JP4586124B2 - Non-contact inspection method and non-contact inspection device for electrical connection - Google Patents

Non-contact inspection method and non-contact inspection device for electrical connection Download PDF

Info

Publication number
JP4586124B2
JP4586124B2 JP2003194966A JP2003194966A JP4586124B2 JP 4586124 B2 JP4586124 B2 JP 4586124B2 JP 2003194966 A JP2003194966 A JP 2003194966A JP 2003194966 A JP2003194966 A JP 2003194966A JP 4586124 B2 JP4586124 B2 JP 4586124B2
Authority
JP
Japan
Prior art keywords
electrical connection
pickup coil
magnetic field
data
connection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003194966A
Other languages
Japanese (ja)
Other versions
JP2005030850A5 (en
JP2005030850A (en
Inventor
繁隆 小林
竹彦 和田
栄作 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innolux Corp
Original Assignee
Chimei Innolux Corp
Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimei Innolux Corp, Innolux Corp filed Critical Chimei Innolux Corp
Priority to JP2003194966A priority Critical patent/JP4586124B2/en
Priority to TW93120717A priority patent/TWI284744B/en
Publication of JP2005030850A publication Critical patent/JP2005030850A/en
Publication of JP2005030850A5 publication Critical patent/JP2005030850A5/ja
Application granted granted Critical
Publication of JP4586124B2 publication Critical patent/JP4586124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液晶基板や有機EL基板などのように多数の容量性回路素子を整列配置した基板と電子部品のリードの電気的接続部を非接触で検査可能とした非接触検査方法及び非接触検査装置に関する。
【0002】
【従来の技術】
液晶表示装置は、透明導電膜を形成した第1のガラス基板と、多数の薄膜トランジスタを所定の間隔でマトリクス状に配列し、そのドレイン電極に画素電極を接続し、縦方向に配列された薄膜トランジスタのソース電極を共通接続し、横方向に配列された薄膜トランジスタのゲート電極を共通接続した第2のガラス基板とを対向させ、各ガラス基板間に液晶を封入して液晶セルを構成し、薄膜トランジスタのゲート電極及びソース電極に制御信号を与えて開閉制御し画素電極を選択することにより表示する。液晶セルは透明導電膜と画素電極間に液晶を挟んだ容量性回路素子を多数マトリクス状に配列した構造の回路基板でもある。
【0003】
共通接続されたゲート電極線及びソース電極線の数は画素数で決定される。例えばXGA仕様のカラー液晶表示装置の場合、縦横比が3:4で画素サイズは260μm、画素数は縦768ピクセル、横1024ピクセルに設定されているため、ゲート電極線は768本、ソース電極線は1024×3本、合計3840本の電極線が必要となり、これらの電極線の間隔は画素サイズで制限される。一方、液晶セルに多数の電極線を微小間隔で接続することは困難で接続の信頼性も保証できない。
【0004】
そのため、第1、第2のガラス基板間に液晶を封入する封入工程に続いて回路基板の周縁にゲートドライバICとソースドライバICを接続して、液晶セルに外部接続する電極線の本数を減少させている。ゲート電極線に対して例えば出力線が256本のドライバICを3個、ソース電極線に対して例えば出力線が384本のドライバICを8個用いることにより入力線数を削減でき、入力線は本数が少ないため間隔を広げることができ外部接続が容易となる。
【0005】
細いリードを微細間隔で多数本同一面内に配列するためTAB構造やフリップチップ構造のドライバICが一般的に用いられ、液晶セル上の電極線とドライバICのリードを接続する導電性接着材として、多数本の電極線とリードとを一括して接続することのできる異方性導電フィルム(ACF)や異方性導電ペースト(ACP)が用いられる。
【0006】
このように液晶セルにドライバICを接続すると、ゲートドライバICとソースドライバICの各入力線にテスト用信号を供給して、液晶画面上に所定パターンを表示させ、表示装置の良否判定が可能となる。
【0007】
特許文献1には液晶表示パターン駆動装置により液晶パネルの表示面に検査パターンを表示させ、これを認識カメラにより撮像して認識データ処理部で解析処理し、バックライト照明を最適調整することにより検査の個人差をなくすようにした液晶パネルの自動検査装置が開示されている。同文献にはアニソルム(異方性導電フィルム)に温風を吹き付けたり、TAB(ドライバIC)に振動を与えることにより、液晶セルとドライバICの電気的接続の良否を判定することも開示されている。
【0008】
また特許文献2には導体回路基板に電磁波を放射するスティミュレータと、信号検出のための非接触式センサと、スティミュレータとセンサとを絶縁する接地面シールドとを備えた導体回路基板の検査方法が開示されている。これは電磁波を受けた導体回路基板の導電パターン等に生起する変位電流をセンサで検出し、この検出した変位電流をコンピュータで解析することにより、導体回路基板上の導電パターンの短絡や開放等の欠陥の検出を可能とするもので、導体回路基板として、プリント回路基板や液晶ディスプレイ基板等に適用可能であることが開示されている。
【0009】
【特許文献1】
特開平7−199138号公報(段落番号0014〜0018、図1〜図2)
【特許文献2】
特開平8−278342号公報(段落番号0015〜0027、図1)。
【0010】
【発明が解決しようとする課題】
ところで液晶セルとドライバICは各電極線と出力線だけでなく電源線や接地線なども接続する必要があり、XGA仕様のカラー液晶セルの場合、3840ヵ所以上で電気的接続がなされている。この電気的接続部のうち1ヵ所でも接続が不良であると、表示画面上にライン不良やノイズが表れ、液晶表示装置として不良となる。
【0011】
そのためこのような接続不良が判明すると溶剤を用いて異方性導電フィルムを剥離除去し、再度新しい異方性導電フィルムを貼り付けて、ドライバICを接続し直すことにより良品化している。
【0012】
しかしながら、前記特許文献1に開示された検査方法では、回路基板とドライバICの出力線を異方性導電フィルム等を用いて電気的に接続した後、さらにTABパッケージを折り返して、ドライバICの入力線を液晶セルの外周部に固定した後でないと、ドライバICの入力線に検査用の信号を供給することができない。
【0013】
またドライバICを実際に動作させて液晶画面上に検査用パターンを表示させその良否を判定するため、専用の検査ポジションが必要で、ドライバICの接続から検査まで作業工数が嵩み、検査の結果、不良が判明すると、ドライバICの剥離、交換、再検査作業に要するコストが高くつくという問題があった。
【0014】
また前記特許文献2に開示された検査方法は、電磁波を利用して非接触で導電パターンに生成される変位電流をセンサで検出し、導体回路基板における短絡や開放等の欠陥を検出可能とするもので、液晶表示装置への適用可能性も示唆されている。
【0015】
しかしながら、電磁波により生成される変位電流は微弱で、外来ノイズの影響を受け易いため、センサで検出した信号を外来ノイズから遮蔽する接地面シールドが必須で、そのため専用の検査ポジションが必要であった。
【0016】
また液晶セルは液晶自体の静電容量に、薄膜トランジスタのゲート−ドレイン間の静電容量とソース−ドレイン間の静電容量をそれぞれ直列接続した容量性回路素子を多数並列接続した回路基板と等価で、電磁波により生成された変位電流は、多数の容量性回路素子に分散されて回路基板内に流入するため、回路基板の電極線とドライバICの出力線との間の電気的接続を確実に検出することが困難であるという問題もあった。
【0017】
【課題を解決するための手段】
本発明は上記課題の解決を目的として提案されたもので、絶縁基板上に多数の容量性回路素子をそれぞれ並列接続して整列配置し前記回路素子の一端に導電パターンを接続した回路基板の、前記導電パターンに導電性接着材を介して電子部品のリードを電気的に接続した電気的接続部に、高周波磁界発生手段と検査用のピックアップコイルとを近接させ、前記ピックアップコイルに流れる高周波電流の変化から前記電気的接続部の接続の良否を判定する電気的接続部の非接触検査方法を提供する。
【0018】
前記電気的接続部を絶縁基板の周縁に沿って所定間隔で平行配置し、電気的接続部上を横切って前記高周波磁界発生手段とピックアップコイルを相対移動させる。この場合、前記電気的接続部に対して、高周波磁界発生手段及びピックアップコイルを間隔を一定に保って相対移動させ、さらに前記電気的接続部に対して、高周波磁界発生手段及びピックアップコイルを一定速度で相対移動させることにより、検査精度を安定させることができる。
【0019】
また高周波磁界発生手段とピックアップコイルを独立して設けても良いし、ピックアップコイルによって高周波磁界発生手段を兼ねさせることもできる。ピックアップコイルを高周波磁界発生手段と兼用することにより、小型化できるため、高周波磁界を被検査電気的接続部に集中させることができ検査精度を向上させることができる。また前記高周波磁界発生手段と電気的接続部との間に、高周波磁界を電気的接続部上に収束させる磁界収束手段を配置することができる。
【0020】
これにより高周波磁界を電気的接続部に集中させることができるため、外来ノイズの影響を緩和でき、検査精度を向上させることができる。また高周波磁界を、高周波磁界発生手段から電気的接続部を通りピックアップコイルに循環させる磁気循環路を配置することもできる。
【0021】
本発明による検査方法は液晶基板又は有機EL基板など多数の容量性素子をマトリクス状に配列した回路基板に適用できる。
【0022】
また導電性接着材として、異方性導電フィルム又は異方性導電ペーストを用いた導電性接続部に本発明による検査方法を適用することができる。
【0023】
本発明は、絶縁基板上に多数の容量性回路素子をそれぞれ並列接続して整列配置し前記回路素子の一端に接続した導電パターンと電子部品のリードとを導電性接着材を介して電気的に接続した回路基板を支持する回路基板支持体と、高周波磁界を発生し前記回路基板上の導電パターンと電子部品の電気的接続部上を横切って相対移動する磁気発生手段と、前記磁気発生手段とともに電気的接続部上を横切って相対移動し、高周波電流を検出するピックアップコイルと、前記ピックアップコイルに流れる高周波電流の変化から電気的接続部の接続の良否を判定する接続良否判定部とを含む電気的接続部の非接触検査装置を提供する。
【0024】
この装置は前記電気的接続部に対して、高周波磁界発生手段及びピックアップコイルを、間隔を一定に保ち、一定速度で相対移動させるように構成される。
【0025】
またピックアップコイルを高周波磁界発生手段と兼用させることにより小型化できるため高さ調整や移動が容易となり、被検査部分に磁気を集中させることができるため、検査精度を向上させることができる。
【0026】
また前記高周波磁界発生手段と電気的接続部との間に、高透磁性材料からなる磁界収束手段を配置し、高周波磁界を電気的接続部上に収束させ、検査精度を向上させることができる。
【0027】
また高周波磁界を、高周波磁界発生手段から電気的接続部を通りピックアップコイルに循環させる磁気循環路を配置することにより、磁気の漏洩を減少させ、検査に要する電力を削減できる。
【0028】
【発明の実施の形態】
以下に本発明の実施の形態を図1及び図2を参照して説明する。図において、10は液晶セルで、一対のガラス基板12、14を環状シール部16を介して対向させ、環状シール部16で囲まれる領域内に液晶(図示せず)を封入している。ガラス基板12の内面には、多数の薄膜トランジスタ(図示せず)が整列配置され、そのドレイン電極は画素電極に接続され、一方向に配列された薄膜トランジスタのソース電極を共通接続し、このソース電極線と直交する方向に配列された薄膜トランジスタのゲート電極を共通接続し、各電極線をガラス基板12の外周部に引き出している。図示例では一端がソース電極線に接続され他端がガラス基板12の外周部に引き出された導電パターン18を示す。
【0029】
この液晶セル10は図2に示すように導電パターン18に接続された図示実線で示すソース電極線と図示点線で示すゲート電極線とが薄膜トランジスタの電極間容量を介して液晶によって形成される容量に直列接続された容量性回路素子をマトリクス状に配置した回路基板でもある。
【0030】
20は液晶セル10を支持する液晶セル支持体(回路基板支持体)で、水平面内で液晶セル10を移動可能である。22は多数本一組のソース電極線にぞれぞれ接続された導電パターン18上を横切って配置された異方性導電フィルム、24はTAB構造のドライバICで、矩形の貫通窓26aを穿設した絶縁フィルム26上の、前記貫通窓26aの両側に微細な多数の導電パターン28、30を、それぞれの内端を前記貫通窓26a内に延在させてインナリードを形成し、外端を絶縁フィルム26から食み出させてアウタリード28a、30aを形成している。32はICチップで、多数の突起電極32a、32bを有し、この突起電極32a、32bが導電パターン28、30の各内端部に熱圧着されている。このドライバIC24はアウタリード28aが異方性導電フィルム22を介して所定の導電パターン18と重合するように位置決めされ、重合部が加熱加圧されて電気的に接続されている。
【0031】
この液晶セル10には図外のゲート電極線に接続された導電パターンにも異方性導電フィルムを介しドライバICのアウタリードが接続されている。
【0032】
各ドライバICは液晶セル10への電気的接続が完了すると、リードの中間部で絶縁フィルム26を折り曲げガラス基板12に固定するが、本発明による検査方法では前記折り曲げ処理しない状態で、液晶セル10を液晶セル支持体20上に支持している。
【0033】
34は導線を環状に巻回したピックアップコイルで、異方性導電フィルム22による電気的接続部の寸法、即ちリード28aの巾、間隔、導電パターン18との重合長さなどに合わせて、導線の線径やコイルの直径、巻数が設定され、高周波電流を流すことにより高周波磁界を発生し、発生した高周波磁界を電気的接続部に供給する高周波磁界発生手段を兼ね、液晶セル10及びドライバICの容量性回路素子を含む回路との接続状態、即ち導電パターン18とアウタリード28aが電気的に接続された電気的接続部の接続状態を検出する。36はピックアップコイル34と並列接続された共振コンデンサ、38は周波数が調整可能な高周波電源で、ピックアップコイル34と共振コンデンサ36の並列回路に高周波電流を供給する。40は高周波電源38からピックアップコイル34に供給される高周波電流の電流値を検出する電流検出用抵抗、42はピックアップコイル34を支持するピックアップコイル支持体で、その高さ位置が調整可能で、ピックアップコイル34と電気的接続部との間隔を設定することができる。
【0034】
44は電流検出用抵抗40に流れる高周波電流即ち、抵抗40の両端に現れる高周波電圧を増幅しアナログ値をデジタル値に変換するA/D変換回路、46はデジタル化された高周波電流の変化を解析し、電気的接続部の接続の良否を判定する接続良否判定部を示す。
【0035】
以下に、この装置を用いた電気的接続部の非接触検査方法を説明する。先ず、ソースドライバIC24及びゲートドライブIC(図示せず)を接続して動作確認の結果、液晶セル10、ドライバIC、液晶セル10とドライバICの電気的接続部のすべてが良判定された標準液晶セル(回路基板)10を液晶セル支持体20上に支持する。
【0036】
次にピックアップコイル34の軸を、液晶セル10表面と平行配置しかつ、電極線(ソース電極線またはゲート電極線)に接続された導電パターンとドライバICのリード28aが接続された電気的接続部とほぼ直交させ、ピックアップコイル支持体42を降下させて、ピックアップコイル34を電気的接続部に近接させる。
【0037】
そしてピックアップコイル34に高周波電流を流し、周波数を変化させ、コイル34のインダクタンス、共振コンデンサ36の容量、相互誘導結合された液晶セル10内の容量性回路素子、ドライバICの電極間容量などによって決定される共振周波数に合わせる。この調整作業は、ソース電極線及びゲート電極線に接続された電気的接続部上でそれぞれ行う。
【0038】
この調整作業が完了すると、ソース電極線側とゲート電極線側とでそれぞれピックアップコイル34に供給する高周波電流の周波数を設定し、電気的接続部に対して、ピックアップコイル34を一定の高さに設定し、一定の速度で相対移動させる。実際にはピックアップコイル34の高さ位置を固定し、供給する高周波電流の周波数を設定し、液晶セル支持体20を一方向に一定速度で移動させてソース電極線側のデータを取得し、ピックアップコイル34の向きを90度回転させて、供給する高周波電流の周波数を再設定し、液晶セル支持体20を直交する方向に一定速度で移動させてゲート電極線側のデータを取得する。
【0039】
液晶セル10内の電極線やドライバICのリードはインダクタンス成分を有し、薄膜トランジスタの各電極間、透明導電膜と画素電極の液晶、ドライバICの出力端子間にはそれぞれ容量成分を有する。上記インダクタンス成分と容量成分によって構成される並列回路と、ピックアップコイル34と共振コンデンサ36によって構成される共振回路とは、図3に示すように導電パターン18、異方性導電フィルム22、アウタリード28aを積層した電気的接続部とピックアップコイル34の間で相互誘導結合させるとピックアップコイル34に流れる電流の一部は前記並列回路に吸収され、前記並列回路の接続状態により抵抗40に流れる電流が変化する。
【0040】
液晶セル10の仕様により電気的接続部の巾や間隔は異なるが、例えばXGA仕様の場合、線径0.2mm、コイル径0.8mm〜2mm、巻数0(直線状で巻回なし)〜4のコイルを用いて、供給電力数mWの高周波電源38から周波数範囲80MHz〜1500MHの高周波電流を供給する。コイル径2mm、巻数2回のコイルを用いた場合、共振周波数200〜400MHzで電気的接続部を1本ずつ識別可能であるが、分解能を高めるには、コイル径を縮小し、コイルを薄くするため巻数を少なくし、共振周波数を高めることが望ましい。
【0041】
予め良品判定された液晶セルによってピックアップコイル34の共振周波数を求め、各電気的接続部上でピックアップコイル34を相対移動させて、電流検出用抵抗40の両端電圧をA/D変換回路44によりデジタル化したデータを記録する。
【0042】
次に液晶セル10の製造工程で、ドライバIC24を接続した被検査液晶セル10を液晶セル支持体20上に供給する。
【0043】
そして高周波電源38の発振周波数を標準液晶セルで予め設定した共振周波数に設定し、ピックアップコイル34の高さ位置や相対移動速度を設定して、被検査液晶セル10の電気的接続部上でピックアップコイル34を相対移動させる。
【0044】
上記作業を被検査液晶セル10の各電極線に対して行い、抵抗40の両端電圧をA/D変換回路44によりデジタル化して記録する。
【0045】
標準液晶セル10の電気的接続部の状態をピックアップコイル34で検出しデジタル化したデジタル信号を標準データ1とし、被検査液晶セル10の電気的接続部の状態を示すデジタル信号を被検査データ2とする。データ1を波形表示すると図4(a)に示すようにドライバIC領域で図示例では3ヵ所突出し、各凸部48a、48b、48cの間、即ちドライバIC間には窪んだ凹部48d、48eが形成された凹凸形状となる。
【0046】
ドライバIC領域を示す凸部の上端部、図示例では凸部48aの上端部を拡大すると図4(b)に示すように微細な凹凸49a、49bが連続するが、この微細凸部49aが電気的接続部、微細凹部49bが電気的接続部の間を示す。
【0047】
各凸部48a、48b、48cは高さや波形がまちまちで、一様にはならない。これは液晶セル10内の各容量性回路素子は隣接する容量性回路素子から影響を受けること、液晶セル10とドライバIC24の電気的接続は電極線と出力線以外に電源線や接地線など多くの電気的接続部があることなどによる。
【0048】
被検査液晶セルの被検査データ2は電気的接続部に接続不良や隣接する電気的接続部との短絡など不良部分が含まれる可能性があるが、不良部分が数ヵ所で少ない場合には図4(a)とほとんど変らず、図4(a)の波形から良否判別できない。また電気的接続部の状態を拡大した図4(b)の波形でも、接続不良部分は、微細凹部49bの深さが異なる程度で、凸部48aの高さや波形がまちまちであるため、微細凹部49bの深さだけから電気的接続部の接続の良否を判別することはできない。
【0049】
そのためA/D変換されたデジタルデータを接続良否判定部46により処理し、電気的接続部の良否判定する。この接続良否判定部46内部の処理ステップを以下に説明する。
【0050】
(ステップ1) 標準データ1を離散フーリエ変換する。標準データ1はピックアップコイル34の移動速度や高周波磁界の周波数などによるノイズを含むため、離散フーリエ変換されたスペクトルの低周波領域と高周波領域にはノイズが含まれている。そのため離散フーリエ変換されたデータをフィルタ処理して不要な低周波ノイズと高周波ノイズとを除去する。これを成形標準データ1sとしてメモリに記憶させる。
【0051】
図4(b)に示す連続した微細凹凸49a、49bが重畳した大きなうねりは、成形標準データ1sでは除去され平坦化した波形となるため、図4(a)に示すように凸部48a、48b、48cの形状がさまざまに変化しても、成形標準データ1sは、一様な平坦な微細凹凸波形となり、電気的接続部の位置と、その位置でのピックアップコイル34と電気的接続部に接続された並列回路との結合状態を示すこととなる
【0052】
この成形標準データ1sは、液晶セル10の機種毎にデータベース登録しておくことにより、被検査液晶セルの機種が決定されると、データベースから取り出し直ちに利用することができる。
【0053】
(ステップ2) 被検査データ2を離散フーリエ変換する。この離散フーリエ変換されたデータにはそのスペクトル中に低周波のリプルや高周波ノイズを含むため、離散フーリエ変換されたデータから不要なノイズを除去し、これを成形被検査データ2uとしてメモリに記憶させる。
【0054】
(ステップ3) ステップ1で得た成形標準データ1sとステップ2で得た成形被検査データ2uの差を差データ3としてメモリに記録する。
【0055】
(ステップ4) ステップ3で得た差データ3を逆離散フーリエ変換すると判定用データ4が得られる。この判定用データを波形表示すると図5(a)に示す波形となる。即ち、成形標準データ1sと成形被検査データ2uの対応する電気的接続部位置で、それそれの振幅がほぼ同じ(振幅差が小さい)ときには判定用データ4では中間振幅の波形50aとなり、各振幅が大きく異なるときには、図5(b)に示すように中間振幅から大きくずれ、成形標準データ1sに対して、成形被検査データ2uの振幅が格段に大きい場合には、前記中間振幅より大振幅の波形50bとなり、成形被検査データ2uの振幅が格段に小さい場合には、前記中間振幅より小振幅の波形50cとなる。
【0056】
(ステップ5) 判定用データ4の波形位置からドライバICとその電気的接続部の位置が分かり、波形の振幅から電気的接続部の接続状態が分かる。
【0057】
即ち、判定用データ4の表示波形が、図示上限振幅Luを超えると短絡不良であり、下限振幅Ld未満であると開放不良と判別でき、それぞれの波形位置から接続不良のドライバICとそのアウタリード位置を特定することができる。
【0058】
このように、接続良否判定部46は各ステップの処理を実行することにより、判定用データ4を得、このデータ4から接続不良のドライバICとそのアウタリード位置を特定することができる。
【0059】
次の被検査液晶セルが標準液晶セルと同一機種である場合、上記ステップ2〜5を繰り返して電気的接続部の良否検査が行われる。
【0060】
このように本発明では電気的接続部の接続の良否を、ドライバIC24や液晶セル10に通電することなく、ピックアップコイル34と容量性回路素子を含む並列回路との結合状態をピックアップコイル34に流れる高周波電流の変化として検出するため、非接触で検査することができ、短絡、開放等の導通の良否を確実に検出することができる。
【0061】
また電気的接続状態を検査するために、ドライバIC24を折り曲げ成形して液晶セル10に固定する必要がなく、ドライバIC24を液晶セル10に電気的接続した後、直ちにその電気的接続の良否を判定することができる。
【0062】
この検査のためのデータ収集は、ピックアップコイル34を電気的接続部上で相対移動させるだけですむため、特別な検査ポジションが不要で、ドライバICの接続工程またはその隣接部に本発明装置を付設させ、検査することができる。
【0063】
またドライバICを折り曲げ成形せずに検査できるため、不良判定されたドライバICの交換も容易で、交換作業時に誤って不所望部分を不良にすることもなく、低コストで検査できる。
【0064】
またデジタル化された被検査データ2やデータ処理された判定用データ4などはメモリに記録し蓄積することにより、品質管理データとして利用することができる。
【0065】
図6は本発明による非接触検査方法及び非接触検査装置の他の例を示す。図において図1と同一部分には同一符号を付し重複する説明を省略する。図1装置と相異するのは符号51を付したピックアップコイルで、コイルの軸を回路基板10に対して垂直配置し、電気的接続部上を移動させるようにした点が、コイル軸を回路基板(液晶セル)10と平行配置した図1ピックアップコイル34と大きく異なる。
【0066】
図1ピックアップコイル34もこの実施形態のピックアップコイル51も、コイル導線周り循環する磁界が形成される点は同じであるが、図1ピックアップコイル34ではその一部しか電気的接続部と交差せず利用率が極めて低いのに対して、ピックアップコイル51はそのほとんどの磁界を電気的接続部に供給することができるため、ピックアップコイルの径を縮小したり巻数を低減でき、コイルを小型化してもピックアップコイル51の感度を高めることができ、より高い周波数でコイルを駆動することにより分解能を高め、電気的接続部の巾、配列間隔を狭めても十分検出することができる。
【0067】
また図7に示すように、コの字状のヨーク片の両端に一対の棒状ヨーク片を連結した連結ヨークまたは「C」字状のヨーク52にコイル51を、巻き回し、ヨーク52の対向面間に液晶セル10の電気的接続部を配置してヨークと液晶セル10を相対移動させてもよい。
【0068】
これにより磁気循環路を形成し、磁束の漏れを低減でき、電気的接続部に磁界を収束させることができる。
【0069】
この場合、電気的接続部を介して対向するヨーク52の端面に図8に示すように凹球面52aを成形することにより、図示点線で示すようにヨーク端面間の磁界を対向中間部でヨークの軸部分に集中させ、電気的接続部上に磁界を収束させることができる。これにより、ピックアップコイル51の径が大きくても電気的接続部上の磁界の断面積を縮小できるため、隣り合う電気的接続部の検出分解能を高めることができる。
【0070】
上記、図1、図6、図7実施形態において、高周波磁界の周波数は80MHz〜1500MHzの範囲で、電気的接続部の巾や間隔に応じて設定できる。またピックアップコイル34、51と基板10上の電気的接続部の対向間隔は、狭いと互いに接触する虞があり、広いと検出感度が低下するため0.5〜2mmの範囲で設定する。またピックアップコイルと電気的接続部の相対移動速度は、遅いと処理に時間を要し、速いと検出の精度が低下するため5mm/S〜30mm/Sとすることが好ましい。
【0071】
尚、本発明は上記実施例にのみ限定されるものではなく、例えば回路基板は、液晶セルに限定されるものではなく、有機EL基板など多数の容量性回路素子をマトリクス状に配列した回路基板や配線基板上に容量性回路素子をマウントした回路基板一般にも適用することができる。
【0072】
また高周波磁気発生手段とピックアップコイルを一つのコイルで兼用したが、高周波磁気発生用コイルとピックアップコイルとを別設することもでき、C字様のヨークを用いる場合には、ヨーク両端部に高周波磁気発生用コイルとピックアップコイルとを近接配置することができる。
【0073】
また磁界の収束を良好にするためヨーク端面に凹球面を形成するだけでなく、側断面形状がV字状又はU字状の溝を形成しても良いし、ヨークの側断面形状をV字状とし、巾細のヨーク先端部を電気的接続部に沿って配置してもよい。
【0074】
さらには電気的接続部を長さ方向に複数に分割し、各分割領域上をピックアップコイルを相対移動させ、電気的接続部全体の接続の良否を検査でき、検査の信頼性を向上させることができる。
【0075】
【発明の効果】
以上のように本発明によれば、回路基板上の電気的接続部の接続の良否を、回路基板に通電することなく、非接触で短絡、開放等の導通の良否を確実に検出することができる。
【0076】
また回路基板に電子部品のリードを接続した後、直ちにその電気的接続の良否を判定することができる。
【0077】
この検査のためのデータ収集は、ピックアップコイルを電気的接続部上で相対移動させるだけですむため、特別な検査ポジションが不要で、電子部品の接続工程またはその隣接部に本発明装置を付設させ、検査することができる。
【0078】
また電気的接続が不良判定された電子部品の交換も容易で、交換作業時に誤って不所望部分を不良にすることもなく、低コストで検査できる。
【図面の簡単な説明】
【図1】本発明による電気的接続部の非接触検査装置を示す側断面図
【図2】電気的接続部を示す要部拡大斜視図
【図3】本発明装置のピックアップコイルと電気的接続部の結合状態を示す回路図
【図4】ピックアップコイルに検出波形図
【図5】判定用データの波形図
【図6】本発明による他の実施形態を示す側断面図
【図7】図6実施形態の変形例を示す要部側面図
【図8】図7実施形態の変形例を示す要部側面図
【符号の説明】
10 回路基板(液晶セル)
12 絶縁基板
18 導電パターン
22 導電性接着材
24 電子部品
34 ピックアップコイル
40 抵抗
40 電流検出用抵抗
42 ピックアップコイル支持体
46 接続良否判定部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-contact inspection method and non-contact inspection that enable non-contact inspection of an electrical connection portion between a substrate on which a large number of capacitive circuit elements are arranged and arranged, such as a liquid crystal substrate and an organic EL substrate, and leads of electronic components. Relates to the device.
[0002]
[Prior art]
The liquid crystal display device includes a first glass substrate on which a transparent conductive film is formed, a large number of thin film transistors arranged in a matrix at predetermined intervals, a pixel electrode connected to the drain electrode, and a thin film transistor arranged in a vertical direction. A source electrode is connected in common, and a second glass substrate connected in common with thin film transistor gate electrodes arranged in a lateral direction is opposed to each other, and liquid crystal is sealed between the glass substrates to form a liquid crystal cell. Display is performed by applying a control signal to the electrode and the source electrode to control opening and closing to select a pixel electrode. The liquid crystal cell is also a circuit board having a structure in which a large number of capacitive circuit elements having liquid crystal sandwiched between transparent conductive films and pixel electrodes are arranged in a matrix.
[0003]
The number of gate electrode lines and source electrode lines connected in common is determined by the number of pixels. For example, in the case of an XGA color liquid crystal display device, the aspect ratio is 3: 4, the pixel size is 260 μm, the number of pixels is set to 768 pixels vertically and 1024 pixels horizontally, so 768 gate electrode lines and source electrode lines are provided. Requires a total of 3840 electrode lines of 1024 × 3, and the interval between these electrode lines is limited by the pixel size. On the other hand, it is difficult to connect a large number of electrode lines to the liquid crystal cell at a minute interval, and connection reliability cannot be guaranteed.
[0004]
Therefore, the gate driver IC and the source driver IC are connected to the peripheral edge of the circuit board following the sealing step of sealing the liquid crystal between the first and second glass substrates, and the number of electrode lines externally connected to the liquid crystal cell is reduced. I am letting. The number of input lines can be reduced by using, for example, three driver ICs with 256 output lines for the gate electrode lines and eight driver ICs with 384 output lines for the source electrode lines. Since the number is small, the interval can be widened and external connection becomes easy.
[0005]
A driver IC having a TAB structure or a flip chip structure is generally used to arrange a large number of thin leads in the same plane at a fine interval, and is used as a conductive adhesive for connecting the electrode lines on the liquid crystal cell and the leads of the driver IC. An anisotropic conductive film (ACF) or anisotropic conductive paste (ACP) that can connect a large number of electrode wires and leads together is used.
[0006]
When the driver IC is connected to the liquid crystal cell in this way, a test signal is supplied to each input line of the gate driver IC and the source driver IC, and a predetermined pattern is displayed on the liquid crystal screen, so that the quality of the display device can be determined. Become.
[0007]
In Patent Document 1, an inspection pattern is displayed on a display surface of a liquid crystal panel by a liquid crystal display pattern driving device, is imaged by a recognition camera, analyzed by a recognition data processing unit, and optimally adjusted by backlight illumination. An automatic liquid crystal panel inspection apparatus that eliminates individual differences is disclosed. The same document also discloses that the electrical connection between the liquid crystal cell and the driver IC is judged by blowing hot air on the anisolum (anisotropic conductive film) or applying vibration to the TAB (driver IC). Yes.
[0008]
Patent Document 2 discloses a method for inspecting a conductor circuit board comprising a stimulator that radiates electromagnetic waves to the conductor circuit board, a non-contact sensor for signal detection, and a ground plane shield that insulates the stimulator from the sensor. Is disclosed. This is because the sensor detects the displacement current that occurs in the conductive pattern of the conductor circuit board that has received electromagnetic waves, and the detected displacement current is analyzed by a computer, thereby short-circuiting or opening the conductive pattern on the conductor circuit board. It is disclosed that a defect can be detected, and that it can be applied to a printed circuit board, a liquid crystal display board, or the like as a conductor circuit board.
[0009]
[Patent Document 1]
JP-A-7-199138 (paragraph numbers 0014 to 0018, FIGS. 1 to 2)
[Patent Document 2]
JP-A-8-278342 (paragraph numbers 0015 to 0027, FIG. 1).
[0010]
[Problems to be solved by the invention]
By the way, the liquid crystal cell and the driver IC need to be connected not only to each electrode line and output line but also to a power supply line, a ground line, etc. In the case of an XGA color liquid crystal cell, there are 3840 or more electrical connections. If the connection is poor even at one of the electrical connection portions, a line defect or noise appears on the display screen, resulting in a defective liquid crystal display device.
[0011]
For this reason, when such a connection failure is found, the anisotropic conductive film is peeled and removed using a solvent, a new anisotropic conductive film is attached again, and the driver IC is reconnected to improve the quality.
[0012]
However, in the inspection method disclosed in Patent Document 1, after the circuit board and the output line of the driver IC are electrically connected using an anisotropic conductive film or the like, the TAB package is further folded to input the driver IC. An inspection signal cannot be supplied to the input line of the driver IC unless the line is fixed to the outer periphery of the liquid crystal cell.
[0013]
In addition, since the driver IC is actually operated to display the inspection pattern on the liquid crystal screen and judge the quality, a dedicated inspection position is required, and the work man-hours from the connection of the driver IC to the inspection increase. When the defect is found, there is a problem that the cost required for the separation, replacement and re-inspection work of the driver IC is high.
[0014]
In addition, the inspection method disclosed in Patent Document 2 uses a sensor to detect a displacement current generated in a conductive pattern in a non-contact manner using electromagnetic waves, thereby enabling detection of defects such as a short circuit or an open circuit in a conductor circuit board. Therefore, applicability to liquid crystal display devices has also been suggested.
[0015]
However, since the displacement current generated by electromagnetic waves is weak and easily affected by external noise, a ground plane shield that shields the signal detected by the sensor from external noise is indispensable, so a dedicated inspection position is required. .
[0016]
In addition, the liquid crystal cell is equivalent to a circuit board in which a large number of capacitive circuit elements each having a gate-drain capacitance and a source-drain capacitance connected in series are connected in parallel to the capacitance of the liquid crystal itself. The displacement current generated by the electromagnetic wave is dispersed in a large number of capacitive circuit elements and flows into the circuit board, so that the electrical connection between the circuit board electrode line and the driver IC output line is reliably detected. There was also a problem that it was difficult to do.
[0017]
[Means for Solving the Problems]
The present invention has been proposed for the purpose of solving the above-described problems. A circuit board having a large number of capacitive circuit elements connected in parallel on an insulating substrate and arranged in parallel, and a conductive pattern connected to one end of the circuit element, A high-frequency magnetic field generating means and an inspection pickup coil are placed in proximity to an electrical connection portion in which a lead of an electronic component is electrically connected to the conductive pattern via a conductive adhesive, and a high-frequency current flowing through the pickup coil is measured. Provided is a non-contact inspection method for an electrical connection part for determining whether or not the electrical connection part is connected based on a change.
[0018]
The electrical connection portions are arranged in parallel at predetermined intervals along the periphery of the insulating substrate, and the high-frequency magnetic field generating means and the pickup coil are moved relative to each other across the electrical connection portion. In this case, the high-frequency magnetic field generation means and the pickup coil are moved relative to the electrical connection portion at a constant interval, and the high-frequency magnetic field generation means and the pickup coil are moved relative to the electrical connection portion at a constant speed. The inspection accuracy can be stabilized by making the relative movement with.
[0019]
Moreover, the high frequency magnetic field generating means and the pickup coil may be provided independently, or the pickup coil can also serve as the high frequency magnetic field generating means. Since the pickup coil is also used as the high-frequency magnetic field generating means, the size can be reduced, so that the high-frequency magnetic field can be concentrated on the electrical connection portion to be inspected and the inspection accuracy can be improved. Further, magnetic field converging means for converging the high frequency magnetic field on the electrical connection portion can be disposed between the high frequency magnetic field generation means and the electrical connection portion.
[0020]
Thereby, since the high frequency magnetic field can be concentrated on the electrical connection portion, the influence of the external noise can be alleviated and the inspection accuracy can be improved. It is also possible to arrange a magnetic circuit that circulates the high-frequency magnetic field from the high-frequency magnetic field generating means to the pickup coil through the electrical connection portion.
[0021]
The inspection method according to the present invention can be applied to a circuit board in which a large number of capacitive elements such as a liquid crystal substrate or an organic EL substrate are arranged in a matrix.
[0022]
Moreover, the test | inspection method by this invention is applicable to the conductive connection part using an anisotropic conductive film or anisotropic conductive paste as a conductive adhesive.
[0023]
In the present invention, a large number of capacitive circuit elements are connected in parallel on an insulating substrate and arranged in parallel, and the conductive pattern connected to one end of the circuit element and the lead of the electronic component are electrically connected via a conductive adhesive. A circuit board support for supporting the connected circuit board, a magnetism generating means for generating a high-frequency magnetic field and relatively moving across the electrical connection portion of the conductive pattern and the electronic component on the circuit board, and the magnetism generating means Electricity including a pickup coil that relatively moves across the electrical connection and detects a high-frequency current, and a connection quality determination unit that determines whether or not the electrical connection is connected from a change in the high-frequency current flowing in the pickup coil Provided is a non-contact inspection device for a mechanical connection.
[0024]
This apparatus is configured to move the high-frequency magnetic field generating means and the pickup coil relative to the electrical connection portion at a constant speed while maintaining a constant interval.
[0025]
Further, since the pickup coil can also be miniaturized by using it as a high-frequency magnetic field generating means, height adjustment and movement are facilitated, and magnetism can be concentrated on the part to be inspected, so that the inspection accuracy can be improved.
[0026]
In addition, magnetic field converging means made of a highly permeable material is disposed between the high-frequency magnetic field generating means and the electrical connection portion, so that the high-frequency magnetic field can be converged on the electrical connection portion, thereby improving inspection accuracy.
[0027]
Further, by arranging a magnetic circuit that circulates the high-frequency magnetic field from the high-frequency magnetic field generating means through the electrical connection portion to the pickup coil, magnetic leakage can be reduced and the electric power required for the inspection can be reduced.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. In the figure, reference numeral 10 denotes a liquid crystal cell, in which a pair of glass substrates 12 and 14 are opposed to each other via an annular seal portion 16, and liquid crystal (not shown) is sealed in a region surrounded by the annular seal portion 16. A large number of thin film transistors (not shown) are arranged on the inner surface of the glass substrate 12, and the drain electrodes thereof are connected to the pixel electrodes, and the source electrodes of the thin film transistors arranged in one direction are connected in common. The gate electrodes of the thin film transistors arranged in a direction perpendicular to the electrode are connected in common, and each electrode line is drawn out to the outer periphery of the glass substrate 12. The illustrated example shows a conductive pattern 18 having one end connected to the source electrode line and the other end drawn to the outer peripheral portion of the glass substrate 12.
[0029]
As shown in FIG. 2, the liquid crystal cell 10 includes a source electrode line indicated by a solid line and a gate electrode line indicated by a dotted line connected to a conductive pattern 18 in a capacitance formed by liquid crystal via an interelectrode capacitance of a thin film transistor. It is also a circuit board in which capacitive circuit elements connected in series are arranged in a matrix.
[0030]
Reference numeral 20 denotes a liquid crystal cell support (circuit board support) that supports the liquid crystal cell 10, and the liquid crystal cell 10 can be moved in a horizontal plane. Reference numeral 22 denotes an anisotropic conductive film disposed across the conductive pattern 18 connected to a set of source electrode lines, and reference numeral 24 denotes a driver IC having a TAB structure, which has a rectangular through window 26a. A plurality of fine conductive patterns 28 and 30 are formed on both sides of the through window 26a on the insulating film 26, and inner leads are formed by extending the inner ends of the conductive patterns 28 and 30 into the through window 26a. The outer leads 28a and 30a are formed by protruding from the insulating film 26. An IC chip 32 has a large number of protruding electrodes 32 a and 32 b, and the protruding electrodes 32 a and 32 b are thermocompression bonded to the inner end portions of the conductive patterns 28 and 30. The driver IC 24 is positioned so that the outer lead 28a overlaps with the predetermined conductive pattern 18 via the anisotropic conductive film 22, and the overlapping portion is heated and pressed to be electrically connected.
[0031]
The liquid crystal cell 10 is connected to the outer leads of the driver IC through an anisotropic conductive film also on the conductive pattern connected to the gate electrode line (not shown).
[0032]
When each driver IC is electrically connected to the liquid crystal cell 10, the insulating film 26 is bent and fixed to the glass substrate 12 at the intermediate portion of the lead. However, in the inspection method according to the present invention, the liquid crystal cell 10 is not subjected to the bending process. Is supported on the liquid crystal cell support 20.
[0033]
Reference numeral 34 denotes a pick-up coil in which a conducting wire is wound in an annular shape. The pick-up coil 34 is arranged in accordance with the dimensions of the electrical connection portion by the anisotropic conductive film 22, that is, the width and spacing of the leads 28a, The diameter of the wire, the diameter of the coil, and the number of turns are set, and a high-frequency magnetic field is generated by supplying a high-frequency current, and also serves as a high-frequency magnetic field generating means for supplying the generated high-frequency magnetic field to the electrical connection portion. A connection state with a circuit including the capacitive circuit element, that is, a connection state of an electrical connection portion where the conductive pattern 18 and the outer lead 28a are electrically connected is detected. Reference numeral 36 denotes a resonance capacitor connected in parallel with the pickup coil 34, and 38 denotes a high-frequency power source whose frequency can be adjusted. The high-frequency current is supplied to the parallel circuit of the pickup coil 34 and the resonance capacitor 36. Reference numeral 40 denotes a current detection resistor for detecting the current value of the high-frequency current supplied from the high-frequency power supply 38 to the pickup coil 34. Reference numeral 42 denotes a pickup coil support that supports the pickup coil 34. The height position of the resistor can be adjusted. The space | interval of the coil 34 and an electrical connection part can be set.
[0034]
Reference numeral 44 denotes an A / D conversion circuit that amplifies a high-frequency current flowing through the current detection resistor 40, that is, a high-frequency voltage appearing at both ends of the resistor 40, and converts an analog value into a digital value, and 46 analyzes a change in the digitized high-frequency current. And the connection quality determination part which determines the quality of the connection of an electrical connection part is shown.
[0035]
Below, the non-contact test | inspection method of the electrical connection part using this apparatus is demonstrated. First, as a result of confirming the operation by connecting the source driver IC 24 and the gate drive IC (not shown), the standard liquid crystal in which the liquid crystal cell 10, the driver IC, and all of the electrical connection portions of the liquid crystal cell 10 and the driver IC are determined to be good. A cell (circuit board) 10 is supported on a liquid crystal cell support 20.
[0036]
Next, the electrical connection portion in which the axis of the pickup coil 34 is arranged in parallel with the surface of the liquid crystal cell 10 and the conductive pattern connected to the electrode line (source electrode line or gate electrode line) and the lead 28a of the driver IC are connected. The pickup coil support 42 is lowered and the pickup coil 34 is brought close to the electrical connection portion.
[0037]
Then, a high-frequency current is passed through the pickup coil 34 to change the frequency, which is determined by the inductance of the coil 34, the capacitance of the resonant capacitor 36, the capacitive circuit element in the liquid crystal cell 10 that is mutually inductively coupled, the interelectrode capacitance of the driver IC, and the like. Tune to the resonance frequency. This adjustment operation is performed on each of the electrical connection portions connected to the source electrode line and the gate electrode line.
[0038]
When this adjustment operation is completed, the frequency of the high-frequency current supplied to the pickup coil 34 is set on each of the source electrode line side and the gate electrode line side, and the pickup coil 34 is set to a certain height with respect to the electrical connection portion. Set and move relative at a constant speed. Actually, the height position of the pickup coil 34 is fixed, the frequency of the high-frequency current to be supplied is set, the liquid crystal cell support 20 is moved in one direction at a constant speed, and the data on the source electrode line side is acquired. The direction of the coil 34 is rotated by 90 degrees, the frequency of the high-frequency current to be supplied is reset, and the liquid crystal cell support 20 is moved at a constant speed in a direction orthogonal to obtain data on the gate electrode line side.
[0039]
The electrode lines in the liquid crystal cell 10 and the lead of the driver IC have an inductance component, and have capacitance components between each electrode of the thin film transistor, between the liquid crystal of the transparent conductive film and the pixel electrode, and between the output terminals of the driver IC. The parallel circuit constituted by the inductance component and the capacitance component and the resonance circuit constituted by the pickup coil 34 and the resonance capacitor 36 include the conductive pattern 18, the anisotropic conductive film 22, and the outer lead 28a as shown in FIG. When mutual inductive coupling is performed between the stacked electrical connection portion and the pickup coil 34, a part of the current flowing through the pickup coil 34 is absorbed by the parallel circuit, and the current flowing through the resistor 40 changes depending on the connection state of the parallel circuit. .
[0040]
For example, in the case of XGA specifications, the wire diameter is 0.2 mm, the coil diameter is 0.8 mm to 2 mm, and the number of turns is 0 (straight and no winding) to 4 in the case of the liquid crystal cell 10. A high frequency current having a frequency range of 80 MHz to 1500 MH is supplied from a high frequency power supply 38 having a power supply of several mW. When a coil with a coil diameter of 2 mm and a number of turns of 2 is used, one electrical connection can be identified at a resonance frequency of 200 to 400 MHz. However, to increase the resolution, the coil diameter is reduced and the coil is made thinner. Therefore, it is desirable to reduce the number of turns and increase the resonance frequency.
[0041]
The resonance frequency of the pickup coil 34 is obtained by a liquid crystal cell determined in advance as a non-defective product, the pickup coil 34 is relatively moved on each electrical connection portion, and the voltage across the current detection resistor 40 is digitally converted by the A / D conversion circuit 44. Record digitized data.
[0042]
Next, in the manufacturing process of the liquid crystal cell 10, the liquid crystal cell 10 to be inspected to which the driver IC 24 is connected is supplied onto the liquid crystal cell support 20.
[0043]
Then, the oscillation frequency of the high frequency power supply 38 is set to a resonance frequency preset in the standard liquid crystal cell, the height position of the pickup coil 34 and the relative movement speed are set, and the pickup is performed on the electrical connection portion of the liquid crystal cell 10 to be inspected. The coil 34 is moved relatively.
[0044]
The above operation is performed on each electrode line of the liquid crystal cell 10 to be inspected, and the voltage across the resistor 40 is digitized by the A / D conversion circuit 44 and recorded.
[0045]
A digital signal obtained by detecting the digitized state of the electrical connection portion of the standard liquid crystal cell 10 with the pickup coil 34 is set as standard data 1, and a digital signal indicating the electrical connection state of the liquid crystal cell 10 to be inspected is data 2 to be inspected. And When the data 1 is displayed as a waveform, as shown in FIG. 4A, the driver IC region protrudes at three locations in the illustrated example, and concave portions 48d and 48e that are depressed between the respective convex portions 48a, 48b, and 48c, that is, between the driver ICs. The formed uneven shape.
[0046]
When the upper end portion of the convex portion showing the driver IC area, in the illustrated example, the upper end portion of the convex portion 48a is enlarged, fine irregularities 49a and 49b continue as shown in FIG. 4B. Between the electrical connection portions, the electrical connection portion and the fine concave portion 49b are shown.
[0047]
The convex portions 48a, 48b, and 48c have different heights and waveforms and are not uniform. This is because each capacitive circuit element in the liquid crystal cell 10 is affected by an adjacent capacitive circuit element, and the electrical connection between the liquid crystal cell 10 and the driver IC 24 includes many power lines, ground lines, etc. in addition to electrode lines and output lines. This is due to the presence of electrical connections.
[0048]
The data to be inspected 2 of the liquid crystal cell to be inspected may include a defective part such as a connection failure or a short circuit with an adjacent electric connection part in the electrical connection part. It is almost the same as 4 (a), and it cannot be judged from the waveform of FIG. 4 (a). Further, even in the waveform of FIG. 4B in which the state of the electrical connection portion is enlarged, the poorly connected portion has a difference in the depth of the fine concave portion 49b and the height and the waveform of the convex portion 48a vary. Whether or not the electrical connection portion is connected cannot be determined only from the depth of 49b.
[0049]
Therefore, the A / D converted digital data is processed by the connection quality determination unit 46 to determine the quality of the electrical connection unit. Processing steps inside the connection pass / fail judgment unit 46 will be described below.
[0050]
(Step 1) The standard data 1 is subjected to discrete Fourier transform. Since the standard data 1 includes noise due to the moving speed of the pickup coil 34, the frequency of the high frequency magnetic field, and the like, the low frequency region and the high frequency region of the spectrum subjected to discrete Fourier transform include noise. Therefore, unnecessary low frequency noise and high frequency noise are removed by filtering the data subjected to discrete Fourier transform. This is stored in the memory as molding standard data 1s.
[0051]
FIG. Large undulation in which the continuous fine irregularities 49a and 49b shown in FIG. Is the molding standard data 1s Since the waveform is removed and flattened, even if the shapes of the convex portions 48a, 48b, and 48c change variously as shown in FIG. The molding standard data 1s is It becomes a uniform flat fine undulation waveform, and shows the position of the electrical connection part and the coupling state of the pickup coil 34 at that position and the parallel circuit connected to the electrical connection part Will be .
[0052]
This molding standard data 1s is registered in a database for each model of the liquid crystal cell 10, so that once the model of the liquid crystal cell to be inspected is determined, it can be taken out from the database and used immediately.
[0053]
(Step 2) Discrete Fourier transform is performed on the data 2 to be inspected. Since the discrete Fourier transformed data includes low frequency ripples and high frequency noise in the spectrum, unnecessary noise is removed from the discrete Fourier transformed data and stored in the memory as the data to be inspected 2u. .
[0054]
(Step 3) The difference between the molding standard data 1s obtained in Step 1 and the molding inspection data 2u obtained in Step 2 is recorded in the memory as difference data 3.
[0055]
(Step 4) When the difference data 3 obtained in Step 3 is subjected to inverse discrete Fourier transform, determination data 4 is obtained. When this determination data is displayed as a waveform, the waveform shown in FIG. That is, when the amplitude is almost the same (the amplitude difference is small) at the corresponding electrical connection position of the molding standard data 1s and the molding inspected data 2u, the judgment data 4 has an intermediate amplitude waveform 50a. 5 is greatly different from the intermediate amplitude as shown in FIG. 5B, and when the amplitude of the molding inspected data 2u is much larger than the molding standard data 1s, the amplitude is larger than the intermediate amplitude. When the waveform 50b is obtained and the amplitude of the molding inspected data 2u is much smaller, the waveform 50c is smaller than the intermediate amplitude.
[0056]
(Step 5) The position of the driver IC and its electrical connection portion is known from the waveform position of the determination data 4, and the connection state of the electrical connection portion is known from the amplitude of the waveform.
[0057]
That is, when the display waveform of the determination data 4 exceeds the upper limit amplitude Lu shown in the figure, it is determined that the short circuit is defective, and when the display waveform is less than the lower limit amplitude Ld, it is determined that the open is defective. Can be specified.
[0058]
In this way, the connection pass / fail determination unit 46 obtains the determination data 4 by executing the processing of each step, and can determine the driver IC having a poor connection and the outer lead position from the data 4.
[0059]
When the next liquid crystal cell to be inspected is the same model as the standard liquid crystal cell, the above-described steps 2 to 5 are repeated to check the quality of the electrical connection portion.
[0060]
As described above, in the present invention, whether or not the electrical connection portion is connected is determined by flowing the pickup coil 34 and the parallel circuit including the capacitive circuit element through the pickup coil 34 without energizing the driver IC 24 and the liquid crystal cell 10. Since it is detected as a change in the high-frequency current, it can be inspected in a non-contact manner, and the quality of conduction such as a short circuit and an open circuit can be reliably detected.
[0061]
In addition, it is not necessary to bend and fix the driver IC 24 to the liquid crystal cell 10 in order to inspect the electrical connection state, and immediately after the driver IC 24 is electrically connected to the liquid crystal cell 10, it is determined whether the electrical connection is good or bad. can do.
[0062]
In order to collect data for this inspection, it is only necessary to relatively move the pickup coil 34 on the electrical connection portion, so that a special inspection position is not required, and the device of the present invention is attached to the connection process of the driver IC or its adjacent portion. Can be inspected.
[0063]
In addition, since the driver IC can be inspected without being bent, it is easy to replace the driver IC determined to be defective, and it is possible to inspect at low cost without erroneously making an undesired portion defective during replacement.
[0064]
Also, the digitized data 2 to be inspected and data-processed determination data 4 can be used as quality control data by being recorded and stored in a memory.
[0065]
FIG. 6 shows another example of the non-contact inspection method and the non-contact inspection apparatus according to the present invention. In the figure, the same parts as those in FIG. 1 differs from the apparatus shown in FIG. 1 in that a pickup coil denoted by reference numeral 51 is arranged such that the axis of the coil is vertically arranged with respect to the circuit board 10 and moved on the electrical connection portion. The pickup coil 34 of FIG. 1 arranged in parallel with the substrate (liquid crystal cell) 10 is greatly different.
[0066]
The pickup coil 34 of FIG. 1 and the pickup coil 51 of this embodiment are the same in that a magnetic field that circulates around the coil conductor is formed, but only a part of the pickup coil 34 intersects the electrical connection portion in FIG. Although the utilization factor is extremely low, the pickup coil 51 can supply most of the magnetic field to the electrical connection portion. Therefore, the diameter of the pickup coil can be reduced or the number of turns can be reduced. The sensitivity of the pickup coil 51 can be increased, and the resolution can be increased by driving the coil at a higher frequency, and detection can be sufficiently performed even if the width of the electrical connection portion and the arrangement interval are reduced.
[0067]
Further, as shown in FIG. 7, a coil 51 is wound around a connecting yoke in which a pair of rod-shaped yoke pieces are coupled to both ends of a U-shaped yoke piece or a “C” -shaped yoke 52, and the opposing surface of the yoke 52 is wound. The yoke and the liquid crystal cell 10 may be moved relative to each other by arranging an electrical connection portion of the liquid crystal cell 10 therebetween.
[0068]
Thereby, a magnetic circuit can be formed, magnetic flux leakage can be reduced, and the magnetic field can be converged on the electrical connection portion.
[0069]
In this case, by forming a concave spherical surface 52a as shown in FIG. 8 on the end face of the yoke 52 opposed via the electrical connection portion, the magnetic field between the yoke end faces is changed between the yoke end faces as shown by the dotted lines in the figure. The magnetic field can be focused on the electrical connection by concentrating on the shaft portion. Thereby, even if the diameter of the pickup coil 51 is large, the cross-sectional area of the magnetic field on the electrical connection portion can be reduced, so that the detection resolution of the adjacent electrical connection portions can be increased.
[0070]
In the above-described FIG. 1, FIG. 6, FIG. 7 embodiment, the frequency of the high-frequency magnetic field can be set in the range of 80 MHz to 1500 MHz according to the width and interval of the electrical connection portion. Further, the facing distance between the pickup coils 34 and 51 and the electrical connection portion on the substrate 10 may be in contact with each other if it is narrow, and if it is wide, the detection sensitivity is lowered. Further, the relative movement speed between the pickup coil and the electrical connection portion is preferably 5 mm / S to 30 mm / S because it takes time for processing if it is slow, and the accuracy of detection decreases if it is fast.
[0071]
The present invention is not limited to the above embodiment. For example, the circuit board is not limited to a liquid crystal cell, and a circuit board in which a large number of capacitive circuit elements such as an organic EL substrate are arranged in a matrix. It can also be applied to general circuit boards in which capacitive circuit elements are mounted on a wiring board.
[0072]
Further, the high-frequency magnetism generating means and the pickup coil are used as a single coil, but the high-frequency magnetism generating coil and the pickup coil can be provided separately. The magnetism generating coil and the pickup coil can be arranged close to each other.
[0073]
In addition to forming a concave spherical surface on the yoke end face in order to improve the convergence of the magnetic field, a groove having a V-shaped or U-shaped side cross-section may be formed, and the side cross-sectional shape of the yoke may be V-shaped. A narrow yoke tip may be disposed along the electrical connection.
[0074]
Furthermore, the electrical connection part is divided into a plurality of parts in the length direction, the pickup coil is moved relative to each divided area, the quality of the connection of the entire electrical connection part can be inspected, and the reliability of the inspection can be improved. it can.
[0075]
【The invention's effect】
As described above, according to the present invention, whether or not the electrical connection portion on the circuit board is connected can be reliably detected in a non-contact manner such as a short circuit and an open circuit without energizing the circuit board. it can.
[0076]
Also, after connecting the lead of the electronic component to the circuit board, it is possible to immediately determine whether the electrical connection is good or bad.
[0077]
Data collection for this inspection requires only a relative movement of the pick-up coil on the electrical connection part, so that no special inspection position is required, and the apparatus of the present invention is attached to the electronic component connection process or its adjacent part. Can be inspected.
[0078]
In addition, it is easy to replace an electronic component whose electrical connection is determined to be defective, and it can be inspected at a low cost without erroneously making an undesired portion defective during replacement work.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a non-contact inspection apparatus for electrical connection according to the present invention.
FIG. 2 is an enlarged perspective view of a main part showing an electrical connection part.
FIG. 3 is a circuit diagram showing a coupling state between a pickup coil and an electrical connection portion of the device of the present invention;
[Fig. 4] Detection waveform diagram on pickup coil
FIG. 5 is a waveform diagram of judgment data.
FIG. 6 is a side sectional view showing another embodiment according to the present invention.
7 is a side view of an essential part showing a modification of the embodiment in FIG. 6;
8 is a side view of an essential part showing a modification of the embodiment in FIG. 7;
[Explanation of symbols]
10 Circuit board (liquid crystal cell)
12 Insulating substrate
18 Conductive pattern
22 Conductive adhesive
24 Electronic components
34 Pickup coil
40 resistance
40 Resistance for current detection
42 Pickup coil support
46 Connection quality judgment unit

Claims (9)

電気的接続部上を横切って相対移動し、共振コンデンサと並列に接続され、電流検出用抵抗と直列接続され、高周波電流を検出するピックアップコイルを備え、
絶縁基板上に多数の容量性回路素子をそれぞれ並列接続して整列配置し前記回路素子の一端に導電パターンを接続した液晶セルまたは有機EL基板である回路基板の、前記導電パターンに導電性接着材を介して電子部品のリードを電気的に接続した電気的接続部に、高周波磁界発生手段と検査用のピックアップコイルとを近接させるステップと、
前記電流検出用抵抗の両端電圧から、ピックアップコイルに流れる高周波電流を解析することにより、前記電気的接続部の接続の良否を判定するステップと
を含み、
前記接続の良否を判定するステップが、
標準回路基板の電気的接続部の状態をピックアップコイルで検出した標準データを離散フーリエ変換し、低周波ノイズと高周波ノイズを除去し、成形標準データとして記憶するステップと、
被検査回路基板の電気的接続部の状態をピックアップコイルで検出した被検査データを離散フーリエ変換し、低周波ノイズと高周波ノイズを除去し、成形被検査データとして記憶するステップと、
前記成形標準データと成形被検査データの差を逆離散フーリエ変換して判定用データを得て、該判定用データの波形の振幅から電気的接続状態を判定するステップと、
を含む
電気的接続部の非接触検査方法。
Relative movement across the electrical connection, connected in parallel with the resonant capacitor, connected in series with the current detection resistor, and equipped with a pickup coil that detects high-frequency current,
A conductive adhesive for the conductive pattern of a circuit board which is a liquid crystal cell or an organic EL substrate in which a large number of capacitive circuit elements are connected in parallel and arranged in parallel on an insulating substrate and a conductive pattern is connected to one end of the circuit element. A step of bringing the high-frequency magnetic field generating means and the pickup coil for inspection close to the electrical connection portion that electrically connects the leads of the electronic component via
Analyzing the high-frequency current flowing through the pickup coil from the voltage across the current detection resistor, and determining whether or not the electrical connection portion is connected.
The step of determining whether the connection is good or bad
Discrete Fourier transform of the standard data detected by the pickup coil in the state of the electrical connection portion of the standard circuit board, removing low frequency noise and high frequency noise, and storing as molding standard data;
Discrete Fourier transform the data to be inspected, which is detected by the pickup coil, the state of the electrical connection portion of the circuit board to be inspected, removing low-frequency noise and high-frequency noise, and storing as molding inspected data;
Obtaining the determination data by performing inverse discrete Fourier transform on the difference between the molding standard data and the molding inspection data, and determining the electrical connection state from the amplitude of the waveform of the determination data;
Non-contact inspection method for electrical connections including
前記電気的接続部を絶縁基板の周縁に沿って所定間隔で平行配置し、電気的接続部上を横切って前記高周波磁界発生手段とピックアップコイルを相対移動させるステップを含む請求項1記載の電気的接続部の非接触検査方法。  2. The electrical connection according to claim 1, further comprising the step of arranging the electrical connection portions in parallel at predetermined intervals along the periphery of the insulating substrate and relatively moving the high-frequency magnetic field generating means and the pickup coil across the electrical connection portion. Non-contact inspection method for connecting parts. 前記電気的接続部に対して、高周波磁界発生手段及びピックアップコイルを間隔を一定に保って相対移動させるステップを含む請求項2記載の電気的接続部の非接触検査方法。  The non-contact inspection method for an electrical connection part according to claim 2, further comprising a step of moving the high-frequency magnetic field generating means and the pickup coil relative to the electrical connection part at a constant interval. 前記電気的接続部に対して、高周波磁界発生手段及びピックアップコイルを一定速度で相対移動させるステップを含む請求項2記載の電気的接続部の非接触検査方法。  The non-contact inspection method for an electrical connection part according to claim 2, further comprising a step of relatively moving the high-frequency magnetic field generating means and the pickup coil at a constant speed with respect to the electrical connection part. 絶縁基板上に多数の容量性回路素子をそれぞれ並列接続して整列配置し前記回路素子の一端に接続した導電パターンと電子部品のリードとを導電性接着材を介して電気的に接続した液晶セルまたは有機EL基板である回路基板を支持する回路基板支持体と、
高周波磁界を発生し前記回路基板上の導電パターンと電子部品の電気的接続部上を横切って相対移動する磁気発生手段と、
前記磁気発生手段とともに電気的接続部上を横切って相対移動し、共振コンデンサと並列に接続され、電流検出用抵抗と直列接続され、高周波電流を検出するピックアップコイルと、
前記電流検出用抵抗の両端電圧から、ピックアップコイルに流れる高周波電流を解析することにより、電気的接続部の接続の良否を判定する接続良否判定部とを含み、
前記接続良否判定部は、
標準回路基板の電気的接続部の状態をピックアップコイルで検出した標準データを離散フーリエ変換し、低周波ノイズと高周波ノイズを除去し、成形標準データとして記憶し、
被検査回路基板の電気的接続部の状態をピックアップコイルで検出した被検査データを離散フーリエ変換し、低周波ノイズと高周波ノイズを除去し、成形被検査データとして記憶し、
前記成形標準データと成形被検査データの差を逆離散フーリエ変換して判定用データを得て、該判定用データの波形の振幅から電気的接続状態を判定する
電気的接続部の非接触検査装置。
A liquid crystal cell in which a large number of capacitive circuit elements are connected in parallel and arranged on an insulating substrate, and a conductive pattern connected to one end of the circuit element is electrically connected to a lead of an electronic component via a conductive adhesive. Or a circuit board support that supports a circuit board that is an organic EL substrate;
A magnetism generating means for generating a high-frequency magnetic field and moving relative to the conductive pattern on the circuit board and the electrical connection portion of the electronic component;
A pick-up coil that moves relative to the magnetic connection means together with the magnetism generating means, is connected in parallel with a resonance capacitor, is connected in series with a current detection resistor, and detects a high-frequency current;
A connection pass / fail judgment unit for judging the pass / fail of the electrical connection by analyzing the high-frequency current flowing through the pickup coil from the voltage across the current detection resistor ;
The connection quality determination unit
Discrete Fourier transform the standard data detected by the pickup coil for the state of the electrical connection part of the standard circuit board, remove low frequency noise and high frequency noise, and store it as molding standard data,
Discrete Fourier transform of the data to be inspected, which is detected by the pickup coil to detect the state of the electrical connection portion of the circuit board to be inspected, removes low frequency noise and high frequency noise, and stores it as molding inspected data.
A non-contact inspection device for an electrical connection part that obtains determination data by performing inverse discrete Fourier transform on the difference between the molding standard data and the molding inspected data, and determines the electrical connection state from the amplitude of the waveform of the determination data .
ピックアップコイルが高周波磁界発生手段を兼ねる請求項5に記載の電気的接続部の非接触検査装置。  6. The non-contact inspection apparatus for an electrical connection part according to claim 5, wherein the pickup coil also serves as a high-frequency magnetic field generating means. 前記高周波磁界発生手段と電気的接続部との間に、高周波磁界を電気的接続部上に収束させる磁界収束手段を配置した請求項5に記載の電気的接続部の非接触検査装置。  6. The non-contact inspection device for an electrical connection part according to claim 5, wherein magnetic field converging means for converging the high frequency magnetic field on the electrical connection part is disposed between the high frequency magnetic field generating means and the electrical connection part. 高周波磁界を、高周波磁界発生手段から電気的接続部を通りピックアップコイルに循環させる磁気循環路を配置した請求項5に記載の電気的接続部の非接触検査装置。  6. The non-contact inspection apparatus for an electrical connection part according to claim 5, wherein a magnetic circuit for circulating a high frequency magnetic field from the high frequency magnetic field generating means through the electrical connection part to the pickup coil is disposed. 前記導電性接続部を構成する導電性接着材が、異方性導電フィルム又は異方性導電ペーストである請求項5に記載の電気的接続部の非接触検査装置。  The non-contact inspection device for an electrical connection part according to claim 5, wherein the conductive adhesive constituting the conductive connection part is an anisotropic conductive film or an anisotropic conductive paste.
JP2003194966A 2003-07-10 2003-07-10 Non-contact inspection method and non-contact inspection device for electrical connection Expired - Fee Related JP4586124B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003194966A JP4586124B2 (en) 2003-07-10 2003-07-10 Non-contact inspection method and non-contact inspection device for electrical connection
TW93120717A TWI284744B (en) 2003-07-10 2004-07-09 Contactless method and apparatus for inspecting electrical connection part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194966A JP4586124B2 (en) 2003-07-10 2003-07-10 Non-contact inspection method and non-contact inspection device for electrical connection

Publications (3)

Publication Number Publication Date
JP2005030850A JP2005030850A (en) 2005-02-03
JP2005030850A5 JP2005030850A5 (en) 2006-07-27
JP4586124B2 true JP4586124B2 (en) 2010-11-24

Family

ID=34205948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194966A Expired - Fee Related JP4586124B2 (en) 2003-07-10 2003-07-10 Non-contact inspection method and non-contact inspection device for electrical connection

Country Status (2)

Country Link
JP (1) JP4586124B2 (en)
TW (1) TWI284744B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799161B1 (en) * 2006-07-20 2008-01-29 마이크로 인스펙션 주식회사 Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
KR100796171B1 (en) * 2006-07-20 2008-01-21 마이크로 인스펙션 주식회사 Contact type single side probe and inspection apparatus and method for open/short test of conductive lines used thereof
JP5269482B2 (en) * 2008-05-28 2013-08-21 株式会社日本マイクロニクス Sensor substrate and inspection device
JP5501735B2 (en) * 2009-11-05 2014-05-28 日置電機株式会社 Circuit board inspection apparatus and circuit board inspection method
CN103698644B (en) * 2013-12-18 2016-06-01 马震远 Based on PCB method for detecting short circuit and the detection device of hall sensing device array
JP6502080B2 (en) * 2014-12-16 2019-04-17 日置電機株式会社 Data generation apparatus and data generation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211174A (en) * 1985-07-01 1987-01-20 Hitachi Electronics Eng Co Ltd Apparatus for inspecting soldering of electric parts
JPS62119674U (en) * 1986-01-22 1987-07-29
JPS62187258A (en) * 1986-02-14 1987-08-15 Sumitomo Bakelite Co Ltd Inspecting method for circuit board
JPH01199132A (en) * 1988-02-04 1989-08-10 Ono Sokki Co Ltd Method for extracting error waveform of engagement transmission
JPH05118330A (en) * 1991-08-28 1993-05-14 Ebara Corp Magnetic bearing device
JPH05322855A (en) * 1992-05-22 1993-12-07 Ishikawajima Harima Heavy Ind Co Ltd Automatic eddy current flaw detector
JPH06155583A (en) * 1992-11-24 1994-06-03 Honda Motor Co Ltd Method for adhesion of fiber reinforced plastic member and method for detection of adhesion inferiority
JPH0836191A (en) * 1994-07-21 1996-02-06 Sanyo Electric Co Ltd Display device, method for inspecting display device and inspection apparatus
JP2001296326A (en) * 2000-04-18 2001-10-26 Odp:Kk Method and apparatus for inspection of defect

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491056A (en) * 1987-10-01 1989-04-10 Hitachi Construction Machinery Ultrasonic measurement system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211174A (en) * 1985-07-01 1987-01-20 Hitachi Electronics Eng Co Ltd Apparatus for inspecting soldering of electric parts
JPS62119674U (en) * 1986-01-22 1987-07-29
JPS62187258A (en) * 1986-02-14 1987-08-15 Sumitomo Bakelite Co Ltd Inspecting method for circuit board
JPH01199132A (en) * 1988-02-04 1989-08-10 Ono Sokki Co Ltd Method for extracting error waveform of engagement transmission
JPH05118330A (en) * 1991-08-28 1993-05-14 Ebara Corp Magnetic bearing device
JPH05322855A (en) * 1992-05-22 1993-12-07 Ishikawajima Harima Heavy Ind Co Ltd Automatic eddy current flaw detector
JPH06155583A (en) * 1992-11-24 1994-06-03 Honda Motor Co Ltd Method for adhesion of fiber reinforced plastic member and method for detection of adhesion inferiority
JPH0836191A (en) * 1994-07-21 1996-02-06 Sanyo Electric Co Ltd Display device, method for inspecting display device and inspection apparatus
JP2001296326A (en) * 2000-04-18 2001-10-26 Odp:Kk Method and apparatus for inspection of defect

Also Published As

Publication number Publication date
TW200513661A (en) 2005-04-16
JP2005030850A (en) 2005-02-03
TWI284744B (en) 2007-08-01

Similar Documents

Publication Publication Date Title
US20010008377A1 (en) Non-contact board inspection probe
WO2006112543A1 (en) Inspection device and conductive pattern inspection method
JP4586124B2 (en) Non-contact inspection method and non-contact inspection device for electrical connection
US6323653B1 (en) Magnetic detection of short circuit defects in plate structure
KR20050110324A (en) Apparatus for magnetic non-destructive inspection and the method thereof
JP4856698B2 (en) Inspection method for conductor track structure
WO2018028034A1 (en) Magnetic switch-based semi-finished touch screen tester
KR20050084002A (en) Circuit pattern inspection instrument and pattern inspecting method
CN101726683B (en) Detection apparatus and method therefor
JP2012159359A (en) Checkup device and checkup method
JPH1038980A (en) Apparatus and method for probing circuit board
JP2001296326A (en) Method and apparatus for inspection of defect
WO2006132243A1 (en) Inspection device
JP4150296B2 (en) Board inspection equipment
US20040095144A1 (en) Inspection apparatus and inspection method
TW201000930A (en) Device and procedure for contactless forming a contact of conductive structures, in particular of thin film transistor liquid crystal displays
JP2660497B2 (en) Power supply control element for substrate inspection, power supply method in substrate inspection, and substrate inspection device
CN207081911U (en) A kind of modulator component and substrate detection apparatus
JP3448290B2 (en) LCD panel inspection equipment
JP2009229467A (en) Circuit pattern inspection device
CN1307358A (en) Needle test film card
KR100982830B1 (en) Short inspecting apparatus and short inspecting method for circuit substrate pattern
JP2008304254A (en) Inspection socket and manufacturing method of semiconductor device
JP4181019B2 (en) Substrate inspection apparatus and substrate inspection method
JP5505910B2 (en) Determining the characteristics of electrical equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees