JP4583234B2 - Exhaust gas treatment apparatus and treatment method using the same - Google Patents

Exhaust gas treatment apparatus and treatment method using the same Download PDF

Info

Publication number
JP4583234B2
JP4583234B2 JP2005135529A JP2005135529A JP4583234B2 JP 4583234 B2 JP4583234 B2 JP 4583234B2 JP 2005135529 A JP2005135529 A JP 2005135529A JP 2005135529 A JP2005135529 A JP 2005135529A JP 4583234 B2 JP4583234 B2 JP 4583234B2
Authority
JP
Japan
Prior art keywords
absorption tank
exhaust gas
absorption
liquid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005135529A
Other languages
Japanese (ja)
Other versions
JP2006312134A (en
Inventor
哲郎 大塚
英明 伊藤
孝弘 相羽
忠雄 竹内
仁 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Engineering Co Ltd
Nippon Soda Co Ltd
Original Assignee
Nisso Engineering Co Ltd
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Engineering Co Ltd, Nippon Soda Co Ltd filed Critical Nisso Engineering Co Ltd
Priority to JP2005135529A priority Critical patent/JP4583234B2/en
Publication of JP2006312134A publication Critical patent/JP2006312134A/en
Application granted granted Critical
Publication of JP4583234B2 publication Critical patent/JP4583234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、特に、有機ハロゲン化合物をアルカリ金属により脱ハロゲン化処理させた場合、有機ハロゲン化合物、もしくは、副生物として生成される汚染物質を含む排気ガスを処理するに好適な排ガス処理装置及びそれを用いた処理方法に関する。   The present invention particularly relates to an exhaust gas treatment apparatus suitable for treating exhaust gas containing organic halogen compounds or pollutants generated as by-products when an organic halogen compound is dehalogenated with an alkali metal. It relates to the processing method using.

ポリ塩化ビフェニル(以下、PCBという)等の有機ハロゲン化合物と、金属ナトリウム分散体(以下、SDという)等のアルカリ金属分散体とを反応させて脱ハロゲン化処理、つまり有機ハロゲン化合物を分解処理する方法が知られている。この処理方法では、例えば、PCBの分解処理工程において、排出される排気ガス中にはPCBもしくはPCBに含まれるダイオキシン類や反応副生成物としてビフェニルやベンゼンなどの汚染物質が含まれており、それらを外部へ漏出しないよう排気ガスの浄化処理を完全に行う必要がある。そして、前記した排ガス中の汚染物質を無害化する方法としては、活性炭を充填した活性炭充填塔を反応槽の排気ガスラインに設置して、排気ガスが活性炭内を通過することにより、汚染物質を吸着除去する方法が知られている(PCB処理技術ガイドブック)。この活性炭吸着法では、活性炭の吸着量が飽和した場合に活性炭を新しいものに交換する作業、更に後処理として使用済み活性炭から汚染物質を取り出して再処理を行う必要もあるため、活性炭の交換及び使用済み活性炭の処理作業が煩雑となっており、しかも大量の使用済み活性炭の処理を行う操作では作業者が汚染物質を体内に取り込むという危険も伴う。   Dehalogenation treatment, that is, decomposition treatment of the organic halogen compound, is carried out by reacting an organic halogen compound such as polychlorinated biphenyl (hereinafter referred to as PCB) with an alkali metal dispersion such as a metal sodium dispersion (hereinafter referred to as SD). The method is known. In this treatment method, for example, in the PCB decomposition process, the exhaust gas discharged contains dioxins contained in the PCB or PCB and contaminants such as biphenyl and benzene as reaction byproducts. It is necessary to completely purify the exhaust gas so as not to leak to the outside. And as a method of detoxifying the pollutants in the exhaust gas described above, an activated carbon packed tower filled with activated carbon is installed in the exhaust gas line of the reaction tank, and the exhaust gas passes through the activated carbon to remove the pollutants. A method of removing by adsorption is known (PCB processing technology guidebook). In this activated carbon adsorption method, when the amount of adsorption of activated carbon is saturated, it is necessary to replace the activated carbon with a new one, and also to remove the pollutant from the used activated carbon as a post-treatment and reprocess it. The processing operation of the used activated carbon is complicated, and the operation of processing a large amount of the used activated carbon involves a risk that the operator takes in the pollutant into the body.

以上のような背景から、本出願人らは、特許文献1に記載されているように、活性炭による排気ガス処理の負荷を抑えるために、排気ガスを活性炭に吸着処理する前工程として、吸収剤と接触させる吸収工程と、排気ガスをコンデンサーにより冷却させる冷却工程とを備えた排気ガス処理施設を開発して、活性炭の交換期間の延長化を可能にし、吸着効率を改善した。
特開2003−170021
From the background as described above, as described in Patent Document 1, the present applicants have adopted an absorbent as a pre-process for adsorbing exhaust gas to activated carbon in order to suppress the load of exhaust gas treatment with activated carbon. Has developed an exhaust gas treatment facility equipped with an absorption process for contacting the exhaust gas and a cooling process for cooling the exhaust gas with a condenser, enabling an extension of the activated carbon replacement period and improving the adsorption efficiency.
JP2003-170021

本発明は、上記文献1でも取り上げられている脱ハロゲン化処理工程における活性炭に取って変わる排気ガスの処理、又は、活性炭吸着処理の前工程に用いられる排ガス処理の吸収・浄化効率を更に向上させたり、処理操作を簡素化したり処理経費を低減できる液中曝気式の排ガス処理装置とそれを用いた排ガス処理方法を実現することを目的としている。   The present invention further improves the absorption / purification efficiency of the exhaust gas treatment used in the previous process of the activated carbon adsorption treatment or the treatment of exhaust gas replacing the activated carbon in the dehalogenation treatment step taken up in the above-mentioned literature 1. It is intended to realize a submerged aeration type exhaust gas treatment apparatus and an exhaust gas treatment method using the same, which can simplify the processing operation and reduce the processing cost.

上記目的を達成するため請求項1の発明は、吸収槽に貯留した処理液に排気ガスを曝気して、該排気ガス中の汚染物質を吸収槽内の処理液に吸収させる排気ガス処理装置において、前記吸収槽を上下多段に配設した吸収塔からなり、前記吸収塔が各吸収槽内に配置された曝気用散気管と、下端が前記吸収槽内の気相部上側に接続され、上端が前記吸収槽の上の段の吸収槽内の液相部液面よりも上側位置から折り曲げられて該吸収槽内の前記散気管に接続されて下段の吸収槽内のガスをその上の段の吸収槽内の前記散気管に送る気体移送管と、上端が前記吸収槽内の液相部下側に接続され、下端が前記吸収槽の下の段の吸収槽内の気相部に接続されて上段の吸収槽内の処理液をその下の段の吸収槽に送る液移送管と、前記吸収槽の外周に設けられて冷媒を流して槽内の処理液の温度を調整したり一定に保つジャケットとを備えているとともに、前記吸収槽のうち、下段の吸収槽とその上の段の吸収槽とを仕切る底板ないしは仕切板が、前記気体移送管の下端接続側を高く、反対側である前記液移送管の上端側を低くした傾斜状に設けられており、前記吸収塔を構成している最下段の吸収槽内の処理液に排気ガスを前記散気管を介して曝気し、曝気後の排気ガスを該吸収槽内からその上の段の吸収槽内の処理液に前記気体移送管および前記散気管を介して順に曝気可能であり、かつ、上段の吸収槽内の処理液を順にその下の段の吸収槽内へ前記液移送管を通して移送可能であることを特徴としている。
In order to achieve the above object, an invention according to claim 1 is an exhaust gas processing apparatus in which exhaust gas is aerated to a processing liquid stored in an absorption tank, and a contaminant in the exhaust gas is absorbed by the processing liquid in the absorption tank. the absorption vessel made from upper and lower absorber tower multi-stage is disposed in the absorption tower sparge tube for aeration arranged in each absorption tank, the lower end is connected to the gas phase portion above the absorption vessel, the upper end Is bent from a position above the liquid surface portion liquid level in the upper absorption tank of the absorption tank and connected to the aeration tube in the absorption tank to allow the gas in the lower absorption tank to flow to the upper stage a gas transfer pipe to send to the diffuser tube of the absorption vessel, the upper end is connected to the liquid phase lower side of the absorption trough, the lower end is connected to the gas phase portion of the absorption vessel of the bottom row of the absorbent tank a liquid transfer tube to send the processing solution in the absorption chamber of the upper absorption vessel stages thereunder Te, et provided on the outer periphery of said absorbing compartment Together and a jacket to keep a constant and adjusting the temperature of the treatment liquid by passing a coolant tank Te, of the absorption vessel, the bottom plate partitioning the lower absorption vessel and the absorption vessel stages thereon or The partition plate is provided in an inclined shape in which the lower end connection side of the gas transfer pipe is higher and the upper end side of the liquid transfer pipe, which is the opposite side, is lowered, and the lowermost absorption tank constituting the absorption tower Exhaust gas is aerated through the diffuser pipe to the treatment liquid inside, and the exhaust gas after aeration is passed through the gas transfer pipe and the diffuser pipe from the inside of the absorption tank to the treatment liquid in the upper absorption tank. Te is capable aeration in order, and you are characterized in that it is transported through the liquid flow pipe upper processing solution in the absorption chamber in order to absorption trough stage below it.

これに対し、請求項2の発明は、電気絶縁油中に含まれる有機ハロゲン化合物を、アルカリ金属分散体を用いて分解処理する過程で、副生物などとして生成されて排気ガス中に含まれる汚染物質(これには有機ハロゲン化合物自体も含む)を処理液に吸収させることで、前記汚染物質を除去処理する排気ガス処理方法において、請求項1に記載の排ガス処理装置を用いて、前記処理液が飽和炭化水素、鉱油類、及びこれらの混合物の何れかで、かつ前記処理液の温度を−15〜10℃の範囲に保って、最下段の吸収槽内の処理液に排気ガスを最初に曝気し、曝気後の排気ガスを該吸収槽内からその上の段の吸収槽内の処理液に順に曝気するとともに、最下段の吸収槽内の処理液を槽外へ抜き出した後、その上段の吸収槽内の処理液を最下段の吸収槽内へ移送し、空になった吸収槽へ上段の吸収槽内の処理液を順次移送し、最上段の吸収槽内へ新たな処理液を補充することを特徴としている。
On the other hand, the invention of claim 2 is a pollution that is produced as a by-product in the process of decomposing the organic halogen compound contained in the electrical insulating oil using the alkali metal dispersion and contained in the exhaust gas. The exhaust gas treatment apparatus according to claim 1, wherein the treatment liquid removes the contaminants by absorbing a substance (including an organic halogen compound itself) in the treatment liquid, and uses the exhaust gas treatment apparatus according to claim 1. Is a saturated hydrocarbon, mineral oil, or a mixture thereof, and the temperature of the treatment liquid is kept in the range of −15 to 10 ° C., and the exhaust gas is first introduced into the treatment liquid in the lowermost absorption tank. After aeration, the exhaust gas after aeration is sequentially aerated from the inside of the absorption tank to the treatment liquid in the upper absorption tank, and the treatment liquid in the lowermost absorption tank is taken out of the tank, and then the upper stage The treatment liquid in the absorption tank Transferred into Osamuso, sequentially transferring the process liquid in the absorption vessel of the upper to the absorber tank emptied, it is characterized by replenishing the new process liquid to the top of the absorption vessel.

・請求項1の発明では、吸収槽が上下多段に配置されていることから、排気ガスと処理液との接触面積をスペースを抑えて確保することができ、また、処理液を重力により順に下段へ移送したり、排気ガスを順に上段へ自動移送できるので、付帯設備を極力少なくして装置を簡素化できる。なお、制御によっては、例えば、処理液が上段の吸収槽から下段の吸収槽へ移動することによって、下段の吸収槽内の気相部空間を狭めて、当該吸収槽内の排気ガスを上段の吸収槽へ効率よく圧送することも可能である。
また、この発明では、排気ガスの逆流を防止することができる。これは、排気ガスを次の上の吸収槽へ移送させるポンプ及びバルブを省く場合にも、排ガス及び処理液が前記上の吸収槽の散気管から気体移送管を通って下段の吸収槽へ逆流する虞を解消する。しかも、処理液を上部から供給し、下部から抜き出すことにより汚染物質が吸収された処理液を効率よく下段へ移送することができる。換言すると、この点は、例えば、最上段の吸収槽に供給された新たな処理液を、下段の吸収槽にオーバーフロー方式で抜き出すと、補充された処理液が十分拡散されて汚染物質を吸収しないまま排出されることを防ぐためである。さらに、吸収槽を上下多段にした吸収塔において、吸収槽同士を仕切る底板ないしは仕切板が排気ガスを捕集する作用を兼ねることで更なる簡素化が実現される。
-In invention of Claim 1, since the absorption tank is arrange | positioned at upper and lower multistage, the contact area of exhaust gas and a process liquid can be ensured, suppressing a space, and a process liquid is made into a lower stage in order by gravity. Since the exhaust gas can be automatically transferred to the upper stage in order, the equipment can be simplified by minimizing auxiliary equipment. Depending on the control, for example, the treatment liquid moves from the upper absorption tank to the lower absorption tank, thereby narrowing the gas phase space in the lower absorption tank and reducing the exhaust gas in the absorption tank to the upper absorption tank. It is also possible to efficiently pump to the absorption tank.
Moreover, in this invention, the backflow of exhaust gas can be prevented. Even when the pump and valve for transferring the exhaust gas to the next upper absorption tank are omitted, the exhaust gas and the processing liquid flow back from the diffusion pipe of the upper absorption tank to the lower absorption tank through the gas transfer pipe. To eliminate the risk of Moreover, by supplying the processing liquid from the upper part and withdrawing it from the lower part , the processing liquid in which the contaminant is absorbed can be efficiently transferred to the lower stage. In other words, for example, when a new processing liquid supplied to the uppermost absorption tank is extracted into the lower absorption tank by the overflow method, the replenished processing liquid is sufficiently diffused and does not absorb the contaminants. This is to prevent being discharged as it is. Furthermore, in the absorption tower having the upper and lower absorption tanks, further simplification is realized by the bottom plate or the partition plate partitioning the absorption tanks also having the function of collecting the exhaust gas.

・請求項2の発明では、脱ハロゲン化処理における排気ガス処理方法として、請求項1と同様に装置の簡素化に起因して処理操作が容易になることに加え、例えば、上下の各吸収槽の処理液のうち、汚染物質を最も多く含む最下段の吸収槽の処理液だけを槽外へ移送するため、例えば、次工程での処理量を抑えて効率的な分解処理が可能となる。
また、この発明では、処理液として最も好ましいものを特定し、かつ処理液に排気ガスを吸収させる操作において、通常は処理液の温度をできるだけ低くして曝気させることが好ましいが、余りにも低温度だと処理液粘度が高く流動性に欠けて、曝気しても排気ガスの気泡が広がらず接触面積が狭くなるため、温度範囲を規定して、ある程度の流動性及び吸収効率を満たすようにしたことに意義がある。
In the invention of claim 2, as an exhaust gas treatment method in the dehalogenation treatment, in addition to the simplification of the apparatus as in the case of claim 1, the treatment operation becomes easy. Of these treatment liquids, only the treatment liquid in the lowermost absorption tank containing the largest amount of contaminants is transferred to the outside of the tank, so that, for example, an efficient decomposition process can be performed while suppressing the amount of treatment in the next step.
Further, in this invention, in the most preferred to identify those, and an operation of absorbing the exhaust gas into the processing solution as a processing solution, but usually it is preferable to aeration as low as possible the temperature of the treatment liquid, low too Temperature In this case, the viscosity of the processing solution is high and the fluidity is poor, and even when aerated, the exhaust gas bubbles do not spread and the contact area becomes narrow. Therefore, the temperature range is specified to satisfy a certain degree of fluidity and absorption efficiency. It has significance.

(装置構造)本発明の好適な形態例を図1の模式図を参照しながら説明する。図1の排ガス処理装置は、吸収槽2A〜2Cを上下多段に設けた縦型吸収塔1と、制御装置3とを備えている。吸収塔1は、吸収槽が3段構成であるが、2段あるいは4段以上で構成してもよい。槽構造としては、各吸収槽2A〜2Cが外周に設けられて冷媒等を流して槽内の処理液の温度を調整したり一定に保つためのジャケット4と、各槽内に配置された散気管5とを有している。また、下段の吸収槽とその上の段の吸収槽、つまりこの例では最下段の吸収槽2Aと中段の吸収槽2B、中段の吸収槽2Bと最上段の吸収槽2Cとが上側槽の底板ないしは仕切板6でそれぞれ仕切られている。このうち、各散気管5は、多数の孔(下孔)から排ガスを噴射する管であり、槽内の下側にあって略水平に保持されている。各仕切板6は、片側を低くした傾斜状に設けられ、槽内の排ガスが傾斜に沿って高い側に流れ易くしている。 (Apparatus Structure) A preferred embodiment of the present invention will be described with reference to the schematic diagram of FIG. The exhaust gas treatment apparatus of FIG. 1 includes a vertical absorption tower 1 in which absorption tanks 2 </ b> A to 2 </ b> C are provided in multiple upper and lower stages, and a control device 3. The absorption tower 1 has a three-stage absorption tank, but may have two stages or four or more stages. As a tank structure, each absorption tank 2A-2C is provided in the outer periphery, and the jacket 4 for flowing the refrigerant | coolant etc. and adjusting the temperature of the process liquid in a tank or keeping it constant, and the dispersion | distribution arrange | positioned in each tank And a trachea 5. Further, the lower absorption tank and the upper absorption tank, that is, in this example, the lowermost absorption tank 2A and the middle absorption tank 2B, the middle absorption tank 2B and the uppermost absorption tank 2C are the bottom plate of the upper tank. Or it is partitioned off by a partition plate 6. Among these, each aeration pipe 5 is a pipe for injecting exhaust gas from a number of holes (lower holes), and is held substantially horizontally on the lower side in the tank. Each partition plate 6 is provided in an inclined shape with one side being lowered, so that the exhaust gas in the tank easily flows to the higher side along the inclination.

吸収槽2A〜2Cには、排ガスを流す排ガス系経路と、処理液を流す処理液系経路とが設けられる。詳述すると、排ガス系経路は、処理対象の排ガス発生源10と最下段の吸収槽2Aに配された散気管5とを接続している排ガス入口用としての気体移送管7aと、最上段の吸収槽2Cとガス回収部11などとを接続している処理済みの排ガス出口用としての気体移送管7bと、最下段の吸収槽2Aとその上の吸収槽2Bに配された散気管5とを接続している気体移送管7c、及び中段の吸収槽2Bと最上段の吸収槽2Cに配された散気管5とを接続している気体移送管7dとで構成されている。気体移送管7cと7dは、下端が吸収槽2Aや2B内の気相部上側に接続され、上端が前記吸収槽の上の段の吸収槽2Bや2C内の液相部液面よりも上側位置から折り曲げられて該吸収槽に配された対応する散気管5に接続されている。
The absorption tanks 2 </ b> A to 2 </ b> C are provided with an exhaust gas path for flowing exhaust gas and a treatment liquid path for flowing treatment liquid. More specifically, the exhaust gas system path includes the gas transfer pipe 7a for the exhaust gas inlet connecting the exhaust gas generation source 10 to be treated and the diffuser pipe 5 disposed in the lowermost absorption tank 2A, and the uppermost gas transfer pipe 7a. A gas transfer pipe 7b for the treated exhaust gas outlet connecting the absorption tank 2C and the gas recovery unit 11 and the like, a lowermost absorption tank 2A, and an aeration pipe 5 arranged in the absorption tank 2B above And a gas transfer pipe 7d connecting the middle absorption tank 2B and the diffuser pipe 5 arranged in the uppermost absorption tank 2C. The lower ends of the gas transfer pipes 7c and 7d are connected to the upper side of the gas phase part in the absorption tanks 2A and 2B, and the upper end is higher than the liquid phase part liquid level in the upper absorption tanks 2B and 2C above the absorption tank. It is bent from the position and connected to the corresponding diffuser pipe 5 arranged in the absorption tank.

処理液系経路は、新たな処理液を貯蔵している貯留部13と最上段の吸収槽2Cの上部とを接続している処理液入口用としての液移送管8aと、最下段の吸収槽2Aと使用済み処理液を回収して処理する処理部14とを接続している使用済みの処理液(これは排ガス中の汚染物質を最も多く吸収している処理液である)出口用としての液移送管8bと、最上段の吸収槽2Cの液相部下側とその下の吸収槽2Bの気相部とを接続している液移送管8c、及び中段の吸収槽2Bの液相部下側と最下段の吸収槽2Aの気相部とを接続している液移送管8dとで構成されている。液移送管8cと8dは、上端が吸収槽2Cや2B内の液相部下側に接続され、下端が前記吸収槽の下の段の吸収槽2Bや2A内の気相部に接続されている。また、液移送管8a〜8dには、制御装置3の指令により自動的に開閉制御されるバルブ(電磁弁等)9a〜9dが介在されている。なお、好ましくは、液移送管8a〜8dのうち、液を排出する排出口にシャワーを付設して、該シャワーを介して処理液を気相部で噴霧して気液接触効率を向上することである。   The processing liquid system path includes a liquid transfer pipe 8a for the processing liquid inlet connecting the reservoir 13 storing new processing liquid and the upper part of the uppermost absorption tank 2C, and the lowermost absorption tank. As an outlet for a used processing liquid (this is a processing liquid that absorbs most of the pollutants in the exhaust gas) connecting 2A and the processing section 14 for collecting and processing the used processing liquid. The liquid transfer pipe 8b, the liquid transfer pipe 8c connecting the lower liquid phase part of the uppermost absorption tank 2C and the gas phase part of the lower absorption tank 2B, and the lower liquid phase part of the middle absorption tank 2B And a liquid transfer pipe 8d connecting the gas phase part of the lowermost absorption tank 2A. The upper ends of the liquid transfer pipes 8c and 8d are connected to the lower side of the liquid phase part in the absorption tanks 2C and 2B, and the lower ends are connected to the gas phase part in the absorption tanks 2B and 2A in the lower stage of the absorption tank. . In addition, valves (solenoid valves or the like) 9a to 9d that are automatically controlled to open and close according to commands from the control device 3 are interposed in the liquid transfer pipes 8a to 8d. Preferably, a shower is attached to the discharge port for discharging the liquid among the liquid transfer pipes 8a to 8d, and the treatment liquid is sprayed in the gas phase portion through the shower to improve the gas-liquid contact efficiency. It is.

なお、以上の吸収槽2A〜2Cには不図示の温度計及び液面計が付設されている。吸収塔1及びそれに付随する管などの材質としては、処理液温度や設備費などに応じて、鉄鋼(SS)やステンレス鋼(SUS)などが適宜選択される。   Note that a thermometer and a liquid level meter (not shown) are attached to the absorption tanks 2A to 2C. As materials for the absorption tower 1 and the pipes accompanying it, steel (SS), stainless steel (SUS), and the like are appropriately selected according to the temperature of the processing liquid, equipment costs, and the like.

(排ガス処理方法)次に、図2を参考にして脱ハロゲン化処理の過程で、副生物などとして生成されて排気ガス中に含まれる汚染物質を処理液に吸収させて除去処理する要領を説明する。まず、本発明の脱ハロゲン化処理に供される有機ハロゲン化合物としては、PCB以外にもダイオキシン類、ポリ塩素化ジベンゾフラン類、ポリ塩素化ベンゼン、フロン、DDT、BHC等の難分解性有機ハロゲン化合物を例示することができる。これら有機ハロゲン化合物は、そのまま用いてもよいものもあるが、溶媒に溶解して処理するのに適した濃度に調整した有機ハロゲン化合物溶液として用いることができる。 (Exhaust gas treatment method) Next, with reference to FIG. 2, in the course of the dehalogenation treatment, the procedure for removing the contaminants produced as by-products and contained in the exhaust gas by absorbing them into the treatment liquid will be explained. To do. First, as the organic halogen compound to be used in the dehalogenation treatment of the present invention, in addition to PCB, dioxins, polychlorinated dibenzofurans, polychlorinated benzene, chlorofluorocarbon, DDT, BHC and the like hardly persistent organic halogen compounds Can be illustrated. These organohalogen compounds may be used as they are, but can be used as an organohalogen compound solution adjusted to a concentration suitable for treatment by dissolving in a solvent.

有機ハロゲン化合物を溶解する溶媒としては、アルカリ金属に不活性もしくは活性の低い、脂肪族炭化水素、芳香族炭化水素または環式炭化水素が好ましく、例えば、ヘキサン、シクロヘキサン、ベンゼン、ケロシン、デカリン、トランス油(JIS C 2320−1993に記載のトランス油)、重油(JIS K2205に記載の重油)、流動パラフィン又は洗浄油(フロン、トリクロロエタン、灯油などの代替品として、自動車、電子部品、精密機器の洗浄用に用いられる炭化水素系を主成分とした溶剤)などを挙げることができ、これらは単独もしくは混合物として用いることができる。これらの溶媒の中でもトランス油は、SDを安定化する点などで特に好適に用いることができる。   As the solvent for dissolving the organic halogen compound, aliphatic hydrocarbons, aromatic hydrocarbons or cyclic hydrocarbons which are inert or low in activity to alkali metals are preferable. For example, hexane, cyclohexane, benzene, kerosene, decalin, trans As an alternative to oil (trans oil described in JIS C 2320-1993), heavy oil (heavy oil described in JIS K2205), liquid paraffin, or cleaning oil (fluorocarbon, trichloroethane, kerosene, etc., cleaning automobiles, electronic components, precision equipment And the like, which are used mainly for hydrocarbons), and these can be used alone or as a mixture. Among these solvents, trans oil can be particularly preferably used in terms of stabilizing SD.

アルカリ金属としては、ナトリウムの他に、カリウム、リチウム、セシウム、ルビジウム又はこれらの合金等を例示することができる。但し、取り扱いの容易さ、及び反応性を考慮した場合、ナトリウムがもっとも好ましく、更に反応性を考慮するとSDが最も好ましい。特に電気絶縁油中で製造されたSDは安定性、分散性、反応性に優れている。なお、電気絶縁油とは、JIS 2380に記載された1〜7種までのコンデンサーなどに用いられる電気絶縁のための油であり、その中でも第1種電気絶縁油が好ましい。また、アルカリ金属分散体中のアルカリ金属濃度は、任意に選択することが可能であるが、特に1〜50%程度のものが好ましい。アルカリ金属分散体の平均粒径は、20μm以下、好ましくは10μm以下のものが良い。SDの添加量は有機ハロゲン化合物中のハロゲン原子1モルに対して1〜200倍モルが用いられる。   Examples of the alkali metal include potassium, lithium, cesium, rubidium, and alloys thereof in addition to sodium. However, sodium is most preferable when considering ease of handling and reactivity, and SD is most preferable when considering reactivity. In particular, SD produced in electrical insulating oil is excellent in stability, dispersibility, and reactivity. The electrical insulating oil is an oil for electrical insulation used for 1 to 7 types of capacitors described in JIS 2380, and among them, the first type electrical insulating oil is preferable. Further, the alkali metal concentration in the alkali metal dispersion can be arbitrarily selected, but is preferably about 1 to 50%. The average particle size of the alkali metal dispersion is 20 μm or less, preferably 10 μm or less. SD is added in an amount of 1 to 200 times mol per mol of halogen atoms in the organic halogen compound.

有機ハロゲン化合物を分解する脱ハロゲン化処理工程は、電気絶縁油中に含まれるPCBを高濃度(含有率1%以上、特に10%以上のもの)処理分解する場合を例に挙げると、SD及び溶媒であるトランス油が貯留されている反応槽に、PCBが含有された被処理油を供給し、脱ハロゲン化処理させる。ここでの反応温度は150〜200℃である。PCBと金属ナトリウムが化学反応することによって、ビフェニルが結合し、PCBは高分子重合物に無害化される。ここで、トランス油中にはPCBの他にトリクロロベンゼンが含まれており、脱ハロゲン化処理によってベンゼンなど含有された排気ガスが大量に発生するため、その排気ガスを排気ガス処理工程へ送り浄化処理することになる。   In the dehalogenation treatment step for decomposing the organic halogen compound, the case where the PCB contained in the electrical insulating oil is decomposed at a high concentration (content of 1% or more, particularly 10% or more) is taken as an example. An oil to be treated containing PCB is supplied to a reaction tank in which trans oil as a solvent is stored, and is dehalogenated. The reaction temperature here is 150-200 ° C. By the chemical reaction between PCB and metallic sodium, biphenyl is bonded, and PCB is rendered harmless to the polymer. Here, the transformer oil contains trichlorobenzene in addition to PCB, and a large amount of exhaust gas containing benzene and the like is generated by the dehalogenation treatment, so the exhaust gas is sent to the exhaust gas treatment process for purification. Will be processed.

排気ガス処理工程は、脱ハロゲン化処理で発生する反応排気ガス中に含まれる汚染物質を吸着などの手段により除去・浄化する箇所であり、それらの汚染物質を排気ガスに同伴させることなく浄化し、大気放出する。具体的には、ビフェニルやベンゼンの溶解性に優れる処理液が貯留された吸収槽を上下多段に配置した吸収塔を使用し、吸収塔に送り込まれた排気ガスを下段から上段へ移送させるとともに、処理液を上段から下段へ移送させ、各吸収槽の処理液に曝気させることにより、排気ガスに含まれる汚染物質を各槽の処理液に順に吸収させる、いわゆる液中曝気式の排気ガス処理方法である。なお、この処理方法は、排気ガスを処理液に曝気させることから、従来の充填塔式や棚段式などといった塔内で上昇する排気ガスと下降する処理液とが互いに接触する、いわゆる向流接触とは全く異なる方式である。   The exhaust gas treatment process is a place where contaminants contained in the reaction exhaust gas generated by the dehalogenation treatment are removed and purified by means such as adsorption, and these contaminants are purified without being accompanied by the exhaust gas. Released into the atmosphere. Specifically, using an absorption tower in which upper and lower absorption tanks in which treatment liquids excellent in solubility of biphenyl and benzene are stored are used, the exhaust gas sent to the absorption tower is transferred from the lower stage to the upper stage, A so-called submerged aeration type exhaust gas treatment method in which contaminants contained in exhaust gas are absorbed in order into the treatment liquid of each tank by transferring the treatment liquid from the upper stage to the lower stage and aeration of the treatment liquid in each absorption tank It is. In this processing method, exhaust gas is aerated into the processing liquid, so that the exhaust gas rising in the tower, such as a conventional packed tower type or a shelf type, and the falling processing liquid come into contact with each other, so-called countercurrent. It is a completely different method from contact.

処理液としては、n−ヘキサン、n−ヘプアン、n−オクタン、n−デカン、ケロシン、デカリン、流動パラフィン、電気絶縁油(例えば、JIS C2320−1993に記載の電気絶縁油)、重油(例えば、JIS K2205に記載の重油)、流動パラフィンなどの炭化水素類;トルエン、キシレン等の芳香族炭化水素;1,3−ジメチルイミダゾリン、スルホラン、ポリエチレングリコールジアルキルエーテル等の非プロトン性極性溶剤;及びこれらの混合物;等が挙げられる。これらの中でも比較的蒸気圧が低く、引火点が高くかつ、有機ハロゲン化合物の吸収能に優れることから、n−デカン、デカリン、流動パラフィンなどの飽和炭化水素;ケロシン、電気絶縁油、重油などの鉱油類;及びこれらの混合物の使用が好ましい。以下の実施例では処理液としてトランス油を使用している。   As the treatment liquid, n-hexane, n-heptane, n-octane, n-decane, kerosene, decalin, liquid paraffin, electric insulating oil (for example, electric insulating oil described in JIS C2320-1993), heavy oil (for example, Heavy oils described in JIS K2205), hydrocarbons such as liquid paraffin; aromatic hydrocarbons such as toluene and xylene; aprotic polar solvents such as 1,3-dimethylimidazoline, sulfolane and polyethylene glycol dialkyl ether; and these A mixture; and the like. Among these, since the vapor pressure is relatively low, the flash point is high, and the absorption ability of organic halogen compounds is excellent, saturated hydrocarbons such as n-decane, decalin, liquid paraffin, kerosene, electrical insulating oil, heavy oil, etc. The use of mineral oils; and mixtures thereof is preferred. In the following examples, trans oil is used as the treatment liquid.

処理液の使用温度としては、汚染物質の吸収効率や、処理液の熱効率を考慮し、−15〜10℃の温度範囲に設定する。脱ハロゲン化処理は前途したように、90〜200℃の温度範囲にて行うため、反応槽から排出される排気ガスも高温になっており、直接排気ガス処理工程に導くと処理液の温度が上昇してしまい、吸収効率が低下するので、排気ガス処理を行う最初に、排気ガスを冷却する冷却工程を設ける。また、排気ガスを冷却工程により凝縮させることにより、同伴して排出される汚染物質を冷却凝縮、つまり吸収し除去する目的も兼ねている。具体的には、コンデンサーなどを用いて排気ガスの温度を下げ、吸収塔内の処理液温度を最適な範囲に維持する。   The use temperature of the treatment liquid is set to a temperature range of −15 to 10 ° C. in consideration of the absorption efficiency of contaminants and the thermal efficiency of the treatment liquid. Since the dehalogenation treatment is performed in the temperature range of 90 to 200 ° C. as described earlier, the exhaust gas discharged from the reaction tank is also at a high temperature, and the temperature of the treatment liquid is directly led to the exhaust gas treatment step. Since this increases the absorption efficiency, a cooling step for cooling the exhaust gas is provided at the beginning of the exhaust gas treatment. In addition, the exhaust gas is condensed in the cooling process, so that the pollutant discharged together is cooled and condensed, that is, absorbed and removed. Specifically, the temperature of the exhaust gas is lowered using a condenser or the like, and the temperature of the treatment liquid in the absorption tower is maintained in an optimum range.

処理液に汚染物質を吸収させるので浄化処理を進めるにつれ、処理液中に汚染物質が溜まっていく。したがって、この処理液を無害化処理する必要がある。そこで、使用済の処理液は、直接反応槽へ移送して脱ハロゲン化反応に供するか、一旦受入槽に移送して貯蔵し、一定量ずつをまとめて脱ハロゲン化反応に供する。この場合、処理液として、有機ハロゲン化合物の脱ハロゲン化反応に使用可能な溶剤を使用すれば、使用済の処理液をそのまま脱ハロゲン化反応に供することができる。したがって処理液と汚染物質との分離工程が不要となり、作業効率及び分離工程における汚染物質による再汚染の危険を回避できる。   Since the contaminant is absorbed into the processing liquid, the contaminant accumulates in the processing liquid as the purification process proceeds. Therefore, it is necessary to detoxify this treatment liquid. Therefore, the used processing solution is directly transferred to the reaction vessel and used for the dehalogenation reaction, or once transferred to the receiving vessel and stored, and a certain amount is collected and used for the dehalogenation reaction. In this case, if a solvent that can be used for the dehalogenation reaction of the organic halogen compound is used as the treatment liquid, the used treatment liquid can be directly subjected to the dehalogenation reaction. Therefore, the separation process of the treatment liquid and the contaminant is not required, and the work efficiency and the risk of recontamination by the contaminant in the separation process can be avoided.

排気ガス処理工程でほとんど汚染物質を処理液に吸収させることができるが、排気ガス中の汚染物質があまりにも高濃度であったり、より安全面・浄化効率をあげるために、液中曝気式排ガス処理工程の後には充填物式処理工程や活性炭吸着処理工程などを設けることができる。充填物式処理とは、ラシヒリングやスルーザーパッキングなどの充填物が充填された塔の上部から処理液を供給し、下部より排気ガスを通過させ、気液接触を行う処理法である。液中曝気式の処理油に取り込まれなかった排気ガス中の微量の汚染物質は活性炭などに吸着され、排気ガスの清浄度は大幅に向上できる。これらの排気ガスの流れを図2のフローシートで表した。   In the exhaust gas treatment process, most of the pollutants can be absorbed by the treatment liquid. However, in order to increase the concentration of pollutants in the exhaust gas and to improve safety and purification efficiency, the aeration submerged exhaust gas After the treatment step, a packing type treatment step, an activated carbon adsorption treatment step, and the like can be provided. The packing type processing is a processing method in which a processing liquid is supplied from the upper part of a tower packed with packings such as Raschig ring and sulzer packing, and exhaust gas is passed from the lower part to make gas-liquid contact. Trace amounts of pollutants in the exhaust gas that have not been taken into the liquid aeration-type treatment oil are adsorbed by activated carbon and the like, and the cleanliness of the exhaust gas can be greatly improved. The flow of these exhaust gases is shown in the flow sheet of FIG.

この実施例では、反応槽に15wt%濃度に調整したSDと、PCB濃度を50wt%に調整した電気絶縁油を混合し、脱ハロゲン化処理を実施した。反応処理中、反応槽には不活性ガスである窒素を供給し、排気ガスの排出量を10L/minになるよう調整した。反応槽から排出された排気ガスは、熱交換器により5℃まで冷却させた後、上記した排気ガス処理装置と同様な吸収塔に排気ガスを導入させた。吸収塔は吸収槽が3段式であり、最上段へ処理液であるトランス油を供給し、液移送管を伝って各吸収槽内へ所定量(各槽200ml)の処理液を貯留した。貯留後、液移送管のバルブをすべて閉じ、処理液を0℃に維持しながら排気ガスを通過させた。吸収塔に導入した排気ガスは、各吸収槽内の処理液を通過し、吸収塔から排出した。表1、2は、反応槽から排出された排気ガス中のPCB濃度を、吸収塔の出入口で計測した値である。   In this example, SD adjusted to a concentration of 15 wt% and electrical insulating oil adjusted to a PCB concentration of 50 wt% were mixed in a reaction tank, and a dehalogenation treatment was performed. During the reaction treatment, nitrogen as an inert gas was supplied to the reaction tank, and the exhaust gas discharge rate was adjusted to 10 L / min. The exhaust gas discharged from the reaction tank was cooled to 5 ° C. by a heat exchanger, and then the exhaust gas was introduced into an absorption tower similar to the above-described exhaust gas processing apparatus. The absorption tower has a three-stage absorption tank. Transformer oil as a processing liquid was supplied to the uppermost stage, and a predetermined amount (200 ml of each tank) of processing liquid was stored in each absorption tank through a liquid transfer pipe. After storage, all the valves of the liquid transfer pipe were closed, and the exhaust gas was allowed to pass while maintaining the treatment liquid at 0 ° C. The exhaust gas introduced into the absorption tower passed through the treatment liquid in each absorption tank and was discharged from the absorption tower. Tables 1 and 2 are values obtained by measuring the PCB concentration in the exhaust gas discharged from the reaction tank at the entrance and exit of the absorption tower.

Figure 0004583234
Figure 0004583234

Figure 0004583234
Figure 0004583234

なお、以上の実施例では、3段式の吸収塔を用いたが、排気ガスの処理能力に応じ適宜段数及び処理液量を決定する。実施例では、処理液の移送を行わなかったが、曝気中にバルブを開き、最上段に処理液を補充したり、各吸収槽の処理液を下段の吸収槽へ移送することは任意に設計される。各吸収槽内の処理液の汚染物質濃度を計測し、所定濃度になった場合に移送したり、処理液を反応槽へ移送することも可能である。このように、本発明は、請求項で特定した要件を充足すればよく、細部は以上の実施形態及び実施例を参照して種々変形したり展開可能なものである。   In the above embodiment, a three-stage absorption tower is used. However, the number of stages and the amount of processing liquid are appropriately determined according to the processing capacity of exhaust gas. In the examples, the treatment liquid was not transferred, but it was arbitrarily designed to open the valve during aeration and replenish the treatment liquid in the uppermost stage or to transfer the treatment liquid in each absorption tank to the lower absorption tank. Is done. It is also possible to measure the concentration of contaminants in the treatment liquid in each absorption tank and transfer it when a predetermined concentration is reached, or to transfer the treatment liquid to the reaction tank. As described above, the present invention only needs to satisfy the requirements specified in the claims, and the details can be variously modified and developed with reference to the above embodiments and examples.

発明形態の排ガス処理装置を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the exhaust gas processing apparatus of invention form. 排ガス処理方法の全体の流れを示す参考説明図である。It is reference explanatory drawing which shows the whole flow of the waste gas processing method.

符号の説明Explanation of symbols

1…吸収塔
2A〜2C…吸収槽
3…制御部
4…ジャケット
5…散気管
6…底板ないしは仕切板
7a〜7d…気体移送管
8a〜8e…液移送管

DESCRIPTION OF SYMBOLS 1 ... Absorption tower 2A-2C ... Absorption tank 3 ... Control part 4 ... Jacket 5 ... Aeration pipe 6 ... Bottom plate or partition plate 7a-7d ... Gas transfer pipe 8a-8e ... Liquid transfer pipe

Claims (2)

吸収槽に貯留した処理液に排気ガスを曝気して、該排気ガス中の汚染物質を吸収槽内の処理液に吸収させる排気ガス処理装置において、
前記吸収槽を上下多段に配設した吸収塔からなり、
前記吸収塔が各吸収槽内に配置された曝気用散気管と、
下端が前記吸収槽内の気相部上側に接続され、上端が前記吸収槽の上の段の吸収槽内の液相部液面よりも上側位置から折り曲げられて該吸収槽内の前記散気管に接続されて下段の吸収槽内のガスをその上の段の吸収槽内の前記散気管に送る気体移送管と、
上端が前記吸収槽内の液相部下側に接続され、下端が前記吸収槽の下の段の吸収槽内の気相部に接続されて上段の吸収槽内の処理液をその下の段の吸収槽に送る液移送管と、
前記吸収槽の外周に設けられて冷媒を流して槽内の処理液の温度を調整したり一定に保つジャケットとを備えているとともに、
前記吸収槽のうち、下段の吸収槽とその上の段の吸収槽とを仕切る底板ないしは仕切板が、前記気体移送管の下端接続側を高く、反対側である前記液移送管の上端側を低くした傾斜状に設けられており、
前記吸収塔を構成している最下段の吸収槽内の処理液に排気ガスを前記散気管を介して曝気し、曝気後の排気ガスを該吸収槽内からその上の段の吸収槽内の処理液に前記気体移送管および前記散気管を介して順に曝気可能であり、かつ、上段の吸収槽内の処理液を順にその下の段の吸収槽内へ前記液移送管を通して移送可能であることを特徴とする排気ガス処理装置。
In the exhaust gas treatment apparatus, aeration gas is aerated into the treatment liquid stored in the absorption tank, and the contaminant in the exhaust gas is absorbed by the treatment liquid in the absorption tank.
It consists of an absorption tower in which the absorption tank is arranged in upper and lower stages ,
An aeration pipe for aeration in which the absorption tower is disposed in each absorption tank;
The lower end is connected to the upper side of the gas phase part in the absorption tank, and the upper end is bent from the position above the liquid surface part liquid level in the absorption tank on the upper stage of the absorption tank, and the diffuser tube in the absorption tank a gas transfer tube to send the gas absorption chamber of the lower to the diffuser tube in absorption trough the stage above it is connected to,
The upper end is connected to the lower side of the liquid phase part in the absorption tank, the lower end is connected to the gas phase part in the absorption tank at the lower stage of the absorption tank, and the treatment liquid in the upper absorption tank is passed to the lower stage. A liquid transfer pipe to be sent to the absorption tank;
A jacket provided on the outer periphery of the absorption tank to adjust the temperature of the processing liquid in the tank by flowing a refrigerant or to keep it constant ,
Among the absorption tanks, a bottom plate or a partition plate that partitions the lower absorption tank and the upper absorption tank has a higher lower end connection side of the gas transfer pipe, and an upper end side of the liquid transfer pipe that is the opposite side. It is provided in a lowered slope,
Exhaust gas is aerated through the diffuser pipe to the treatment liquid in the lowermost absorption tank constituting the absorption tower, and the exhaust gas after aeration is discharged from the absorption tank into the upper absorption tank. The treatment liquid can be aerated through the gas transfer pipe and the diffusion pipe in order, and the treatment liquid in the upper absorption tank can be sequentially transferred to the lower absorption tank through the liquid transfer pipe. An exhaust gas treatment apparatus characterized by that.
電気絶縁油中に含まれる有機ハロゲン化合物を、アルカリ金属分散体を用いて分解処理する過程で、副生物などとして生成されて排気ガス中に含まれる汚染物質を処理液に吸収させることで、前記汚染物質を除去処理する排気ガス処理方法において、
請求項1に記載の排ガス処理装置を用いて、前記処理液が飽和炭化水素、鉱油類、及びこれらの混合物の何れかで、かつ前記処理液の温度を−15〜10℃の範囲に保って、最下段の吸収槽内の処理液に排気ガスを最初に曝気し、曝気後の排気ガスを該吸収槽内からその上の段の吸収槽内の処理液に順に曝気するとともに、最下段の吸収槽内の処理液を槽外へ抜き出した後、その上段の吸収槽内の処理液を最下段の吸収槽内へ移送し、空になった吸収槽へ上段の吸収槽内の処理液を順次移送し、最上段の吸収槽内へ新たな処理液を補充することを特徴とする排気ガス処理方法。
In the process of decomposing the organic halogen compound contained in the electrical insulating oil using the alkali metal dispersion, the pollutant produced as a by-product and contained in the exhaust gas is absorbed by the treatment liquid, In an exhaust gas treatment method for removing pollutants,
The exhaust gas treatment apparatus according to claim 1, wherein the treatment liquid is one of saturated hydrocarbons, mineral oils, and mixtures thereof, and the temperature of the treatment liquid is maintained in a range of −15 to 10 ° C. The exhaust gas is first aerated into the treatment liquid in the lowermost absorption tank, and the exhaust gas after aeration is sequentially aerated from the absorption tank to the treatment liquid in the upper absorption tank. After the treatment liquid in the absorption tank is drawn out of the tank, the treatment liquid in the upper absorption tank is transferred into the lowermost absorption tank, and the treatment liquid in the upper absorption tank is transferred to the empty absorption tank. An exhaust gas treatment method comprising sequentially transferring and replenishing a new treatment liquid into the uppermost absorption tank.
JP2005135529A 2005-05-09 2005-05-09 Exhaust gas treatment apparatus and treatment method using the same Active JP4583234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005135529A JP4583234B2 (en) 2005-05-09 2005-05-09 Exhaust gas treatment apparatus and treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005135529A JP4583234B2 (en) 2005-05-09 2005-05-09 Exhaust gas treatment apparatus and treatment method using the same

Publications (2)

Publication Number Publication Date
JP2006312134A JP2006312134A (en) 2006-11-16
JP4583234B2 true JP4583234B2 (en) 2010-11-17

Family

ID=37533844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005135529A Active JP4583234B2 (en) 2005-05-09 2005-05-09 Exhaust gas treatment apparatus and treatment method using the same

Country Status (1)

Country Link
JP (1) JP4583234B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556538B2 (en) * 2010-09-28 2014-07-23 パナソニック株式会社 Thermal storage device and air conditioner using the same
US9072984B2 (en) * 2011-09-23 2015-07-07 Massachusetts Institute Of Technology Bubble-column vapor mixture condenser
WO2015038983A2 (en) 2013-09-12 2015-03-19 Gradiant Corporation Systems including a condensing apparatus such as a bubble column condenser
KR101422760B1 (en) 2014-03-06 2014-07-23 (주) 한국환경진단연구소 Apparatus and method for removing sulfur compounds in flue gases using the sea water
US10981082B2 (en) 2015-05-21 2021-04-20 Gradiant Corporation Humidification-dehumidification desalination systems and methods
US10463985B2 (en) 2015-05-21 2019-11-05 Gradiant Corporation Mobile humidification-dehumidification desalination systems and methods
US10143936B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
US10143935B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region
US20190022550A1 (en) 2016-01-22 2019-01-24 Gradiant Corporation Formation of solid salts using high gas flow velocities in humidifiers, such as multi-stage bubble column humidifiers
US10294123B2 (en) 2016-05-20 2019-05-21 Gradiant Corporation Humidification-dehumidification systems and methods at low top brine temperatures
US10513445B2 (en) 2016-05-20 2019-12-24 Gradiant Corporation Control system and method for multiple parallel desalination systems
WO2019045261A1 (en) * 2017-09-04 2019-03-07 고등기술연구원연구조합 Pollutant gas removal device, monitoring system and method of pollutant gas removal device
CN114295430B (en) * 2022-02-15 2024-08-09 云南中烟工业有限责任公司 Gas sectional trapping device and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819646U (en) * 1971-07-19 1973-03-06
JPS4848369A (en) * 1971-09-30 1973-07-09
JPS5799391A (en) * 1980-12-11 1982-06-21 Sanyo Sekiyu Kagaku Kk Method and apparatus for deodorizing mercaptan odor in waste soda liquid or the like
JPS6362527A (en) * 1986-09-03 1988-03-18 Toho Giken:Kk Polluted gas washing device
JPH07116650A (en) * 1993-10-20 1995-05-09 Nitto Kikai Kk Separation and treatment of gaseous ammonia from high concentrated ammonia-containing water
JP2003170021A (en) * 2001-12-07 2003-06-17 Nippon Soda Co Ltd Method for cleaning exhaust ags and decomposition treatment facility of hardly decomposable halogen compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819646U (en) * 1971-07-19 1973-03-06
JPS4848369A (en) * 1971-09-30 1973-07-09
JPS5799391A (en) * 1980-12-11 1982-06-21 Sanyo Sekiyu Kagaku Kk Method and apparatus for deodorizing mercaptan odor in waste soda liquid or the like
JPS6362527A (en) * 1986-09-03 1988-03-18 Toho Giken:Kk Polluted gas washing device
JPH07116650A (en) * 1993-10-20 1995-05-09 Nitto Kikai Kk Separation and treatment of gaseous ammonia from high concentrated ammonia-containing water
JP2003170021A (en) * 2001-12-07 2003-06-17 Nippon Soda Co Ltd Method for cleaning exhaust ags and decomposition treatment facility of hardly decomposable halogen compound

Also Published As

Publication number Publication date
JP2006312134A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP4583234B2 (en) Exhaust gas treatment apparatus and treatment method using the same
US7377959B2 (en) Process and apparatus for decomposition treatment of volatile chlorinated organic compound
USRE39944E1 (en) Desiccant regenerator system
CN102309913A (en) Treatment method for stinky waste gas containing sulfides and hydrocarbons
CN102309914A (en) Treatment method for stinky waste gas discharged by storage tank
CN101898079B (en) Treatment method of storage tank-dissipating stinking sulfur-containing waste gas
JP5795323B2 (en) Method and apparatus for treating waste by means of injection into an immersed plasma
JP2007268424A (en) Separation method of pcb-contaminated material
CN105217579B (en) Sulfur recovery facility reduces flue gas SO2The method of concentration of emission
JP4476437B2 (en) Reduction furnace waste treatment equipment
EP0323001A1 (en) Process for treating waste gases containing flon-113 and apparatus therefor
JP2006247580A (en) Recycling method of adsorbent and purification apparatus for photodegradable chloro substance-containing fluid
CN211302563U (en) Oil gas treatment system
CN105854510A (en) Treatment equipment and method for VOCs
JPH06315613A (en) Recovering apparatus for solvent
WO2000025900A1 (en) Method and device for recovering hydrocarbon vapor
JPH0671130A (en) Apparatus for treating gas containing vapor of water-soluble organic substance
JP2007197472A (en) Method for reutilizing hydrocarbons
US11512013B2 (en) System and method of reducing oxidants in a chemical stream
EP1469931B1 (en) Process for removing sulfur compounds by absorption
CN107115766A (en) Cleaning equipment for waste organic gas and method
JP2003170021A (en) Method for cleaning exhaust ags and decomposition treatment facility of hardly decomposable halogen compound
JP4690953B2 (en) Vacuum heating device with oil scrubber cleaning oil backflow prevention tank
JP2005040766A (en) Treating agent and treating method of waste gas containing acid gas and/or hydrocarbon
JP2022158946A (en) Gas treatment apparatus and method, and carbon dioxide recovery system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Ref document number: 4583234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250