WO2019045261A1 - Pollutant gas removal device, monitoring system and method of pollutant gas removal device - Google Patents

Pollutant gas removal device, monitoring system and method of pollutant gas removal device Download PDF

Info

Publication number
WO2019045261A1
WO2019045261A1 PCT/KR2018/007890 KR2018007890W WO2019045261A1 WO 2019045261 A1 WO2019045261 A1 WO 2019045261A1 KR 2018007890 W KR2018007890 W KR 2018007890W WO 2019045261 A1 WO2019045261 A1 WO 2019045261A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
image data
unit
activated carbon
detection tube
Prior art date
Application number
PCT/KR2018/007890
Other languages
French (fr)
Korean (ko)
Inventor
김진호
차재민
김효식
이승종
Original Assignee
고등기술연구원연구조합
한국서부발전 주식회사
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고등기술연구원연구조합, 한국서부발전 주식회사, 한국전력공사 filed Critical 고등기술연구원연구조합
Publication of WO2019045261A1 publication Critical patent/WO2019045261A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/12Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/14Central alarm receiver or annunciator arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a pollutant removal device and a monitoring system and method for the pollutant removal device. More particularly, the present invention relates to a pollutant removal device for efficiently removing a pollutant gas contained in a syngas, And the state of the adsorption column can be informed without any field personnel by detecting the presence of contaminant gas in the gas discharged from the pollutant gas removing device for removing the contaminant gas contained in the syngas, A contaminated gas removing device, and a monitoring system and method of the polluted gas removing device.
  • a polluted gas treatment apparatus using adsorbents such as granular activated carbon, fiber-type activated carbon or zeolite is mainly used.
  • adsorbents such as granular activated carbon, fiber-type activated carbon or zeolite
  • a plurality of adsorption apparatuses are used to perform adsorption and regeneration operations alternately Has come.
  • An adsorption apparatus using a fibrous activated carbon comprises a cylindrical adsorption element in which a fibrous activated carbon felt is laminated on an air permeable core material and one end is closed and the other end is opened so that the element can be adsorbed by a plurality of adsorption apparatuses
  • the adsorption and regeneration operations are alternately performed.
  • Such a device provided a sufficient gas passage area according to the amount of gas throughput, and was able to uniformly flow the regeneration gas in the reverse direction.
  • it since it is expensive and has a small pore distribution, the influence of the substances causing deterioration of activated carbon such as high- And it is difficult to use them for polluted gas applications including a trace amount of deterioration-causing substances.
  • an adsorption apparatus using granular activated carbon is usually used to perform adsorption and regeneration operations alternately by using a plurality of adsorption apparatuses as described above.
  • Granular activated carbon is cheap at one-tenth of the cost of fiber-type activated carbon, has the same adsorption capacity, can have various performances such as selective adsorption to specific gas, and can be economically and efficiently
  • the adsorbent has the ability to treat the polluted gas.
  • the size of the apparatus is larger than that of the apparatus using the fibrous activated carbon.
  • Conventional pollutant removal equipment capable of continuously injecting to reduce the size of the adsorption tower determines the adsorption rate depending on the adsorption efficiency obtained through the known experimental values etc. even if the adsorbent adsorption rate is changed according to the influent concentration change. , It is not possible to detect any one of the polluted gases after passing through the adsorption column. Therefore, there is a possibility that the amount of the adsorbent to be supplied is excessively supplied in order to operate stably.
  • An object of the present invention is to solve the conventional problems as described above.
  • various types of adsorbents are filled in multiple stages, and in order to maintain the adsorption performance at a constant level, The adsorbent can be filled and removed in an oblique manner for each stage in order to remove the adsorbent that has lost its activity continuously.
  • the present invention provides a surveillance system and method for a pollutant-gas removing apparatus capable of allowing a pollutant to be removed.
  • a pressure vessel comprising: a body; A syngas supply unit installed at a lower end of the body to supply syngas to the body; A syngas discharge part installed at an upper end of the body part to discharge syngas from the body part; A suction unit installed on the inside of the body part so as to incline the impregnated activated carbon; A supply part for supplying impregnated activated carbon to the adsorption part; And a discharge portion for discharging the impregnated activated carbon reacted with the polluted gas contained in the syngas, and the adsorption portion includes a pair of swash plates; And a pair of inclined plates connecting the impregnated activated carbon to the impregnated activated carbon, wherein the pair of inclined plates are inclined downward in the direction of the connecting portion, and the syngas containing the polluted gas reacts with the impregnated activated carbon, And then discharged through the syngas discharge portion.
  • the discharge unit comprises: a screw installed on the connection part to transfer the impregnated activated carbon; A drive motor for rotating the screw; And a storage chamber for storing the impregnated impregnated activated carbon discharged through the screw.
  • the discharge unit includes a driving unit seal formed so as to prevent the syngas from leaking from the rotating body rotating the screw.
  • the impregnated activated carbon is continuously supplied through the supply portion, and the impregnated impregnated activated carbon is conveyed by the screw and continuously discharged through the discharge portion.
  • the adsorption unit may include at least one adsorption unit, and the adsorption unit may be installed at an angle to the body unit.
  • the adsorption unit comprises: an acidic gas adsorption unit for adsorbing an acidic gas; A basic gas adsorption unit for adsorbing a basic gas; And a neutral gas adsorption stage for adsorbing neutral gas.
  • the supply unit comprises: an acid gas adsorbent supply unit for supplying impregnated activated carbon for adsorbing an acid gas at the acid gas adsorption end; A basic gas adsorbent supply unit for supplying impregnated activated carbon for adsorbing a basic gas at the basic gas absorption end; And a neutral gas adsorbent supply unit for supplying impregnated activated carbon for adsorbing neutral gas at the neutral gas adsorption unit.
  • the outlet comprises an acid gas adsorbent outlet for adsorbing acid gas from the acid gas adsorbent and discharging the impregnated activated carbon;
  • a basic gas adsorbent discharge unit for adsorbing a basic gas at the basic gas absorption stage and discharging the impregnated activated carbon;
  • a neutral gas adsorbent discharge unit for discharging the impregnated activated carbon which has absorbed the neutral gas at the neutral gas adsorption end and discharges the impregnated activated carbon which has passed through the neutral gas absorption end,
  • the impregnated activated carbon is preferably stored in the storage chamber.
  • a monitoring system for a pollution gas removing apparatus for removing pollution gas contained in a syngas comprising: a plurality of detectors An image acquiring device for acquiring image data by photographing a tube; And a control unit for receiving the image data obtained from the image capturing apparatus, separating the received image data by the detection tube region, comparing the separated image data of the detection tube region with the preset reference reaction color of the polluting gas, Determining whether or not at least one of the image data of the image data is within the reference reaction color range for each of the polluted gases, and if the at least one image data is within the reference reaction color range for each of the polluted gases,
  • a monitoring system for a pollutant-gas removal device comprising a pollutant gas monitoring device.
  • the monitoring system of the pollution gas removal device further includes a pollution gas monitoring situation management device connected to the pollution gas monitoring device through a network and monitoring the monitoring status of the pollution gas monitoring device .
  • the plurality of detection tubes include an H 2 S detection tube, a COS detection tube, an HCl detection tube, an HF detection tube, an HBr detection tube, an HCN detection tube, and an NH 3 detection tube, And a video data storage unit for storing the video data acquired from the camera and an image data transmission unit for transmitting the video data to the pollution gas monitoring device through the network Do.
  • the pollution monitoring apparatus includes an image data receiving unit for receiving image data from the image capturing apparatus, an HSV converting unit for converting the received image data into HSV-dimensional image data, an HSV converting unit for converting the HSV- An image separator for separating the image data based on coordinates of the bounding box determined by the detector; and a detector tube region for acquiring image data in the bounding box for each detector tube region separated by the detector tube- And an image comparing and judging unit for comparing and comparing the reference reaction color for each of the pollutant gases stored in the reference reaction color DB for each of the polluted gases, And an average HSV value calculated on the basis of the image data of the detection tube region as a result of the determination by the image comparison determination unit And an alarm generating unit for determining that the pollution gas is detected when at least one HSV value is between an upper value and a lower value stored in the reference reaction color for each polluting gas and informing an alarm according to the determination result.
  • the image acquiring unit for each detector tube region calculates the average HSV value by calculating HSV values at a plurality of selected points selected according to the entire region or the predetermined reference of the acquired image data for each detector tube region.
  • the monitoring system of the pollution gas removing apparatus further includes an image data storing unit for each detection tube region for storing image data for each detection tube region acquired by the image acquiring unit for each detection tube region Do.
  • the monitoring system of the pollution gas removing apparatus may further include a display unit for displaying the reaction state of the polluted gas according to the judgment result of the image comparison judging unit in real time.
  • the pollution gas monitoring apparatus may further include a controller for controlling the supply amount of the adsorbent supplied through the supply part of the pollution gas removal device when the pollution gas is detected in at least one detection tube area of the plurality of detection tube areas It is preferable to control so as to increase.
  • a pollution gas monitoring method using a monitoring system of a pollution gas removing apparatus for removing pollution gas contained in a syngas, wherein the polluted gas remains in the gas discharged from the pollution gas removing apparatus Capturing a plurality of detection tubes for detecting a plurality of detection tubes to acquire image data; Separating the acquired image data for each detection tube region; Determining whether at least one image data among the image data of the detection tube region is within the reference response color range for each of the polluting gases by comparing the separated image data of the detection tube region with the predetermined reference reaction color of the polluting gas ; And informing that the pollution gas is detected when the at least one image data is within the reference reaction color range for each polluted gas as a result of the determining step.
  • the separating step comprises: receiving the image data; Converting the received image data into HSV dimensional image data; Generating a bounding box for the detection unit based on the bounding box coordinates determined for the detected HSV image data; And acquiring image data for each detection tube region in the generated bounding box.
  • the determining step determines whether at least one HSV value among the average HSV values calculated based on the acquired image data of the detection tube area is between an upper value and a lower value stored in the reference reaction color by the polluting gas And the informing step informs the alarm according to the result that the pollution gas is detected when the at least one HSV value is between the upper value and the lower value stored in the reference reaction color by the pollution gas .
  • the pollution gas monitoring method may further include the step of storing the acquired detection tube image data in the image data storage unit for each detection tube region after obtaining the detection tube image data .
  • the method for monitoring a polluted gas according to another embodiment of the present invention may further include the step of displaying, on the display unit, the reaction state of the polluted gas according to the determination result of the determining step after the determining step.
  • a method for monitoring a polluted gas comprising the steps of: when the polluted gas is detected in at least one of the plurality of detection tube regions, And controlling the supply amount of the adsorbent to be supplied to be increased.
  • the concentration of the pollutant gas contained in the syngas can be lowered to several ppb, it is possible to provide an adsorption method suitable for a fuel cell requiring high purification.
  • the size of the pressure vessel can be greatly reduced as compared with the conventional method, thereby providing an economical adsorption tower.
  • impregnated activated carbon which is inclined in the screw direction in an inclined manner, impregnated activated carbon broken at the bottom of the adsorption end is effectively discharged through the screw, and impregnated impregnated activated carbon There is also an effect of preventing the syngas from leaking out of the driving portion when it is discharged to the outside through the screw.
  • the pollution gas monitoring and monitoring device is connected to the pollution gas monitoring situation management device via the network, and the monitoring status of the pollution gas monitoring device can be monitored in the pollution gas monitoring situation management device have.
  • the reaction state of the polluted gas can be informed to the driver by displaying the reaction state of the polluted gas on the display unit in real time.
  • the supply amount of the adsorbent supplied to the adsorption tower is controlled to be increased so that the performance of the adsorption tower is prevented from being lowered, There is also an effect that can be done.
  • FIG. 1 is a front view and (b) perspective view of a contaminated gas removing apparatus according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional perspective view of a pollutant-gas removing apparatus according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a pollutant removal device according to an embodiment of the present invention.
  • FIG. 4 is a view showing an adsorption step of a pollution gas removing apparatus according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram for explaining a monitoring system of a pollution-gas removing apparatus according to another embodiment of the present invention.
  • FIG. 6 is a 3D outline view for explaining the image acquisition apparatus shown in FIG. 5,
  • FIG. 7 is a block diagram for explaining the image acquisition apparatus shown in FIG. 6 in detail.
  • FIG. 8 is a block diagram for explaining the pollution monitoring monitoring apparatus shown in FIG. 5;
  • FIG. 9 is a flowchart illustrating a monitoring method using a monitoring system of a pollution-gas removing apparatus according to another embodiment of the present invention.
  • FIG. 11 is a view for explaining a pollution gas monitoring situation management apparatus shown in Fig. 5, and Fig.
  • Fig. 12 is a diagram showing an example of a screen showing the reaction state of the detection tube.
  • FIG. 1 is a front view and (b) perspective view of a contaminated gas removing apparatus according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional perspective view of a pollution gas removing apparatus according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a pollutant removing device according to an embodiment of the present invention
  • FIG. 4 is a view illustrating an adsorption end of the pollutant removing device according to an embodiment of the present invention. .
  • the apparatus 100 for removing polluting gas includes a body 110 as a pressurizing vessel, a body 110 A syngas discharge unit 112 installed at the upper end of the body 110 for discharging syngas from the body 110, a syngas supply unit 111 installed at the lower end of the body 110 for supplying syngas to the body 110, ), A suction part 120 sloped inside the body part 110 and provided with impregnated activated carbon, a supply part 130 supplying impregnated activated carbon at the upper part of the adsorption part 120, and impregnated activated carbon reacted with the syngas, And a discharge unit 140 for discharging the gas.
  • the body portion 110 may be, for example, an impregnated activated carbon adsorption tower, and is preferably formed in a cylindrical shape.
  • contaminant gas such as H 2 S, COS, HCl, HF, HBr, HCN, and NH 3 contained in the syngas flows into the lower portion of the body portion 110, Only the mixed gas adsorbed on the impregnated activated carbon while being reacted with the impregnated activated carbon placed on the adsorbing part 120 installed and removed from the contaminated gas is discharged through the upper part of the body part 110.
  • the adsorption section 120 includes a connection section 124 in which impregnated activated carbon is collected by connecting a pair of swash plates 122 and 123 and a pair of swash plates 122 and 123,
  • the inclined plates 122 and 123 are formed to be inclined downward in the direction of the connecting portion 124.
  • the supply unit 130 supplies impregnated activated carbon to the adsorption unit 120 of the body part 110 by a lock hopper system. Since the adsorption unit 120 is formed to be inclined downward toward the discharge unit 140 located on the opposite side of the supply unit 130, the impregnated activated carbon to be supplied is scattered and distributed in a pair of inclined plates 122 and 123 inclined.
  • the amount of the impregnated activated carbon to be supplied may vary depending on the concentration and the flow rate of the polluted gaseous substance to be adsorbed and the breakthrough time of the impregnated activated carbon, that is, the adsorbent.
  • the discharge unit 140 may include a storage chamber 160 for storing impregnated activated carbon discharged through a screw, a driving motor for rotating the screw, and a screw provided on the connection portion to transport the impregnated impregnated activated carbon .
  • the discharge portion 140 may form a drive seal so that the syngas does not leak from the rotating body rotating the screw.
  • the syngas flowing into the body 110 which is a pressurized vessel, flows at a pressure of 20 to 30 bar, the syngas may leak due to the rotating body rotating the screw. Therefore, And the pressure of the nitrogen chamber 150 is maintained to be higher than the pressure of the body 110 by about 1 bar.
  • a pressure gauge is installed in the nitrogen chamber 150 so that the pressure difference with the body 110 is always maintained at about 1 bar. This is to prevent the synthesis gas from leaking to the outside through the nitrogen chamber with the drive seal. Nitrogen is supplied from time to time in consideration of a pressure difference, which is automatically supplied only by an amount leaked toward the body portion 110 and the motor side through the drive seal.
  • the driving section sealing is to seal the gas between the rotating body and the fixed nitrogen chamber so that the gas is not leaked to rotate the motor at a predetermined speed to the outside in order to rotate the screw.
  • the sealing material is installed at the rotating body so that the leakage amount is minimized, thereby minimizing gas leakage.
  • the adsorption unit 120 includes at least one adsorption unit, and the adsorption unit is installed on the body unit 110 in an inclined manner.
  • the adsorption unit 120 can constitute various adsorption stages depending on the kind of the polluted gas.
  • the adsorption unit 120 includes an acidic gas adsorption unit 121 for adsorbing an acidic gas, a basic gas adsorption unit 125 for adsorbing a basic gas, And a neutral gas adsorption stage 126 for adsorbing the gas.
  • the contaminant gas material contained in the syngas reacts with the metal material on the impregnated activated carbon surface.
  • the contaminant gas material contained in the syngas reacts with the metal material on the impregnated activated carbon surface.
  • acidic gas HCl contained in syngas the following reaction occurs due to CuO dissolved in the impregnated activated carbon surface.
  • the HCl contained in the synthesis gas remains as a solid on the surface of the impregnated activated carbon and is adsorbed.
  • a feeder 130 for supplying the impregnated activated carbon so as to correspond to the adsorbed carbon one by one and a discharge unit 140 for discharging the impregnated activated carbon should be constructed.
  • the supply unit 130 includes an acidic gas adsorbent supply unit 131 for supplying the impregnated activated carbon to adsorb the acidic gas at the acidic gas adsorption unit 121, an impregnated activated carbon for adsorbing the basic gas at the basic gas adsorption unit 125, And a neutral gas adsorbent supply unit 133 for supplying an impregnated activated carbon for adsorbing neutral gas at the neutral gas adsorption unit 126.
  • the exhaust unit 140 includes an acidic gas adsorbent discharge unit 141 for adsorbing the acidic gas from the acidic gas adsorption unit 121 and discharging the impregnated activated carbon which has passed through it, a basic gas adsorption unit 125 for adsorbing the basic gas And a neutral gas adsorbent discharge unit 143 for discharging the impregnated activated carbon by adsorbing the neutral gas at the basic gas adsorbent discharge unit 142 and the neutral gas absorption stage 126 for discharging the impregnated impregnated activated carbon, Impregnated activated carbon discharged from the acid gas adsorbent discharge unit 141, the basic gas adsorbent discharge unit 142 and the neutral gas adsorbent discharge unit 143 may be stored in the storage chamber 160.
  • the adsorption end is inclined to the body 110 and is inclined downward toward the discharge part 140.
  • the supply part 130 is formed on the opposite side of the discharge part 140, 130, impregnated activated carbon can be uniformly distributed on the inclined adsorption ends by gravity, and the impregnated impregnated activated carbon is collected on the connection part 124 due to the self-inclined structure of the absorption end, And is discharged to the outside by the rotation of the screw, which can be continuously performed during the operation of removing the pollutant gas.
  • the impregnated activated carbon is continuously supplied through the supply part 130, and the impregnated impregnated activated carbon can be conveyed by the screw and continuously discharged through the discharge part 140.
  • a device capable of filling and removing the adsorbent in a slanted form is provided for each adsorption stage in order to remove the adsorbent which has continuously lost its activity during operation.
  • the body 110 which is an adsorption tower, which is a pressure vessel, compared to the conventional adsorption tower, and to continuously supply and discharge new adsorbents irrespective of the point of breakage to maintain the performance of the adsorption tower .
  • impregnated activated carbon having a capacity of several times to several tens of times higher than that of general activated carbon was used.
  • the adsorption tower was separated into three stages, and an acidic gas adsorbent, a basic gas adsorbent, a neutral gas adsorbent, The concentration of the trace gas in syngas can be reduced to several ppb levels.
  • new impregnated activated carbon is supplied to the upper part of each adsorption column of the adsorption column by a rock hopper method at a small amount from the upper part, and a small amount of impregnated activated carbon is discharged by a screw method from the bottom,
  • the gas of the component is completely removed and the gas of the minor component is adsorbed at the lower part of the adsorption tower and the adsorbent which is broken at the lower part of the adsorption step is discharged to the outside.
  • FIG. 5 is a schematic diagram for explaining a monitoring system of a pollution-gas removing apparatus according to another embodiment of the present invention
  • FIG. 6 is a 3D outline view for explaining the image capturing apparatus shown in FIG. 5
  • FIG. 7 is a block diagram for explaining the image acquisition apparatus shown in FIG. 6 in detail.
  • the monitoring system of the pollution gas removing apparatus includes an image capturing apparatus 10, a pollution gas monitoring apparatus 200, and a pollution gas monitoring situation managing apparatus 300 .
  • the image acquiring device 10 is installed in a plant site, and generates H 2 S, COS (hydrogen peroxide), and the like contained in the syngas discharged through the pollution gas removal device 100 shown in FIG. 1 , by taking a plurality of detector tube for detecting that the contaminated gas is left in a very small amount components such as HCl, HF, HBr, HCN, NH 3 obtains the image data, via both AP, the network, or those in a remote To the polluted gas detection monitoring device (200).
  • the polluted gas detection monitoring device 200 is installed in the operation control room.
  • the pollution gas detection monitoring apparatus 200 separates the image data obtained from the image capturing apparatus 10 into detection concealment image data and processes the polluted gas (H 2 S, COS, HCl, HF, HBr, HCN, NH 3) in which trace elements are detected if monitoring and advance to the designated driver alerts, email 400, text (SMS) (500 if at least one of the trace elements has been detected), or a combination thereof To immediately notify the abnormal situation.
  • the polluted gas H 2 S, COS, HCl, HF, HBr, HCN, NH 3
  • the image capturing apparatus 10 includes a camera 11, a H 2 S detection tube 12, a COS detection tube 13, an HCl detection tube 14, an HF detection tube 15 An HCN detecting tube 17, an NH 3 detecting tube 18, an image data storing unit 19, and a video data transmitting unit 20.
  • the plurality of detection tubes include a H 2 S detection tube 12, a COS detection tube 13, an HCl detection tube 14, an HF detection tube 15, an HBr detection tube 16, an HCN detection tube 17, NH 3 detection tube 18.
  • the camera 11 shown in FIG. 6 (b) includes the H 2 S detection tube 12, the COS detection tube 13, the HCl detection tube 14, the HF detection tube (shown in FIG. 6 15, the HBr detecting tube 16, the HCN detecting tube 17, and the NH 3 detecting tube 18 are photographed at predetermined time intervals.
  • the photographed image data is the image data shown in FIG. 6 (a) Is temporarily stored in the storage unit 19 and then transmitted to the pollution gas monitoring apparatus 200 through the network via the image data transmission unit 20 shown in Figs. 6 (b) and 6 (c).
  • FIG. 8 is a block diagram for explaining the pollution monitoring monitoring apparatus shown in FIG.
  • the pollutant gas monitoring apparatus 200 includes a video data receiving unit 201, an HSV converting unit 202, a detection tube region image separating unit 203, a detection tube region- An image storage DB 205, an image storage DB 206, a reference reaction color database 207 for each pollutant gas, an image comparison determination unit 208, a display unit 209, A driver's e-mail notifying unit 211, and a driver's SMS notifying unit 212, as shown in FIG.
  • the image data receiving unit 201 receives the image data obtained from the image obtaining apparatus 10 via the AP and the network.
  • the HSV converting unit 202 converts the image data received from the image data receiving unit 201 into an HSV-dimensional image. More specifically, since the image data received from the image data receiving unit 201 is an RGB (Red, Green, Blue) dimensional image, the HSV converting unit 202 converts HSV (Hue, Saturation, Value) dimensional image. That is, the HSV converter 202 converts RGB image data into HSV image data.
  • RGB Red, Green, Blue
  • the image segmentation unit 203 according to the detection area of the detection area generates the detection bounding box based on the coordinates of the detection bounding box for the HSV image data converted by the HSV conversion unit 202, The image data is separated for each detector tube region. Since the plurality of detector tubes are provided at fixed positions without movement, it is not necessary to calculate the bounding box for recognizing the color each time, and the calculation can be saved.
  • the plurality of bounding box coordinate values of the sensing gardens may be stored in the image storing DB 206 or the reference reaction color DB 207 for each of the polluting gases, or may be stored in a separate storage space.
  • the detector tube region-specific image acquiring section 204 acquires the image data in the bounding box separated by the detector tube region by the image separating section 203 for each detector tube region.
  • the acquired image data of the detection tube region is a plurality of detection tube reaction images for detecting whether the contaminated gas remains in the gas discharged from the pollution gas removal apparatus 100, And stored.
  • the image data acquired by the image acquisition section 204 is transmitted to the image storage section 205 for each detection tube area and delivered to the image storage DB 206 in real time / near real time.
  • the image comparison determination unit 208 compares the image data of the detection tube region acquired by the image acquisition unit 204 for each detection region with the reference reaction color of the polluted gas stored in the reference reaction color DB 207 for each of the polluted gases And determines whether or not there is a color change.
  • the image comparison determination section 208 determines whether the average HSV value of each detection tube region is greater than the reference reaction color It is determined whether or not it is between an upper value and a lower value stored in the DB 207.
  • the alarm generation unit 210 A signal is sent to the driver's e-mail notifying unit 210 and the driver's SMS notifying unit 211, for example, the polluted gas remains in the gas discharged from the polluted gas removing apparatus 100 so that the driver who has left his / To the user.
  • the display unit 209 displays the image data for each detection tube region acquired by the image acquisition unit 204 for each detection tube region.
  • the display unit 209 can display the alert information generated by the alert generator 210.
  • FIG. 9 is a flowchart illustrating a monitoring method using a monitoring system of a pollution-gas removing apparatus according to another embodiment of the present invention.
  • the pollution gas monitoring apparatus 200 continuously monitors monitoring until the driver issues a monitoring 'end' command in the monitoring progress / end branch (S213).
  • the pollution gas monitoring apparatus 200 determines whether or not the end menu 240 is selected in the screen example shown in FIG. 10, ends the process when the end menu 240 is selected, ) Is not selected, the monitoring proceeds.
  • the monitoring menu 238 may be selected from the driver to proceed with monitoring.
  • step S213 the image data receiving unit 201 receives the image data obtained in the image obtaining apparatus 10 in real time / near real time (S214).
  • the received image data is RGB (Red, Green, Blue) dimensional image.
  • the HSV converter 202 converts the RGB-dimensional image data into HSV-dimensional image data (S215).
  • the image separator 203 of the detector tube region separates the image data of the transformed HSV image data by the detector tube region (H 2 S, COS, HCl, HF, HBr, HCN, and NH 3 ) And creates a star bounding box (S216). 12, for example, an H 2 S detection tube 12, a COS detection tube 13, an HCl detection tube 14, and a bounding box (not shown) (B0, B1, B2). Among the bounding boxes B0, B1, and B2 shown in FIG. 12, B1 indicates that a color different from B0 and B2 is detected and is distinguished from B0 and B2.
  • a bounding box for the detector tube is created based on the bounding box coordinates determined for each detector tube shown in FIG. 6 (c) can do.
  • the bounding box coordinates can be selected by the coordinates of almost the entire area of the detection tube, but a certain area of the detection tube having a color change, for example, an area indicated by dots in B1 in FIG. 8, .
  • the image segmentation unit 203 calculates an average HSV value based on the generated image data in the bounding box for each detection region, that is, the bounding box of the H 2 S detection region (S217).
  • the average HSV value is an H value obtained by averaging, for example, the H value of the entire region or the predetermined reference, for example, the H value of the selected region or the selected region selected by the random reference, from the image data in the bounding box of the H 2 S detection tube region .
  • H (Hue) is the color
  • S (Saturation) is the saturation
  • V (value) is the brightness.
  • the H value is used in the present embodiment, it may be used in consideration of both the H value, the S value, and the V value.
  • H 2 S detector tube image within the average HSV values are higher (Upper) HSV of polluted gas by reference reaction color DB (207), see H 2 S in the reservoir to the reaction color in the H 2 S Value and a lower HSV value. If it is within the category, it is determined that H 2 S is detected. If it is not within the category, it is determined that it is not detected (S218).
  • the alarm generating unit 210 transmits the signal to the display unit 209 so that the alarm can be informed to the driver.
  • the alarm generating unit 207 transmits a signal to the driver's e-mail notifying unit 210 and the driver's SMS notifying unit 211 so that the driver who has left his /
  • the driver's e-mail notifying unit 210 and the driver's SMS notifying unit 211 transmit the information on the abnormal situation to the driver via e-mail and SMS, respectively (S219).
  • step (S217) of calculating the average HSV values in all detector tube images of illustration with H 2 S is determined (S218) and detects the notification (S219) steps are in addition to H 2 S COS, HCl, HF , HBr, HCN, The same applies to NH 3 (S220 - S237).
  • the reaction image or reaction result for each detection tube region acquired by the detection tube region-specific image acquisition unit 207 is transmitted to the image storage unit 205 for each detection tube region and transmitted to the image storage DB 206 in real time / near real time .
  • reaction image for each detection tube region obtained by the detection tube region-specific image acquisition unit 207 and the determination result derived from the image comparison determination unit 208 are transmitted to the display unit 209. Accordingly, the driver can know the reaction state of each detection tube region in real time / near real time.
  • the display unit 209 has a function of executing a monitoring menu 238, a configuration menu 239 and a termination menu 240 as shown in FIG. 10, and displays H 2 S, COS, HCl, HF , HBr, HCN, and NH 3 are displayed in real time / near real time through bar bars 241 to 247 for each detection tube region so that the current color of the detection tube can be known.
  • the monitoring notification window 248 informs the driver of the start and end of monitoring and whether or not the detection of each of the pollution gases is performed whenever an event occurs.
  • the supply amount to be supplied to the adsorption tower, here the adsorption unit 110, is controlled so as to increase the supply amount of the adsorbent supplied to the gas removal apparatus 100.
  • impregnated gas removing apparatus 100 may include various kinds of impregnated activated carbon,
  • a device capable of filling and removing the adsorbent in an oblique shape is provided for each adsorption stage in order to remove the adsorbent which has been continuously lost during operation.
  • the pollutant gas monitoring and monitoring device 200 detects the presence of the acidic gas adsorbent
  • the acid gas adsorbent supply unit 131 is controlled so as to increase the existing supply amount (10 kg / day) supplied from the supply unit 131 to a predetermined supply amount (for example, 15 kg / day) by experience.
  • a predetermined supply amount for example, 15 kg / day
  • the supply amount of the new adsorbent is automatically increased in the control chamber so as to be increased beyond the existing supply amount.
  • a monitoring menu 301, an environment 300, and an environment 300 are connected to the pollution gas monitoring apparatus 200, A setting menu 302, and a termination menu 303.
  • the pollution gas monitoring and managing apparatus 300 may be connected to the image capturing apparatus 10 and the pollution gas monitoring apparatus 200 in a communicable manner according to a wireless communication scheme. Accordingly, the driver can monitor whether or not the polluted gas remains in the gas discharged from the polluted gas removing apparatus 100 at any time from a remote place through the polluted gas monitoring condition managing apparatus 300. [ Further, the IP address of the image acquisition device 10 and the pollution gas monitoring device 200 can be set.

Abstract

The present invention relates to a pollutant gas removal device which continuously supplies and discharges new adsorbent regardless of a breakthrough point, detects through color change of a detection tube whether pollutant gas remains in gas discharged from the pollutant gas removal device which removes the pollutant gas contained in syngas, and allows a state of an adsorption tower to be notified without field personnel, in order to efficiently remove the pollutant gas contained in the syngas, and a monitoring system and a method for the pollutant gas removal device. According to one embodiment of the present invention, provided is a pollutant gas removal device which comprises a body portion which is a pressure vessel; a syngas supply unit which is installed at a lower end of the body portion to supply the syngas to the body portion; a syngas discharge unit which is installed at an upper end of the body portion to discharge syngas from the body portion; an adsorption unit which is installed inside the body portion to be inclined and in which an impregnated activated carbon is placed; a supply unit which supplies the impregnated activated carbon to the adsorption unit; and a discharge unit which discharges the impregnated activated carbon that has reacted and become permeated with the pollutant gas contained in the syngas, wherein the adsorption unit comprises a pair of inclined plates; and a connection portion which connects the pair of inclined plates and in which the impregnated activated carbon is collected, and the pair of inclined plates are formed to be inclined downward in a direction of the connection portion, and the syngas containing the pollutant gas reacts with the impregnated activated carbon to remove the pollutant gas, and then is discharged through the syngas discharge unit.

Description

오염가스 제거 장치, 상기 오염가스 제거 장치의 감시 시스템 및 방법A pollution gas removal device, a monitoring system and a method of the pollution gas removal device
본 발명은 오염가스 제거 장치, 상기 오염가스 제거 장치의 감시 시스템 및 방법에 관한 것으로, 더욱 상세하게는 합성가스에 포함된 오염가스를 효율적으로 제거하기 위해, 파과 시점과 상관없이 연속적으로 신규 흡착제를 공급 및 배출하며, 합성가스에 포함되어 있는 오염가스를 제거하는 오염가스 제거 장치에서 배출된 가스에 오염가스가 남아 있는지를 검지관의 색변화를 통해 감지하여 흡착탑의 상태를 현장요원 없이 알릴 수 있게 한 오염가스 제거 장치, 상기 오염가스 제거 장치의 감시 시스템 및 방법에 관한 것이다.The present invention relates to a pollutant removal device and a monitoring system and method for the pollutant removal device. More particularly, the present invention relates to a pollutant removal device for efficiently removing a pollutant gas contained in a syngas, And the state of the adsorption column can be informed without any field personnel by detecting the presence of contaminant gas in the gas discharged from the pollutant gas removing device for removing the contaminant gas contained in the syngas, A contaminated gas removing device, and a monitoring system and method of the polluted gas removing device.
화학 공장 등에서 배출되는 유기 용제 등을 함유하는 오염가스를 정화하기 위해서는 입상 활성탄, 섬유형 활성탄 또는 제올라이트 등의 흡착제를 이용한 오염가스 처리 장치가 주로 이용되고 있다. 이들의 흡착제의 흡착 능력을 유지하기 위해서는 스팀 또는 고온 가스에 의해 재생 조작을 하는 것이 필요하고 피처리 가스를 연속적으로 처리하기 위해, 복수의 흡착 장치를 이용하여 교대로 흡착, 재생 조작을 하도록 변환 사용되어왔다. In order to purify the polluted gas containing organic solvents and the like discharged from chemical plants and the like, a polluted gas treatment apparatus using adsorbents such as granular activated carbon, fiber-type activated carbon or zeolite is mainly used. In order to maintain the adsorbing ability of these adsorbents, it is necessary to carry out a regeneration operation by steam or hot gas. In order to continuously treat the gas to be treated, a plurality of adsorption apparatuses are used to perform adsorption and regeneration operations alternately Has come.
섬유형 활성탄을 이용하는 흡착 장치는 섬유형 활성탄 펠트를 통기성 있는 심재에 적층하고 일단이 폐쇄되어 타단이 개방되어 있는 원통형 흡착 소자를 이루어, 상기 소자를 캔 체내에 다수 배치된 복수의 흡착 장치를 이용하여 교대로 흡착, 재생 조작을 하도록 변환 사용되어왔다. 이러한 장치는 가스 처리량에 따라 충분한 가스 통과 면적을 마련해 재생용 가스를 역방향에서 균일하게 통류할 수 있었으나, 고가이며, 작은 세공 분포를 가지기 때문에 오염가스 중의 고비등점 물질 등의 활성탄 열화 요인 물질의 영향을 받기 쉽고 이들의 열화 요인 물질을 미량이라도 포함한 오염가스 용도에는 사용하는 것이 어렵다. An adsorption apparatus using a fibrous activated carbon comprises a cylindrical adsorption element in which a fibrous activated carbon felt is laminated on an air permeable core material and one end is closed and the other end is opened so that the element can be adsorbed by a plurality of adsorption apparatuses The adsorption and regeneration operations are alternately performed. Such a device provided a sufficient gas passage area according to the amount of gas throughput, and was able to uniformly flow the regeneration gas in the reverse direction. However, since it is expensive and has a small pore distribution, the influence of the substances causing deterioration of activated carbon such as high- And it is difficult to use them for polluted gas applications including a trace amount of deterioration-causing substances.
한편, 입상 활성탄을 이용하는 흡착 장치도 통상 상기와 동일하게 복수의 흡착 장치를 이용하여 교대로 흡착, 재생 조작을 하도록 변환 사용되어 있다. 입상 활성탄은 가격이 섬유형 활성탄의 수십분의 1로 저렴하며 흡착 용량도 동일한 정도이며 특정 가스에 대한 선택 흡착성 등의 다양한 성능을 갖게 하는 것이 가능하며 적당한 사용 방법 및 장치 형식을 이용하여, 경제적이고 효율적으로 오염가스 처리를 할 수 있는 능력을 가진 흡착제라고 할 수 있다. 그러나 섬유형 활성탄을 이용하는 장치에 비해 장치가 대형화되는 단점을 가지고 있다.On the other hand, an adsorption apparatus using granular activated carbon is usually used to perform adsorption and regeneration operations alternately by using a plurality of adsorption apparatuses as described above. Granular activated carbon is cheap at one-tenth of the cost of fiber-type activated carbon, has the same adsorption capacity, can have various performances such as selective adsorption to specific gas, and can be economically and efficiently The adsorbent has the ability to treat the polluted gas. However, it has the disadvantage that the size of the apparatus is larger than that of the apparatus using the fibrous activated carbon.
한편, 미량성분을 제거하기 위하여 습식 세정탑이나 활성탄을 사용하여 제거 하는 방법이 있는데, 고압하에서 습식 세정탑을 사용 후 활성탄을 사용하는 제거 방법은 활성탄 제거탑을 연속으로 사용하기 위해 병렬로 흡착탑을 설치하였고, 흡착탑을 사용 후 파과 되는 탑을 재생하기 위하여 재생공정을 별도로 필요하였다. 재생공정을 두어도 흡착능력이 낮을 경우 재생공정 후 대기하기 위한 별도의 흡착탑이 필요하기도 하다. 흡착능력이 낮은 활성탄의 경우 미량성분을 모두 흡착하기 위해 매우 큰 크기의 흡착탑이 필요하였고 이는 고압공정에서 압력용기의 크기가 커져 비용 상승의 원인이 되기도 하였다. 경제성 있는 고도 정제 공정을 위해서는 흡착탑의 크기를 줄이기 위한 방법이 개발되어야 한다.On the other hand, there is a method of removing the trace components by using a wet scrubbing column or activated carbon. The wet scrubbing column is operated under high pressure, and then the activated carbon is removed. In order to continuously use the activated carbon scrubbing column, And a regeneration process was separately required in order to regenerate the broken tower after using the adsorption tower. If the adsorption capacity is low even if the regeneration process is performed, a separate adsorption tower for waiting after the regeneration process is also required. In the case of activated carbons with low adsorption capacity, a very large size adsorption tower was required to adsorb all the trace components, which caused the cost of the pressure vessel to increase due to the increase in the size of the pressure vessel in the high pressure process. A method for reducing the size of adsorption tower should be developed for economical high purification process.
흡착탑의 크기를 줄이기 위해 연속 투입이 가능한 종래의 오염가스 제거 장치는 유입 농도 변화에 따라 흡착제 투입속도의 변화를 주더라도 이미 알려진 실험값 등을 통해 얻어진 흡착효율에 의지하여 투입속도를 결정하므로, 이는 여러가지가 합성된 오염가스 중 어느 한가지라도 흡착탑을 통과한 이후에 검출되면 안되기 때문에 매우 조심스러운 운전 방법이고, 안정적으로 운전하기 위해 흡착제의 투입량을 과도하게 공급할 우려가 있다.Conventional pollutant removal equipment capable of continuously injecting to reduce the size of the adsorption tower determines the adsorption rate depending on the adsorption efficiency obtained through the known experimental values etc. even if the adsorbent adsorption rate is changed according to the influent concentration change. , It is not possible to detect any one of the polluted gases after passing through the adsorption column. Therefore, there is a possibility that the amount of the adsorbent to be supplied is excessively supplied in order to operate stably.
이에, 흡착탑을 통과한 배출가스에 오염가스가 감지되었는지를 모니터링하여 흡착탑의 상태를 알릴 수 있는 오염가스 제거 장치의 감시 시스템이 필요한 실정이다.Therefore, there is a need for a monitoring system for a pollutant-gas removing device that can monitor the state of the adsorption tower by monitoring whether or not the pollutant gas is detected in the exhaust gas passing through the adsorption tower.
본 발명의 목적은 상술한 바와 같은 종래의 문제점을 해결하기 위한 것으로, 합성가스에 포함된 오염가스를 효과적으로 제거하기 위하여 여러 종류의 흡착제를 다단으로 충진하고, 흡착성능을 일정한 수준으로 유지하기 위해 운전 중에 연속적으로 활성을 잃은 흡착제를 제거하기 위하여 각 단마다 사선 형태의 흡착제 충진 및 제거가 가능한 오염가스 제거 장치를 제공함에 있다.DISCLOSURE OF THE INVENTION An object of the present invention is to solve the conventional problems as described above. In order to effectively remove the pollutant gas contained in syngas, various types of adsorbents are filled in multiple stages, and in order to maintain the adsorption performance at a constant level, The adsorbent can be filled and removed in an oblique manner for each stage in order to remove the adsorbent that has lost its activity continuously.
본 발명의 다른 목적은, 합성가스에 포함되어 있는 오염가스를 제거하는 오염가스 제거 장치에서 배출된 가스에 오염가스가 남아 있는지를 검지관의 색변화를 통해 감지하여 흡착탑의 상태를 현장요원 없이 알릴 수 있게 한 오염가스 제거 장치의 감시 시스템 및 방법을 제공함에도 있다.It is another object of the present invention to provide an apparatus and method for detecting a state of an adsorption tower without detecting a presence of an adsorption tower by detecting the presence of contaminant gas in a gas discharged from a pollution gas removing apparatus for removing contaminant gas contained in a syngas, The present invention provides a surveillance system and method for a pollutant-gas removing apparatus capable of allowing a pollutant to be removed.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따르면, 가압용기인 몸체부; 상기 몸체부 하단에 설치되어 상기 몸체부로 합성가스를 공급하는 합성가스 공급부; 상기 몸체부의 상단에 설치되어 상기 몸체부에서 합성가스를 배출하는 합성가스 배출부; 상기 몸체부 내부에 경사지게 설치되며, 첨착활성탄이 놓이는 흡착부; 상기 흡착부에 첨착활성탄을 공급하는 공급부; 및 합성가스에 포함된 오염가스와 반응하여 파과된 첨착활성탄을 배출하는 배출부를 포함하며, 상기 흡착부는, 한 쌍의 경사판; 및 상기 한 쌍의 경사판을 연결하여 첨착활성탄이 모이는 연결부를 포함하며, 상기 한 쌍의 경사판은 상기 연결부 방향으로 하방 경사지게 형성되며, 오염가스를 포함하는 합성가스는 상기 첨착활성탄과 반응하여 오염가스가 제거된 후, 상기 합성가스 배출부를 통해 배출되는, 오염가스 제거 장치를 제공한다. According to an aspect of the present invention, there is provided a pressure vessel comprising: a body; A syngas supply unit installed at a lower end of the body to supply syngas to the body; A syngas discharge part installed at an upper end of the body part to discharge syngas from the body part; A suction unit installed on the inside of the body part so as to incline the impregnated activated carbon; A supply part for supplying impregnated activated carbon to the adsorption part; And a discharge portion for discharging the impregnated activated carbon reacted with the polluted gas contained in the syngas, and the adsorption portion includes a pair of swash plates; And a pair of inclined plates connecting the impregnated activated carbon to the impregnated activated carbon, wherein the pair of inclined plates are inclined downward in the direction of the connecting portion, and the syngas containing the polluted gas reacts with the impregnated activated carbon, And then discharged through the syngas discharge portion.
상기 배출부는, 상기 파과된 첨착활성탄을 이송하기 위해 상기 연결부 위에 설치되는 스크류; 상기 스크류를 회전시키는 구동모터; 및 상기 스크류를 통해 배출되는 파과된 첨착활성탄을 저장하는 보관챔버를 포함하는 것이 바람직하다. Wherein the discharge unit comprises: a screw installed on the connection part to transfer the impregnated activated carbon; A drive motor for rotating the screw; And a storage chamber for storing the impregnated impregnated activated carbon discharged through the screw.
상기 배출부는, 상기 스크류를 회전시키는 회전체로부터 합성가스가 누출되지 않도록 형성되는 구동부실링을 포함하는 것이 바람직하다. Preferably, the discharge unit includes a driving unit seal formed so as to prevent the syngas from leaking from the rotating body rotating the screw.
합성가스 누출을 방지하기 위해 상기 구동부실링을 둘러싸는 질소챔버를 더 포함하며, 상기 질소챔버의 압력을 상기 몸체부의 압력보다 약 1bar 높게 유지하는 것이 바람직하다. Further comprising a nitrogen chamber surrounding the drive seals to prevent syngas leakage, wherein the pressure of the nitrogen chamber is maintained at about 1 bar above the pressure of the body portion.
상기 첨착활성탄은 상기 공급부를 통해 연속적으로 공급되고, 상기 파과된 첨착활성탄은 상기 스크류에 의해 이송되어 상기 배출부를 통해 연속적으로 배출되는 것이 바람직하다. The impregnated activated carbon is continuously supplied through the supply portion, and the impregnated impregnated activated carbon is conveyed by the screw and continuously discharged through the discharge portion.
상기 흡착부는 하나 이상의 흡착단을 포함하며, 상기 흡착단은 상기 몸체부에 경사지게 설치되는 것이 바람직하다.The adsorption unit may include at least one adsorption unit, and the adsorption unit may be installed at an angle to the body unit.
상기 흡착부는, 산성가스를 흡착하는 산성가스 흡착단; 염기성가스를 흡착하는 염기성가스 흡착단; 및 중성가스를 흡착하는 중성가스 흡착단을 포함하는 것이 바람직하다. Wherein the adsorption unit comprises: an acidic gas adsorption unit for adsorbing an acidic gas; A basic gas adsorption unit for adsorbing a basic gas; And a neutral gas adsorption stage for adsorbing neutral gas.
상기 공급부는, 상기 산성가스 흡착단에서 산성가스를 흡착하기 위한 첨착활성탄을 공급하는 산성가스 흡착제 공급부; 상기 염기성가스 흡착단에서 염기성가스를 흡착하기 위한 첨착활성탄을 공급하는 염기성가스 흡착제 공급부; 및 상기 중성가스 흡착단에서 중성가스를 흡착하기 위한 첨착활성탄을 공급하는 중성가스 흡착제 공급부를 포함하는 것이 바람직하다. Wherein the supply unit comprises: an acid gas adsorbent supply unit for supplying impregnated activated carbon for adsorbing an acid gas at the acid gas adsorption end; A basic gas adsorbent supply unit for supplying impregnated activated carbon for adsorbing a basic gas at the basic gas absorption end; And a neutral gas adsorbent supply unit for supplying impregnated activated carbon for adsorbing neutral gas at the neutral gas adsorption unit.
상기 배출부는, 상기 산성가스 흡착단에서 산성가스를 흡착하여 파과된 첨착활성탄을 배출하는 산성가스 흡착제 배출부; 상기 염기성가스 흡착단에서 염기성가스를 흡착하여 파과된 첨착활성탄을 배출하는 염기성가스 흡착제 배출부; 및 상기 중성가스 흡착단에서 중성가스를 흡착하여 파과된 첨착활성탄을 배출하는 중성가스 흡착제 배출부를 포함하며, 상기 산성가스 흡착제 배출부, 염기성가스 흡착제 배출부 및 중성가스 흡착제 배출부에서 배출된, 파과된 첨착활성탄은 상기 보관챔버에 저장되는 것이 바람직하다.Wherein the outlet comprises an acid gas adsorbent outlet for adsorbing acid gas from the acid gas adsorbent and discharging the impregnated activated carbon; A basic gas adsorbent discharge unit for adsorbing a basic gas at the basic gas absorption stage and discharging the impregnated activated carbon; And a neutral gas adsorbent discharge unit for discharging the impregnated activated carbon which has absorbed the neutral gas at the neutral gas adsorption end and discharges the impregnated activated carbon which has passed through the neutral gas absorption end, The impregnated activated carbon is preferably stored in the storage chamber.
본 발명의 다른 실시예에 따르면, 합성가스에 포함된 오염가스를 제거하는 오염가스 제거 장치의 감시 시스템으로서, 상기 오염가스 제거 장치에서 배출된 가스에 오염가스가 남아 있는지를 감지하기 위한 복수의 검지관을 촬영하여 영상 데이터를 획득하는 영상 획득 장치; 및 상기 영상 획득 장치로부터 획득된 영상 데이터를 수신하고, 수신된 영상 데이터를 검지관 영역별로 분리하여 분리된 검지관 영역별 영상 데이터를 미리 설정된 오염가스별 참조 반응색과 비교하여 상기 검지관 영역별 영상 데이터 중 적어도 하나의 영상 데이터가 상기 오염가스별 참조 반응색 범위내에 있는지 여부를 판단하고, 그 판단결과 상기 적어도 하나의 영상 데이터가 상기 오염가스별 참조 반응색 범위내에 있으면 오염가스가 감지되었음을 알리는 오염가스 감시 모니터링 장치를 포함하는, 오염가스 제거 장치의 감시 시스템을 제공한다.According to another embodiment of the present invention, there is provided a monitoring system for a pollution gas removing apparatus for removing pollution gas contained in a syngas, comprising: a plurality of detectors An image acquiring device for acquiring image data by photographing a tube; And a control unit for receiving the image data obtained from the image capturing apparatus, separating the received image data by the detection tube region, comparing the separated image data of the detection tube region with the preset reference reaction color of the polluting gas, Determining whether or not at least one of the image data of the image data is within the reference reaction color range for each of the polluted gases, and if the at least one image data is within the reference reaction color range for each of the polluted gases, A monitoring system for a pollutant-gas removal device, comprising a pollutant gas monitoring device.
본 발명의 다른 실시예에 따른 오염가스 제거 장치의 감시 시스템은 상기 오염가스 감시 모니터링 장치와 네트워크를 통하여 연결되고, 상기 오염가스 감시 모니터링 장치의 감시 상황을 모니터링하는 오염가스 감시상황 관리 장치를 더 포함하는 것이 바람직하다.The monitoring system of the pollution gas removal device according to another embodiment of the present invention further includes a pollution gas monitoring situation management device connected to the pollution gas monitoring device through a network and monitoring the monitoring status of the pollution gas monitoring device .
상기 복수의 검지관은 H 2S 검지관, COS 검지관, HCl 검지관, HF 검지관, HBr 검지관, HCN 검지관, 및 NH 3 검지관을 포함하고, 상기 영상 획득 장치는 상기 복수의 검지관별 영상 데이터를 획득하기 위한 카메라와, 상기 카메라로부터 획득된 영상데이터를 저장하는 영상 데이터 저장부와, 상기 영상 데이터를 네트워크를 통해 상기 오염가스 감시 모니터링 장치에 전송하는 영상 데이터 전송부를 포함하는 것이 바람직하다.Wherein the plurality of detection tubes include an H 2 S detection tube, a COS detection tube, an HCl detection tube, an HF detection tube, an HBr detection tube, an HCN detection tube, and an NH 3 detection tube, And a video data storage unit for storing the video data acquired from the camera and an image data transmission unit for transmitting the video data to the pollution gas monitoring device through the network Do.
상기 오염가스 감시 모니터링 장치는 상기 영상 획득 장치로부터 영상 데이터를 수신하는 영상 데이터 수신부와, 상기 수신된 영상 데이터를 HSV 차원의 영상 데이터로 변환하는 HSV 변환부와, 상기 HSV 변환부에 의해 변환된 HSV 영상 데이터를 검지관별 정해진 바운딩박스좌표를 기준으로 분리하는 검지관 영역별 영상 분리부와, 상기 검지관 영역별 영상 분리부에 의해 분리된 검지관 영역별 바운딩 박스내 영상 데이터를 취득하는 검지관 영역별 영상 취득부와, 상기 검지관 영역별 영상 취득부에 의해 취득된 검지관 영역별 영상 데이터와 오염가스별 참조 반응색 DB에 저장되어 있는 오염가스별 참조 반응색을 비교 판단하는 영상 비교 판단부와, 상기 영상 비교 판단부의 판단결과, 상기 검지관 영역별 영상 데이터를 기반으로 계산된 평균적인 HSV 값 중 적어도 하나의 HSV 값이 상기 오염가스별 참조 반응색에 저장되어 있는 상위값과 하위값 사이에 있으면 오염가스가 감지된 것으로 판단하여 그 판단결과에 따라 경보를 알리는 경보 발생부를 포함하는 것이 바람직하다.The pollution monitoring apparatus includes an image data receiving unit for receiving image data from the image capturing apparatus, an HSV converting unit for converting the received image data into HSV-dimensional image data, an HSV converting unit for converting the HSV- An image separator for separating the image data based on coordinates of the bounding box determined by the detector; and a detector tube region for acquiring image data in the bounding box for each detector tube region separated by the detector tube- And an image comparing and judging unit for comparing and comparing the reference reaction color for each of the pollutant gases stored in the reference reaction color DB for each of the polluted gases, And an average HSV value calculated on the basis of the image data of the detection tube region as a result of the determination by the image comparison determination unit And an alarm generating unit for determining that the pollution gas is detected when at least one HSV value is between an upper value and a lower value stored in the reference reaction color for each polluting gas and informing an alarm according to the determination result.
상기 검지관 영역별 영상 취득부는 상기 취득된 검지관 영역별 영상 데이터의 전 영역 또는 일정 기준에 따라 선정된 복수의 선정지점에서 HSV 값을 각각 계산하여 상기 평균적인 HSV 값을 계산하는 것이 바람직하다.Preferably, the image acquiring unit for each detector tube region calculates the average HSV value by calculating HSV values at a plurality of selected points selected according to the entire region or the predetermined reference of the acquired image data for each detector tube region.
본 발명의 다른 실시예에 따른 오염가스 제거 장치의 감시 시스템은 상기 검지관 영역별 영상 취득부에 의해 취득된 검지관 영역별 영상 데이터를 저장하는 검지관 영역별 영상 데이터 저장부를 더 포함하는 것이 바람직하다.It is preferable that the monitoring system of the pollution gas removing apparatus according to another embodiment of the present invention further includes an image data storing unit for each detection tube region for storing image data for each detection tube region acquired by the image acquiring unit for each detection tube region Do.
본 발명의 다른 실시예에 따른 오염가스 제거 장치의 감시 시스템은 상기 영상 비교 판단부의 판단결과에 따른 오염가스별 반응상태를 실시간으로 표시하는 디스플레이부를 더 포함하는 것이 바람직하다.The monitoring system of the pollution gas removing apparatus according to another embodiment of the present invention may further include a display unit for displaying the reaction state of the polluted gas according to the judgment result of the image comparison judging unit in real time.
상기 오염가스 감시 모니터링 장치는 상기 영상 비교판단부의 판단결과, 상기 복수의 검지관 영역 중 적어도 하나의 검지관 영역에서 오염가스가 감지된 경우 상기 오염가스 제거 장치의 공급부를 통하여 공급되는 흡착제의 공급량을 늘리도록 제어하는 것이 바람직하다.The pollution gas monitoring apparatus may further include a controller for controlling the supply amount of the adsorbent supplied through the supply part of the pollution gas removal device when the pollution gas is detected in at least one detection tube area of the plurality of detection tube areas It is preferable to control so as to increase.
본 발명의 또 다른 실시예에 따르면, 합성가스에 포함된 오염가스를 제거하는 오염가스 제거 장치의 감시 시스템을 이용한 오염가스 감시 방법으로서, 상기 오염가스 제거 장치에서 배출된 가스에 오염가스가 남아 있는지를 감지하기 위한 복수의 검지관을 촬영하여 영상 데이터를 획득하는 단계; 상기 획득된 영상 데이터를 검지관 영역별로 분리하는 단계; 상기 분리된 검지관 영역별 영상 데이터를 미리 설정된 오염가스별 참조 반응색과 비교하여 상기 검지관 영역별 영상 데이터 중 적어도 하나의 영상 데이터가 상기 오염가스별 참조 반응색 범위내에 있는지 여부를 판단하는 단계; 및 상기 판단하는 단계의 판단결과, 상기 적어도 하나의 영상 데이터가 상기 오염가스별 참조 반응색 범위내에 있으면 오염가스가 감지되었음을 알리는 단계를 포함하는, 오염가스 감시 방법을 제공한다.According to another embodiment of the present invention, there is provided a pollution gas monitoring method using a monitoring system of a pollution gas removing apparatus for removing pollution gas contained in a syngas, wherein the polluted gas remains in the gas discharged from the pollution gas removing apparatus Capturing a plurality of detection tubes for detecting a plurality of detection tubes to acquire image data; Separating the acquired image data for each detection tube region; Determining whether at least one image data among the image data of the detection tube region is within the reference response color range for each of the polluting gases by comparing the separated image data of the detection tube region with the predetermined reference reaction color of the polluting gas ; And informing that the pollution gas is detected when the at least one image data is within the reference reaction color range for each polluted gas as a result of the determining step.
상기 분리하는 단계는 상기 영상 데이터를 수신하는 단계; 상기 수신된 영상 데이터를 HSV 차원의 영상 데이터로 변환하는 단계; 상기 변환된 HSV 영상 데이터를 검지관별 정해진 바운딩박스좌표를 기준으로 검지관별 바운딩박스를 생성하는 단계; 및 상기 생성된 바운딩박스 내 검지관 영역별 영상 데이터를 취득하는 단계를 포함하는 것이 바람직하다.Wherein the separating step comprises: receiving the image data; Converting the received image data into HSV dimensional image data; Generating a bounding box for the detection unit based on the bounding box coordinates determined for the detected HSV image data; And acquiring image data for each detection tube region in the generated bounding box.
상기 판단하는 단계는 상기 취득된 검지관 영역별 영상 데이터를 기반으로 계산된 평균적인 HSV 값 중 적어도 하나의 HSV 값이 상기 오염가스별 참조 반응색에 저장되어 있는 상위값과 하위값 사이에 있는지 여부를 비교 판단하고, 상기 알리는 단계는 상기 적어도 하나의 HSV 값이 상기 오염가스별 참조 반응색에 저장되어 있는 상위값과 하위값 사이에 있으면 오염가스가 감지된 것으로 판단된 결과에 따라 경보를 알릴 수 있는 것이 바람직하다.Wherein the determining step determines whether at least one HSV value among the average HSV values calculated based on the acquired image data of the detection tube area is between an upper value and a lower value stored in the reference reaction color by the polluting gas And the informing step informs the alarm according to the result that the pollution gas is detected when the at least one HSV value is between the upper value and the lower value stored in the reference reaction color by the pollution gas .
본 발명의 또 다른 실시예에 따른 오염가스 감시 방법은 상기 검지관별 영상 데이터를 취득하는 단계 이후에, 상기 취득된 검지관별 영상 데이터를 검지관 영역별 영상 데이터 저장부에 저장하는 단계를 더 포함하는 것이 바람직하다.The pollution gas monitoring method according to another embodiment of the present invention may further include the step of storing the acquired detection tube image data in the image data storage unit for each detection tube region after obtaining the detection tube image data .
본 발명의 또 다른 실시예에 따른 오염가스 감시 방법은 상기 판단하는 단계 이후에, 상기 판단하는 단계의 판단결과에 따른 오염가스별 반응상태를 디스플레이부에 표시하는 단계를 더 포함하는 것이 바람직하다.The method for monitoring a polluted gas according to another embodiment of the present invention may further include the step of displaying, on the display unit, the reaction state of the polluted gas according to the determination result of the determining step after the determining step.
본 발명의 또 다른 실시예에 따른 오염가스 감시 방법은 상기 판단하는 단계 이후에, 상기 복수의 검지관 영역 중 적어도 하나의 검지관 영역에서 오염가스가 감지된 경우 상기 오염가스 제거 장치의 공급부를 통하여 공급되는 흡착제의 공급량을 늘리도록 제어하는 단계를 더 포함하는 것이 바람직하다.According to another aspect of the present invention, there is provided a method for monitoring a polluted gas, comprising the steps of: when the polluted gas is detected in at least one of the plurality of detection tube regions, And controlling the supply amount of the adsorbent to be supplied to be increased.
본 발명의 실시예에 따르면 합성가스에 포함된 오염가스의 농도를 수 ppb 수준까지 낮출 수 있으므로 고도 정제가 필요한 연료 전지에 적합한 흡착방법을 제공하는 효과가 있다. According to the embodiment of the present invention, since the concentration of the pollutant gas contained in the syngas can be lowered to several ppb, it is possible to provide an adsorption method suitable for a fuel cell requiring high purification.
또한, 본 발명의 실시예에 따르면 종래 방법에 비해 압력용기의 크기를 크게 줄일 수 있어 경제적인 흡착탑을 제공할 수 있는 효과도 있다. In addition, according to the embodiment of the present invention, the size of the pressure vessel can be greatly reduced as compared with the conventional method, thereby providing an economical adsorption tower.
또한, 본 발명의 실시예에 따르면 흡착단을 경사지게 스크류 방향으로 기울여, 흡착단의 하부에서 파과된 첨착활성탄이 효과적으로 스크류를 통해 배출되고, 모터 구동부에 질소를 공급하는 설비를 두어 파과된 첨착활성탄이 스크류를 통해 외부로 배출될 때에 구동부에서 합성가스가 누출되는 것을 막는 효과도 있다.In addition, according to the embodiment of the present invention, impregnated activated carbon which is inclined in the screw direction in an inclined manner, impregnated activated carbon broken at the bottom of the adsorption end is effectively discharged through the screw, and impregnated impregnated activated carbon There is also an effect of preventing the syngas from leaking out of the driving portion when it is discharged to the outside through the screw.
또한, 본 발명의 실시예에 따르면 합성가스에 포함되어 있는 오염가스를 제거하는 오염가스 제거 장치에서 배출된 가스에 오염가스가 남아 있는지를 검지관의 색변화를 통해 감지하여 흡착탑의 상태를 현장요원 없이 알릴 수 있는 효과도 있다.In addition, according to the embodiment of the present invention, it is possible to detect the presence of contaminant gas in the gas discharged from the contaminant gas removing device for removing the contaminant gas contained in the syngas through the color change of the detecting tube, There is also an effect that can be announced without.
또한, 본 발명의 실시예에 따르면 오염가스 감시 모니터링 장치와 네트워크를 통해 오염가스 감시상황 관리 장치가 연결되어, 오염가스 감시상황 관리 장치에서 오염가스 감시 모니터링 장치의 감시 상황을 모니터링할 수 있는 효과도 있다.In addition, according to the embodiment of the present invention, the pollution gas monitoring and monitoring device is connected to the pollution gas monitoring situation management device via the network, and the monitoring status of the pollution gas monitoring device can be monitored in the pollution gas monitoring situation management device have.
또한, 본 발명의 실시예에 따르면 오염가스별 반응상태를 실시간으로 디스플레이부에 표시함으로써 운전자에게 오염가스별 반응 상태를 알려줄 수 있는 효과도 있다.In addition, according to the embodiment of the present invention, the reaction state of the polluted gas can be informed to the driver by displaying the reaction state of the polluted gas on the display unit in real time.
그리고, 본 발명의 실시예에 따르면 오염가스 제거 장치에서 배출된 가스에 오염가스가 남아 있는 경우 흡착탑에 공급되는 흡착제의 공급량을 늘리도록 제어함으로써 흡착탑의 성능이 떨어지는 것을 방지하여 항상 균일한 성능을 낼 수 있게 한 효과도 있다.According to the embodiment of the present invention, when the pollutant gas remains in the gas discharged from the pollutant-gas removing device, the supply amount of the adsorbent supplied to the adsorption tower is controlled to be increased so that the performance of the adsorption tower is prevented from being lowered, There is also an effect that can be done.
도 1은 본 발명의 일 실시예에 따른 오염가스 제거 장치의 (a) 정면도 및 (b) 사시도,BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view and (b) perspective view of a contaminated gas removing apparatus according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 오염가스 제거 장치의 단면 사시도, 2 is a cross-sectional perspective view of a pollutant-gas removing apparatus according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따른 오염가스 제거 장치의 단면도,3 is a cross-sectional view of a pollutant removal device according to an embodiment of the present invention,
도 4는 본 발명의 일 실시예에 따른 오염가스 제거 장치의 흡착단을 도시한 도면,FIG. 4 is a view showing an adsorption step of a pollution gas removing apparatus according to an embodiment of the present invention, FIG.
도 5는 본 발명의 다른 실시예에 따른 오염가스 제거 장치의 감시 시스템을 설명하기 위한 개략적인 구성도,FIG. 5 is a schematic diagram for explaining a monitoring system of a pollution-gas removing apparatus according to another embodiment of the present invention; FIG.
도 6은 도 5에 도시된 영상 획득 장치를 설명하기 위한 3D 외형도,FIG. 6 is a 3D outline view for explaining the image acquisition apparatus shown in FIG. 5,
도 7은 도 6에 도시된 영상 획득 장치를 상세하게 설명하기 위한 블록도,FIG. 7 is a block diagram for explaining the image acquisition apparatus shown in FIG. 6 in detail;
도 8은 도 5에 도시된 오염가스 감시 모니터링 장치를 설명하기 위한 블록도,FIG. 8 is a block diagram for explaining the pollution monitoring monitoring apparatus shown in FIG. 5;
도 9는 본 발명의 또 다른 실시예에 따른 오염가스 제거 장치의 감시 시스템을 이용한 감시 방법을 설명하기 위한 동작 흐름도,FIG. 9 is a flowchart illustrating a monitoring method using a monitoring system of a pollution-gas removing apparatus according to another embodiment of the present invention. FIG.
도 10은 오염가스별 반응 상태를 도시한 화면 예시도,10 is an exemplary screen showing the reaction state of each of the polluted gases,
도 11은 도 5에 도시된 오염가스 감시상황 관리 장치를 설명하기 위한 도면, 그리고11 is a view for explaining a pollution gas monitoring situation management apparatus shown in Fig. 5, and Fig.
도 12는 검지관별 반응상태를 표시한 화면 예시도.Fig. 12 is a diagram showing an example of a screen showing the reaction state of the detection tube. Fig.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the following examples can be modified in various forms, and the scope of the present invention is not limited to the following examples.
도 1은 본 발명의 일 실시예에 따른 오염가스 제거 장치의 (a)정면도 및 (b)사시도를 도시하고 있고, 도 2는 본 발명의 일 실시예에 따른 오염가스 제거 장치의 단면 사시도를 도시하고 있고, 도 3은 본 발명의 일 실시예에 따른 오염가스 제거 장치의 단면도를 도시하고 있으며, 도 4는 본 발명의 일 실시예에 따른 오염가스 제거 장치의 흡착단을 도시한 도면을 도시하고 있다.FIG. 1 is a front view and (b) perspective view of a contaminated gas removing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional perspective view of a pollution gas removing apparatus according to an embodiment of the present invention. FIG. 3 is a cross-sectional view of a pollutant removing device according to an embodiment of the present invention, and FIG. 4 is a view illustrating an adsorption end of the pollutant removing device according to an embodiment of the present invention. .
도 1 내지 도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 오염가스 제거 장치(100)는, 다단 연속식 오염가스 제거 장치로서, 가압 용기인 몸체부(110), 몸체부(110) 하단에 설치되어 몸체부(110)로 합성가스를 공급하는 합성가스 공급부(111), 몸체부(110)의 상단에 설치되어 몸체부(110)에서 합성가스를 배출하는 합성가스 배출부(112), 몸체부(110) 내부에 경사지게 설치되고 첨착활성탄이 놓이는 흡착부(120), 흡착부(120)의 상부에서 첨착활성탄을 공급하는 공급부(130) 및 합성가스와 반응하여 파과된 첨착활성탄을 배출하는 배출부(140)를 포함한다. 1 to 4, the apparatus 100 for removing polluting gas according to an embodiment of the present invention includes a body 110 as a pressurizing vessel, a body 110 A syngas discharge unit 112 installed at the upper end of the body 110 for discharging syngas from the body 110, a syngas supply unit 111 installed at the lower end of the body 110 for supplying syngas to the body 110, ), A suction part 120 sloped inside the body part 110 and provided with impregnated activated carbon, a supply part 130 supplying impregnated activated carbon at the upper part of the adsorption part 120, and impregnated activated carbon reacted with the syngas, And a discharge unit 140 for discharging the gas.
몸체부(110)는 예컨대, 첨착활성탄 흡착탑일 수 있으며, 원통형으로 형성되는 것이 바람직하다. The body portion 110 may be, for example, an impregnated activated carbon adsorption tower, and is preferably formed in a cylindrical shape.
합성가스에 포함된 H 2S, COS, HCl, HF, HBr, HCN, NH 3 등과 같은 미량의 오염가스는 몸체부(110)의 하부에서 유입되어 상부로 이동하면서 몸체부(110) 내부에 경사지게 설치된 흡착부(120)에 놓인 첨착활성탄과 반응하면서 첨착활성탄에 흡착되고, 오염가스가 제거된 혼합가스만이 몸체부(110)의 상부를 통해 배출되게 된다. A trace amount of contaminant gas such as H 2 S, COS, HCl, HF, HBr, HCN, and NH 3 contained in the syngas flows into the lower portion of the body portion 110, Only the mixed gas adsorbed on the impregnated activated carbon while being reacted with the impregnated activated carbon placed on the adsorbing part 120 installed and removed from the contaminated gas is discharged through the upper part of the body part 110.
도 4에 도시된 바와 같이, 흡착부(120)는 한 쌍의 경사판(122, 123) 및 한 쌍의 경사판(122, 123)을 연결하여 첨착활성탄이 모이는 연결부(124)를 포함하며, 한 쌍의 경사판(122, 123)은 연결부(124) 방향으로 하방 경사지게 형성된다. 4, the adsorption section 120 includes a connection section 124 in which impregnated activated carbon is collected by connecting a pair of swash plates 122 and 123 and a pair of swash plates 122 and 123, The inclined plates 122 and 123 are formed to be inclined downward in the direction of the connecting portion 124. [
공급부(130)는 첨착활성탄을 락 호퍼 시스템(lock hopper system) 방식으로 몸체부(110)의 흡착부(120)에 공급하게 된다. 흡착부(120)는 공급부(130)의 맞은 편에 위치한 배출부(140) 측으로 하방 경사지게 형성되므로, 공급되는 첨착활성탄은 경사진 한 쌍의 경사판(122, 123)에 흩어지면서 분포하게 된다.The supply unit 130 supplies impregnated activated carbon to the adsorption unit 120 of the body part 110 by a lock hopper system. Since the adsorption unit 120 is formed to be inclined downward toward the discharge unit 140 located on the opposite side of the supply unit 130, the impregnated activated carbon to be supplied is scattered and distributed in a pair of inclined plates 122 and 123 inclined.
공급되는 첨착활성탄의 양은, 흡착될 오염가스 물질의 농도와 유량 및 첨착활성탄 즉, 흡착제의 파과 시간에 따라 달라질 수 있다.The amount of the impregnated activated carbon to be supplied may vary depending on the concentration and the flow rate of the polluted gaseous substance to be adsorbed and the breakthrough time of the impregnated activated carbon, that is, the adsorbent.
예를 들어, 합성가스 중 산성가스가 100ppm이 포함되어 있고, 사전 흡착능 평가 실험에 의해 산성가스 100ppm이 유입되면 1kg의 첨착활성탄으로 1시간 정도 후에 파과되어 더 이상 흡착되지 못한다고 하였을 때, 몸체부(110)에 100kg을 충진하면 100시간을 흡착할 수 있다. 따라서 100시간 동안 흡착하고 100시간이 지난 시점부터 흡착하지 못하고 몸체부(110)의 흡착부(120)를 통과한 합성가스에 미량성분의 산성가스들이 검출되기 시작한다. 그러므로 10% 정도 파과되기 전에 교체한다고 하면 새로운 첨착활성탄을 1시간마다 1.1kg씩 공급하고 1시간마다 1.1kg씩 배출하면 100시간 동안 총 110kg이 공급되어 여유분 10kg 때문에 배출되는 첨착활성탄은 완전 흡착되지 않은 약 90% 정도만 흡착되어 배출되나, 흡착부(120)를 통과한 합성가스에 포함된 산성가스는 남아있지 않고 모두 첨착활성탄에 흡착된다. For example, when 100 ppm of acid gas is contained in syngas and 100 ppm of acid gas is introduced by the preliminary adsorption capacity evaluation test, 1 kg of impregnated activated carbon is broken after about 1 hour and is no longer adsorbed. 110) can be adsorbed for 100 hours. Accordingly, after 100 hours of adsorption, 100 hours after the start of adsorption, the acidic gases of trace components start to be detected in the synthesis gas passing through the adsorption part 120 of the body part 110 without being adsorbed. Therefore, if replacement is made before 10% breakage, 1.1 kg of fresh impregnated activated carbon is supplied every 1 hour, and 1.1 kg of fresh impregnated carbon per hour is supplied for a total of 110 kg for 100 hours. Only about 90% of the adsorbent 120 is adsorbed and adsorbed on impregnated activated carbon.
배출부(140)는 파과된 첨착활성탄을 이송하기 위해 연결부 상부에 설치되는 스크류, 스크류를 회전시키는 구동모터 및 스크류를 통해 배출되는 파과된 첨착활성탄을 저장하는 보관챔버(160)를 포함할 수 있다. The discharge unit 140 may include a storage chamber 160 for storing impregnated activated carbon discharged through a screw, a driving motor for rotating the screw, and a screw provided on the connection portion to transport the impregnated impregnated activated carbon .
배출부(140)는 스크류를 회전시키는 회전체로부터 합성가스가 누출되지 않도록 구동부실링을 형성할 수 있다.The discharge portion 140 may form a drive seal so that the syngas does not leak from the rotating body rotating the screw.
또한, 가압 용기인 몸체부(110)에 유입되는 합성가스는 20 ~ 30bar의 압력으로 유입되므로, 스크류를 회전하는 회전체로 인해 합성가스가 누출될 수 있으므로, 합성가스 누출을 방지하기 위해 구동부실링을 둘러싸는 질소챔버(150)를 설치하며, 질소챔버(150)의 압력을 몸체부(110)의 압력보다 약 1bar 정도 높게 유지하도록 한다. Since the syngas flowing into the body 110, which is a pressurized vessel, flows at a pressure of 20 to 30 bar, the syngas may leak due to the rotating body rotating the screw. Therefore, And the pressure of the nitrogen chamber 150 is maintained to be higher than the pressure of the body 110 by about 1 bar.
즉, 질소챔버(150)에 압력계를 설치하여 몸체부(110)와의 압력차이를 항상 약 1bar 정도 높게 유지하는 것이다. 이는 합성가스가 구동부실링이 있는 질소챔버를 통과하여 외부로 누출되는 것을 방지하기 위함이다. 압력차를 감안하여 수시로 질소가 공급되며, 이는 구동부실링을 통해 몸체부(110) 방향 및 모터측 방향으로 누출되는 양만큼만 자동으로 공급되어진다. That is, a pressure gauge is installed in the nitrogen chamber 150 so that the pressure difference with the body 110 is always maintained at about 1 bar. This is to prevent the synthesis gas from leaking to the outside through the nitrogen chamber with the drive seal. Nitrogen is supplied from time to time in consideration of a pressure difference, which is automatically supplied only by an amount leaked toward the body portion 110 and the motor side through the drive seal.
구동부실링은, 스크류를 회전시키기 위해 외부에 모터를 일정 속도로 회전시키는데 회전체와 고정된 질소챔버와의 사이에 가스가 누출되지 않도록 밀봉하게 된다. 하지만 완벽하게 실링을 하면 회전체가 회전할 때 저항을 크게 받아 회전하기 어렵기 때문에 작은 유격을 두게 되는데 이 곳을 통해 가스가 일부 누출되게 된다. 누출되는 양이 최소가 되도록 회전체가 돌아가는 곳에 실링재를 설치하여 가스가 누출되는 것을 최소하는 역할을 하는 것이다. The driving section sealing is to seal the gas between the rotating body and the fixed nitrogen chamber so that the gas is not leaked to rotate the motor at a predetermined speed to the outside in order to rotate the screw. However, if the seal is completely sealed, it will be difficult to rotate because the resistance of the rotating body is large when it rotates, so that a small clearance is formed. The sealing material is installed at the rotating body so that the leakage amount is minimized, thereby minimizing gas leakage.
한편, 흡착부(120)는 적어도 하나의 흡착단을 포함하며, 흡착단은 몸체부(110)에 경사지게 설치된다. On the other hand, the adsorption unit 120 includes at least one adsorption unit, and the adsorption unit is installed on the body unit 110 in an inclined manner.
흡착부(120)는 오염가스의 종류에 따라 다양한 흡착단을 구성할 수 있으며, 예컨대, 산성가스를 흡착하는 산성가스 흡착단(121), 염기성가스를 흡착하는 염기성가스 흡착단(125) 및 중성가스를 흡착하는 중성가스 흡착단(126)을 포함할 수 있다. The adsorption unit 120 can constitute various adsorption stages depending on the kind of the polluted gas. For example, the adsorption unit 120 includes an acidic gas adsorption unit 121 for adsorbing an acidic gas, a basic gas adsorption unit 125 for adsorbing a basic gas, And a neutral gas adsorption stage 126 for adsorbing the gas.
합성가스와 첨착활성탄이 서로 만나면, 합성가스 중에 포함된 오염가스 물질과 첨착활성탄 표면에 있는 금속물질이 서로 반응한다. 예를 들어, 합성가스에 포함되어 있는 산성가스 HCl의 경우, 첨착활성탄 표면에 녹아 있는 CuO에 의해 다음과 같은 반응이 일어난다. When the synthesis gas and the impregnated activated carbon meet each other, the contaminant gas material contained in the syngas reacts with the metal material on the impregnated activated carbon surface. For example, in the case of acidic gas HCl contained in syngas, the following reaction occurs due to CuO dissolved in the impregnated activated carbon surface.
 2HCl(기체) + CuO(고체) -> CuCl 2(고체) + H 2O(액체)2HCl (gas) + CuO (solid) -> CuCl 2 (solid) + H 2 O (liquid)
 따라서 합성가스 중에 포함된 HCl이 첨착활성탄 표면에 고체로 남아 있게 되어 흡착된다. Therefore, the HCl contained in the synthesis gas remains as a solid on the surface of the impregnated activated carbon and is adsorbed.
상기와 같이 오염가스의 종류에 따라 복수 개의 흡착단을 구성하면, 이에 일대일 대응되도록 첨착활성탄을 공급하는 공급부(130) 및 파과된 첨착활성탄을 배출하는 배출부(140)도 구성되어야 한다. If a plurality of adsorption stages are constructed according to the type of the polluted gas as described above, a feeder 130 for supplying the impregnated activated carbon so as to correspond to the adsorbed carbon one by one and a discharge unit 140 for discharging the impregnated activated carbon should be constructed.
즉, 공급부(130)는 산성가스 흡착단(121)에서 산성가스를 흡착하기 위해 첨착활성탄을 공급하는 산성가스 흡착제 공급부(131), 염기성가스 흡착단(125)에서 염기성가스를 흡착하기 위한 첨착활성탄을 공급하는 염기성가스 흡착제 공급부(132) 및 중성가스 흡착단(126)에서 중성가스를 흡착하기 위한 첨착활성탄을 공급하는 중성가스 흡착제 공급부(133)를 포함할 수 있다. That is, the supply unit 130 includes an acidic gas adsorbent supply unit 131 for supplying the impregnated activated carbon to adsorb the acidic gas at the acidic gas adsorption unit 121, an impregnated activated carbon for adsorbing the basic gas at the basic gas adsorption unit 125, And a neutral gas adsorbent supply unit 133 for supplying an impregnated activated carbon for adsorbing neutral gas at the neutral gas adsorption unit 126. [
또한, 배출부(140)는 산성가스 흡착단(121)에서 산성가스를 흡착하여 파과된 첨착활성탄을 배출하는 산성가스 흡착제 배출부(141), 염기성가스 흡착단(125)에서 염기성가스를 흡착하여 파과된 첨착활성탄을 배출하는 염기성가스 흡착제 배출부(142) 및 중성가스 흡착단(126)에서 중성가스를 흡착하여 파과된 첨착활성탄을 배출하는 중성가스 흡착제 배출부(143)를 포함할 수 있으며, 산성가스 흡착제 배출부(141), 염기성가스 흡착제 배출부(142) 및 중성가스 흡착제 배출부(143)에서 배출되는 파과된 첨착활성탄은 보관챔버(160)에 저장될 수 있다. The exhaust unit 140 includes an acidic gas adsorbent discharge unit 141 for adsorbing the acidic gas from the acidic gas adsorption unit 121 and discharging the impregnated activated carbon which has passed through it, a basic gas adsorption unit 125 for adsorbing the basic gas And a neutral gas adsorbent discharge unit 143 for discharging the impregnated activated carbon by adsorbing the neutral gas at the basic gas adsorbent discharge unit 142 and the neutral gas absorption stage 126 for discharging the impregnated impregnated activated carbon, Impregnated activated carbon discharged from the acid gas adsorbent discharge unit 141, the basic gas adsorbent discharge unit 142 and the neutral gas adsorbent discharge unit 143 may be stored in the storage chamber 160.
도 3에서 보듯이, 흡착단은 몸체부(110)에 경사지게 설치되되, 배출부(140) 측으로 하방 경사지게 형성되고, 공급부(130)는 배출부(140)와 반대측에 형성되어 첨착활성탄이 공급부(130)로 공급되면, 첨착활성탄은 경사진 흡착단에 중력에 의해 골고루 분포될 수 있으며, 파과된 첨착활성탄은 흡착단의 자체 경사진 구조로 인해 연결부(124)로 모이게 되고 연결부(124)에 설치된 스크류의 회전에 의해 외부로 배출되며, 이것은 오염가스를 제거하는 운전 중에 연속적으로 수행될 수 있다.3, the adsorption end is inclined to the body 110 and is inclined downward toward the discharge part 140. The supply part 130 is formed on the opposite side of the discharge part 140, 130, impregnated activated carbon can be uniformly distributed on the inclined adsorption ends by gravity, and the impregnated impregnated activated carbon is collected on the connection part 124 due to the self-inclined structure of the absorption end, And is discharged to the outside by the rotation of the screw, which can be continuously performed during the operation of removing the pollutant gas.
즉, 첨착활성탄은 공급부(130)를 통해 연속적으로 공급되고, 파과된 첨착활성탄은 스크류에 의해 이송되어 배출부(140)를 통해 연속적으로 배출될 수 있다. That is, the impregnated activated carbon is continuously supplied through the supply part 130, and the impregnated impregnated activated carbon can be conveyed by the screw and continuously discharged through the discharge part 140.
따라서, 본 발명은 H 2S, COS, HCl, HF, HBr, HCN, NH 3 등 여러 가지 성분들이 혼합된 오염가스를 효과적으로 제거하기 위하여 여러 종류의 첨착활성탄, 즉 흡착제를 다단으로 충진하고, 흡착성능을 일정한 수준으로 유지하기 위해 운전 중에 연속적으로 활성을 잃은 흡착제를 제거하기 위하여 각 흡착단마다 사선 형태의 흡착제 충진 및 제거할 수 있는 장치를 갖추었다. 이 장치를 이용하면, 압력용기인 흡착탑인 몸체부(110)의 크기를 기존 흡착탑에 비하여 효과적으로 줄일 수 있고, 파과 시점과 상관없이 연속적으로 신규 흡착제를 공급 및 배출이 가능하여 흡착탑의 성능을 항상 유지할 수 있다.Accordingly, in order to effectively remove contaminant gas mixed with various components such as H 2 S, COS, HCl, HF, HBr, HCN, and NH 3 , various types of impregnated activated carbon, In order to maintain the performance at a constant level, a device capable of filling and removing the adsorbent in a slanted form is provided for each adsorption stage in order to remove the adsorbent which has continuously lost its activity during operation. By using this apparatus, it is possible to effectively reduce the size of the body 110, which is an adsorption tower, which is a pressure vessel, compared to the conventional adsorption tower, and to continuously supply and discharge new adsorbents irrespective of the point of breakage to maintain the performance of the adsorption tower .
또한, 일반 활성탄에 비해 흡착능력이 수배~수십배 높은 첨착활성탄을 사용하였고, 흡착탑을 3단으로 분리하여 산성가스 흡착제, 염기성가스 흡착제, 중성가스 흡착제 등을 넣어 흡착탑인 몸체부(110)를 통과한 합성가스 중 미량가스의 농도를 수 ppb 수준으로 낮출 수 있다. 연속적인 흡착공정을 위하여 흡착탑의 각 흡착단의 상단에 새로운 첨착활성탄을 락 호퍼 방식으로 상부에서 소량씩 공급하고, 하부에서 스크류 방식으로 첨착활성탄을 소량씩 배출함으로써 흡착탑에 항상 새로운 흡착제가 공급되어 미량성분의 가스가 완전 제거되고, 미량성분의 가스를 흡착탑의 하부에서 흡착하면서 파과되어 흡착단의 하부에서는 파과된 흡착제가 외부로 배출됨으로써 흡착성능을 항상 유지할 수 있다. In addition, impregnated activated carbon having a capacity of several times to several tens of times higher than that of general activated carbon was used. The adsorption tower was separated into three stages, and an acidic gas adsorbent, a basic gas adsorbent, a neutral gas adsorbent, The concentration of the trace gas in syngas can be reduced to several ppb levels. For continuous adsorption process, new impregnated activated carbon is supplied to the upper part of each adsorption column of the adsorption column by a rock hopper method at a small amount from the upper part, and a small amount of impregnated activated carbon is discharged by a screw method from the bottom, The gas of the component is completely removed and the gas of the minor component is adsorbed at the lower part of the adsorption tower and the adsorbent which is broken at the lower part of the adsorption step is discharged to the outside.
도 5는 본 발명의 다른 실시예에 따른 오염가스 제거 장치의 감시 시스템을 설명하기 위한 개략적인 구성도를 도시하고 있고, 도 6은 도 5에 도시된 영상 획득 장치를 설명하기 위한 3D 외형도를 도시하고 있으며, 도 7은 도 6에 도시된 영상 획득 장치를 상세하게 설명하기 위한 블록도를 도시하고 있다.FIG. 5 is a schematic diagram for explaining a monitoring system of a pollution-gas removing apparatus according to another embodiment of the present invention, FIG. 6 is a 3D outline view for explaining the image capturing apparatus shown in FIG. 5 And FIG. 7 is a block diagram for explaining the image acquisition apparatus shown in FIG. 6 in detail.
도 5를 참조하면, 본 발명의 다른 실시예에 따른 오염가스 제거 장치의 감시 시스템은 영상 획득 장치(10), 오염가스 감시 모니터링 장치(200) 및 오염가스 감시상황 관리 장치(300)를 포함하여 구성된다.Referring to FIG. 5, the monitoring system of the pollution gas removing apparatus according to another embodiment of the present invention includes an image capturing apparatus 10, a pollution gas monitoring apparatus 200, and a pollution gas monitoring situation managing apparatus 300 .
먼저, 영상 획득 장치(10)는 플랜트 현장에 설치되어, 실시간 혹은 근실시간으로 도 1의 (a)에 도시된 오염가스 제거 장치(100)를 거쳐 배출된 합성가스에 포함된 H 2S, COS, HCl, HF, HBr, HCN, NH 3 등과 같은 미량성분의 오염가스가 남아 있는지를 검지하기 위한 복수의 검지관을 촬영하여 영상 데이터를 획득하고, AP, 네트워크, 또는 이들 모두를 통해 원격에 있는 오염가스 감지 모니터링 장치(200)에 전송한다. 오염가스 감지 모니터링 장치(200)는 운전 제어실에 설치된다.First, the image acquiring device 10 is installed in a plant site, and generates H 2 S, COS (hydrogen peroxide), and the like contained in the syngas discharged through the pollution gas removal device 100 shown in FIG. 1 , by taking a plurality of detector tube for detecting that the contaminated gas is left in a very small amount components such as HCl, HF, HBr, HCN, NH 3 obtains the image data, via both AP, the network, or those in a remote To the polluted gas detection monitoring device (200). The polluted gas detection monitoring device 200 is installed in the operation control room.
오염가스 감지 모니터링 장치(200)는 영상 획득 장치(10)로부터 획득된 영상 데이터를 검지관별 영상 데이터로 분리하고, 분리된 영상 데이터의 처리를 통해 오염가스(H 2S, COS, HCl, HF, HBr, HCN, NH 3) 중 어떤 미량성분이 감지되었는지를 모니터링하고, 적어도 하나의 미량성분이 감지되었을 경우 미리 지정된 운전자에게 경보, 이메일(400), 문자(SMS)(500), 또는 이들의 조합을 통해 이상 상황을 즉시 알린다.The pollution gas detection monitoring apparatus 200 separates the image data obtained from the image capturing apparatus 10 into detection concealment image data and processes the polluted gas (H 2 S, COS, HCl, HF, HBr, HCN, NH 3) in which trace elements are detected if monitoring and advance to the designated driver alerts, email 400, text (SMS) (500 if at least one of the trace elements has been detected), or a combination thereof To immediately notify the abnormal situation.
영상 획득 장치(10)는 도 6 및 도 7에 도시된 바와 같이 카메라(11), H 2S 검지관(12), COS 검지관(13), HCl 검지관(14), HF 검지관(15), HBr 검지관(16), HCN 검지관(17), NH 3 검지관(18), 영상 데이터 저장부(19), 영상 데이터 전송부(20)로 구성된다.6 and 7, the image capturing apparatus 10 includes a camera 11, a H 2 S detection tube 12, a COS detection tube 13, an HCl detection tube 14, an HF detection tube 15 An HCN detecting tube 17, an NH 3 detecting tube 18, an image data storing unit 19, and a video data transmitting unit 20.
복수의 검지관은 H 2S 검지관(12), COS 검지관(13), HCl 검지관(14), HF 검지관(15), HBr 검지관(16), HCN 검지관(17), 및 NH 3 검지관(18)이다.The plurality of detection tubes include a H 2 S detection tube 12, a COS detection tube 13, an HCl detection tube 14, an HF detection tube 15, an HBr detection tube 16, an HCN detection tube 17, NH 3 detection tube 18.
도 6의 (b)에 도시된 카메라(11)는 도 6의 (c)에 도시된 H 2S 검지관(12), COS 검지관(13), HCl 검지관(14), HF 검지관(15), HBr 검지관(16), HCN 검지관(17), NH 3 검지관(18)을 미리 정의된 시간 주기마다 촬영하며, 촬영된 영상 데이터는 도 6의 (a)에 도시된 영상 데이터 저장부(19)에서 임시 저장되고, 이어서 도 6의 (b) 및 (c)에 도시된 영상 데이터 전송부(20)를 거쳐 네트워크를 통해 오염가스 감시 모니터링 장치(200)에 전송된다.The camera 11 shown in FIG. 6 (b) includes the H 2 S detection tube 12, the COS detection tube 13, the HCl detection tube 14, the HF detection tube (shown in FIG. 6 15, the HBr detecting tube 16, the HCN detecting tube 17, and the NH 3 detecting tube 18 are photographed at predetermined time intervals. The photographed image data is the image data shown in FIG. 6 (a) Is temporarily stored in the storage unit 19 and then transmitted to the pollution gas monitoring apparatus 200 through the network via the image data transmission unit 20 shown in Figs. 6 (b) and 6 (c).
도 8은 도 5에 도시된 오염가스 감시 모니터링 장치를 설명하기 위한 블록도를 도시하고 있다.FIG. 8 is a block diagram for explaining the pollution monitoring monitoring apparatus shown in FIG.
이하에서는 도 8을 참조하여, 오염가스 감시 모니터링 장치(200)를 상세히 설명한다.Hereinafter, the pollutant gas monitoring apparatus 200 will be described in detail with reference to FIG.
오염가스 감시 모니터링 장치(200)는, 도 8에 도시된 바와 같이, 영상 데이터 수신부(201), HSV 변환부(202), 검지관 영역별 영상 분리부(203), 검지관 영역별 영상 취득부(204), 검지관 영역별 영상 저장부(205), 영상 저장 DB(206), 오염가스별 참조 반응 색 DB(207), 영상 비교 판단부(208), 디스플레이부(209), 경보 발생부(210), 운전자 이메일 알림부(211), 및 운전자 SMS 알림부(212) 등을 포함하여 구성된다.8, the pollutant gas monitoring apparatus 200 includes a video data receiving unit 201, an HSV converting unit 202, a detection tube region image separating unit 203, a detection tube region- An image storage DB 205, an image storage DB 206, a reference reaction color database 207 for each pollutant gas, an image comparison determination unit 208, a display unit 209, A driver's e-mail notifying unit 211, and a driver's SMS notifying unit 212, as shown in FIG.
영상 데이터 수신부(201)는 영상 획득 장치(10)로부터 획득된 영상 데이터를 AP 및 네트워크를 거쳐 수신한다.The image data receiving unit 201 receives the image data obtained from the image obtaining apparatus 10 via the AP and the network.
HSV 변환부(202)는 영상 데이터 수신부(201)로부터 수신된 영상 데이터를 HSV 차원의 영상으로 변환한다. 보다 구체적으로, 영상 데이터 수신부(201)로부터 수신된 영상 데이터는 RGB(Red, Green, Blue) 차원의 영상이므로, HSV 변환부(202)는 효율적인 영상간 색 차이 감지를 위해 HSV(Hue, Saturation, Value) 차원의 영상으로 변환한다. 즉 HSV 변환부(202)는 RGB 영상 데이터를 HSV 영상 데이터로 변환한다.The HSV converting unit 202 converts the image data received from the image data receiving unit 201 into an HSV-dimensional image. More specifically, since the image data received from the image data receiving unit 201 is an RGB (Red, Green, Blue) dimensional image, the HSV converting unit 202 converts HSV (Hue, Saturation, Value) dimensional image. That is, the HSV converter 202 converts RGB image data into HSV image data.
검지관 영역별 영상 분리부(203)는 HSV 변환부(202)를 통해 변환된 HSV 영상 데이터에 대해 미리 정해진 검지관별 바운딩박스 좌표를 기반으로 검지관별 바운딩 박스를 생성하고, 생성된 검지관별 바운딩 박스를 토대로 검지관 영역별로 영상 데이터를 분리한다. 복수의 검지관은 이동이 없는 고정된 위치에 설치되어 있으므로, 색을 인식하기 위한 바운딩 박스를 매번 연산할 필요가 없어 연산을 절감시킬 수 있다.The image segmentation unit 203 according to the detection area of the detection area generates the detection bounding box based on the coordinates of the detection bounding box for the HSV image data converted by the HSV conversion unit 202, The image data is separated for each detector tube region. Since the plurality of detector tubes are provided at fixed positions without movement, it is not necessary to calculate the bounding box for recognizing the color each time, and the calculation can be saved.
복수의 검지관별 바운딩박스 좌표는 영상 저장DB(206) 또는 오염가스별 참조 반응색 DB(207)에 저장되거나, 또는 별도의 저장공간에 저장될 수 있다.The plurality of bounding box coordinate values of the sensing gardens may be stored in the image storing DB 206 or the reference reaction color DB 207 for each of the polluting gases, or may be stored in a separate storage space.
검지관 영역별 영상 취득부(204)는 검지관 영역별 영상 분리부(203)에 의해 검지관 영역별로 분리된 바운딩 박스 내 영상 데이터를 각각 취득한다. 이와 같이 취득된 검지관 영역별 영상 데이터는 오염가스 제거 장치(100)에서 배출된 가스에 오염가스가 남아 있는지를 검지하는 복수의 검지관별 반응 영상으로서, 검지관 영역별 영상 저장부(205)에 저장하여 관리된다.The detector tube region-specific image acquiring section 204 acquires the image data in the bounding box separated by the detector tube region by the image separating section 203 for each detector tube region. The acquired image data of the detection tube region is a plurality of detection tube reaction images for detecting whether the contaminated gas remains in the gas discharged from the pollution gas removal apparatus 100, And stored.
검지관 영역별 영상 취득부(204)에서 취득된 영상 데이터는 검지관 영역별 영상 저장부(205)에 전달되어 영상 저장 DB(206)에 실시간/근실시간으로 전달된다.The image data acquired by the image acquisition section 204 is transmitted to the image storage section 205 for each detection tube area and delivered to the image storage DB 206 in real time / near real time.
영상 비교 판단부(208)는 검지관 영역별 영상 취득부(204)에 의해 취득된 검지관 영역별 영상 데이터를 오염가스별 참조 반응색 DB(207)에 저장되어 있는 오염가스별 참조 반응색과 비교하여 색변화가 있는지 여부를 판단한다.The image comparison determination unit 208 compares the image data of the detection tube region acquired by the image acquisition unit 204 for each detection region with the reference reaction color of the polluted gas stored in the reference reaction color DB 207 for each of the polluted gases And determines whether or not there is a color change.
보다 구체적으로, 영상 비교 판단부(208)는 검지관 영역별 영상 취득부(204)에 의해 취득된 검지관 영역별 영상 데이터를 기반으로 검지관 영역별 평균적인 HSV값이 오염가스별 참조 반응색 DB(207)에 저장되어 있는 상위값과 하위값 사이에 있는지 여부를 판단한다. More specifically, based on the image data of the detection tube region acquired by the image acquisition section 204 for each detection tube region, the image comparison determination section 208 determines whether the average HSV value of each detection tube region is greater than the reference reaction color It is determined whether or not it is between an upper value and a lower value stored in the DB 207. [
영상 비교 판단부(208)의 판단결과, 오염가스별 참조 반응색 DB(207)의 상위값과 하위값 사이 내에 적어도 하나의 검지관 영역별 평균적인 HSV 값이 있으면, 경보 발생부(210)는 운전실에 자리를 비운 운전자에게도 즉각 이상 상황을 알릴 수 있도록 운전자 이메일 알림부(210) 및 운전자 SMS 알림부(211)에 신호, 예컨대 오염가스 제거 장치(100)에서 배출된 가스에 오염가스가 남아 있음을 알리는 알림신호를 전달한다.As a result of the determination by the image comparison determination unit 208, if there is an average HSV value for at least one detection tube region between the upper and lower values of the reference reaction color DB 207 for each polluted gas, the alarm generation unit 210 A signal is sent to the driver's e-mail notifying unit 210 and the driver's SMS notifying unit 211, for example, the polluted gas remains in the gas discharged from the polluted gas removing apparatus 100 so that the driver who has left his / To the user.
디스플레이부(209)는 검지관 영역별 영상 취득부(204)에서 취득된 검지관 영역별 영상 데이터를 표시한다.The display unit 209 displays the image data for each detection tube region acquired by the image acquisition unit 204 for each detection tube region.
또한, 디스플레이부(209)는 경보 발생부(210)에서 발생된 알림정보를 표시할 수 있다.Also, the display unit 209 can display the alert information generated by the alert generator 210. [
이와 같은 구성을 갖는 오염가스 제거 장치의 감시 시스템을 이용한 감시 방법을 도 9를 참조하여 설명하면 다음과 같다.A monitoring method using the monitoring system of the pollution-gas removing apparatus having such a configuration will be described with reference to FIG.
도 9는 본 발명의 또 다른 실시예에 따른 오염가스 제거 장치의 감시 시스템을 이용한 감시 방법을 설명하기 위한 동작 흐름도를 도시하고 있다.9 is a flowchart illustrating a monitoring method using a monitoring system of a pollution-gas removing apparatus according to another embodiment of the present invention.
도 9를 참조하면, 오염가스 감시 모니터링 장치(200)는 우선 모니터링 진행/종료 분기문(S213)에서 운전자가 모니터링 '종료' 명령을 내리기 전까지 계속적으로 모니터링을 진행한다.Referring to FIG. 9, the pollution gas monitoring apparatus 200 continuously monitors monitoring until the driver issues a monitoring 'end' command in the monitoring progress / end branch (S213).
즉, 오염가스 감시 모니터링 장치(200)는 도 10에 도시된 화면예시도에서 종료 메뉴(240)가 선택되었는지 여부를 판단하여, 종료 메뉴(240)가 선택되면 프로세스를 종료하고, 종료 메뉴(240)가 선택되지 않으면 모니터링을 진행한다. 별도로 모니터링 메뉴(238)를 운전자로부터 선택받아서 모니터링을 진행할 수도 있다.That is, the pollution gas monitoring apparatus 200 determines whether or not the end menu 240 is selected in the screen example shown in FIG. 10, ends the process when the end menu 240 is selected, ) Is not selected, the monitoring proceeds. Alternatively, the monitoring menu 238 may be selected from the driver to proceed with monitoring.
S213에서 모니터링 '진행' 상태이면, 영상 데이터 수신부(201)에서는 영상 획득 장치(10)에서 획득된 영상 데이터를 실시간/근실시간으로 수신한다(S214). 수신된 영상 데이터는 RGB(Red, Green, Blue) 차원의 영상이다.In step S213, the image data receiving unit 201 receives the image data obtained in the image obtaining apparatus 10 in real time / near real time (S214). The received image data is RGB (Red, Green, Blue) dimensional image.
효율적인 영상 간 색 차이 감지를 위해서 HSV 변환부(202)에서는 RGB 차원의 영상 데이터를 HSV 차원의 영상 데이터로 변환한다(S215).In order to efficiently detect color difference between images, the HSV converter 202 converts the RGB-dimensional image data into HSV-dimensional image data (S215).
검지관 영역별 영상 분리부(203)에서는 변환된 HSV 영상 데이터에 대해 검지관 영역(H 2S, COS, HCl, HF, HBr, HCN, NH 3)별로 영상 데이터를 분리할 수 있도록 검지관 영역 별 바운딩 박스(Bounding Box)를 생성한다(S216). 검지관 영역별 영상 취득부(204)에서는 도 12에 도시된 바와 같은 예컨대 세개의 검지관 즉, H 2S 검지관(12), COS 검지관(13), HCl 검지관(14) 역별 바운딩 박스(B0, B1, B2) 내 영상을 취득한다. 도 12에 도시된 바운딩 박스들(B0, B1, B2) 중 B1은 B0 및 B2와 다른 색상이 검출되어 B0 및 B2와 구분되도록 표시하였다.The image separator 203 of the detector tube region separates the image data of the transformed HSV image data by the detector tube region (H 2 S, COS, HCl, HF, HBr, HCN, and NH 3 ) And creates a star bounding box (S216). 12, for example, an H 2 S detection tube 12, a COS detection tube 13, an HCl detection tube 14, and a bounding box (not shown) (B0, B1, B2). Among the bounding boxes B0, B1, and B2 shown in FIG. 12, B1 indicates that a color different from B0 and B2 is detected and is distinguished from B0 and B2.
도 12에서는 3개의 검지관만 예시로 도시하고 있는데, 검지관 영역별 영상 분리부(203)에서는 도 6의 (c)에 도시된 검지관별로 정해진 바운딩박스좌표를 기준으로 검지관별 바운딩 박스를 생성할 수 있다. 바운딩박스좌표는 도 8에 도시된 바와 같이 검지관의 거의 전영역을 좌표로 선정될 수 있지만, 색변화가 있는 검지관의 일정 영역, 예컨대 도 8의 B1에서 도트로 표시한 영역을 바운딩박스좌표로 선정되는 것이 바람직하다.In FIG. 12, only three detector tubes are illustrated by way of example. In the image separator 203 for each detector tube region, a bounding box for the detector tube is created based on the bounding box coordinates determined for each detector tube shown in FIG. 6 (c) can do. As shown in FIG. 8, the bounding box coordinates can be selected by the coordinates of almost the entire area of the detection tube, but a certain area of the detection tube having a color change, for example, an area indicated by dots in B1 in FIG. 8, .
검지관 영역별 영상 분리부(203)는 생성된 검지관 영역별 바운딩 박스, 여기서는 H 2S 검지관 영역의 바운딩 박스 내 영상 데이터를 기반으로 평균적인 HSV 값을 계산한다(S217). 평균적인 HSV 값은 H 2S 검지관 영역의 바운딩 박스 내 영상 데이터 중 예컨대 전영역의 H값 또는 일정 기준, 예를 들면 랜덤 기준에 의해 선정된 선정영역 또는 선정지점의 H값을 평균한 H값일 수 있다. H(Hue)는 색상이고, S(Saturation)는 채도이며, V(value)는 명도이다. 본 실시예에서는 H값을 사용되는 것으로 설명하고 있지만, H값, S값, 및 V 값을 모두 고려하여 사용될 수도 있다.The image segmentation unit 203 according to the detection region image region calculates an average HSV value based on the generated image data in the bounding box for each detection region, that is, the bounding box of the H 2 S detection region (S217). The average HSV value is an H value obtained by averaging, for example, the H value of the entire region or the predetermined reference, for example, the H value of the selected region or the selected region selected by the random reference, from the image data in the bounding box of the H 2 S detection tube region . H (Hue) is the color, S (Saturation) is the saturation, and V (value) is the brightness. Although the H value is used in the present embodiment, it may be used in consideration of both the H value, the S value, and the V value.
구체적으로, H 2S로 예를 들면, H 2S 검지관 영상 내 평균적인 HSV 값이 오염가스별 참조 반응 색 DB(207)에 기저장되어 있는 H 2S 참조 반응 색의 상위(Upper) HSV 값과 하위(Lower) HSV 값 사이에 들어오는지 확인하고, 범주 안에 들어온다면 H 2S가 감지된 것으로 판단하고, 범주 안에 들어오지 않는다면 감지되지 않은 것으로 판단한다(S218).Specifically, for example, H 2 S detector tube image within the average HSV values are higher (Upper) HSV of polluted gas by reference reaction color DB (207), see H 2 S in the reservoir to the reaction color in the H 2 S Value and a lower HSV value. If it is within the category, it is determined that H 2 S is detected. If it is not within the category, it is determined that it is not detected (S218).
이때, H 2S가 감지된 것으로 판단하면, 경보 발생부(210)에 전달되고, 경보 발생부(207)는 디스플레이부(209)에 운전자에게 경보를 알릴 수 있도록 신호를 전달한다. 또한, 경보 발생부(207)는 운전실에 자리를 비운 운전자에게도 즉각 상황을 알릴 수 있도록 운전자 이메일 알림부(210) 및 운전자 SMS 알림부(211)에 신호를 전달한다.At this time, if it is determined that H 2 S is detected, the alarm generating unit 210 transmits the signal to the display unit 209 so that the alarm can be informed to the driver. In addition, the alarm generating unit 207 transmits a signal to the driver's e-mail notifying unit 210 and the driver's SMS notifying unit 211 so that the driver who has left his /
운전자 이메일 알림부(210) 및 운전자 SMS 알림부(211)는 상술된 신호를 받으면 운전자에게 각각 이메일과 SMS를 통해 이상 상황에 대한 정보를 전송한다(S219).The driver's e-mail notifying unit 210 and the driver's SMS notifying unit 211 transmit the information on the abnormal situation to the driver via e-mail and SMS, respectively (S219).
앞서 H 2S로 예시를 든 검지관 영상 내 평균적인 HSV값을 계산하는 단계(S217)에서부터 판단(S218) 및 감지 알림(S219) 단계는 H 2S 이외에도 COS, HCl, HF, HBr, HCN, NH 3에도 동일하게 적용된다(S220-S237).Prior from step (S217) of calculating the average HSV values in all detector tube images of illustration with H 2 S is determined (S218) and detects the notification (S219) steps are in addition to H 2 S COS, HCl, HF , HBr, HCN, The same applies to NH 3 (S220 - S237).
검지관 영역별 영상 취득부(207)에서 취득된 검지관 영역별 반응 영상 또는 반응 결과는 검지관 영역별 영상 저장부(205)에 전달되어 영상 저장 DB(206)에 실시간/근실시간으로 전달된다.The reaction image or reaction result for each detection tube region acquired by the detection tube region-specific image acquisition unit 207 is transmitted to the image storage unit 205 for each detection tube region and transmitted to the image storage DB 206 in real time / near real time .
또한, 검지관 영역별 영상 취득부(207)에서 취득된 검지관 영역별 반응 영상과 영상 비교 판단부(208)에서 도출된 판단 결과는 디스플레이부(209)에 전달된다. 이에, 실시간/근실시간으로 운전자는 검지관 영역별 반응 상태를 알 수 있다.In addition, the reaction image for each detection tube region obtained by the detection tube region-specific image acquisition unit 207 and the determination result derived from the image comparison determination unit 208 are transmitted to the display unit 209. Accordingly, the driver can know the reaction state of each detection tube region in real time / near real time.
디스플레이부(209)는, 도 10에서 도시된 바와 같이, 모니터링 메뉴(238), 환경 설정 메뉴(239), 종료 메뉴(240)를 실행할 수 있는 기능이 있으며, H 2S, COS, HCl, HF, HBr, HCN, NH 3 검지관의 현재 색을 알 수 있도록, 검지관 영역별로 막대 바(241-247)를 통해서 실시간/근실시간으로 출력한다. 또한, 모니터링 알림 창(248)을 통해서 모니터링의 시작과 종료, 오염가스별 감지 여부를 이벤트가 발생할 때마다 운전자에게 알려준다.The display unit 209 has a function of executing a monitoring menu 238, a configuration menu 239 and a termination menu 240 as shown in FIG. 10, and displays H 2 S, COS, HCl, HF , HBr, HCN, and NH 3 are displayed in real time / near real time through bar bars 241 to 247 for each detection tube region so that the current color of the detection tube can be known. In addition, the monitoring notification window 248 informs the driver of the start and end of monitoring and whether or not the detection of each of the pollution gases is performed whenever an event occurs.
나아가, 오염가스 감시 모니터링 장치(200)는 영상 비교 판단부(208)의 판단결과, 복수의 검지관 중에서 적어도 어느 하나의 검지관에서 오염가스가 감지된 경우 도 1의 (a)에 도시된 오염가스 제거 장치(100)로 공급되는 흡착제의 공급량을 늘리도록 흡착탑, 여기서는 흡착부(110)에 공급되는 공급량을 제어한다.If the pollution gas monitoring apparatus 200 detects pollution gas from at least one of the plurality of detection tubes as a result of the determination by the image comparison determination unit 208, The supply amount to be supplied to the adsorption tower, here the adsorption unit 110, is controlled so as to increase the supply amount of the adsorbent supplied to the gas removal apparatus 100.
특히, 오염가스 제거 장치(100)는 H 2S, COS, HCl, HF, HBr, HCN, NH 3 등 여러 가지 성분들이 혼합된 오염가스를 효과적으로 제거하기 위하여 여러 종류의 첨착활성탄, 즉 흡착제를 다단으로 충진하고, 흡착성능을 일정한 수준으로 유지하기 위해 운전 중에 연속적으로 활성을 잃은 흡착제를 제거하기 위하여 각 흡착단마다 사선 형태의 흡착제 충진 및 제거할 수 있는 장치를 갖추었다. Particularly, in order to effectively remove contaminant gas mixed with various components such as H 2 S, COS, HCl, HF, HBr, HCN, and NH 3 , impregnated gas removing apparatus 100 may include various kinds of impregnated activated carbon, In order to maintain the adsorption performance at a constant level, a device capable of filling and removing the adsorbent in an oblique shape is provided for each adsorption stage in order to remove the adsorbent which has been continuously lost during operation.
상술한 바와 같이 이러한 오염가스 제거 장치(100)를 통과하여 배출된 가스에 예컨대 HCN 검지관에 색변화가 일어나면, 오염가스 감시 모니터링 장치(200)는 도 1의 (a)에 도시된 산성가스 흡착제 공급부(131)에서 공급되는 기존공급량(10kg/day)을 경험에 의해 미리 정의된 공급량(예컨대 15kg/day)으로 늘리도록 산성가스 흡착제 공급부(131)를 제어한다. 이에, 흡착탑의 성능이 떨어지는 것을 방지하여 항상 균일한 성능을 낼 수 있다.As described above, when a color change occurs, for example, in the HCN detection tube to the gas exhausted through the pollutant removal device 100, the pollutant gas monitoring and monitoring device 200 detects the presence of the acidic gas adsorbent The acid gas adsorbent supply unit 131 is controlled so as to increase the existing supply amount (10 kg / day) supplied from the supply unit 131 to a predetermined supply amount (for example, 15 kg / day) by experience. Thus, the performance of the adsorption tower is prevented from being lowered, and uniform performance can be obtained at all times.
상술된 오염가스 감시 모니터링 장치(200)를 통해 오염가스 제거 장치(100)에서 제거되지 않은 오염가스가 조금이라도 남아 있으면 고가의 연료 전지에 피해를 입히므로, 항상 오염가스 제거 장치(100)에서 배출된 가스에 오염가스가 남아있는지를 감지하여 오염가스가 남아 있으면 즉시 흡착제 투입량을 늘려 다시 오염가스가 검출되지 않도록 모든 과정이 자동으로 유지되도록 구현하는 것이 바람직하다.If a small amount of contaminant gas that has not been removed from the pollutant gas removal device 100 through the above-described pollutant gas monitoring device 200 is damaged, the expensive fuel cell is damaged. Therefore, It is preferable to detect the presence of the polluted gas in the gas and increase the amount of the adsorbent immediately if the polluted gas remains, so that the entire process is automatically maintained so that the polluted gas is not detected again.
특히, 합성가스에 포함된 여러가지 미량성분을 효과적으로 제거하는 오염가스 제거 장치(100)에서 배출된 가스에 오염가스가 남아 있는지를 검지관의 색변화를 통하여 검지관의 이상변화를 즉시 알림하여, 운전 제어실에서 자동으로 신규 흡착제의 공급량을 기존 공급량보다 늘려서 투입될 수 있도록 하는 것이 더욱 바람직하다.In particular, whether the polluted gas remains in the gas discharged from the pollutant-gas removing apparatus 100 that effectively removes various trace components contained in the syngas is immediately informed of the abnormal change of the detector tube through the color change of the detector tube, It is more preferable that the supply amount of the new adsorbent is automatically increased in the control chamber so as to be increased beyond the existing supply amount.
나아가, 영상 획득 장치(10), 오염가스 감시 모니터링 장치(200), 또는 이들 모두와 통신 가능한 오염가스 감시상황 관리 장치(300)는, 도 11에 도시된 바와 같이, 모니터링 메뉴(301), 환경 설정 메뉴(302), 종료 메뉴(303)의 기능을 포함한다.11, a monitoring menu 301, an environment 300, and an environment 300 are connected to the pollution gas monitoring apparatus 200, A setting menu 302, and a termination menu 303. [
이러한 오염가스 감시상황 관리 장치(300)는 모바일기기로서, 영상 획득 장치(10)와 오염가스 감시 모니터링 장치(200)와 무선 통신 방식에 따라 통신 가능하게 연결될 수 있다. 이에, 운전자는 오염가스 감시상황 관리 장치(300)를 통해 원격지에서 언제 어디서나 오염가스 제거 장치(100)에서 배출되는 가스에 오염가스가 남아 있는 상황인지를 모니터링할 수 있다. 또한, 영상 획득 장치(10)와 오염가스 감시 모니터링 장치(200)의 각 IP 주소를 설정할 수 있다.The pollution gas monitoring and managing apparatus 300 may be connected to the image capturing apparatus 10 and the pollution gas monitoring apparatus 200 in a communicable manner according to a wireless communication scheme. Accordingly, the driver can monitor whether or not the polluted gas remains in the gas discharged from the polluted gas removing apparatus 100 at any time from a remote place through the polluted gas monitoring condition managing apparatus 300. [ Further, the IP address of the image acquisition device 10 and the pollution gas monitoring device 200 can be set.
이상의 본 발명은 상기에 기술된 실시예들에 의해 한정되지 않고, 당업자들에 의해 다양한 변형 및 변경을 가져올 수 있으며, 이는 첨부된 청구항에서 정의되는 본 발명의 취지와 범위에 포함된다.The invention being thus described, it will be obvious that the same way may be varied in many ways. Such modifications are intended to be within the spirit and scope of the invention as defined by the appended claims.

Claims (23)

  1. 가압용기인 몸체부;A body portion which is a pressure vessel;
    상기 몸체부 하단에 설치되어 상기 몸체부로 합성가스를 공급하는 합성가스 공급부;A syngas supply unit installed at a lower end of the body to supply syngas to the body;
    상기 몸체부의 상단에 설치되어 상기 몸체부에서 합성가스를 배출하는 합성가스 배출부;A syngas discharge part installed at an upper end of the body part to discharge syngas from the body part;
    상기 몸체부 내부에 경사지게 설치되며, 첨착활성탄이 놓이는 흡착부;A suction unit installed on the inside of the body part so as to incline the impregnated activated carbon;
    상기 흡착부에 첨착활성탄을 공급하는 공급부; 및A supply part for supplying impregnated activated carbon to the adsorption part; And
    합성가스에 포함된 오염가스와 반응하여 파과된 첨착활성탄을 배출하는 배출부를 포함하며,And a discharge portion for discharging the impregnated activated carbon reacted with the pollutant gas contained in the syngas,
    상기 흡착부는,The adsorption unit
    한 쌍의 경사판; 및A pair of swash plates; And
    상기 한 쌍의 경사판을 연결하여 첨착활성탄이 모이는 연결부를 포함하며, And a connecting portion for connecting impregnated activated carbon by connecting the pair of swash plates,
    상기 한 쌍의 경사판은 상기 연결부 방향으로 하방 경사지게 형성되며,Wherein the pair of swash plates are inclined downward in the direction of the connection portion,
    오염가스를 포함하는 합성가스는 상기 첨착활성탄과 반응하여 오염가스를 제거한 후, 상기 합성가스 배출부를 통해 배출되는, 오염가스 제거 장치.Wherein the syngas containing the polluted gas reacts with the impregnated activated carbon to remove the polluted gas, and then is discharged through the syngas discharge unit.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 배출부는,The discharge portion
    상기 파과된 첨착활성탄을 이송하기 위해 상기 연결부 위에 설치되는 스크류;A screw installed on the connection part to transfer the impregnated activated carbon;
    상기 스크류를 회전시키는 구동모터; 및A drive motor for rotating the screw; And
    상기 스크류를 통해 배출되는 파과된 첨착활성탄을 저장하는 보관챔버를 포함하는, 오염가스 제거 장치.And a storage chamber for storing the impregnated activated carbon discharged through the screw.
  3. 청구항 2에 있어서, The method of claim 2,
    상기 배출부는,The discharge portion
    상기 스크류를 회전시키는 회전체로부터 합성가스가 누출되지 않도록 형성되는 구동부실링을 포함하는, 오염가스 제거 장치.And a driving unit seal formed so that syngas does not leak from the rotating body rotating the screw.
  4. 청구항 3에 있어서, The method of claim 3,
    합성가스 누출을 방지하기 위해 상기 구동부실링을 둘러싸는 질소챔버를 더 포함하며, Further comprising a nitrogen chamber surrounding the drive seals to prevent syngas leakage,
    상기 질소챔버의 압력을 상기 몸체부의 압력보다 약 1bar 높게 유지하는, 오염가스 제거 장치.Wherein the pressure of the nitrogen chamber is maintained at about 1 bar higher than the pressure of the body portion.
  5. 청구항 2에 있어서, The method of claim 2,
    상기 첨착활성탄은 상기 공급부를 통해 연속적으로 공급되고,The impregnated activated carbon is continuously supplied through the supply portion,
    상기 파과된 첨착활성탄은 상기 스크류에 의해 이송되어 상기 배출부를 통해 연속적으로 배출되는, 오염가스 제거 장치.And the impregnated impregnated activated carbon is conveyed by the screw and continuously discharged through the discharge portion.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 흡착부는 하나 이상의 흡착단을 포함하며, The adsorption section includes at least one adsorption column,
    상기 흡착단은 상기 몸체부에 경사지게 설치되는, 오염가스 제거 장치. Wherein the adsorption step is installed on the body part in an inclined manner.
  7. 청구항 2에 있어서, The method of claim 2,
    상기 흡착부는, The adsorption unit
    산성가스를 흡착하는 산성가스 흡착단;An acidic gas adsorption unit for adsorbing an acidic gas;
    염기성가스를 흡착하는 염기성가스 흡착단; 및A basic gas adsorption unit for adsorbing a basic gas; And
    중성가스를 흡착하는 중성가스 흡착단을 포함하는, 오염가스 제거 장치.And a neutral gas adsorption end for adsorbing a neutral gas.
  8. 청구항 7에 있어서, The method of claim 7,
    상기 공급부는, Wherein the supply unit includes:
    상기 산성가스 흡착단에서 산성가스를 흡착하기 위한 첨착활성탄을 공급하는 산성가스 흡착제 공급부;An acid gas adsorbent supply unit for supplying impregnated activated carbon for adsorbing an acid gas at the acid gas adsorption unit;
    상기 염기성가스 흡착단에서 염기성가스를 흡착하기 위한 첨착활성탄을 공급하는 염기성가스 흡착제 공급부; 및A basic gas adsorbent supply unit for supplying impregnated activated carbon for adsorbing a basic gas at the basic gas absorption end; And
    상기 중성가스 흡착단에서 중성가스를 흡착하기 위한 첨착활성탄을 공급하는 중성가스 흡착제 공급부를 포함하는, 오염가스 제거 장치.And a neutral gas adsorbent supply unit for supplying impure activated carbon for adsorbing neutral gas at the neutral gas adsorption end.
  9. 청구항 8에 있어서, The method of claim 8,
    상기 배출부는,The discharge portion
    상기 산성가스 흡착단에서 산성가스를 흡착하여 파과된 첨착활성탄을 배출하는 산성가스 흡착제 배출부;An acid gas adsorbent discharge unit for adsorbing an acidic gas from the acid gas adsorption unit and discharging the impregnated activated carbon;
    상기 염기성가스 흡착단에서 염기성가스를 흡착하여 파과된 첨착활성탄을 배출하는 염기성가스 흡착제 배출부; 및A basic gas adsorbent discharge unit for adsorbing a basic gas at the basic gas absorption stage and discharging the impregnated activated carbon; And
    상기 중성가스 흡착단에서 중성가스를 흡착하여 파과된 첨착활성탄을 배출하는 중성가스 흡착제 배출부를 포함하며,And a neutral gas adsorbent discharge unit for discharging the impregnated activated carbon which has absorbed the neutral gas at the neutral gas absorption end,
    상기 산성가스 흡착제 배출부, 염기성가스 흡착제 배출부 및 중성가스 흡착제 배출부에서 배출된, 파과된 첨착활성탄은 상기 보관챔버에 저장되는, 오염가스 제거 장치.Wherein the impregnated impregnated activated carbon discharged from the acid gas adsorbent discharge portion, the basic gas adsorbent discharge portion and the neutral gas adsorbent discharge portion is stored in the storage chamber.
  10. 합성가스에 포함된 오염가스를 제거하는 오염가스 제거 장치의 감시 시스템으로서,A monitoring system for a pollutant-gas removing apparatus for removing pollutant gas contained in a syngas,
    상기 오염가스 제거 장치에서 배출된 가스에 오염가스가 남아 있는지를 감지하기 위한 복수의 검지관을 촬영하여 영상 데이터를 획득하는 영상 획득 장치; 및An image capturing device for capturing image data by photographing a plurality of detection tubes for detecting whether the polluted gas remains in the gas discharged from the pollutant gas removing device; And
    상기 영상 획득 장치로부터 획득된 영상 데이터를 수신하고, 수신된 영상 데이터를 검지관 영역별로 분리하여 분리된 검지관 영역별 영상 데이터를 미리 설정된 오염가스별 참조 반응색과 비교하여 상기 검지관 영역별 영상 데이터 중 적어도 하나의 영상 데이터가 상기 오염가스별 참조 반응색 범위내에 있는지 여부를 판단하고, 그 판단결과 상기 적어도 하나의 영상 데이터가 상기 오염가스별 참조 반응색 범위내에 있으면 오염가스가 감지되었음을 알리는 오염가스 감시 모니터링 장치를 포함하는, 오염가스 제거 장치의 감시 시스템.The image data obtained from the image capturing device is received, and the received image data is separated for each detection tube region, and the separated image data of the detection tube region is compared with the preset reference reaction color of the polluted gas, Data indicating that at least one of the image data is within the reference reaction color range of each of the pollutant gases, and if the at least one image data is within the reference reaction color range of each of the pollutant gases, A monitoring system for a pollutant removal device, comprising a gas monitoring monitoring device.
  11. 청구항 10에 있어서,The method of claim 10,
    상기 오염가스 감시 모니터링 장치와 네트워크를 통하여 연결되고, 상기 오염가스 감시 모니터링 장치의 감시 상황을 모니터링하는 오염가스 감시상황 관리 장치를 더 포함하는, 오염가스 제거 장치의 감시 시스템.And a pollution gas monitoring and monitoring device connected to the pollution gas monitoring device through a network and monitoring the monitoring status of the pollution gas monitoring device.
  12. 청구항 10에 있어서,The method of claim 10,
    상기 복수의 검지관은 H 2S 검지관, COS 검지관, HCl 검지관, HF 검지관, HBr 검지관, HCN 검지관, 및 NH 3 검지관을 포함하고,Wherein the plurality of detection tubes include an H 2 S detection tube, a COS detection tube, an HCl detection tube, an HF detection tube, an HBr detection tube, an HCN detection tube, and an NH 3 detection tube,
    상기 영상 획득 장치는 상기 복수의 검지관별 영상 데이터를 획득하기 위한 카메라와, 상기 카메라로부터 획득된 영상데이터를 저장하는 영상 데이터 저장부와, 상기 영상 데이터를 네트워크를 통해 상기 오염가스 감시 모니터링 장치에 전송하는 영상 데이터 전송부를 포함하는, 오염가스 제거 장치의 감시 시스템.The image capturing apparatus includes: a camera for acquiring the plurality of pieces of the detection-related image data; an image data storage unit for storing the image data acquired from the camera; and the image data is transmitted to the pollution gas monitoring and monitoring apparatus And an image data transmission unit for transmitting the image data to the image pickup device.
  13. 청구항 10에 있어서,The method of claim 10,
    상기 오염가스 감시 모니터링 장치는 상기 영상 획득 장치로부터 영상 데이터를 수신하는 영상 데이터 수신부와, 상기 수신된 영상 데이터를 HSV 차원의 영상 데이터로 변환하는 HSV 변환부와, 상기 HSV 변환부에 의해 변환된 HSV 영상 데이터를 검지관별 정해진 바운딩박스좌표를 기준으로 분리하는 검지관 영역별 영상 분리부와, 상기 검지관 영역별 영상 분리부에 의해 분리된 검지관 영역별 바운딩 박스내 영상 데이터를 취득하는 검지관 영역별 영상 취득부와, 상기 검지관 영역별 영상 취득부에 의해 취득된 검지관 영역별 영상 데이터와 오염가스별 참조 반응색 DB에 저장되어 있는 오염가스별 참조 반응색을 비교 판단하는 영상 비교 판단부와, 상기 영상 비교 판단부의 판단결과, 상기 검지관 영역별 영상 데이터를 기반으로 계산된 평균적인 HSV 값 중 적어도 하나의 HSV 값이 상기 오염가스별 참조 반응색에 저장되어 있는 상위값과 하위값 사이에 있으면 오염가스가 감지된 것으로 판단하여 그 판단결과에 따라 경보를 알리는 경보 발생부를 포함하는, 오염가스 제거 장치의 감시 시스템.The pollution monitoring apparatus includes an image data receiving unit for receiving image data from the image capturing apparatus, an HSV converting unit for converting the received image data into HSV-dimensional image data, an HSV converting unit for converting the HSV- An image separator for separating the image data based on coordinates of the bounding box determined by the detector; and a detector tube region for acquiring image data in the bounding box for each detector tube region separated by the detector tube- And an image comparing and judging unit for comparing and comparing the reference reaction color for each of the pollutant gases stored in the reference reaction color DB for each of the polluted gases, And an average HSV value calculated on the basis of the image data of the detection tube region as a result of the determination by the image comparison determination unit And an alarm generating unit for determining that the contaminated gas is detected when at least one HSV value is between an upper value and a lower value stored in the reference reaction color for each of the polluted gases, Device monitoring system.
  14. 청구항 13에 있어서,14. The method of claim 13,
    상기 검지관 영역별 영상 취득부는 상기 취득된 검지관 영역별 영상 데이터의 전 영역 또는 일정 기준에 따라 선정된 복수의 선정지점에서 HSV 값을 각각 계산하여 상기 평균적인 HSV 값을 계산하는, 오염가스 제거 장치의 감시 시스템.Wherein the image acquiring unit for each detection region includes an HSV value calculating unit for calculating an average HSV value by calculating an HSV value at a plurality of predetermined points selected according to the entire region of the acquired image data for each detection region or a predetermined reference, Device monitoring system.
  15. 청구항 13에 있어서,14. The method of claim 13,
    상기 검지관 영역별 영상 취득부에 의해 취득된 검지관 영역별 영상 데이터를 저장하는 검지관 영역별 영상 데이터 저장부를 더 포함하는, 오염가스 제거 장치의 감시 시스템.Further comprising an image data storage for each detection tube region for storing image data for each detection tube region acquired by the image acquisition section for each detection tube region.
  16. 청구항 13에 있어서,14. The method of claim 13,
    상기 영상 비교 판단부의 판단결과에 따른 오염가스별 반응상태를 실시간으로 표시하는 디스플레이부를 더 포함하는, 오염가스 제거 장치의 감시 시스템.Further comprising a display unit for displaying the reaction state of each of the polluted gases according to the determination result of the image comparison determination unit in real time.
  17. 청구항 13에 있어서,14. The method of claim 13,
    상기 오염가스 감시 모니터링 장치는 상기 영상 비교판단부의 판단결과, 상기 복수의 검지관 영역 중 적어도 하나의 검지관 영역에서 오염가스가 감지된 경우 상기 오염가스 제거 장치의 공급부를 통하여 공급되는 흡착제의 공급량을 늘리도록 제어하는, 오염가스 제거 장치의 감시 시스템.The pollution gas monitoring apparatus may further include a controller for controlling the supply amount of the adsorbent supplied through the supply part of the pollution gas removal device when the pollution gas is detected in at least one detection tube area of the plurality of detection tube areas Of the pollutant removal device.
  18. 합성가스에 포함된 오염가스를 제거하는 오염가스 제거 장치의 감시 시스템을 이용한 오염가스 감시 방법으로서,A pollution gas monitoring method using a monitoring system of a pollution gas removing apparatus for removing pollution gas contained in a syngas,
    상기 오염가스 제거 장치에서 배출된 가스에 오염가스가 남아 있는지를 감지하기 위한 복수의 검지관을 촬영하여 영상 데이터를 획득하는 단계; Capturing image data by photographing a plurality of detection tubes for detecting whether the polluted gas remains in the gas discharged from the pollution gas removal device;
    상기 획득된 영상 데이터를 검지관 영역별로 분리하는 단계;Separating the acquired image data for each detection tube region;
    상기 분리된 검지관 영역별 영상 데이터를 미리 설정된 오염가스별 참조 반응색과 비교하여 상기 검지관 영역별 영상 데이터 중 적어도 하나의 영상 데이터가 상기 오염가스별 참조 반응색 범위내에 있는지 여부를 판단하는 단계; 및Determining whether at least one image data among the image data of the detection tube region is within the reference response color range for each of the polluting gases by comparing the separated image data of the detection tube region with the predetermined reference reaction color of the polluting gas ; And
    상기 판단하는 단계의 판단결과, 상기 적어도 하나의 영상 데이터가 상기 오염가스별 참조 반응색 범위내에 있으면 오염가스가 감지되었음을 알리는 단계를 포함하는, 오염가스 감시 방법.And if the at least one image data is within the reference reaction color range of the polluted gas as a result of the determining step, indicating that the polluted gas has been detected.
  19. 청구항 18에 있어서,19. The method of claim 18,
    상기 분리하는 단계는The separating step
    상기 영상 데이터를 수신하는 단계;Receiving the image data;
    상기 수신된 영상 데이터를 HSV 차원의 영상 데이터로 변환하는 단계;Converting the received image data into HSV dimensional image data;
    상기 변환된 HSV 영상 데이터를 검지관별 정해진 바운딩박스좌표를 기준으로 검지관별 바운딩박스를 생성하는 단계; 및Generating a bounding box for the detection unit based on the bounding box coordinates determined for the detected HSV image data; And
    상기 생성된 바운딩박스 내 검지관 영역별 영상 데이터를 취득하는 단계를 포함하는, 오염가스 감시 방법.And acquiring image data for each detection tube region in the generated bounding box.
  20. 청구항 19에 있어서,The method of claim 19,
    상기 판단하는 단계는 The determining step
    상기 취득된 검지관 영역별 영상 데이터를 기반으로 계산된 평균적인 HSV 값 중 적어도 하나의 HSV 값이 상기 오염가스별 참조 반응색에 저장되어 있는 상위값과 하위값 사이에 있는지 여부를 비교 판단하고,Judging whether or not at least one HSV value among the average HSV values calculated based on the acquired image data of the detection tube region is between an upper value and a lower value stored in the reference reaction color for each polluting gas,
    상기 알리는 단계는 상기 적어도 하나의 HSV 값이 상기 오염가스별 참조 반응색에 저장되어 있는 상위값과 하위값 사이에 있으면 오염가스가 감지된 것으로 판단된 결과에 따라 경보를 알리는, 오염가스 감시 방법.Wherein the informing step informs an alarm according to a result of determining that the pollution gas is detected when the at least one HSV value is between an upper value and a lower value stored in the reference reaction color for each polluting gas.
  21. 청구항 19에 있어서,The method of claim 19,
    상기 검지관별 영상 데이터를 취득하는 단계 이후에,After the step of acquiring the detection concealed image data,
    상기 취득된 검지관별 영상 데이터를 검지관 영역별 영상 데이터 저장부에 저장하는 단계를 더 포함하는, 오염가스 감시 방법.And storing the acquired detection tube image data in the image data storage for each detection tube region.
  22. 청구항 18에 있어서,19. The method of claim 18,
    상기 판단하는 단계 이후에,After the determining step,
    상기 판단하는 단계의 판단결과에 따른 오염가스별 반응상태를 디스플레이부에 표시하는 단계를 더 포함하는, 오염가스 감시 방법.Further comprising the step of displaying on the display unit a reaction state for each of the polluted gases according to the determination result of the determining step.
  23. 청구항 19에 있어서,The method of claim 19,
    상기 판단하는 단계 이후에,After the determining step,
    상기 복수의 검지관 영역 중 적어도 하나의 검지관 영역에서 오염가스가 감지된 경우 상기 오염가스 제거 장치의 공급부를 통하여 공급되는 흡착제의 공급량을 늘리도록 제어하는 단계를 더 포함하는, 오염가스 감시 방법.And controlling the supply amount of the adsorbent supplied through the supply part of the pollution gas removal device to increase when the pollution gas is detected in at least one detection tube area of the plurality of detection tube areas.
PCT/KR2018/007890 2017-09-04 2018-07-12 Pollutant gas removal device, monitoring system and method of pollutant gas removal device WO2019045261A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170112732 2017-09-04
KR10-2017-0112732 2017-09-04
KR20180062553 2018-05-31
KR10-2018-0062553 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019045261A1 true WO2019045261A1 (en) 2019-03-07

Family

ID=65527543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007890 WO2019045261A1 (en) 2017-09-04 2018-07-12 Pollutant gas removal device, monitoring system and method of pollutant gas removal device

Country Status (1)

Country Link
WO (1) WO2019045261A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998396A (en) * 2020-08-20 2020-11-27 重庆新佳威厨房设备有限公司 Environment-friendly energy-saving stove

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100546367B1 (en) * 2003-08-22 2006-01-26 삼성전자주식회사 Detector for identifying residual life time of absorbent, gas scrubber comprising the detector and method of identifying residual life time of absorbent
JP2006312134A (en) * 2005-05-09 2006-11-16 Nippon Soda Co Ltd Exhaust gas processor and processing method using it
KR100844961B1 (en) * 2006-11-14 2008-07-09 주식회사 케이디파워 Method and system for automatically diagnosing electronic equipment using pattern recognition of thermal image
KR20100123536A (en) * 2009-05-15 2010-11-24 에이치플러스이엔지(주) Absorbing tower for voltile organic compounds
KR101358869B1 (en) * 2013-06-14 2014-02-10 신평산업(주) Odor gas absorption tower
KR101681630B1 (en) * 2015-07-09 2016-12-01 (주)옵토레인 Method for quantification color-difference data for a harmful gas sensing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100546367B1 (en) * 2003-08-22 2006-01-26 삼성전자주식회사 Detector for identifying residual life time of absorbent, gas scrubber comprising the detector and method of identifying residual life time of absorbent
JP2006312134A (en) * 2005-05-09 2006-11-16 Nippon Soda Co Ltd Exhaust gas processor and processing method using it
KR100844961B1 (en) * 2006-11-14 2008-07-09 주식회사 케이디파워 Method and system for automatically diagnosing electronic equipment using pattern recognition of thermal image
KR20100123536A (en) * 2009-05-15 2010-11-24 에이치플러스이엔지(주) Absorbing tower for voltile organic compounds
KR101358869B1 (en) * 2013-06-14 2014-02-10 신평산업(주) Odor gas absorption tower
KR101681630B1 (en) * 2015-07-09 2016-12-01 (주)옵토레인 Method for quantification color-difference data for a harmful gas sensing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998396A (en) * 2020-08-20 2020-11-27 重庆新佳威厨房设备有限公司 Environment-friendly energy-saving stove
CN111998396B (en) * 2020-08-20 2023-04-07 重庆新佳威厨房设备有限公司 Environment-friendly energy-saving stove

Similar Documents

Publication Publication Date Title
US7527056B2 (en) Breathable air safety system and method having an air storage sub-system
US7694678B2 (en) Breathable air safety system and method having a fill station
WO2019045261A1 (en) Pollutant gas removal device, monitoring system and method of pollutant gas removal device
KR100546367B1 (en) Detector for identifying residual life time of absorbent, gas scrubber comprising the detector and method of identifying residual life time of absorbent
KR20180079951A (en) Using the Internet of Things in real time pollution cleanup device control using systems and control methods
JP2008501602A (en) Recovery of sulfur hexafluoride gas
WO2019031682A1 (en) Precise predictive maintenance method for driving unit
WO2022181931A1 (en) System and method for monitoring abnormal water quality by using impedance measurement method
WO2019177239A1 (en) Precision preventive maintenance method of driving unit
US5482536A (en) Apparatus for containment and scrubbing of toxic gas from a leakage location and method therefor
CN113577633B (en) Real-time monitoring device for fire safety of house building
WO2020071813A1 (en) Apparatus for monitoring quantitative oil supply
CN211374671U (en) Monitoring device for dangerous gas of underground pipe network
WO2024058437A1 (en) Oxygen collection system for measuring oxygen concentration
US20030049190A1 (en) Method for processing perfluorocarbon, and apparatus therefor
JP2000081196A (en) Bulk supplying device of semiconductor process gas
WO2010013920A2 (en) Air-supply system for breathing
CN115174859A (en) Early warning device and method for operation monitoring of urban domestic sewage treatment plant
WO2004038358A3 (en) Method and apparatus for leak testing an environmental enclosure
KR101621477B1 (en) Monitoring system with active carbon quantitative supply for ventilation chamber for adsorbing and removing dioxine and heavy metal
WO2023120838A1 (en) System for reducing atmospheric pollution generated in printing house, and operation method therefor
CN114893713B (en) Gas filling device and method
WO2022220405A1 (en) Device for monitoring degradation of wastewater from nuclear power plant decontamination, and operation method thereof
WO2022059833A1 (en) Water filter and water filter device including same
CN213715763U (en) Dangerous environment monitoring and alarming linkage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849659

Country of ref document: EP

Kind code of ref document: A1