the valve seat body so as to prevent the other chamber from being reduced more than a certain amount.
  • the other valve seat member divides the other pressure receiving chamber into two chambers and the other receiving member.
  • the other valve seat body having a through-hole opened in the two chambers of the chamber and the other fixing plate and the other of the other pressure-receiving chamber so as to prevent the other chamber from being reduced more than a certain degree.
  • the control valve body is disposed between the valve seat body and the other blocking portion provided integrally with the other valve seat body.
  • One control valve body is fixed to the main control valve body at one end. The other end is seated on the one valve seat body at the open end of the through hole of one valve seat body, and passes through one fixed plate so as to be slidable in the axial direction.
  • the other control valve body at one end Is fixed to the main control valve body, and at the other end is seated on the other valve seat body at the open end of the through hole of the other valve seat body, and the other fixing plate is slidable in the axial direction. It is good to penetrate through.
  • one elastic means may be arranged between one valve seat main body and the valve housing, and the other elastic means may be arranged between the other valve seat main body and the valve housing.
  • the two pressure-receiving chambers, which may be disposed, are connected to the other two pressure-receiving chambers, which may be connected to each other via holes provided in one valve seat member or one fixing plate.
  • the communication passage which may be communicated with each other through a hole provided in the other valve seat member or the other fixing plate has a central passage and one large diameter communicated with the first port.
  • the main control valve body may be provided with a central passage force and the other enlarged passage which is gradually enlarged in diameter toward the other large-diameter passage.
  • the outer diameter is substantially the same as the diameter of the central passage so as to control the communication between the one enlarged passage and the other enlarged passage through the passage.
  • one one-way valve is adapted to allow fluid flow from one chamber in the container to the third port, and the other one-way valve is The other chamber force in the container allows the fluid to flow to the fourth port.
  • the container includes a cylindrical cylinder that stores the liquid
  • the cylindrical cylinder includes a cylindrical portion and a closed portion that closes both end faces of the cylindrical portion
  • the partition member is a circular cylinder cylinder. Even if it has a piston arranged movably in the axial direction in the cylinder part, the vibration transmitting member may be provided with a piston rod fixedly attached to the piston while movably penetrating each closed part of the cylindrical cylinder. Good.
  • the structure of the present invention includes a base isolation structure, a return means for returning the base isolation structure to the initial position, and the vibration energy absorbing device according to any one of the above aspects.
  • the vibration transmitting member is connected to the base isolation structure so as to transmit the vibration of the base isolation structure to the partition member.
  • the return means may include an elastic device interposed between the base isolation structure and the ground where the base isolation structure is installed. May comprise at least one of a laminated rubber bearing and a coil spring.
  • the present invention it is not necessary to particularly increase the rigidity of the structure that receives the resistance force or the seismic isolation structure that receives the resistance force and the restoring force of the return means, and a power failure occurs.
  • a vibration energy absorbing device having negative rigidity and a structure including the same, which can perform a desired operation, and can be configured in a small size without requiring an occupied space.
  • FIG. 1 is a cross-sectional explanatory diagram of a preferred example of an embodiment of the present invention.
  • FIG. 2 is an operation explanatory diagram of the example shown in FIG.
  • FIG. 3 is an operation explanatory diagram of the example shown in FIG.
  • FIG. 4 is an operation explanatory diagram of the example shown in FIG.
  • FIG. 5 is an operation explanatory diagram of the example shown in FIG. 1.
  • FIG. 6 is an operation explanatory diagram of the example shown in FIG.
  • FIG. 7 is an operation explanatory diagram of the example shown in FIG. 1.
  • FIG. 8 is an operation explanatory diagram of the example shown in FIG. 1.
  • FIG. 9 is an operation explanatory diagram of the example shown in FIG. 1.
  • FIG. 10 is an operation explanatory diagram of the example shown in FIG.
  • FIG. 11 is an explanatory diagram of an example in which the example shown in FIG. 1 is used for a seismic isolation structure.
  • a vibration energy absorbing device 1 of this example includes a storage body 2 that stores a liquid such as oil, and the storage body 2 is partitioned into two chambers 3 and 4 and X against the storage body 2.
  • Communication means 8 for communicating between chamber 3 and chamber 4 in container 2, port 10 communicating with chamber 3 in container 2 through pipe 9, and port 4 in chamber 2 through pipe 11
  • Port 12 connected to each other, chamber 15 in container 2, one-way valve 13, and port 15 communicated through variable flow resistance orifice 14 arranged in parallel to one-way valve 13 and container 2
  • the inner chamber 4 includes a one-way valve 16 and a control valve 19 having a port 18 communicated via an orifice 17 having a variable flow resistance arranged in parallel with the one-way valve 16.
  • the storage body 2 includes a cylindrical cylinder 25 that stores the liquid A therein.
  • the cylindrical cylinder 25 includes a cylindrical portion 26 and a closed portion 27 that closes both end surfaces of the cylindrical portion 26.
  • the partition member 5 includes a piston 28 that is movably disposed in the X direction in the cylindrical portion 26 of the cylindrical cylinder 25, and the vibration transmitting member 6 includes the closed portions 27 of the cylindrical cylinder 25.
  • a piston rod 29 that penetrates in the direction of movement in the X direction and is fixed to the piston 28, and one end of the piston rod 29 are connected to a base isolation structure 150 such as a base isolation building (see Fig. 11). And fixture 30.
  • the cylindrical portion 26 includes a port 35 that communicates with the chamber 3 and is connected to one end of the pipe 9, and a port 36 that communicates with the chamber 4 and is connected to one end of the pipe 11.
  • the communication means 8 includes a pipe 43 in which the orifice 7 is disposed in the middle and one end of which communicates with the port 41 and the other end of which communicates with the port 42.
  • the orifice 7 is arranged in the middle so that the port 35 and the port 36 are directly communicated via the orifice 7. In this case, it is possible to attach one end of the pipe 43 directly to the port 35 and the other end to the port 36. In this case, it is not necessary to provide the port 41 and the port 42.
  • the orifice 7 gives the fluid A flowing through the pipe 43 a resistance according to the adjusted passage diameter.
  • the one-way valve 13 has one end connected to the port 35 and the other end to allow the flow of the fluid A from the chamber 3 in the container 2 to the port 15 while prohibiting the reverse flow of the fluid A.
  • the one-way valve 16 is provided in the middle of the pipe 45 communicating with the port 15, and the one-way valve 16 allows the flow of the fluid A from the chamber 4 in the container 2 to the port 18, while the flow of the fluid A is reversed.
  • the other end of the pipe 46 is connected to the port 36 and the other end is connected to the port 18.
  • the orifice 14 provided in the middle of the pipe 47 is arranged in parallel to the one-way valve 13 via the pipe 47 so that the fluid A flowing through the pipe 47 gives resistance according to the adjusted passage diameter.
  • the orifice 17 provided in the middle of the pipe 48 is arranged in parallel to the one-way valve 16 through the pipe 48, and has a resistance according to the passage diameter adjusted to the fluid A flowing through the pipe 48. Give it! /
  • the control valve 19 is a port based on the movement direction and the movement position in the relative movement in the X direction of the partition member 5 with respect to the container 2 in addition to the ports 10, 12, 15, 18, 41 and 42. 1 Control of communication between ports 10 and 12 by fluid pressure supplied to 5 and 18 Valve body 51 movable in B direction (axial direction of control valve 19), communication connected to ports 10 and 12 A pressure receiving chamber 56 divided into two chambers 54 and 55 by a passage 52, a valve seat 53 that is communicated with the port 15 and movable in the B direction, and a valve that is communicated with the port 18 and movable in the B direction A pressure receiving chamber 60 divided into two chambers 58 and 59 by a seat member 57; an elastic means 61 that also has a coil spring force that biases the valve seat member 53 in the B1 direction in the B direction; and the valve seat member 57.
  • Coil spring force that positively biases the B2 direction in the B direction, which is the opposite direction to the B1 direction.
  • a fixing plate 65 is provided which is fixed to the housing 63 and is provided with a hole 68 which allows the two chambers 58 and 59 to communicate with each other.
  • the valve body 51 is disposed in the communication path 52 and opens and closes the communication path 52.
  • the valve body 51 is connected to the main control valve body 75 and is connected to the pressure control chamber 56.
  • a cylindrical or rod-shaped control valve body 77 seated on the valve seat member 53 at a frustoconical end in the through-hole 76 of the valve seat member 53 so as to receive the fluid pressure of 54, and a main control It is connected to the valve body 75 and seated on the valve seat member 57 at the tip of the truncated cone shape in the through hole 78 of the valve seat member 57 so as to receive the fluid pressure of the chamber 58 of the pressure receiving chamber 60.
  • the main control valve element 75 has an outer diameter larger than the outer diameters of the control valve elements 77 and 79 and is usually located at the center of the communication path 52.
  • the valve seat member 53 includes a valve seat body 81 that divides the pressure receiving chamber 56 into chambers 54 and 55 and has a through hole 76 opened in the chambers 54 and 55 of the pressure receiving chamber 56, and a predetermined amount or more of the chamber 55.
  • the cylindrical plate is disposed between the fixing plate 64 and the valve seat body 81, and is in contact with the fixing plate 64 at one end and integrally provided with the valve seat body 81 at the other end.
  • the blocking portion 82 includes a plurality of through holes 83 that communicate with the inside and outside of the blocking portion 82.
  • the valve seat member 57 includes a valve seat body 85 that divides the pressure receiving chamber 60 into chambers 58 and 59 and has a through-hole 78 opened in the chambers 58 and 59 of the pressure receiving chamber 60, and a predetermined amount or more of the chamber 59.
  • the cylindrical plate is arranged between the fixed plate 65 and the valve seat body 85, and is in contact with the fixed plate 65 at one end and integrally provided with the valve seat body 85 at the other end.
  • the blocking portion 86 includes a plurality of through holes 87 that communicate with the inside and outside of the blocking portion 86.
  • the control valve body 77 is fixed to the main control valve body 75 at one end, and is seated on the valve seat body 81 at the open end of the through hole 76 of the valve seat body 81 at the other end of the truncated cone shape.
  • the control valve body 79 is fixed to the main control valve body 75 at one end and the valve seat body at the other end of the frustoconical shape. It is seated on the valve seat body 85 at the open end of the through hole 78 of the 85 and penetrates the fixing plate 65 slidably in the B direction.
  • the communication passage 52 includes a central passage 91, a large diameter passage 92 communicated with the ports 10 and 41, a large diameter passage 93 communicated with the ports 12 and 42, and the central passage 91 at one end and the other end at the other end.
  • the large-diameter passage 92 communicates with the large-diameter passage 92 and gradually increases in diameter from the central passage 91 to the large-diameter passage 92, and the central passage 91 at one end and the large-diameter passage 93 at the other end.
  • the main control valve body 75 includes a central passage 91 and a diameter-increasing passage 95 that is gradually expanded from the central passage 91 to the large-diameter passage 93 in accordance with the direction of force.
  • the diameter of the central passage 91 is substantially the same as the diameter of the central passage 91 so as to control the communication between the enlarged diameter passage 94 and the enlarged passage 95.
  • the elastic means 61 has a projection 96 of the valve seat body 81 at one end and a valve housing at the other end. 63, each of which is positioned in a recess 98 of the end face wall portion 97 of the groove 63 and is arranged between the valve seat body 81 and the end face wall portion 97 of the valve housing 63, and the elastic means 62 has a valve seat at one end thereof.
  • the other end of the valve body 63 is positioned in the recess 101 of the end wall 100 of the valve housing 63 by the protrusion 99 of the main body 85, and is arranged between the valve seat main body 85 and the end wall 100 of the valve housing 63.
  • the valve housing 63 includes a central portion 111 having a communication passage 52 and ports 10, 12, 41, and 42, and is fixed to one end surface of the central portion 111 with a screw 112, and includes a pressure receiving chamber 56, A lid portion 113 having a seat 15 and an end surface wall portion 97, and a lid portion 11 having a pressure receiving chamber 60, a port 18 and an end surface wall portion 100 fixed to the other end surface of the central portion 111 by a screw 114. 5 and a three-part physical strength.
  • each pipe, each port, the communication path 52, and the pressure receiving chambers 56 and 60 are filled with the same liquid A as the liquid A stored in the container 2.
  • the above-described vibration energy absorbing device 1 has a structure 151 as shown in FIG. 11 through a roller 153 that can roll in a horizontal direction H with respect to the ground 152 including the foundation.
  • the vibration transmitting member 6 is connected to the seismic isolation structure 150 installed on the 152 via the fixture 30, while the container 2 is used while being fixed to the ground 151 side.
  • the return means for returning the base isolation structure 150 to the initial position includes an elastic device including a coil spring 154 interposed between the base isolation structure 150 and the ground 152 where the base isolation structure 150 is installed.
  • the coil spring 154 with the elastic modulus K expands and contracts due to the vibration of the seismic isolation structure 150 in the horizontal direction H! / When the earthquake stops, the seismic isolation structure 150 is moved to the initial position before the vibration.
  • the vibration transmitting member 6 When the vibration transmitting member 6 is connected to the seismic isolation structure 150 via the fixture 30, the seismic isolation structure 150 is not vibrated, and the seismic isolation structure 150 is returned to the initial position by the coil spring 154. In a stationary state, as shown in FIG. 1, the piston 28 is positioned in the approximate center of the cylindrical portion 26 in the X direction.
  • the seismic isolation structure 150 is vibrated in the horizontal direction H by the earthquake, and the piston 28 first moves in the X direction and then moves in the XI direction via the piston rod 29 as shown in FIG.
  • the pressure in the liquid A in the chamber 4 is increased, while the liquid A in the chamber 3 is depressurized.
  • the liquid A in the chamber 4 flows to the chamber 3 side through the orifice 7, and the liquid in the chamber 4 A pressure increase is mainly unidirectional Liquid A in chamber 58 is also increased in pressure through chamber 16 to valve 58, while the reduced pressure in liquid A in chamber 3 is transmitted to chamber 54 through orifice 14 and liquid A in chamber 54 is also the same. The pressure is reduced.
  • the large diameter passage 92 and the large diameter passage 93 are communicated with each other through the passage 91 and the enlarged diameter passages 94 and 95, and the flow of the liquid A in the chamber 4 toward the chamber 3 side is performed through the central passage 91 instead of the orifice 7.
  • the liquid A is introduced into the chamber 55 from the large diameter passage 92 through the hole 67, so that the chamber 55 does not become negative pressure.
  • the valve body 51 and the valve seat member 57 are moved in the B2 direction by the pressure increase of A and the pressure reduction of the liquid A in the chamber 54 via the orifice 14. As shown in FIGS.
  • the main control valve body 75 is positioned again in the central passage 91, and the central passage 91 is closed and the large passage 92 and the large passage 92 through the enlarged passages 94 and 95 are large.
  • the main control valve body 75 moves away from the central passage 91 and is located on the large-diameter passage 92 side through the enlarged-diameter passage 94 while being separated from the valve seat body 85, and the central passage 91 is opened to the central passage 91 and the enlarged-diameter.
  • the above operation is repeated until the piston 28 vibrates in the X2 and XI directions.
  • the energy absorbing device 1 applies to the piston rod 29 a reaction force R that also has a damping loop force indicated by a curve 122, a straight line 123, a curve 124, and a straight line 125 shown in FIG.
  • the attenuation loop indicated by the curves 122, 123, 124, and 125 becomes smaller as the amplitude and speed of the vibration in the horizontal direction H due to the earthquake of the seismic isolation structure 150 decrease.
  • the damping indicated by the damping loop is applied to the vibration in the horizontal direction H caused by the earthquake of the seismic isolation structure 150, and when the vibration of the seismic isolation structure 150 is settled, the damping force of the coil spring 154 Seismic structure 150 is placed in the initial position.
  • the vibration energy absorbing device 1 has a so-called negative rigidity with respect to the displacement of the position D of the base isolation structure 150, the vibration energy absorption device 1 loaded on the base isolation structure 150 The resultant force between the reaction force R and the restoring force R of the coil spring becomes relatively small, and the rigidity of the seismic isolation structure 150 that receives these resultant forces does not need to be particularly increased.
  • the ports 10 and 12 are driven by the fluid pressure supplied to the ports 15 and 18 based on the movement direction and the movement position of the partition member 5 relative to the container 2 in the X direction. Because the control valve 19 with the valve body 51 movable in the B direction is used, the desired operation can be performed even if a power failure occurs, and the force does not require much space. It can be made compact with negative rigidity.
  • the seismic isolation structure 150 is placed in the horizontal direction H with respect to the ground 152 via a sliding member or the like. It can be installed on the ground 152 so that it can be moved, or it can be a seismic isolation structure that is seismically isolated with, for example, a laminated rubber bearing. In this case, the coil spring 154 is omitted.
  • the laminated rubber support as an elastic device may have a return function, or the structure may be a structure that is not seismically isolated. The structure itself may be provided with a return function without being provided separately.
  • the flow resistance of the orifices 7, 14 and 17 is adjusted so that the seismic isolation structure or the structure that is not seismic isolation is added to the curve 131, straight line 123, curved line 132 and straight line 125 or curved line 133, It is also possible to obtain an optimum damping loop as represented by 123, curve 134 and straight line 125.
  • the hole 67 in the fixed plate 64 for communicating the two chambers 54 and 55 with each other in the fixing plate 64 and the hole 68 for connecting the two chambers 58 and 59 in the fixing plate 65 with each other
  • the hole 67 is provided as a valve.
  • a hole 68 may be provided in the valve seat body 85 in the seat body 81!

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

A vibration energy absorbing device and a structure with the vibration energy absorbing device. The vibration energy absorbing device does not require any particular increase in the rigidity of that portion of a structure that receives resistance force, can achieve aimed operation even in electric power failure, does not occupy much space, and is reduced in size. The vibration energy absorbing device (1) has a receiving body (2) for receiving liquid, a partitioning member (5) for partitioning the inside of the receiving body into two rooms (3, 4) and movable in the X direction relative to the receiving body, a vibration transmission member (6) secured to the partitioning member and penetrating through the receiving body, communication means (8) having an orifice (7) that has variable flow path resistance and interconnecting the two rooms in the receiving body via the orifice, and a control valve (19) having ports (10, 12, 15, 18).

Description

明 細 書  Specification
振動エネルギ吸収装置  Vibration energy absorber
技術分野  Technical field
[0001] 本発明は、マンション等の集合住宅、事務所ビル、戸建住宅、橋梁等の構造物又 はこの構造物を免震ィ匕した免震構造物に生じる振動を早期に減衰させるベくその振 動エネルギを吸収する振動エネルギ吸収装置及び斯カる装置を備えた構造物に関 する。  [0001] The present invention is a method for quickly attenuating vibrations that occur in structures such as apartment buildings such as condominiums, office buildings, detached houses, bridges, or seismically isolated structures that are seismically isolated. More particularly, the present invention relates to a vibration energy absorbing device that absorbs vibration energy and a structure including such a device.
背景技術  Background art
[0002] この種の振動エネルギ吸収装置 (ダンバ)としては、粘性ダンバ、摩擦ダンバ、鉛ダ ンパ、鋼棒ダンバ等が知られており、斯カる振動エネルギ吸収装置は、免震構造物 を初期位置に復帰させる、例えばばね装置と共に構造物に適用される。  [0002] As this type of vibration energy absorber (damper), there are known viscous dampers, friction dampers, lead dampers, steel bar dampers, etc., and such vibration energy absorbers are used for seismic isolation structures. It is applied to the structure together with a spring device, for example, to return to the initial position.
[0003] 特許文献 1:特開平 2003— 287079号公報  [0003] Patent Document 1: Japanese Patent Laid-Open No. 2003-287079
非特許文献 1 :中田、家村、五十嵐、「実大連結構造物の擬似負剛性付加型セミアク ティブ震動制御実験」、土木学会第 56回年次学術講演会論文集、社団法人土木学 会、平成 13年 10月、 pl62— 163  Non-Patent Document 1: Nakada, Iemura, Igarashi, `` Pseudo negative stiffness-added semi-active vibration control experiment of full-scale connected structure '', Proceedings of the 56th Annual Scientific Lecture, Japan Society of Civil Engineers October 2013, pl62—163
非特許文献 2 :家永、五十嵐、鈴木、「MRダンパーの疑似負剛性セミアクティブ制御 への適用に関する実時間ハイブリッド実験」、日本地震工学会 ·大会 2003梗概集 p268 - 269  Non-Patent Document 2: Ionaga, Igarashi, Suzuki, “Real-time hybrid experiment on application of MR damper to pseudo-negative stiffness semi-active control”, Japan Earthquake Engineering Society · Conference 2003 Abstracts p268-269
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、ばね装置と共に粘性ダンバ、摩擦ダンバ等の振動エネルギ吸収装置を構 造物、例えば免震構造物に適用すると、振動中、ばね装置の復元力に加えて振動 エネルギ吸収装置の抵抗力が免震構造物に負荷されるために、免震構造物は、大 きな力を受けることになる結果、振動エネルギ吸収装置の抵抗力とばね装置の復元 力とを受ける部位の剛性を大きくせざるを得なくなる。  By the way, when a vibration energy absorbing device such as a viscous damper or a friction damper is applied to a structure such as a seismic isolation structure together with a spring device, the resistance force of the vibration energy absorbing device is added to the restoring force of the spring device during vibration. As a result, the seismic isolation structure receives a large force, which increases the rigidity of the part that receives the resistance force of the vibration energy absorbing device and the restoring force of the spring device. I have to do it.
[0005] 一方、負の剛性を有した粘性ダンバが提案されて ヽるが、提案に係る粘性ダンバ は、二つのシリンダをつなぐバイパス管にあるバルブの開度を外部指令により調節す るものである力ら、大きなスペースを占める虞がある上に,多くの場合には、ノ レブの 開度調節及び外部指令等が電気的になされているために停電が生じると粘性ダン パは負の剛性をもって目的の動作を行わなくなる虞がある。 [0005] On the other hand, a viscous damper having negative rigidity has been proposed, but the proposed viscous damper adjusts the opening of a valve in a bypass pipe connecting two cylinders by an external command. However, in many cases, viscous dampers are used when a power failure occurs due to electrical adjustment of the opening of the nozzle and external commands. There is a possibility that the intended operation may not be performed with negative rigidity.
[0006] 本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、抵抗 力を受ける構造物又は抵抗力と復帰手段の復元力とを受ける免震構造物の部位の 剛性を特に大きくしなくてもよい上に、停電が生じても目的の動作を行い得、し力も、 それ程占有スペースを必要としないで小型に構成できる負の剛性を有する振動エネ ルギ吸収装置及びそれを備えた構造物を提供することにある。  [0006] The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a structure that receives a resistance force or a part of a base-isolated structure that receives a resistance force and a restoring force of a return means. There is no need to increase the rigidity of the vibration energy absorption device, and it can perform the desired operation even if a power failure occurs, and the vibration energy absorption device has a negative rigidity that can be configured in a small size without requiring much space. And providing a structure including the same.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の振動エネルギ吸収装置は、液体を収容する収容体と、この収容体内を二 室に区画すると共に収容体に対して可動な区画部材と、この区画部材に固着されて V、ると共に収容体を貫通した振動伝達部材と、オリフィスを有すると共にこのオリフィ スを介して収容体内の一方の室と他方の室とを連通する連通手段と、収容体内の一 方の室に連通される第一のポート、収容体内の他方の室に連通される第二のポート 、収容体内の一方の室に一方の一方向弁及びこの一方の一方向弁に並列に配され た一方のオリフィスを介して連通される第三のポート並びに収容体内の他方の室に 他方の一方向弁及びこの他方の一方向弁に並列に配された他方のオリフィスを介し て連通される第四のポートを有した制御弁とを具備しており、制御弁は、収容体に対 する区画部材の相対的な移動におけるその移動方向と移動位置とに基づく第三及 び第四のポートに供給される流体圧によって第一及び第二のポートの連通を制御す る軸方向に可動な弁体を有して 、る。  [0007] The vibration energy absorbing device of the present invention includes a container that contains a liquid, a partition member that divides the container into two chambers and is movable with respect to the container, and is fixed to the partition member so that V, And a vibration transmitting member penetrating the container, a communication means having an orifice and communicating one chamber and the other chamber through the orifice, and one chamber of the container. A first port, a second port communicating with the other chamber in the container, a one-way valve in one chamber in the container and one orifice arranged in parallel with the one-way valve. A third port communicated via the other chamber and a fourth port communicated with the other chamber in the container via the other one-way valve and the other orifice arranged in parallel with the other one-way valve. Control valve, and the control valve The communication of the first and second ports is controlled by the fluid pressure supplied to the third and fourth ports based on the moving direction and moving position of the partition member relative to the container. It has a valve body that is movable in the axial direction.
[0008] 本発明の振動エネルギ吸収装置によれば、連通手段に加えて区画部材の変位に 応じて弁体により第一及び第二のポートの連通が制御されるようになって!/、るために 、負剛性を現出することができる結果、当該振動エネルギ吸収装置を振動伝達部材 を介して例えば免震構造物に用いる場合、抵抗力を受ける構造物又は抵抗力と復 帰手段の復元力とを受ける免震構造物の部位の剛性を特に大きくしなくてもよい上 に、停電が生じても目的の動作を行い得、しかも、それ程占有スペースを必要としな く小型に構成できる。 [0009] 本発明では、制御弁は、第一のポートと第二のポートとに連通された連通路と、第 三のポートに連通されて 、ると共に軸方向にお!、て一方の方向に可動な一方の弁 座部材により二室に区画された一方の受圧室と、第四のポートに連通されていると共 に軸方向にぉ 、て他方の方向に可動な他方の弁座部材により二室に区画された他 方の受圧室と、一方の弁座部材を軸方向にぉ 、て他方の方向に弹性的に付勢する 一方の弾性手段と、他方の弁座部材を軸方向において一方の方向に弾性的に付勢 する他方の弾性手段とを有していてもよぐこの場合、弁体は、連通路に配されてい ると共に連通路を開閉する主制御弁体と、この主制御弁体に連結されていると共に 一方の受圧室の一方の室の流体圧を受容するように一方の弁座部材の貫通孔にお いて当該一方の弁座部材に着座された一方の制御弁体と、主制御弁体に連結され て 、ると共に他方の受圧室の一方の室の流体圧を受容するように他方の弁座部材 の貫通孔において当該他方の弁座部材に着座された他方の制御弁体とを具備して いるとよい。 [0008] According to the vibration energy absorbing device of the present invention, the communication of the first and second ports is controlled by the valve body in accordance with the displacement of the partition member in addition to the communication means! Therefore, as a result of exhibiting negative rigidity, when the vibration energy absorbing device is used for, for example, a seismic isolation structure via a vibration transmission member, the structure receiving resistance force or the restoring force and restoring means It is not necessary to increase the rigidity of the part of the seismic isolation structure that receives the force, and the desired operation can be performed even if a power failure occurs, and it can be configured in a small size without requiring much space. [0009] In the present invention, the control valve communicates with the first port and the second port, communicates with the third port, and in the axial direction. One pressure receiving chamber divided into two chambers by one movable valve seat member and the other valve seat member which is communicated with the fourth port and which is movable in the other direction in the axial direction The other pressure receiving chamber partitioned into two chambers by one, and one valve seat member is axially biased in the other direction, and one elastic means and the other valve seat member are axially biased in the other direction. In this case, the valve element is arranged in the communication path and opens and closes the communication path, and the main control valve element opens and closes the communication path. A through hole in one valve seat member is connected to the main control valve body and receives fluid pressure in one chamber of one pressure receiving chamber. In this case, the one control valve body seated on the one valve seat member and the other control valve body are connected to the main control valve body and receive the fluid pressure in one chamber of the other pressure receiving chamber. The other control valve body seated on the other valve seat member may be provided in the through hole of the seat member.
[0010] 本発明における制御弁は、第一から第四のポート、連通路及び両受圧室が設けら れていると共に弁体、両弁座部材及び弾性手段を収容した弁ハウジングと、第一の ポート側において弁ハウジングに固定されている一方の固定板と、第二のポート側に お ヽて弁ハウジングに固定されて 、る他方の固定板とを具備して 、てもよく、この場 合、一方の弁座部材は、一方の受圧室を二室に区画すると共に一方の受圧室の二 室に開口した貫通孔を有した一方の弁座本体と、一方の受圧室の二室のうちの他方 の室の一定以上の縮小を阻止するように、一方の固定板と一方の弁座本体との間に 配されていると共に弁座本体に一体的に設けられた一方の阻止部とを具備しており 、他方の弁座部材は、他方の受圧室を二室に区画すると共に他方の受圧室の二室 に開口した貫通孔を有した他方の弁座本体と、他方の受圧室の二室のうちの他方の 室の一定以上の縮小を阻止するように、他方の固定板と他方の弁座本体との間に配 されていると共に他方の弁座本体に一体的に設けられた他方の阻止部とを具備して おり、一方の制御弁体は、一端では主制御弁体に固着されていると共に他端では一 方の弁座本体の貫通孔の開口端において当該一方の弁座本体に着座しており、且 つ一方の固定板を軸方向に摺動自在に貫通しており、他方の制御弁体は、一端で は主制御弁体に固着されていると共に他端では他方の弁座本体の貫通孔の開口端 において当該他方の弁座本体に着座しており、且つ他方の固定板を軸方向に摺動 自在に貫通しているとよい。 The control valve according to the present invention includes a first to fourth port, a communication path, and both pressure receiving chambers, and a valve housing that houses a valve body, both valve seat members, and elastic means, One fixing plate fixed to the valve housing on the port side of the second port, and the other fixing plate fixed to the valve housing on the second port side may be provided. In this case, one valve seat member divides one pressure receiving chamber into two chambers and has one valve seat body having a through hole opened in two chambers of one pressure receiving chamber and two chambers of one pressure receiving chamber. One blocking plate disposed between the one fixed plate and the one valve seat body and integrally provided in the valve seat body so as to prevent the other chamber from being reduced more than a certain amount. The other valve seat member divides the other pressure receiving chamber into two chambers and the other receiving member. The other valve seat body having a through-hole opened in the two chambers of the chamber and the other fixing plate and the other of the other pressure-receiving chamber so as to prevent the other chamber from being reduced more than a certain degree. The control valve body is disposed between the valve seat body and the other blocking portion provided integrally with the other valve seat body. One control valve body is fixed to the main control valve body at one end. The other end is seated on the one valve seat body at the open end of the through hole of one valve seat body, and passes through one fixed plate so as to be slidable in the axial direction. The other control valve body at one end Is fixed to the main control valve body, and at the other end is seated on the other valve seat body at the open end of the through hole of the other valve seat body, and the other fixing plate is slidable in the axial direction. It is good to penetrate through.
[0011] 本発明において、一方の弾性手段は、一方の弁座本体と弁ハウジングとの間に配 されていてもよぐ他方の弾性手段は、他方の弁座本体と弁ハウジングとの間に配さ れていてもよぐ一方の受圧室の二室は、一方の弁座部材又は一方の固定板に設け られた孔を介して相互に連通されていてもよぐ他方の受圧室の二室は、他方の弁 座部材又は他方の固定板に設けられた孔を介して相互に連通されていてもよぐ連 通路は、中央通路と、第一のポートに連通された一方の大径通路と、第二のポートに 連通された他方の大径通路と、一端では中央通路に他端では一方の大径通路に夫 々連通されて 、ると共に中央通路から一方の大径通路に向力うに連れて徐々に拡 径された一方の拡径通路と、一端では中央通路に他端では他方の大径通路に夫々 連通されていると共に中央通路力 他方の大径通路に向力うに連れて徐々に拡径さ れた他方の拡径通路とを具備していてもよぐこの場合、主制御弁体は、中央通路を 介する一方の拡径通路と他方の拡径通路との連通を制御するように中央通路の径と 実質的に同一外径を有して 、るとよ 、。  In the present invention, one elastic means may be arranged between one valve seat main body and the valve housing, and the other elastic means may be arranged between the other valve seat main body and the valve housing. The two pressure-receiving chambers, which may be disposed, are connected to the other two pressure-receiving chambers, which may be connected to each other via holes provided in one valve seat member or one fixing plate. The communication passage which may be communicated with each other through a hole provided in the other valve seat member or the other fixing plate has a central passage and one large diameter communicated with the first port. A passage, the other large-diameter passage communicated with the second port, a central passage at one end, and a large-diameter passage at the other end, respectively, and from the central passage toward one large-diameter passage. One diameter-expanded passage, which is gradually expanded as the force is applied, and the central passage at one end and the other large-diameter passage at the other end In this case, the main control valve body may be provided with a central passage force and the other enlarged passage which is gradually enlarged in diameter toward the other large-diameter passage. The outer diameter is substantially the same as the diameter of the central passage so as to control the communication between the one enlarged passage and the other enlarged passage through the passage.
[0012] 本発明の好ましい一つの例では、一方の一方向弁は、収容体内の一方の室から第 三のポートへの流体の流れを許容するようになっており、他方の一方向弁は、収容体 内の他方の室力 第四のポートへの流体の流れを許容するようになっている。また本 発明では、収容体は、液体を収容する円筒シリンダを具備し、円筒シリンダは、円筒 部と、円筒部の両端面を閉塞した閉塞部とを具備し、区画部材は、円筒シリンダの円 筒部内に軸方向に可動に配されたピストンを具備し、振動伝達部材は、円筒シリンダ の各閉塞部を移動自在に貫通していると共にピストンに固着されたピストンロッドを具 備していてもよい。  [0012] In a preferred example of the present invention, one one-way valve is adapted to allow fluid flow from one chamber in the container to the third port, and the other one-way valve is The other chamber force in the container allows the fluid to flow to the fourth port. In the present invention, the container includes a cylindrical cylinder that stores the liquid, the cylindrical cylinder includes a cylindrical portion and a closed portion that closes both end faces of the cylindrical portion, and the partition member is a circular cylinder cylinder. Even if it has a piston arranged movably in the axial direction in the cylinder part, the vibration transmitting member may be provided with a piston rod fixedly attached to the piston while movably penetrating each closed part of the cylindrical cylinder. Good.
[0013] 本発明の構造物は、免震構造物と、免震構造物を初期位置に復帰させる復帰手 段と、上記のいずれかの態様の振動エネルギ吸収装置とを備えており、この場合、振 動伝達部材は、免震構造物の振動を区画部材に伝達するように免震構造物に連結 されている。 [0014] また本発明の構造物において、復帰手段は、免震構造物と免震構造物が設置され る地盤との間に介在された弾性装置を具備していてもよぐ斯かる弾性装置は、積層 ゴム支承及びコイルばねのうちの少なくとも一つを具備して 、てもよ 、。 [0013] The structure of the present invention includes a base isolation structure, a return means for returning the base isolation structure to the initial position, and the vibration energy absorbing device according to any one of the above aspects. The vibration transmitting member is connected to the base isolation structure so as to transmit the vibration of the base isolation structure to the partition member. [0014] In the structure of the present invention, the return means may include an elastic device interposed between the base isolation structure and the ground where the base isolation structure is installed. May comprise at least one of a laminated rubber bearing and a coil spring.
発明の効果  The invention's effect
[0015] 本発明によれば、抵抗力を受ける構造物又は抵抗力と復帰手段の復元力とを受け る免震構造物の部位の剛性を特に大きくしなくてもよい上に、停電が生じても目的の 動作を行い得、しカゝも、それ程占有スペースを必要としないで小型に構成できる負の 剛性を有する振動エネルギ吸収装置及びそれを備えた構造物を提供することができ る。  [0015] According to the present invention, it is not necessary to particularly increase the rigidity of the structure that receives the resistance force or the seismic isolation structure that receives the resistance force and the restoring force of the return means, and a power failure occurs. However, it is possible to provide a vibration energy absorbing device having negative rigidity and a structure including the same, which can perform a desired operation, and can be configured in a small size without requiring an occupied space.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の実施の形態の好ましい一例の断面説明図である。 FIG. 1 is a cross-sectional explanatory diagram of a preferred example of an embodiment of the present invention.
[図 2]図 1に示す例の動作説明図である。  2 is an operation explanatory diagram of the example shown in FIG.
[図 3]図 1に示す例の動作説明図である。  3 is an operation explanatory diagram of the example shown in FIG.
[図 4]図 1に示す例の動作説明図である。  4 is an operation explanatory diagram of the example shown in FIG.
[図 5]図 1に示す例の動作説明図である。  FIG. 5 is an operation explanatory diagram of the example shown in FIG. 1.
[図 6]図 1に示す例の動作説明図である。  6 is an operation explanatory diagram of the example shown in FIG.
[図 7]図 1に示す例の動作説明図である。  FIG. 7 is an operation explanatory diagram of the example shown in FIG. 1.
[図 8]図 1に示す例の動作説明図である。  FIG. 8 is an operation explanatory diagram of the example shown in FIG. 1.
[図 9]図 1に示す例の動作説明図である。  FIG. 9 is an operation explanatory diagram of the example shown in FIG. 1.
[図 10]図 1に示す例の動作説明図である。  10 is an operation explanatory diagram of the example shown in FIG.
[図 11]図 1に示す例を免震構造物に用 、た例の説明図である。  FIG. 11 is an explanatory diagram of an example in which the example shown in FIG. 1 is used for a seismic isolation structure.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 次に本発明及びその実施の形態を、図に示す好ましい例に基づいて更に詳細に 説明する。なお、本発明はこれら例に何等限定されないのである。 Next, the present invention and its embodiments will be described in more detail based on preferred examples shown in the drawings. The present invention is not limited to these examples.
実施例  Example
[0018] 図 1において、本例の振動エネルギ吸収装置 1は、オイル等の液体を収容する収 容体 2と、収容体 2内を二室 3及び 4に区画すると共に収容体 2に対して X方向(収容 体 2の軸方向)に可動な区画部材 5と、区画部材 5に固着されていると共に収容体 2 を貫通した振動伝達部材 6と、流路抵抗可変のオリフィス 7を有すると共にオリフィス 7 を介して収容体 2内の室 3と室 4とを連通する連通手段 8と、収容体 2内の室 3に配管 9を介して連通されるポート 10、収容体 2内の室 4に配管 11を介して連通されるポー ト 12、収容体 2内の室 3に一方向弁 13及び一方向弁 13に並列に配された流路抵抗 可変のオリフィス 14を介して連通されるポート 15並びに収容体 2内の室 4に一方向 弁 16及び一方向弁 16に並列に配された流路抵抗可変のオリフィス 17を介して連通 されるポート 18を有した制御弁 19とを具備している。 In FIG. 1, a vibration energy absorbing device 1 of this example includes a storage body 2 that stores a liquid such as oil, and the storage body 2 is partitioned into two chambers 3 and 4 and X against the storage body 2. Direction (accommodation A partition member 5 movable in the axial direction of the body 2, a vibration transmission member 6 fixed to the partition member 5 and penetrating the housing body 2, and an orifice 7 having a variable flow path resistance and through the orifice 7 Communication means 8 for communicating between chamber 3 and chamber 4 in container 2, port 10 communicating with chamber 3 in container 2 through pipe 9, and port 4 in chamber 2 through pipe 11 Port 12 connected to each other, chamber 15 in container 2, one-way valve 13, and port 15 communicated through variable flow resistance orifice 14 arranged in parallel to one-way valve 13 and container 2 The inner chamber 4 includes a one-way valve 16 and a control valve 19 having a port 18 communicated via an orifice 17 having a variable flow resistance arranged in parallel with the one-way valve 16.
[0019] 収容体 2は、液体 Aを内部に収容する円筒シリンダ 25を具備しており、円筒シリン ダ 25は、円筒部 26と、円筒部 26の両端面を閉塞した閉塞部 27とを具備しており、区 画部材 5は、円筒シリンダ 25の円筒部 26内に X方向に可動に配されたピストン 28を 具備しており、振動伝達部材 6は、円筒シリンダ 25の各閉塞部 27を X方向に移動自 在に貫通していると共にピストン 28に固着されたピストンロッド 29と、ピストンロッド 29 の一端部を免震ビル等の免震構造物 150 (図 11参照)に連結するための取付具 30 とを具備している。 The storage body 2 includes a cylindrical cylinder 25 that stores the liquid A therein. The cylindrical cylinder 25 includes a cylindrical portion 26 and a closed portion 27 that closes both end surfaces of the cylindrical portion 26. The partition member 5 includes a piston 28 that is movably disposed in the X direction in the cylindrical portion 26 of the cylindrical cylinder 25, and the vibration transmitting member 6 includes the closed portions 27 of the cylindrical cylinder 25. A piston rod 29 that penetrates in the direction of movement in the X direction and is fixed to the piston 28, and one end of the piston rod 29 are connected to a base isolation structure 150 such as a base isolation building (see Fig. 11). And fixture 30.
[0020] 円筒部 26は、室 3に連通すると共に配管 9の一端が接続されるポート 35と、室 4に 連通すると共に配管 11の一端が接続されるポート 36とを具備している。  The cylindrical portion 26 includes a port 35 that communicates with the chamber 3 and is connected to one end of the pipe 9, and a port 36 that communicates with the chamber 4 and is connected to one end of the pipe 11.
[0021] 連通手段 8は、オリフィス 7が途中に配設されていると共に一端がポート 41に他端が ポート 42に連通された配管 43を具備している。連通手段 8としては、ポート 41とポー ト 42とをオリフィス 7を介して連通する代わりに、ポート 35とポート 36とをオリフィス 7を 介して直接連通するように、オリフィス 7が途中に配設された配管 43の一端をポート 3 5にその他端をポート 36に直接取り付けてもよぐこの場合には、ポート 41とポート 42 とを設ける必要がない。オリフィス 7は、配管 43を流通する流体 Aに調整された通路 径に従う抵抗を与えるようになって 、る。  The communication means 8 includes a pipe 43 in which the orifice 7 is disposed in the middle and one end of which communicates with the port 41 and the other end of which communicates with the port 42. As the communication means 8, instead of communicating the port 41 and the port 42 via the orifice 7, the orifice 7 is arranged in the middle so that the port 35 and the port 36 are directly communicated via the orifice 7. In this case, it is possible to attach one end of the pipe 43 directly to the port 35 and the other end to the port 36. In this case, it is not necessary to provide the port 41 and the port 42. The orifice 7 gives the fluid A flowing through the pipe 43 a resistance according to the adjusted passage diameter.
[0022] 一方向弁 13は、収容体 2内の室 3からポート 15への流体 Aの流れを許容する一方 その逆の流体 Aの流れを禁止するように、一端がポート 35に他端がポート 15に連通 されている配管 45の途中に設けられており、一方向弁 16は、収容体 2内の室 4から ポート 18への流体 Aの流れを許容する一方その逆の流体 Aの流れを禁止するように 、一端がポート 36に他端がポート 18に連通されている配管 46の途中に設けられて いる。 [0022] The one-way valve 13 has one end connected to the port 35 and the other end to allow the flow of the fluid A from the chamber 3 in the container 2 to the port 15 while prohibiting the reverse flow of the fluid A. The one-way valve 16 is provided in the middle of the pipe 45 communicating with the port 15, and the one-way valve 16 allows the flow of the fluid A from the chamber 4 in the container 2 to the port 18, while the flow of the fluid A is reversed. To ban The other end of the pipe 46 is connected to the port 36 and the other end is connected to the port 18.
[0023] 配管 47の途中に設けられたオリフィス 14は、配管 47を介して一方向弁 13に並列 に配されており、配管 47を流通する流体 Aに調整された通路径に従う抵抗を与える ようになっており、配管 48の途中に設けられたオリフィス 17は、配管 48を介して一方 向弁 16に並列に配されており、配管 48を流通する流体 Aに調整された通路径に従う 抵抗を与えるようになって!/、る。  [0023] The orifice 14 provided in the middle of the pipe 47 is arranged in parallel to the one-way valve 13 via the pipe 47 so that the fluid A flowing through the pipe 47 gives resistance according to the adjusted passage diameter. The orifice 17 provided in the middle of the pipe 48 is arranged in parallel to the one-way valve 16 through the pipe 48, and has a resistance according to the passage diameter adjusted to the fluid A flowing through the pipe 48. Give it! /
[0024] 制御弁 19は、ポート 10、 12、 15、 18、 41及び 42にカロえて、収容体 2に対する区画 部材 5の相対的な X方向の移動におけるその移動方向と移動位置とに基づくポート 1 5及び 18に供給される流体圧によってポート 10及び 12の連通を制御する B方向(制 御弁 19の軸方向)に可動な弁体 51と、ポート 10とポート 12とに連通された連通路 52 と、ポート 15に連通されていると共に B方向に可動な弁座部材 53により二室 54及び 55に区画された受圧室 56と、ポート 18に連通されていると共に B方向に可動な弁座 部材 57により二室 58及び 59に区画された受圧室 60と、弁座部材 53を B方向にお いて B1方向に弹性的に付勢するコイルばね力もなる弾性手段 61と、弁座部材 57を B方向において B1方向と反対の方向である B2方向に弹性的に付勢するコイルばね 力らなる弾'性手段 62と、ポート 10、 12、 15、 18、 41及び 42、連通路 52並びに受圧 室 56及び 60が設けられていると共に弁体 51、弁座部材 53及び 57並びに弾性手段 61及び 62を収容した弁ハウジング 63と、ポート 10側において弁ハウジング 63に固 定されていると共に二室 54及び 55を相互に連通する孔 67が設けられた固定板 64と 、ポート 12側において弁ハウジング 63に固定されていると共に二室 58及び 59を相 互に連通する孔 68が設けられた固定板 65とを具備している。  The control valve 19 is a port based on the movement direction and the movement position in the relative movement in the X direction of the partition member 5 with respect to the container 2 in addition to the ports 10, 12, 15, 18, 41 and 42. 1 Control of communication between ports 10 and 12 by fluid pressure supplied to 5 and 18 Valve body 51 movable in B direction (axial direction of control valve 19), communication connected to ports 10 and 12 A pressure receiving chamber 56 divided into two chambers 54 and 55 by a passage 52, a valve seat 53 that is communicated with the port 15 and movable in the B direction, and a valve that is communicated with the port 18 and movable in the B direction A pressure receiving chamber 60 divided into two chambers 58 and 59 by a seat member 57; an elastic means 61 that also has a coil spring force that biases the valve seat member 53 in the B1 direction in the B direction; and the valve seat member 57. Coil spring force that positively biases the B2 direction in the B direction, which is the opposite direction to the B1 direction. Elastic means 62, ports 10, 12, 15, 18, 41 and 42, communication passage 52 and pressure receiving chambers 56 and 60, and valve body 51, valve seat members 53 and 57, and elastic means 61 , 62, 62, a fixed plate 64 fixed to the valve housing 63 on the port 10 side and provided with a hole 67 communicating with the two chambers 54 and 55, and a valve on the port 12 side. A fixing plate 65 is provided which is fixed to the housing 63 and is provided with a hole 68 which allows the two chambers 58 and 59 to communicate with each other.
[0025] 弁体 51は、連通路 52に配されていると共に連通路 52を開閉する円板状の主制御 弁体 75と、主制御弁体 75に連結されていると共に受圧室 56の室 54の流体圧を受 容するように弁座部材 53の貫通孔 76において当該弁座部材 53に截頭円錐状の端 部で着座された円柱状又はロッド状の制御弁体 77と、主制御弁体 75に連結されて いると共に受圧室 60の室 58の流体圧を受容するように弁座部材 57の貫通孔 78に おいて当該弁座部材 57に截頭円錐状の先端部で着座された円柱状又はロッド状の 制御弁体 79とを具備している。 [0025] The valve body 51 is disposed in the communication path 52 and opens and closes the communication path 52. The valve body 51 is connected to the main control valve body 75 and is connected to the pressure control chamber 56. A cylindrical or rod-shaped control valve body 77 seated on the valve seat member 53 at a frustoconical end in the through-hole 76 of the valve seat member 53 so as to receive the fluid pressure of 54, and a main control It is connected to the valve body 75 and seated on the valve seat member 57 at the tip of the truncated cone shape in the through hole 78 of the valve seat member 57 so as to receive the fluid pressure of the chamber 58 of the pressure receiving chamber 60. Cylindrical or rod-shaped And a control valve body 79.
[0026] 主制御弁体 75は、制御弁体 77及び 79の外径よりも大きな外径を有しており、通常 、連通路 52の中央部に位置している。  The main control valve element 75 has an outer diameter larger than the outer diameters of the control valve elements 77 and 79 and is usually located at the center of the communication path 52.
[0027] 弁座部材 53は、受圧室 56を室 54及び 55に区画すると共に受圧室 56の室 54及び 55に開口した貫通孔 76を有した弁座本体 81と、室 55の一定以上の縮小を阻止す るように、固定板 64と弁座本体 81との間に配されていると共に一端では固定板 64に 当接し他端で弁座本体 81に一体的に設けられた円筒状の阻止部 82とを具備してお り、阻止部 82はその内外を連通する複数の貫通孔 83を有している。  [0027] The valve seat member 53 includes a valve seat body 81 that divides the pressure receiving chamber 56 into chambers 54 and 55 and has a through hole 76 opened in the chambers 54 and 55 of the pressure receiving chamber 56, and a predetermined amount or more of the chamber 55. In order to prevent the reduction, the cylindrical plate is disposed between the fixing plate 64 and the valve seat body 81, and is in contact with the fixing plate 64 at one end and integrally provided with the valve seat body 81 at the other end. The blocking portion 82 includes a plurality of through holes 83 that communicate with the inside and outside of the blocking portion 82.
[0028] 弁座部材 57は、受圧室 60を室 58及び 59に区画すると共に受圧室 60の室 58及び 59に開口した貫通孔 78を有した弁座本体 85と、室 59の一定以上の縮小を阻止す るように、固定板 65と弁座本体 85との間に配されていると共に一端では固定板 65に 当接し他端で弁座本体 85に一体的に設けられた円筒状の阻止部 86とを具備してお り、阻止部 86はその内外を連通する複数の貫通孔 87を有している。  [0028] The valve seat member 57 includes a valve seat body 85 that divides the pressure receiving chamber 60 into chambers 58 and 59 and has a through-hole 78 opened in the chambers 58 and 59 of the pressure receiving chamber 60, and a predetermined amount or more of the chamber 59. In order to prevent the reduction, the cylindrical plate is arranged between the fixed plate 65 and the valve seat body 85, and is in contact with the fixed plate 65 at one end and integrally provided with the valve seat body 85 at the other end. The blocking portion 86 includes a plurality of through holes 87 that communicate with the inside and outside of the blocking portion 86.
[0029] 制御弁体 77は、一端では主制御弁体 75に固着されていると共に截頭円錐状の他 端では弁座本体 81の貫通孔 76の開口端において当該弁座本体 81に着座しており 、且つ固定板 64を B方向に摺動自在に貫通しており、制御弁体 79は、一端では主 制御弁体 75に固着されていると共に截頭円錐状の他端では弁座本体 85の貫通孔 7 8の開口端において当該弁座本体 85に着座しており、且つ固定板 65を B方向に摺 動自在に貫通している。  The control valve body 77 is fixed to the main control valve body 75 at one end, and is seated on the valve seat body 81 at the open end of the through hole 76 of the valve seat body 81 at the other end of the truncated cone shape. The control valve body 79 is fixed to the main control valve body 75 at one end and the valve seat body at the other end of the frustoconical shape. It is seated on the valve seat body 85 at the open end of the through hole 78 of the 85 and penetrates the fixing plate 65 slidably in the B direction.
[0030] 連通路 52は、中央通路 91と、ポート 10及び 41に連通された大径通路 92と、ポート 12及び 42に連通された大径通路 93と、一端では中央通路 91に他端では大径通路 92に夫々連通されていると共に中央通路 91から大径通路 92に向力 に連れて徐々 に拡径された拡径通路 94と、一端では中央通路 91に他端では大径通路 93に夫々 連通されていると共に中央通路 91から大径通路 93に向力 に連れて徐々に拡径さ れた拡径通路 95とを具備しており、主制御弁体 75は、中央通路 91を介する拡径通 路 94と拡径通路 95との連通を制御するように中央通路 91の径と実質的に同一外径 を有している。  [0030] The communication passage 52 includes a central passage 91, a large diameter passage 92 communicated with the ports 10 and 41, a large diameter passage 93 communicated with the ports 12 and 42, and the central passage 91 at one end and the other end at the other end. The large-diameter passage 92 communicates with the large-diameter passage 92 and gradually increases in diameter from the central passage 91 to the large-diameter passage 92, and the central passage 91 at one end and the large-diameter passage 93 at the other end. The main control valve body 75 includes a central passage 91 and a diameter-increasing passage 95 that is gradually expanded from the central passage 91 to the large-diameter passage 93 in accordance with the direction of force. The diameter of the central passage 91 is substantially the same as the diameter of the central passage 91 so as to control the communication between the enlarged diameter passage 94 and the enlarged passage 95.
[0031] 弾性手段 61は、その一端で弁座本体 81の突起 96により、その他端で弁ハウジン グ 63の端面壁部 97の凹所 98で夫々位置決めされて、弁座本体 81と弁ハウジング 6 3の端面壁部 97との間に配されており、弾性手段 62は、その一端で弁座本体 85の 突起 99により、その他端で弁ハウジング 63の端面壁部 100の凹所 101で夫々位置 決めされて、弁座本体 85と弁ハウジング 63の端面壁部 100との間に配されている。 [0031] The elastic means 61 has a projection 96 of the valve seat body 81 at one end and a valve housing at the other end. 63, each of which is positioned in a recess 98 of the end face wall portion 97 of the groove 63 and is arranged between the valve seat body 81 and the end face wall portion 97 of the valve housing 63, and the elastic means 62 has a valve seat at one end thereof. The other end of the valve body 63 is positioned in the recess 101 of the end wall 100 of the valve housing 63 by the protrusion 99 of the main body 85, and is arranged between the valve seat main body 85 and the end wall 100 of the valve housing 63. .
[0032] 弁ハウジング 63は、連通路 52並びにポート 10、 12、 41及び 42を有した中央部 11 1と、中央部 111の一方の端面にねじ 112により固着されていると共に受圧室 56、ポ ート 15及び端面壁部 97を有した蓋部 113と、中央部 111の他方の端面にねじ 114 により固着されて 、ると共に受圧室 60、ポート 18及び端面壁部 100を有した蓋部 11 5とを具備して三分割体力ゝらなる。  [0032] The valve housing 63 includes a central portion 111 having a communication passage 52 and ports 10, 12, 41, and 42, and is fixed to one end surface of the central portion 111 with a screw 112, and includes a pressure receiving chamber 56, A lid portion 113 having a seat 15 and an end surface wall portion 97, and a lid portion 11 having a pressure receiving chamber 60, a port 18 and an end surface wall portion 100 fixed to the other end surface of the central portion 111 by a screw 114. 5 and a three-part physical strength.
[0033] 振動エネルギ吸収装置 1において、各配管、各ポート、連通路 52、受圧室 56及び 60には収容体 2に収容された液体 Aと同一の液体 Aが充填されている。  In the vibration energy absorbing device 1, each pipe, each port, the communication path 52, and the pressure receiving chambers 56 and 60 are filled with the same liquid A as the liquid A stored in the container 2.
[0034] 以上の振動エネルギ吸収装置 1は、図 11に示すような構造物 151において、基礎 を含む地盤 152に対して水平方向 Hに可動となるように転動自在なころ 153を介して 地盤 152上に設置された免震構造物 150側に振動伝達部材 6が取付具 30を介して 連結される一方、収容体 2が地盤 151側に固定されて使用される。免震構造物 150 を初期位置に復帰させる復帰手段は、免震構造物 150と免震構造物 150が設置さ れる地盤 152との間に介在されたコイルばね 154からなる弾性装置を具備しており、 弾性係数 Kを有したコイルばね 154は、地震による免震構造物 150の水平方向 Hの 振動にお!/、て伸縮し、地震が収まると免震構造物 150を振動前の初期位置にその 復元力(弾性力)により復帰させるようになつている。取付具 30を介する振動伝達部 材 6の免震構造物 150側への連結は、免震構造物 150に振動が生じて 、なくコイル ばね 154により免震構造物 150が初期位置に復帰されて静止されている状態で、図 1に示すようにピストン 28が X方向にぉ 、て円筒部 26の略中央に位置するようになさ れる。  The above-described vibration energy absorbing device 1 has a structure 151 as shown in FIG. 11 through a roller 153 that can roll in a horizontal direction H with respect to the ground 152 including the foundation. The vibration transmitting member 6 is connected to the seismic isolation structure 150 installed on the 152 via the fixture 30, while the container 2 is used while being fixed to the ground 151 side. The return means for returning the base isolation structure 150 to the initial position includes an elastic device including a coil spring 154 interposed between the base isolation structure 150 and the ground 152 where the base isolation structure 150 is installed. The coil spring 154 with the elastic modulus K expands and contracts due to the vibration of the seismic isolation structure 150 in the horizontal direction H! / When the earthquake stops, the seismic isolation structure 150 is moved to the initial position before the vibration. It is designed to be restored by its restoring force (elastic force). When the vibration transmitting member 6 is connected to the seismic isolation structure 150 via the fixture 30, the seismic isolation structure 150 is not vibrated, and the seismic isolation structure 150 is returned to the initial position by the coil spring 154. In a stationary state, as shown in FIG. 1, the piston 28 is positioned in the approximate center of the cylindrical portion 26 in the X direction.
[0035] この状態で、免震構造物 150が地震により水平方向 Hに振動されてピストンロッド 2 9を介してピストン 28が最初に図 2に示すように X方向にぉ 、て XI方向に移動される と、室 4の液体 Aが増圧される一方、室 3の液体 Aが減圧される結果、室 4の液体 Aが オリフィス 7を介して室 3側に流動すると共に、室 4の液体 Aの増圧が主として一方向 弁 16を介して室 58に伝達されて室 58の液体 Aが同じく増圧される一方、室 3の液体 Aの減圧がオリフィス 14を介して室 54に伝達されて室 54の液体 Aが同じく減圧され る。ピストン 28の最初の XI方向の移動においてその最大変位位置(D= + Max)の 近傍までピストン 28が移動されても、中央通路 91を開通させる程度までは主制御弁 体 75が B2方向に移動されず、したがって、振動エネルギ吸収装置 1は、円筒部 26 の略中央位置(D = 0)力も XI方向のピストン 28の最大変位位置(D= +Max)の近 傍までのピストンロッド 29の XI方向の移動では、オリフィス 7に基づく図 10の曲線 12 1で示す反力(抵抗) Rをピストンロッド 29に与えることになる。 In this state, the seismic isolation structure 150 is vibrated in the horizontal direction H by the earthquake, and the piston 28 first moves in the X direction and then moves in the XI direction via the piston rod 29 as shown in FIG. As a result, the pressure in the liquid A in the chamber 4 is increased, while the liquid A in the chamber 3 is depressurized. As a result, the liquid A in the chamber 4 flows to the chamber 3 side through the orifice 7, and the liquid in the chamber 4 A pressure increase is mainly unidirectional Liquid A in chamber 58 is also increased in pressure through chamber 16 to valve 58, while the reduced pressure in liquid A in chamber 3 is transmitted to chamber 54 through orifice 14 and liquid A in chamber 54 is also the same. The pressure is reduced. Even if the piston 28 is moved to the vicinity of its maximum displacement position (D = + Max) in the first movement of the piston 28 in the XI direction, the main control valve body 75 moves in the B2 direction until the central passage 91 is opened. Therefore, the vibration energy absorbing device 1 is configured so that the force at the substantially central position (D = 0) of the cylindrical portion 26 is XI of the piston rod 29 up to the maximum displacement position (D = + Max) of the piston 28 in the XI direction. In the movement in the direction, the reaction force (resistance) R indicated by the curve 12 1 in FIG.
[0036] 更に、 XI方向の最大変位位置(D= +Max)の近傍力も最大変位位置(D= +M ax)までピストン 28が移動されると、室 58の液体 Aの増圧と室 54の液体 Aの減圧とで 、弁体 51及び弁座部材 53が弾性手段 62の伸長及び弾性手段 61の縮小の生起と 共に B2方向に移動されて図 3及び図 4に示すように制御弁体 79が弁座本体 85から 離れると共に主制御弁体 75が中央通路 91から外れて拡径通路 94を介して大径通 路 92側に位置し、而して、中央通路 91が開通されて中央通路 91、拡径通路 94及び 95を介する大径通路 92と大径通路 93との連通がなされ、室 4の液体 Aの室 3側への 流動がオリフィス 7に代わって中央通路 91を介してなされるようになる結果、振動エネ ルギ吸収装置 1は、ピストン 28の XI方向の最大変位位置(D= +Max)では、略零 の反力 Rをピストンロッド 29に与えることになる。弁座部材 53の B2方向への移動にお いては、大径通路 92から孔 67を介して室 55に液体 Aが導入される結果、室 55が負 圧になることがない。 Furthermore, when the piston 28 is moved to the maximum displacement position (D = + Max) in the vicinity of the maximum displacement position (D = + Max) in the XI direction, the pressure increase of the liquid A in the chamber 58 and the chamber 54 are increased. When the pressure of the liquid A is reduced, the valve body 51 and the valve seat member 53 are moved in the B2 direction together with the expansion of the elastic means 62 and the contraction of the elastic means 61, and as shown in FIGS. 79 is separated from the valve seat body 85 and the main control valve body 75 is separated from the central passage 91 and is positioned on the large diameter passage 92 side via the enlarged diameter passage 94, so that the central passage 91 is opened and the central passage 91 is opened. The large diameter passage 92 and the large diameter passage 93 are communicated with each other through the passage 91 and the enlarged diameter passages 94 and 95, and the flow of the liquid A in the chamber 4 toward the chamber 3 side is performed through the central passage 91 instead of the orifice 7. As a result, the vibration energy absorbing device 1 applies a substantially zero reaction force R to the piston rod 29 at the maximum displacement position (D = + Max) of the piston 28 in the XI direction. It will be giving. In the movement of the valve seat member 53 in the B2 direction, the liquid A is introduced into the chamber 55 from the large diameter passage 92 through the hole 67, so that the chamber 55 does not become negative pressure.
[0037] XI方向の最大変位位置(D= +Max)までピストン 28が移動された後に、ピストン 2 8が X方向にぉ 、て XI方向と反対の方向である X2方向に移動され始めると、今度は 、室 3の液体 Aが増圧される一方、室 4の液体 Aが減圧される結果、主として一方向 弁 13を介する室 54の液体 Aの増圧とオリフィス 17を介する室 58の液体 Aの減圧とに より、弁体 51及び弁座部材 57が B2方向と反対の方向である B1方向に移動されて 図 5に示すように主制御弁体 75が中央通路 91に再び位置し、中央通路 91が閉鎖さ れて中央通路 91、拡径通路 94及び 95を介する大径通路 92と大径通路 93との連通 が阻止なされ、室 3の液体 Aの室 4側への流動が中央通路 91に代わって再びオリフ イス 7を介してなされる結果、振動エネルギ吸収装置 1は、ピストン 28の XI方向の最 大変位位置(D= + Max)から X2方向の移動では、オリフィス 7に基づく図 10の曲線 122で示す反力 Rをピストンロッド 29に与えることになる。弁座部材 53の B1方向への 移動においては、室 55から孔 67を介して大径通路 92に液体 Aが導出される。 [0037] After the piston 28 is moved to the maximum displacement position (D = + Max) in the XI direction, when the piston 28 is moved in the X direction and then in the X2 direction, which is the opposite direction to the XI direction, This time, liquid A in chamber 3 is increased while liquid A in chamber 4 is depressurized, resulting in an increase in the pressure of liquid A in chamber 54 via one-way valve 13 and the liquid in chamber 58 via orifice 17. Due to the pressure reduction of A, the valve body 51 and the valve seat member 57 are moved in the direction B1, which is the direction opposite to the direction B2, and the main control valve body 75 is positioned again in the central passage 91 as shown in FIG. The central passage 91 is closed, and the communication between the large diameter passage 92 and the large diameter passage 93 via the central passage 91 and the enlarged diameter passages 94 and 95 is blocked, and the flow of the liquid A in the chamber 3 to the chamber 4 side becomes the center. Orif again on behalf of passage 91 As a result, the vibration energy absorbing device 1 is shown as a curve 122 in FIG. 10 based on the orifice 7 when the piston 28 moves in the X2 direction from the maximum displacement position (D = + Max) of the piston XI in the X2 direction. The reaction force R is applied to the piston rod 29. In the movement of the valve seat member 53 in the B1 direction, the liquid A is led out from the chamber 55 to the large diameter passage 92 through the hole 67.
[0038] ピストン 28の XI方向の最大変位位置(D= +Max)からピストン 28の X2方向の移 動において円筒部 26の略中央位置 (D = 0)の近傍までピストン 28が移動されても、 図 5に示すように中央通路 91を開通させる程度までは主制御弁体 75が B1方向に移 動されず、したがって、振動エネルギ吸収装置 1は、 XI方向の最大変位位置 (D = + Max)から円筒部 26の略中央位置(D=0)の近傍までのピストンロッド 29の X2方 向の移動では、オリフィス 7に基づく図 10の曲線 122で示す反力(抵抗) Rをピストン ロッド 29に与えることになる。  [0038] Even if the piston 28 is moved from the maximum displacement position (D = + Max) of the piston 28 in the XI direction to the vicinity of the substantially central position (D = 0) of the cylindrical portion 26 in the movement of the piston 28 in the X2 direction. As shown in FIG. 5, the main control valve body 75 is not moved in the B1 direction until the central passage 91 is opened.Therefore, the vibration energy absorbing device 1 has a maximum displacement position in the XI direction (D = + Max ) To the vicinity of the approximate center position (D = 0) of the cylindrical part 26 in the X2 direction, the reaction force (resistance) R shown by the curve 122 in FIG. Will be given to.
[0039] ピストン 28が円筒部 26の略中央位置(D=0)力も更に X2方向に継続して移動さ れると、室 54の液体 Aの増圧と室 58の液体 Aの減圧とにより弁体 51及び弁座部材 5 7が弾性手段 61の伸長及び弾性手段 62の縮小の生起と共に B1方向に大きく移動 されて図 6及び図 7に示すように制御弁体 77が弁座本体 81から離れると共に主制御 弁体 75が中央通路 91から外れて拡径通路 95を介して大径通路 93側に位置し、中 央通路 91が開通されて中央通路 91、拡径通路 94及び 95を介する大径通路 92と大 径通路 93との連通がなされ、室 3の液体 Aの室 4側への流動がオリフィス 7に代わつ て中央通路 91を介してなされる結果、振動エネルギ吸収装置 1は、ピストン 28の X2 方向の略中央位置(D = 0)力 X2方向の移動では、中央通路 91に基づく図 10の 直線 123で示す略零の反力 Rをピストンロッド 29に与えることになる。弁座部材 57の B1方向への移動においては、大径通路 93から孔 68を介して室 59に液体 Aが導入 される結果、室 59が負圧になることがない。  [0039] When the piston 28 is continuously moved in the X2 direction also at the substantially central position (D = 0) of the cylindrical portion 26, the pressure is increased by increasing the pressure of the liquid A in the chamber 54 and decreasing the pressure of the liquid A in the chamber 58. The body 51 and the valve seat member 57 are moved greatly in the direction B1 with the expansion of the elastic means 61 and the contraction of the elastic means 62, and the control valve body 77 moves away from the valve seat body 81 as shown in FIGS. At the same time, the main control valve body 75 deviates from the central passage 91 and is positioned on the large-diameter passage 93 side via the enlarged-diameter passage 95. As a result of the communication between the diameter passage 92 and the large diameter passage 93 and the flow of the liquid A in the chamber 3 to the chamber 4 side through the central passage 91 instead of the orifice 7, the vibration energy absorbing device 1 Piston 28 approximately center position (D = 0) force in the X2 direction When moving in the X2 direction, approximately zero reaction force indicated by the straight line 123 in FIG. R is given to the piston rod 29. In the movement of the valve seat member 57 in the B1 direction, the liquid A is introduced into the chamber 59 from the large diameter passage 93 through the hole 68, so that the chamber 59 does not become negative pressure.
[0040] 図 8に示すように円筒部 26の略中央位置(D = 0)力も X2方向の移動でピストン 28 力 ¾2方向の最大変位位置 (D= -Max)に到達後、最大変位位置 (D= -Max)か ら再び XI方向に移動され始めると、室 4の液体 Aが増圧される一方、室 3の液体 Aが 減圧される結果、主として一方向弁 16を介する室 58の液体 Aの増圧とオリフィス 14 を介する室 54の液体 Aの減圧とにより、弁体 51及び弁座部材 57が B2方向に移動さ れて図 1及び図 8に示すように主制御弁体 75が中央通路 91に再び位置し、中央通 路 91が閉鎖されて中央通路 91、拡径通路 94及び 95を介する大径通路 92と大径通 路 93との連通が阻止なされ、室 4の液体 Aの室 3側への流動が中央通路 91に代わ つて再びオリフィス 7を介してなされる結果、振動エネルギ吸収装置 1は、ピストン 28 の X2方向の最大変位位置(D=— Max)から XI方向の移動では、オリフィス 7に基 づく図 10の曲線 124で示す反力 Rをピストンロッド 29に与えることになる。弁座部材 5 7の B2方向への移動においては、室 59から孔 68を介して大径通路 93に液体 Aが 導出される。 [0040] As shown in Fig. 8, the force at the substantially central position (D = 0) of the cylindrical portion 26 also reaches the maximum displacement position (D = -Max) in the piston 28 force ¾2 direction by moving in the X2 direction, and then the maximum displacement position ( (D = -Max), the liquid A in the chamber 4 is increased in pressure while the liquid A in the chamber 4 is depressurized.As a result, the liquid in the chamber 58 mainly through the one-way valve 16 is increased. The valve body 51 and the valve seat member 57 are moved in the B2 direction by the pressure increase of A and the pressure reduction of the liquid A in the chamber 54 via the orifice 14. As shown in FIGS. 1 and 8, the main control valve body 75 is positioned again in the central passage 91, and the central passage 91 is closed and the large passage 92 and the large passage 92 through the enlarged passages 94 and 95 are large. As a result of the communication with the radial passage 93 being blocked and the flow of the liquid A in the chamber 4 to the chamber 3 side again through the orifice 7 instead of the central passage 91, the vibration energy absorbing device 1 When moving in the XI direction from the maximum displacement position (D = —Max) in the X2 direction, the reaction force R indicated by the curve 124 in FIG. In the movement of the valve seat member 57 in the B2 direction, the liquid A is led from the chamber 59 to the large diameter passage 93 through the hole 68.
[0041] ピストン 28が円筒部 26の略中央位置(D=0)力も更に XI方向に継続して移動さ れると、室 58の液体 Aの増圧と室 54の液体 Aの減圧とにより弁体 51及び弁座部材 5 3が前記とは逆に弾性手段 61の縮小及び弾性手段 62の伸長の生起と共に B2方向 に大きく再び移動されて図 4及び図 9に示すように制御弁体 79が弁座本体 85から離 れると共に主制御弁体 75が中央通路 91から外れて拡径通路 94を介して大径通路 9 2側に位置し、中央通路 91が開通されて中央通路 91、拡径通路 94及び 95を介する 大径通路 92と大径通路 93との連通がなされ、室 4の液体 Aの室 3側への流動がオリ フィス 7に代わって中央通路 91を介してなされる結果、振動エネルギ吸収装置 1は、 ピストン 28の略中央位置(D=0)力も XI方向の移動では、中央通路 91に基づく図 1 0の直線 125で示す略零の反力 Rをピストンロッド 29に与えることになる。  [0041] When the force of the piston 28 at the substantially central position (D = 0) of the cylindrical portion 26 is further continuously moved in the XI direction, the valve is increased by increasing the pressure of the liquid A in the chamber 58 and decreasing the pressure of the liquid A in the chamber 54. Contrary to the above, the body 51 and the valve seat member 53 are largely moved again in the direction B2 along with the contraction of the elastic means 61 and the expansion of the elastic means 62, so that the control valve body 79 is moved as shown in FIGS. The main control valve body 75 moves away from the central passage 91 and is located on the large-diameter passage 92 side through the enlarged-diameter passage 94 while being separated from the valve seat body 85, and the central passage 91 is opened to the central passage 91 and the enlarged-diameter. As a result of communication between the large-diameter passage 92 and the large-diameter passage 93 through the passages 94 and 95, the flow of the liquid A in the chamber 4 to the chamber 3 side is performed through the central passage 91 instead of the orifice 7. The vibration energy absorbing device 1 has a substantially central position (D = 0) force of the piston 28 in the XI direction, and is substantially represented by a straight line 125 in FIG. Zero reaction force R is given to piston rod 29.
[0042] XI方向の最大変位位置(D= + Max)まで再びピストン 28が移動された以後は、 ピストン 28が X2及び XI方向に振動する限りにお 、て上記の動作を繰り返して、振 動エネルギ吸収装置 1は、図 10に示す曲線 122、直線 123、曲線 124及び直線 12 5で示す減衰ループ力もなる反力 Rをピストンロッド 29に与えることになる。そして振 動エネルギ吸収装置 1では、免震構造物 150の地震による水平方向 Hの振動の振 幅及び速度の減少と共に曲線 122、直線 123、曲線 124及び直線 125で示される減 衰ループが小さくなつて、その減衰ループで示される減衰を免震構造物 150の地震 による水平方向 Hの振動に対して与えることになり、免震構造物 150の振動が収まる と、コイルばね 154の復元力によって免震構造物 150は初期位置に配される。  [0042] After the piston 28 is moved again to the maximum displacement position in the XI direction (D = + Max), the above operation is repeated until the piston 28 vibrates in the X2 and XI directions. The energy absorbing device 1 applies to the piston rod 29 a reaction force R that also has a damping loop force indicated by a curve 122, a straight line 123, a curve 124, and a straight line 125 shown in FIG. In the vibration energy absorbing device 1, the attenuation loop indicated by the curves 122, 123, 124, and 125 becomes smaller as the amplitude and speed of the vibration in the horizontal direction H due to the earthquake of the seismic isolation structure 150 decrease. Therefore, the damping indicated by the damping loop is applied to the vibration in the horizontal direction H caused by the earthquake of the seismic isolation structure 150, and when the vibration of the seismic isolation structure 150 is settled, the damping force of the coil spring 154 Seismic structure 150 is placed in the initial position.
[0043] ところで、免震構造物 150の振動中において免震構造物 150には、ピストン 28の X 方向の各位置 Dに対して図 10に示す復元力直線 130で表されるようなコイルばね 1 54の復元力 Rと振動エネルギ吸収装置 1の反力 Rとが負荷されることになるのである が、振動エネルギ吸収装置 1が免震構造物 150の位置 Dの変位に対して所謂負の 剛性を有したものとなるために、免震構造物 150に負荷される振動エネルギ吸収装 置 1の反力 Rとコイルばねの復元力 Rとの合力が比較的小さくなり、これら合力を受け る免震構造物 150の剛性を特に大きくしなくてもよくなる。 [0043] By the way, during the vibration of the seismic isolation structure 150, the X For each position D in the direction, the restoring force R of the coil spring 1 54 and the reaction force R of the vibration energy absorber 1 as represented by the restoring force straight line 130 shown in FIG. 10 are loaded. However, since the vibration energy absorbing device 1 has a so-called negative rigidity with respect to the displacement of the position D of the base isolation structure 150, the vibration energy absorption device 1 loaded on the base isolation structure 150 The resultant force between the reaction force R and the restoring force R of the coil spring becomes relatively small, and the rigidity of the seismic isolation structure 150 that receives these resultant forces does not need to be particularly increased.
[0044] 力!]えて、振動エネルギ吸収装置 1では、収容体 2に対する区画部材 5の相対的な X 方向の移動におけるその移動方向と移動位置とに基づくポート 15及び 18に供給さ れる流体圧によってポート 10及び 12の連通を制御する B方向に可動な弁体 51を有 した制御弁 19を用いているために、停電が生じても目的の動作を行い得、し力も、そ れ程占有スペースを必要としないで負の剛性をもって小型に構成できる。  [0044] Power! In the vibration energy absorbing device 1, the ports 10 and 12 are driven by the fluid pressure supplied to the ports 15 and 18 based on the movement direction and the movement position of the partition member 5 relative to the container 2 in the X direction. Because the control valve 19 with the valve body 51 movable in the B direction is used, the desired operation can be performed even if a power failure occurs, and the force does not require much space. It can be made compact with negative rigidity.
[0045] 上記は、ころ 153によって免震化された免震構造物 150の例である力 これに代え て、滑り部材等を介して免震構造物 150を地盤 152に対して水平方向 Hに可動とな るように地盤 152上に設置してもよぐ更には、例えば積層ゴム支承でもって免震ィ匕さ れた免震構造物でもよぐこの場合には、コイルばね 154を省いて、弾性装置として の積層ゴム支承に復帰機能を担わせてもよぐ更には、構造物としては免震化されて いない構造物であってもよぐこの場合には、復帰手段を特に構造物とは別体に設け ないで構造物自体に復帰機能を備えさせてもよい。また、オリフィス 7、 14及び 17の 流路抵抗を調節して免震構造物又は免震ィ匕されていない構造物に図 10の曲線 131 、直線 123、曲線 132及び直線 125又は曲線 133、直線 123、曲線 134及び直線 1 25で表されるような最適な減衰ループが得られるようにしてもよい。なお、図 10に示 す曲線は、説明のための原理的な曲線であって、実際には曲線 122と直線 123とは 、原点( = 0)を通ることなしに結ばれることになり、曲線 124と直線 125とについても 同様である。  [0045] The above is a force that is an example of the seismic isolation structure 150 that has been seismically isolated by the rollers 153. Instead, the seismic isolation structure 150 is placed in the horizontal direction H with respect to the ground 152 via a sliding member or the like. It can be installed on the ground 152 so that it can be moved, or it can be a seismic isolation structure that is seismically isolated with, for example, a laminated rubber bearing. In this case, the coil spring 154 is omitted. In addition, the laminated rubber support as an elastic device may have a return function, or the structure may be a structure that is not seismically isolated. The structure itself may be provided with a return function without being provided separately. In addition, the flow resistance of the orifices 7, 14 and 17 is adjusted so that the seismic isolation structure or the structure that is not seismic isolation is added to the curve 131, straight line 123, curved line 132 and straight line 125 or curved line 133, It is also possible to obtain an optimum damping loop as represented by 123, curve 134 and straight line 125. Note that the curve shown in FIG. 10 is a principle curve for explanation, and in fact, the curve 122 and the straight line 123 are connected without passing through the origin (= 0). The same applies to 124 and straight line 125.
[0046] なお、二室 54及び 55を相互に連通する孔 67を固定板 64に、二室 58及び 59を相 互に連通する孔 68を固定板 65に夫々設ける代わりに、孔 67を弁座本体 81に、孔 6 8を弁座本体 85に夫々設けてもよ!、。  [0046] Instead of providing the hole 67 in the fixed plate 64 for communicating the two chambers 54 and 55 with each other in the fixing plate 64 and the hole 68 for connecting the two chambers 58 and 59 in the fixing plate 65 with each other, the hole 67 is provided as a valve. A hole 68 may be provided in the valve seat body 85 in the seat body 81!

Claims

請求の範囲 The scope of the claims
[1] 液体を収容する収容体と、この収容体内を二室に区画すると共に収容体に対して 可動な区画部材と、この区画部材に固着されて 、ると共に収容体を貫通した振動伝 達部材と、オリフィスを有すると共にこのオリフィスを介して収容体内の一方の室と他 方の室とを連通する連通手段と、収容体内の一方の室に連通される第一のポート、 収容体内の他方の室に連通される第二のポート、収容体内の一方の室に一方の一 方向弁及びこの一方の一方向弁に並列に配された一方のオリフィスを介して連通さ れる第三のポート並びに収容体内の他方の室に他方の一方向弁及びこの他方の一 方向弁に並列に配された他方のオリフィスを介して連通される第四のポートを有した 制御弁とを具備しており、制御弁は、収容体に対する区画部材の相対的な移動にお けるその移動方向と移動位置とに基づく第三及び第四のポートに供給される流体圧 によって第一及び第二のポートの連通を制御する軸方向に可動な弁体を有して!/、る 振動エネルギ吸収装置。  [1] A container for storing a liquid, a partition member that divides the container into two chambers and that is movable with respect to the container, and vibration transmission that is fixed to the partition member and penetrates the container A member, a communication means having an orifice and communicating the one chamber in the container and the other chamber through the orifice, a first port communicating with the one chamber in the container, and the other in the container A second port communicated with the first chamber, a third port communicated with one chamber in the housing through one one-way valve and one orifice arranged in parallel with the one-way valve; A control valve having a fourth port communicated with the other one-way valve and the other orifice arranged in parallel with the other one-way valve in the other chamber in the container; The control valve is relative to the compartment relative to the container. It has an axially movable valve body that controls the communication of the first and second ports by the fluid pressure supplied to the third and fourth ports based on the moving direction and moving position in movement. ! /, Ru Vibration energy absorber.
[2] 制御弁は、第一のポートと第二のポートとに連通された連通路と、第三のポートに 連通されて!/、ると共に軸方向にお!、て一方の方向に可動な一方の弁座部材により 二室に区画された一方の受圧室と、第四のポートに連通されていると共に軸方向に おいて他方の方向に可動な他方の弁座部材により二室に区画された他方の受圧室 と、一方の弁座部材を軸方向にぉ 、て他方の方向に弹性的に付勢する一方の弾性 手段と、他方の弁座部材を軸方向にぉ 、て一方の方向に弹性的に付勢する他方の 弾性手段とを有しており、弁体は、連通路に配されていると共に連通路を開閉する主 制御弁体と、この主制御弁体に連結されていると共に一方の受圧室の一方の室の流 体圧を受容するように一方の弁座部材の貫通孔において当該一方の弁座部材に着 座された一方の制御弁体と、主制御弁体に連結されて 、ると共に他方の受圧室の一 方の室の流体圧を受容するように他方の弁座部材の貫通孔において当該他方の弁 座部材に着座された他方の制御弁体とを具備して 1ヽる請求項 1に記載の振動エネル ギ吸収装置。  [2] The control valve communicates with the first port and the second port, and communicates with the third port! /, And in the axial direction! One pressure receiving chamber divided into two chambers by one valve seat member, and divided into two chambers by the other valve seat member communicating with the fourth port and movable in the other direction in the axial direction. The other pressure receiving chamber, the one valve seat member in the axial direction, one elastic means for inertially urging in the other direction, and the other valve seat member in the axial direction. The valve body is arranged in the communication passage and is connected to the main control valve body. The main control valve body opens and closes the communication passage. And the one valve seat member in the through hole of the one valve seat member so as to receive the fluid pressure of one chamber of the one pressure receiving chamber. One of the seated control valve bodies and the other of the other valve seat member are connected to the main control valve body and receive the fluid pressure of one chamber of the other pressure receiving chamber. The vibration energy absorbing device according to claim 1, further comprising: the other control valve body seated on the valve seat member.
[3] 制御弁は、第一から第四のポート、連通路及び両受圧室が設けられていると共に 弁体、両弁座部材及び弾性手段を収容した弁ハウジングと、第一のポート側におい て弁ハウジングに固定されている一方の固定板と、第二のポート側において弁ハウジ ングに固定されている他方の固定板とを具備しており、一方の弁座部材は、一方の 受圧室を二室に区画すると共に一方の受圧室の二室に開口した貫通孔を有した一 方の弁座本体と、一方の受圧室の二室のうちの他方の室の一定以上の縮小を阻止 するように、一方の固定板と一方の弁座本体との間に配されていると共に弁座本体 に一体的に設けられた一方の阻止部とを具備しており、他方の弁座部材は、他方の 受圧室を二室に区画すると共に他方の受圧室の二室に開口した貫通孔を有した他 方の弁座本体と、他方の受圧室の二室のうちの他方の室の一定以上の縮小を阻止 するように、他方の固定板と他方の弁座本体との間に配されていると共に他方の弁 座本体に一体的に設けられた他方の阻止部とを具備しており、一方の制御弁体は、 一端では主制御弁体に固着されていると共に他端では一方の弁座本体の貫通孔の 開口端において当該一方の弁座本体に着座しており、且つ一方の固定板を軸方向 に摺動自在に貫通しており、他方の制御弁体は、一端では主制御弁体に固着されて いると共に他端では他方の弁座本体の貫通孔の開口端において当該他方の弁座本 体に着座しており、且つ他方の固定板を軸方向に摺動自在に貫通して 、る請求項 2 に記載の振動エネルギ吸収装置。 [3] The control valve is provided with first to fourth ports, communication passages and both pressure receiving chambers, and a valve housing containing the valve body, both valve seat members and elastic means, and a first port side. One fixing plate fixed to the valve housing and the other fixing plate fixed to the valve housing on the second port side, and one valve seat member is connected to one pressure receiving chamber. One valve seat body having a through hole opened in two chambers of one pressure receiving chamber and the other of the two chambers of one pressure receiving chamber is prevented from being reduced more than a certain amount. As shown in the figure, it is provided between one fixed plate and one valve seat main body and one blocking portion provided integrally with the valve seat main body, and the other valve seat member is The other pressure-receiving chamber is divided into two chambers, and the other valve seat body having a through-hole opened in two chambers of the other pressure-receiving chamber and the other one of the two chambers of the other pressure-receiving chamber are constant. In order to prevent the above reduction, the other valve is disposed between the other fixing plate and the other valve seat body. And a control valve body fixed to the main control valve body at one end and a through hole of one valve seat body at the other end. It is seated on the one valve seat body at the open end and penetrates one fixed plate so as to be slidable in the axial direction, and the other control valve body is fixed to the main control valve body at one end. And at the other end, the other valve seat body is seated at the open end of the through hole of the other valve seat body, and the other fixing plate is slidably penetrated in the axial direction. 2. The vibration energy absorbing device according to 2.
[4] 一方の弾性手段は、一方の弁座本体と弁ハウジングとの間に配されており、他方の 弾性手段は、他方の弁座本体と弁ハウジングとの間に配されている請求項 3に記載 の振動エネルギ吸収装置。 [4] The one elastic means is disposed between one valve seat body and the valve housing, and the other elastic means is disposed between the other valve seat body and the valve housing. 4. The vibration energy absorbing device according to 3.
[5] 一方の受圧室の二室は、一方の弁座部材又は一方の固定板に設けられた孔を介 して相互に連通されており、他方の受圧室の二室は、他方の弁座部材又は他方の 固定板に設けられた孔を介して相互に連通されている請求項 3又は 4に記載の振動 エネルギ吸収装置。  [5] Two chambers of one pressure receiving chamber are connected to each other through a hole provided in one valve seat member or one fixing plate, and the two chambers of the other pressure receiving chamber are connected to the other valve 5. The vibration energy absorbing device according to claim 3, wherein the vibration energy absorbing device is in communication with each other through a hole provided in the seat member or the other fixing plate.
[6] 連通路は、中央通路と、第一のポートに連通された一方の大径通路と、第二のポー トに連通された他方の大径通路と、一端では中央通路に他端では一方の大径通路 に夫々連通されていると共に中央通路力 一方の大径通路に向力うに連れて徐々に 拡径された一方の拡径通路と、一端では中央通路に他端では他方の大径通路に夫 々連通されて 、ると共に中央通路力 他方の大径通路に向力うに連れて徐々に拡 径された他方の拡径通路とを具備しており、主制御弁体は、中央通路を介する一方 の拡径通路と他方の拡径通路との連通を制御するように中央通路の径と実質的に同 一外径を有して 、る請求項 2から 5の 、ずれか一項に記載の振動エネルギ吸収装置 [6] The communication path includes a central passage, one large diameter passage communicated with the first port, the other large diameter passage communicated with the second port, a central passage at one end and a central passage at the other end. One large-diameter passage is communicated with each other and the central passage force is gradually increased in diameter toward one large-diameter passage, one enlarged-diameter passage at one end, the central passage at one end, and the other large at the other end. The center passage force and the other large diameter passage gradually increase as they are communicated with each other. The main control valve body has a diameter substantially equal to the diameter of the central passage so as to control the communication between the one enlarged passage and the other enlarged passage through the central passage. 6. The vibration energy absorbing device according to claim 2, wherein the vibration energy absorbing devices have the same outer diameter.
[7] 一方の一方向弁は、収容体内の一方の室から第三のポートへの流体の流れを許 容するようになっており、他方の一方向弁は、収容体内の他方の室力 第四のポート への流体の流れを許容するようになって!/、る請求項 1から 6の 、ずれか一項に記載 の振動エネルギ吸収装置。 [7] One one-way valve allows fluid flow from one chamber in the containment to the third port, and the other one-way valve provides the other chamber force in the containment. The vibration energy absorbing device according to any one of claims 1 to 6, wherein a fluid flow to the fourth port is allowed! /.
[8] 収容体は、液体を収容する円筒シリンダを具備しており、円筒シリンダは、円筒部と 、円筒部の両端面を閉塞した閉塞部とを具備しており、区画部材は、円筒シリンダの 円筒部内に軸方向に可動に配されたピストンを具備しており、振動伝達部材は、円 筒シリンダの各閉塞部を移動自在に貫通していると共にピストンに固着されたピストン ロッドを具備して 、る請求項 1から 7の 、ずれか一項に記載の振動エネルギ吸収装置  [8] The container includes a cylindrical cylinder that stores a liquid. The cylindrical cylinder includes a cylindrical portion and a closed portion that closes both end faces of the cylindrical portion. The partition member is a cylindrical cylinder. The cylinder is provided with a piston movably disposed in the axial direction, and the vibration transmitting member includes a piston rod that penetrates each closed portion of the cylindrical cylinder and is fixed to the piston. The vibration energy absorbing device according to any one of claims 1 to 7,
[9] 免震構造物と、免震構造物を初期位置に復帰させる復帰手段と、請求項 1から 8の V、ずれか一項に記載の振動エネルギ吸収装置とを具備しており、振動伝達部材は、 免震構造物の振動を区画部材に伝達するように免震構造物に連結されている構造 物。 [9] A seismic isolation structure, a return means for returning the seismic isolation structure to the initial position, and the vibration energy absorbing device according to claim 1, wherein the vibration energy absorbing device according to claim 1 is provided. The transmission member is a structure that is connected to the base isolation structure so as to transmit the vibration of the base isolation structure to the partition member.
[10] 復帰手段は、免震構造物と免震構造物が設置される地盤との間に介在された弾性 装置を具備している請求項 9に記載の構造物。  10. The structure according to claim 9, wherein the return means includes an elastic device interposed between the base isolation structure and the ground where the base isolation structure is installed.
[11] 弾性装置は、積層ゴム支承及びコイルばねのうちの少なくとも一つを具備している 請求項 10に記載の構造物。 11. The structure according to claim 10, wherein the elastic device includes at least one of a laminated rubber support and a coil spring.
PCT/JP2006/324878 2005-07-06 2006-12-13 Vibration energy absorbing device WO2008072324A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/324878 WO2008072324A1 (en) 2006-12-13 2006-12-13 Vibration energy absorbing device
TW095148041A TW200827588A (en) 2005-07-06 2006-12-20 Vibrational energy absorbing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324878 WO2008072324A1 (en) 2006-12-13 2006-12-13 Vibration energy absorbing device

Publications (1)

Publication Number Publication Date
WO2008072324A1 true WO2008072324A1 (en) 2008-06-19

Family

ID=39511355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324878 WO2008072324A1 (en) 2005-07-06 2006-12-13 Vibration energy absorbing device

Country Status (1)

Country Link
WO (1) WO2008072324A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171565A1 (en) * 2016-03-31 2017-10-05 University Of Canterbury Passive damper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301306A (en) * 2003-04-01 2004-10-28 Hirokazu Iemura Vibrational energy absorber having negative rigidity and structure therewith
JP2007016875A (en) * 2005-07-06 2007-01-25 Oiles Ind Co Ltd Vibrational energy absorbing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301306A (en) * 2003-04-01 2004-10-28 Hirokazu Iemura Vibrational energy absorber having negative rigidity and structure therewith
JP2007016875A (en) * 2005-07-06 2007-01-25 Oiles Ind Co Ltd Vibrational energy absorbing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171565A1 (en) * 2016-03-31 2017-10-05 University Of Canterbury Passive damper

Similar Documents

Publication Publication Date Title
US8590680B2 (en) Shock absorber
RU2673787C2 (en) Hydraulic absorber valve
KR101653475B1 (en) Damper
JP5078574B2 (en) Damping force adjustment structure of hydraulic shock absorber
JPS59211203A (en) Device for electromagnetically operating regulator
JP4591242B2 (en) Vibration energy absorber
WO2013133150A1 (en) Rotary damper
JP2012137168A (en) Shock absorber
JP6263032B2 (en) damper
WO2008072324A1 (en) Vibration energy absorbing device
JP4258254B2 (en) Vibration energy absorbing device having negative rigidity and structure including the same
JP5831833B2 (en) Rotary damper
JP6565442B2 (en) Cylinder device
JP6894769B2 (en) Seismic isolation damper
JP2020020374A (en) Base-isolation damper
JP2006194372A (en) Vibration control hydraulic damper
JP2003148545A (en) Hydraulic damping device
JPH11230230A (en) Hydraulic vibration control device
JP2013050174A (en) Oil damper, and building structure
TWI378191B (en)
JP6738528B2 (en) Vibration reduction device
JP6875961B2 (en) Seismic isolation damper
JP2009287653A (en) Damping-force adjusting structure of hydraulic damper
JP2000104785A (en) Trigger device having damper function for building base isolation
JP4020745B2 (en) Shock absorber lock mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP