JP4581693B2 - Abnormality diagnosis device - Google Patents

Abnormality diagnosis device Download PDF

Info

Publication number
JP4581693B2
JP4581693B2 JP2005004128A JP2005004128A JP4581693B2 JP 4581693 B2 JP4581693 B2 JP 4581693B2 JP 2005004128 A JP2005004128 A JP 2005004128A JP 2005004128 A JP2005004128 A JP 2005004128A JP 4581693 B2 JP4581693 B2 JP 4581693B2
Authority
JP
Japan
Prior art keywords
sensor
abnormality
rotating component
vibration
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005004128A
Other languages
Japanese (ja)
Other versions
JP2006105956A (en
Inventor
泰之 武藤
孝範 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005004128A priority Critical patent/JP4581693B2/en
Priority to PCT/JP2005/016845 priority patent/WO2006030786A1/en
Priority to CN200580001831XA priority patent/CN1906473B/en
Priority to US10/586,996 priority patent/US7860663B2/en
Publication of JP2006105956A publication Critical patent/JP2006105956A/en
Application granted granted Critical
Publication of JP4581693B2 publication Critical patent/JP4581693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Wind Motors (AREA)

Description

本発明は、例えば鉄道車両の車軸やギアボックス或いは発電用風車の減速機等に用いられる回転部品の異常を診断する異常診断装置に関する。   The present invention relates to an abnormality diagnosis device for diagnosing abnormalities in rotating parts used in, for example, an axle of a railway vehicle, a gear box, a reduction gear of a wind turbine for power generation, or the like.

従来、鉄道車両や発電用風車等の回転部品は、一定期間使用した後に、軸受やその他の回転部品について、損傷や摩耗等の異常の有無が定期的に検査される。この定期的な検査は、回転部品が組み込まれた機械装置を分解することにより行われ、回転部品に発生した損傷や摩耗は、担当者が目視による検査により発見するようにしている。そして、検査で発見される主な欠陥としては、軸受の場合、異物の噛み込み等によって生ずる圧痕、転がり疲れによる剥離、その他の摩耗等、歯車の場合には、歯部の欠損や摩耗等、車輪の場合には、フラット等の摩耗があり、いずれの場合も新品にはない凹凸や摩耗等が発見されれば、新品に交換される。   Conventionally, after rotating parts such as railway vehicles and wind turbines for power generation are used for a certain period, bearings and other rotating parts are regularly inspected for abnormalities such as damage and wear. This periodic inspection is carried out by disassembling the mechanical device in which the rotating parts are incorporated, and the person in charge finds damage and wear generated in the rotating parts by visual inspection. And the main defects found in the inspection are in the case of bearings, indentations caused by the biting of foreign matter, peeling due to rolling fatigue, other wear, etc., in the case of gears, missing teeth and wear, etc. In the case of a wheel, there is wear such as a flat, and in any case, if irregularities or wear that is not found in a new article is found, it is replaced with a new one.

しかしながら、このような人手による回転部品の異常の有無の検査は、該回転部品が組み込まれた装置の分解に相当な時間とコストがかかり、検査後の再組立にも相当な時間がかかるという問題がある。   However, such a manual inspection for the presence or absence of abnormalities in rotating parts requires a considerable amount of time and cost for disassembling the apparatus in which the rotating parts are incorporated, and a considerable amount of time is required for reassembly after the inspection. There is.

特に発電用風車の場合、オフショアで使用される事が多く、その台数も多いため、現在、保全担当者が現地に行き、個々の風車の回転部品の検査を行っていることが多く、この場合、多大な時間とコストがかかり、メンテナンス性において効率が悪いという問題がある。また、限られた時間内で多数の回転部品を目視で検査するため、欠陥を見落とす可能性がある。   Especially in the case of wind turbines for power generation, they are often used offshore, and the number of them is also large.Therefore, maintenance personnel often go to the site and inspect the rotating parts of individual wind turbines. However, it takes a lot of time and cost, and there is a problem that efficiency in maintenance is poor. Further, since a large number of rotating parts are visually inspected within a limited time, there is a possibility that a defect may be overlooked.

更に、回転部品の欠陥の程度の判断も個人差があり、実質的には欠陥がなくても部品交換が行われるため、無駄なコストがかかることにもなり、例えば再組立時に検査前にはなかった打痕を回転部品につけてしまう等、検査自体が部品の欠陥を生む原因となる虞れもある。   Furthermore, the degree of defects in rotating parts also varies from person to person, and parts can be replaced even if there are virtually no defects, resulting in wasteful costs. For example, before inspection during reassembly, There is a possibility that the inspection itself may cause a defect of the component, for example, a missing dent is made on the rotating component.

そこで、回転部品が組み込まれた機械装置を分解することなく、実稼動状態で回転部品の異常診断を行う例として、機械装置の状態を振動センサ又は温度センサ等で常時計測して、各計測値が予め設定しておいた規定値以上に上昇したか否かで異常の有無を判定し、異常判定の場合に、異常警報を出力したり、機械装置の稼動を停止させたりする方法が提案されている(例えば特許文献1参照。)。
特開平11−125244号公報
Therefore, as an example of diagnosing rotating parts in an actual operating state without disassembling the mechanical device incorporating the rotating component, the state of the mechanical device is constantly measured by a vibration sensor or a temperature sensor, etc. A method has been proposed for determining whether there is an abnormality based on whether or not the value has risen above a preset value, and outputting an abnormality alarm or stopping the operation of the mechanical device in the case of an abnormality determination. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 11-125244

しかしながら、上記特許文献1においては、回転部品が組み込まれる装置には該回転部品に回転駆動力を伝達するためのモータ等の回転駆動手段が装着されているため、モータ駆動時に電磁音等の電気的な外乱ノイズが突発的に発生して異常診断に対するSN比(信号対雑音比)が悪くなり、誤診断により異常警報を発したりする等、安定稼動が妨げられるという問題がある。   However, in the above-mentioned Patent Document 1, since a rotation driving means such as a motor for transmitting a rotation driving force to the rotating component is attached to the device in which the rotating component is incorporated, an electric sound such as an electromagnetic sound is driven when the motor is driven. There is a problem that a stable operation is hindered, for example, an abnormal disturbance noise suddenly occurs, an S / N ratio (signal to noise ratio) with respect to an abnormality diagnosis is deteriorated, and an abnormality alarm is issued due to an erroneous diagnosis.

また、回転部品が組み込まれる装置は、使用される回転速度も低速から高速まで幅広い領域で使用されることが多い。例えば、鉄道車両の車軸用軸受においては、輪軸試験などで定期的に低速回転で検査することがある。この場合、軸受が組み込まれるハウジングの剛性が高いため、例えば、軸受の軌道面に損傷があっても、その損傷の上をころ等の転動体が通過することによる衝突力が小さく、軸受の損傷を見逃してしまう可能性がある。一方、高速の場合には回転駆動手段などからの音や振動等が大きくなるため異常診断に対するSN比が悪くなり、低速時と同様に軸受の損傷を見逃してしまう可能性がある。   In addition, a device in which a rotating part is incorporated is often used in a wide range of rotating speeds from low speed to high speed. For example, a bearing for an axle of a railway vehicle may be periodically inspected at a low speed in a wheel shaft test or the like. In this case, since the rigidity of the housing in which the bearing is incorporated is high, for example, even if the raceway surface of the bearing is damaged, the collision force due to the rolling elements such as rollers passing over the damage is small, and the bearing is damaged. There is a possibility of missing. On the other hand, at high speeds, noise, vibration, etc. from the rotational drive means become large, so the SN ratio for abnormality diagnosis becomes worse, and there is a possibility that the bearings may be overlooked as at low speeds.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、回転部品が組み込まれている装置を分解することなく実稼動状態で回転部品の異常を診断することができると共に、高SN比で信頼性の高い異常診断を行うことができる異常診断装置を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to diagnose an abnormality of a rotating component in an actual operation state without disassembling a device in which the rotating component is incorporated. An object of the present invention is to provide an abnormality diagnosis device capable of performing a reliable abnormality diagnosis with an SN ratio.

本発明の目的は、下記の構成により達成される。
(1) 静止部材に対して相対的に回転する回転部品の異常を診断する異常診断装置であって、
前記回転部品を回転駆動する回転駆動手段と、前記回転部品又は前記静止部材に固定されるセンサとを備え、
前記静止部材が、鉄道車両用台車の一部を構成する軸受箱であり、
前記回転部品が、前記鉄道車両の車軸を支持するために該鉄道車両に組み込まれた転がり軸受装置であり、
前記回転駆動手段の非通電時における前記回転部品の所定の回転速度領域内での慣性回転時に、前記センサによる振動又は温度の検出信号に基づいて前記回転部品の異常診断され、
前記転がり軸受装置の外輪の周方向の上側部が、転動体に対して荷重が付加される領域である負荷圏になっている実稼動状態で、前記回転部品の異常が診断されることを特徴とする異常診断装置。
(2) 静止部材に対して相対的に回転する回転部品の異常を診断する異常診断装置であって、
前記回転部品を回転駆動する回転駆動手段と、前記回転部品又は前記静止部材に固定されるセンサとを備え、
前記静止部材が、鉄道車両用台車の一部を構成する軸受箱であり、
前記回転部品が、前記鉄道車両の車軸を支持するために該鉄道車両に組み込まれた転がり軸受装置であり、
前記回転部品が100min−1以上1500min−1以下の回転速度領域内で回転する時、前記センサによる振動又は温度の検出信号に基づいて前記回転部品の異常診断され、
前記転がり軸受装置の外輪の周方向の上側部が、転動体に対して荷重が付加される領域である負荷圏になっている実稼動状態で、前記回転部品の異常が診断されることを特徴とする異常診断装置。
(3) 前記回転駆動手段の非通電時における前記回転部品の前記回転速度領域内での慣性回転時に、前記センサによる振動又は温度の検出信号に基づいて前記回転部品の異常を診断することを特徴とする(2)に記載の異常診断装置。
(4) 前記回転駆動手段は通電及び非通電を繰り返して用いられると共に、該回転駆動手段の非通電時に前記回転部品が慣性回転可能であることを特徴とする(1)又は(3)に記載の異常診断装置。
(5) 前記回転駆動手段の非通電時の前記回転部品の慣性回転状態を該回転駆動手段のOFF信号に基づいて検出することを特徴とする(1),(3)及び(4)のいずれかに記載の異常診断装置。
(6) 前記センサは、振動センサ、音響センサ、超音波センサ、AEセンサ及び温度センサの少なくとも一つであることを特徴とする(1)〜(5)のいずれかに記載の異常診断装置。
(7) 前記回転駆動手段の回転速度を検出する回転速度センサを備え、該回転速度センサによる回転速度の検出信号と前記センサによる振動又は温度の検出信号とを連動して前記回転部品の異常を診断することを特徴とする(1)〜(6)のいずれかに記載の異常診断装置。
(8) 回転速度信号に基づき算出した前記回転部品の損傷に起因した周波数成分と前記振動センサ、前記音響センサ、前記超音波センサ及び前記AEセンサのいずれかにより検出された信号に基づく実測データの周波数成分とを比較する比較照合部と、該比較照合部での比較結果に基づき、前記回転部品の異常の有無の判定や損傷部位を特定する異常判定部とを備えていることを特徴とする(1)〜(7)のいずれかに記載の異常診断装置。
(9) 前記振動センサ、前記音響センサ、前記超音波センサ又は前記AEセンサにより検出された信号波形から不要な周波数帯域を除去するフィルタ処理部と、
前記フィルタ処理部から転送されたフィルタ処理後の波形の絶対値を検波するエンベロープ処理部と、
前記エンベロープ処理部から転送された波形の周波数を分析する周波数分析部とを備えていることを特徴とする(8)に記載の異常診断装置。
(10) 前記回転部品の異常の診断結果を伝送するデータ伝送手段をさらに有することを特徴とする(1)〜(9)のいずれかに記載の異常診断装置
常診断装置。
The object of the present invention is achieved by the following constitution.
(1) An abnormality diagnosis device for diagnosing an abnormality of a rotating component that rotates relative to a stationary member,
A rotation driving means for rotating the rotating component; and a sensor fixed to the rotating component or the stationary member,
The stationary member is a bearing box constituting a part of a railcar carriage,
The rotating component is a rolling bearing device incorporated in the railway vehicle in order to support the axle of the railway vehicle;
Abnormality of the rotating component is diagnosed based on a vibration or temperature detection signal by the sensor at the time of inertia rotation within a predetermined rotation speed region of the rotating component when the rotation driving means is not energized ,
An abnormality of the rotating component is diagnosed in an actual operating state in which an upper portion in a circumferential direction of the outer ring of the rolling bearing device is in a load zone that is a region where a load is applied to the rolling element. An abnormality diagnosis device.
(2) An abnormality diagnosis device for diagnosing an abnormality of a rotating component that rotates relative to a stationary member,
A rotation driving means for rotating the rotating component; and a sensor fixed to the rotating component or the stationary member,
The stationary member is a bearing box constituting a part of a railcar carriage,
The rotating component is a rolling bearing device incorporated in the railway vehicle in order to support the axle of the railway vehicle;
When the rotating component rotates within a rotation speed region of 100 min −1 or more and 1500 min −1 or less, abnormality of the rotating component is diagnosed based on a vibration or temperature detection signal by the sensor ,
An abnormality of the rotating component is diagnosed in an actual operating state in which an upper portion in a circumferential direction of the outer ring of the rolling bearing device is in a load zone that is a region where a load is applied to the rolling element. An abnormality diagnosis device.
(3) The abnormality of the rotating component is diagnosed based on a vibration or temperature detection signal from the sensor during inertial rotation of the rotating component in the rotation speed region when the rotation driving means is not energized. The abnormality diagnosis device according to (2).
(4) The rotational drive means is used by repeatedly energizing and de-energizing, and the rotating component is capable of inertial rotation when the rotational drive means is not energized. (1) or (3) Abnormality diagnosis device.
(5) Any one of (1), (3) and (4) is characterized in that an inertial rotation state of the rotating component when the rotation driving means is not energized is detected based on an OFF signal of the rotation driving means. The abnormality diagnosis device according to claim 1.
(6) The abnormality diagnosis apparatus according to any one of (1) to (5), wherein the sensor is at least one of a vibration sensor, an acoustic sensor, an ultrasonic sensor, an AE sensor, and a temperature sensor.
(7) A rotation speed sensor for detecting the rotation speed of the rotation drive means is provided, and abnormality of the rotating component is detected by interlocking the rotation speed detection signal from the rotation speed sensor with the vibration or temperature detection signal from the sensor. The abnormality diagnosis device according to any one of (1) to (6), wherein diagnosis is performed.
(8) Measurement data based on a frequency component calculated based on a rotation speed signal and a signal detected by any of the vibration sensor, the acoustic sensor, the ultrasonic sensor, and the AE sensor. A comparison / collation unit that compares frequency components, and an abnormality determination unit that determines whether there is an abnormality in the rotating component or identifies a damaged part based on a comparison result in the comparison / collation unit. The abnormality diagnosis device according to any one of (1) to (7).
(9) a filter processing unit that removes an unnecessary frequency band from a signal waveform detected by the vibration sensor, the acoustic sensor, the ultrasonic sensor, or the AE sensor;
An envelope processing unit for detecting the absolute value of the filtered waveform transferred from the filter processing unit;
The abnormality diagnosis device according to (8), further comprising a frequency analysis unit that analyzes a frequency of the waveform transferred from the envelope processing unit.
(10) The abnormality diagnosis apparatus according to any one of (1) to (9), further including data transmission means for transmitting a diagnosis result of abnormality of the rotating component .
Regular diagnostic device.

本発明によれば、回転駆動手段の非通電時における回転部品の所定の回転速度領域内での慣性回転時に、センサによる振動又は温度の検出信号に基づいて回転部品の異常を診断するようにしているので、回転部品(転がり軸受装置)が組み込まれている鉄道車両を分解することなく実稼動状態で回転部品の異常を診断することができると共に、回転駆動手段の電気的な外乱ノイズを抑制することにより、高感度で高SN比(信号対雑音比)での信号の検出が可能となり、信頼性の高い異常診断を行うことができる。 According to the present invention, at the time of inertia rotation of the rotating component within a predetermined rotation speed region when the rotation driving means is not energized, the abnormality of the rotating component is diagnosed based on the vibration or temperature detection signal by the sensor. Therefore, it is possible to diagnose the abnormality of the rotating parts in the actual operation state without disassembling the railway vehicle in which the rotating parts (rolling bearing device) are incorporated, and to suppress the electrical disturbance noise of the rotation driving means. This makes it possible to detect signals with high sensitivity and a high S / N ratio (signal-to-noise ratio), and to perform highly reliable abnormality diagnosis.

また、本発明によれば、回転部品が100min−1以上1500min−1以下の回転速度領域内で回転する時、センサによる振動又は温度の検出信号に基づいて回転部品の異常を診断するようにしているので、回転部品(転がり軸受装置)が組み込まれている鉄道車両を分解することなく実稼動状態で回転部品の異常を診断することができると共に、軸受の剥離や車輪のフラット摩耗等の損傷による加振力を高SN比で検出可能となり、信頼性の高い異常診断を行うことができる。 Further, according to the present invention, when the rotating component rotates within the rotation speed region of 100 min −1 or more and 1500 min −1 or less, abnormality of the rotating component is diagnosed based on the vibration or temperature detection signal by the sensor. As a result, it is possible to diagnose abnormalities in rotating parts in actual operation without disassembling a railway vehicle in which rotating parts (rolling bearing devices) are incorporated, as well as due to damage such as bearing peeling and wheel flat wear. The excitation force can be detected with a high S / N ratio, and a highly reliable abnormality diagnosis can be performed.

以下、本発明の各実施形態に係る異常診断装置について、図面を参照して詳細に説明する。ここで、図1は本発明の異常診断装置の診断対象である複列円すいころ軸受を備えた鉄道車両用転がり軸受装置の断面図、図2は第1実施形態の異常診断装置の信号処理系統のブロック図、図3は図2の回転状態判定部の処理フローを示すフローチャート、図4は転がり軸受の傷の部位と、傷に起因して発生する特徴周波数との関係を示す図、図5は第2実施形態の回転状態判定部の処理フローを示すフローチャート、図6は試験1に係るモータ非通電時の振動センサによる振動波形を示すグラフ、図7は試験1に係るモータ通電時の振動センサによる振動波形を示すグラフ、図8は試験2に係る振動解析結果を示すグラフである。   Hereinafter, an abnormality diagnosis apparatus according to each embodiment of the present invention will be described in detail with reference to the drawings. Here, FIG. 1 is a cross-sectional view of a rolling bearing device for a railway vehicle provided with a double row tapered roller bearing which is a diagnosis target of the abnormality diagnosis device of the present invention, and FIG. 2 is a signal processing system of the abnormality diagnosis device of the first embodiment. FIG. 3 is a flowchart showing the processing flow of the rotational state determination unit in FIG. 2, FIG. 4 is a diagram showing the relationship between the scratched portion of the rolling bearing and the characteristic frequency generated due to the scratch, and FIG. Is a flowchart showing a processing flow of the rotation state determination unit of the second embodiment, FIG. 6 is a graph showing a vibration waveform by a vibration sensor when the motor is not energized according to Test 1, and FIG. 7 is a vibration when the motor is energized according to Test 1. FIG. 8 is a graph showing a vibration analysis result according to Test 2. FIG.

(第1実施形態)
図1に示されるように、異常診断装置が適用される鉄道車両用の転がり軸受装置10は、回転部品である複列円すいころ軸受11と、鉄道車両用台車の一部を構成する静止部材である軸受箱12とを備える。
(First embodiment)
As shown in FIG. 1, a rolling bearing device 10 for a railway vehicle to which an abnormality diagnosis device is applied is a double-row tapered roller bearing 11 that is a rotating part, and a stationary member that constitutes a part of the railway vehicle carriage. A certain bearing box 12 is provided.

複列円すいころ軸受11は、回転駆動手段である駆動モータ13aにより回転駆動される回転軸である鉄道車両の車軸13を回転可能に支持しており、外周面に円すい外面状に傾斜した内輪軌道面15,15を有する一対の内輪14,14と、内周面に円すい内面状に傾斜した一対の外輪軌道面17,17を有する単一の外輪16と、内輪14,14の内輪軌道面15,15と外輪16の外輪軌道面17,17との間に複列で複数配置された転動体である円すいころ18,18と、円すいころ18,18を転動自在に保持する環状の打ち抜き保持器19,19と、外輪16の軸方向の両端部にそれぞれ装着された一対のシール部材20,20とを備える。なお、駆動モータ13aは通電(ON)及び非通電(OFF)を繰り返して用いられると共に、駆動モータ13aの非通電時には複列円すいころ軸受11が車軸13と共に慣性回転する。   The double row tapered roller bearing 11 rotatably supports an axle 13 of a railway vehicle that is a rotational shaft that is rotationally driven by a drive motor 13a that is a rotational driving means, and an inner ring raceway that is inclined like a conical outer surface on an outer peripheral surface. A pair of inner rings 14, 14 having surfaces 15, 15, a single outer ring 16 having a pair of outer ring raceway surfaces 17, 17 inclined like a conical inner surface on the inner peripheral surface, and an inner ring raceway surface 15 of the inner rings 14, 14. 15 and the outer ring raceway surfaces 17 and 17 of the outer ring 16 are tapered rollers 18 and 18 which are rolling elements arranged in a double row, and an annular punching holding for holding the tapered rollers 18 and 18 in a rollable manner. And 19 and 19 and a pair of seal members 20 and 20 respectively attached to both ends of the outer ring 16 in the axial direction. The drive motor 13a is repeatedly energized (ON) and de-energized (OFF), and the double-row tapered roller bearing 11 rotates with the axle 13 when the drive motor 13a is de-energized.

軸受箱12は、鉄道車両用台車の側枠を構成するハウジング21を備えており、このハウジング21は外輪16の外周面を覆うように円筒状に形成されている。また、ハウジング21の軸方向の前端部側には前蓋22が配置され、ハウジング21の軸方向の後端部側には後蓋23が配置されている。   The bearing box 12 includes a housing 21 that constitutes a side frame of a railcar bogie. The housing 21 is formed in a cylindrical shape so as to cover the outer peripheral surface of the outer ring 16. A front lid 22 is disposed on the front end side in the axial direction of the housing 21, and a rear lid 23 is disposed on the rear end side in the axial direction of the housing 21.

一対の内輪14,14の間には、内輪間座24が配置されている。一対の内輪14,14及び内輪間座24には車軸13が圧入されており、外輪16はハウジング21に嵌合されている。複列円すいころ軸受11には、種々部材の重量等によるラジアル荷重と任意のアキシアル荷重とが負荷されており、外輪16の周方向の上側部が負荷圏になっている。ここで、負荷圏とは、転動体に対して荷重が負荷される領域をいう。   An inner ring spacer 24 is disposed between the pair of inner rings 14, 14. The axle 13 is press-fitted into the pair of inner rings 14, 14 and the inner ring spacer 24, and the outer ring 16 is fitted in the housing 21. The double row tapered roller bearing 11 is loaded with a radial load due to the weight of various members and an arbitrary axial load, and the upper portion in the circumferential direction of the outer ring 16 is a load zone. Here, the load zone refers to a region where a load is applied to the rolling elements.

車軸13の前端部側に配置された一方のシール部材20は、外輪16の外側端部と前蓋22との間に組み付けられ、後端部側に配置された他方のシール部材20は、外輪16の外側端部と後蓋23との間に組み付けられている。   One seal member 20 disposed on the front end portion side of the axle 13 is assembled between the outer end portion of the outer ring 16 and the front lid 22, and the other seal member 20 disposed on the rear end portion side is disposed on the outer ring. 16 is assembled between the outer end portion of 16 and the rear lid 23.

ハウジング21の外周部の複列円すいころ軸受11の軸方向の略中央部位置には径方向に貫通する貫通穴26が形成され、この貫通穴26には異常診断装置の一部を構成する異常検出用センサ31が筐体27に収容された状態で固定されている。   A through hole 26 penetrating in the radial direction is formed at a substantially central position in the axial direction of the double-row tapered roller bearing 11 on the outer peripheral portion of the housing 21, and the through hole 26 is an abnormality that constitutes a part of the abnormality diagnosis device. The detection sensor 31 is fixed in a state accommodated in the casing 27.

異常検出用センサ31は、振動センサ、AE(acoustic emission)センサ、音響センサ、超音波センサの少なくとも1つの振動を検出可能な振動系センサと温度センサとを一体に筐体27内に収納固定した複合型センサである。なお、図1の異常検出用センサ31は、振動センサ32と温度センサ33を備える。   The abnormality detection sensor 31 includes a vibration system sensor capable of detecting at least one of a vibration sensor, an AE (acoustic emission) sensor, an acoustic sensor, and an ultrasonic sensor, and a temperature sensor, which are housed and fixed integrally in the housing 27. It is a composite sensor. 1 includes a vibration sensor 32 and a temperature sensor 33. The abnormality detection sensor 31 shown in FIG.

振動センサ32は、圧電素子等の振動測定素子であり、複列円すいころ軸受11の内外輪軌道面15,15,17,17の剥離や、歯車の欠損、車輪のフラット摩耗等を検出するのに用いられる。なお、振動センサ32は、加速度、速度或いは変位型等、振動を電気信号化できるものであればよく、ノイズが多いような機械装置に取付ける際には、絶縁型を使用する方がノイズの影響を受けることがないので好ましい。また、音響センサは、車軸部等から発生する音を音波として集音して、電気信号化できるマイクロホンを用いてもよく、マイクロホンは指向性を有した方が集音により好適である。   The vibration sensor 32 is a vibration measuring element such as a piezoelectric element, and detects peeling of the inner and outer ring raceway surfaces 15, 15, 17, 17 of the double row tapered roller bearing 11, a missing gear, flat wear of the wheel, and the like. Used for. The vibration sensor 32 may be an acceleration, speed, displacement type, or the like that can convert vibration into an electrical signal. When the vibration sensor 32 is attached to a mechanical device having a lot of noise, the use of an insulation type is more affected by noise. It is preferable because it does not receive. The acoustic sensor may use a microphone that collects sound generated from the axle portion or the like as a sound wave to be converted into an electrical signal, and the microphone is more suitable to collect sound if it has directivity.

温度センサ33は、サーミスタ温度測定素子や白金測温抵抗体や熱電対等の非接触タイプの温度測定素子であり、筐体27内で外輪16の外周面近傍に配置されている。また、温度センサ33としては、雰囲気温度が規定値を超えると、バイメタルの接点が離れたり、接点が溶断したりすることで導通しなくなる温度ヒューズを用いることができる。その場合、装置の温度が規定値を超えたとき、温度ヒューズの導通が遮断されることによって温度異常が検出される。   The temperature sensor 33 is a non-contact type temperature measuring element such as a thermistor temperature measuring element, a platinum resistance temperature detector, or a thermocouple, and is disposed in the vicinity of the outer peripheral surface of the outer ring 16 in the housing 27. Moreover, as the temperature sensor 33, when the ambient temperature exceeds a specified value, a temperature fuse that does not conduct when the bimetal contact is separated or the contact is blown can be used. In that case, when the temperature of the apparatus exceeds a specified value, the temperature abnormality is detected by blocking the conduction of the thermal fuse.

また、異常検出用センサ31は、複列円すいころ軸受11の非回転側軌道輪に嵌合している軸受箱12のラジアル荷重の負荷圏領域に取り付けられている。このため、例えば、軸受軌道面に損傷が発生した場合、その損傷部を転動体が通過する際に生じる衝突力は無負荷圏よりも負荷圏の方が大きく、軸受負荷圏の方が感度良く異常振動を検出することができる。   Further, the abnormality detection sensor 31 is attached to a radial load area of the bearing housing 12 fitted to the non-rotating side race of the double row tapered roller bearing 11. For this reason, for example, when the bearing raceway surface is damaged, the collision force generated when the rolling element passes through the damaged portion is larger in the load area than in the no-load area, and the bearing load area is more sensitive. Abnormal vibration can be detected.

また、本実施形態では、複列円すいころ軸受11の回転速度を検出するエンコーダ等の回転速度センサ40(図2参照)が設けられている。   Moreover, in this embodiment, the rotational speed sensor 40 (refer FIG. 2), such as an encoder which detects the rotational speed of the double row tapered roller bearing 11, is provided.

そして、本実施形態では、駆動モータ13aの非通電時における複列円すいころ軸受11の所定の回転速度領域内での慣性回転状態を回転速度センサ40及び駆動モータのOFF信号に基づいて検出し、該検出時に、振動センサ32及び温度センサ33による検出信号に基づいて複列円すいころ軸受11の異常を診断する。   In this embodiment, the inertial rotation state within the predetermined rotation speed region of the double-row tapered roller bearing 11 when the drive motor 13a is not energized is detected based on the rotation speed sensor 40 and the OFF signal of the drive motor, At the time of detection, the abnormality of the double-row tapered roller bearing 11 is diagnosed based on detection signals from the vibration sensor 32 and the temperature sensor 33.

まず、図2に示すように、振動センサ32が発生した振動信号、温度センサ33が発生した温度信号は、信号伝送手段34を介して増幅及びA/D変換後に回転状態判定部50に転送される。なお、振動信号の増幅及びA/D変換は伝送前に行なわれてもよく、また、増幅とA/D変換の順序は逆であっても良い。   First, as shown in FIG. 2, the vibration signal generated by the vibration sensor 32 and the temperature signal generated by the temperature sensor 33 are transferred to the rotation state determination unit 50 after amplification and A / D conversion via the signal transmission means 34. The The amplification and A / D conversion of the vibration signal may be performed before transmission, and the order of amplification and A / D conversion may be reversed.

回転状態判定部50は、駆動モータ13aを所定の回転速度領域内で駆動運転した後、駆動モータ13aを非通電とした慣性回転領域かどうかを判定する。例えば、図3の処理フローに示すように、回転状態判定部50は、駆動モータ側のOFF信号が出力されているか否かを判定する(ステップS101)と共に、回転速度センサ40からの複列円すいころ軸受11の回転速度情報が予め設定された所定の回転速度領域内であるか否かを判定する(ステップS102)。そして、駆動モータ側のOFF信号(非通電)が出力されておらず、或いは回転速度センサ40からの複列円すいころ軸受11の回転速度情報が予め設定された所定の回転速度領域内ではない場合は、ステップS101に戻って処理を繰り返す。一方、駆動モータ側のOFF信号が回転状態判定部50に出力され、且つ回転速度センサ40からの複列円すいころ軸受11の回転速度情報が予め設定された所定の回転速度領域内である場合には、その時点の振動信号及び温度信号を検出し、フィルタ部35、温度計測値分析部51に転送する(ステップS103)。   The rotational state determination unit 50 determines whether the drive motor 13a is in an inertial rotation region in which the drive motor 13a is not energized after driving the drive motor 13a within a predetermined rotation speed region. For example, as shown in the processing flow of FIG. 3, the rotation state determination unit 50 determines whether or not an OFF signal on the drive motor side is output (step S101), and double-row cones from the rotation speed sensor 40. It is determined whether or not the rotational speed information of the roller bearing 11 is within a predetermined rotational speed region set in advance (step S102). And when the OFF signal (non-energized) on the drive motor side is not output, or the rotational speed information of the double-row tapered roller bearing 11 from the rotational speed sensor 40 is not within a predetermined rotational speed region set in advance. Returns to step S101 and repeats the process. On the other hand, when the OFF signal on the drive motor side is output to the rotation state determination unit 50 and the rotation speed information of the double row tapered roller bearing 11 from the rotation speed sensor 40 is within a predetermined rotation speed region set in advance. Detects the vibration signal and temperature signal at that time, and transfers them to the filter unit 35 and the temperature measurement value analysis unit 51 (step S103).

なお、回転状態判定部50は、複列円すいころ軸受11の回転速度情報が所定の回転速度領域内であることが確認されている場合には、駆動モータのOFF信号の出力に基づいて振動信号及び温度信号を検出するようにしてもよい。或いは、回転速度センサ40による回転速度情報の推移によって駆動モータ13aが非通電時であることを判断するようにすれば、回転速度センサ40による回転速度の検出信号と、センサによる振動又は温度の検出信号とを連動させて、回転部品の異常を診断するようにしてもよい。   Note that the rotation state determination unit 50 determines that the vibration signal is based on the output of the OFF signal of the drive motor when it is confirmed that the rotation speed information of the double row tapered roller bearing 11 is within a predetermined rotation speed region. The temperature signal may be detected. Alternatively, if it is determined that the drive motor 13a is not energized based on the transition of the rotational speed information by the rotational speed sensor 40, a rotational speed detection signal from the rotational speed sensor 40 and vibration or temperature detection by the sensor. An abnormality of the rotating component may be diagnosed in conjunction with the signal.

フィルタ部35は、固有振動数記憶部36に記憶された、複列円すいころ軸受11の固有振動数に基づいて、振動信号からその固有振動数に対応する所定の周波数帯域のみを抽出する。この固有振動数は、回転部品である複列円すいころ軸受11を被測定物として、打撃法により加振し、被測定物に取付けた振動検出器又は打撃により発生した音響を周波数分析することにより容易に求めることができる。なお、被測定物が複列円すいころ軸受の場合には、内輪、外輪、転動体、保持器等のいずれかに起因する固有振動数が与えられる。一般的に、機械部品の固有振動数は複数存在し、また固有振動数での振幅レベルは高くなるため測定の感度がよい。   The filter unit 35 extracts only a predetermined frequency band corresponding to the natural frequency from the vibration signal based on the natural frequency of the double-row tapered roller bearing 11 stored in the natural frequency storage unit 36. This natural frequency is obtained by subjecting the double-row tapered roller bearing 11 that is a rotating part to the object to be measured to be vibrated by the striking method, and analyzing the frequency of the vibration detector attached to the object to be measured or the sound generated by the striking. It can be easily obtained. When the object to be measured is a double-row tapered roller bearing, a natural frequency due to any of the inner ring, outer ring, rolling element, cage, etc. is given. In general, there are a plurality of natural frequencies of mechanical parts, and the amplitude level at the natural frequencies is high, so the sensitivity of measurement is good.

エンベロープ処理部37は、フィルタ部35にて抽出された所定の周波数帯域に対して、波形の絶対値を検波する絶対値検波処理を行う。そして、周波数分析部38は、エンベロープ処理部37から転送された波形の周波数を分析し、周波数分析による実測値データを比較照合部39へ転送する。   The envelope processing unit 37 performs absolute value detection processing for detecting the absolute value of the waveform for the predetermined frequency band extracted by the filter unit 35. Then, the frequency analysis unit 38 analyzes the frequency of the waveform transferred from the envelope processing unit 37 and transfers the actually measured value data obtained by the frequency analysis to the comparison and collation unit 39.

一方、理論周波数計算部41は、回転速度センサ40からの複列円すいころ軸受11の回転速度情報に基づき算出された、軸受の剥離等の損傷に起因した周波数成分の計算値データを比較照合部39に転送する。ここで、計算値データは、図4に示されるような、内輪、外輪、転動体、保持器の損傷に起因した周波数成分データとなる。   On the other hand, the theoretical frequency calculation unit 41 compares the calculated value data of the frequency component resulting from damage such as bearing peeling calculated based on the rotation speed information of the double row tapered roller bearing 11 from the rotation speed sensor 40. 39. Here, the calculated value data is frequency component data resulting from damage to the inner ring, the outer ring, the rolling element, and the cage, as shown in FIG.

そして、比較照合部39は、周波数分析部38で得られた実測値データと理論周波数計算部41で得られた計算値データとを比較照合する。更に、異常判定部42は、比較照合部39での比較結果に基づき、複列円すいころ軸受11の振動異常の有無、異常部位の特定を行う。   Then, the comparison and collation unit 39 compares and collates the actual measurement value data obtained by the frequency analysis unit 38 and the calculation value data obtained by the theoretical frequency calculation unit 41. Furthermore, the abnormality determination unit 42 identifies the presence / absence of vibration abnormality of the double-row tapered roller bearing 11 and the abnormal part based on the comparison result in the comparison / verification unit 39.

そして、結果出力部43では複列円すいころ軸受11の異常判定と異常部位の特定の結果の出力が行われ、アラーム等の警報が発せられたり、判定結果が記憶部に取り込まれる。なお、異常判定部42から結果出力部43への情報転送は、有線や無線で行われる。   Then, in the result output unit 43, the abnormality determination of the double row tapered roller bearing 11 and the output of the specific result of the abnormal part are performed, an alarm such as an alarm is issued, or the determination result is taken into the storage unit. Information transfer from the abnormality determination unit 42 to the result output unit 43 is performed by wire or wireless.

一方、駆動モータ側のOFF信号が出力され、且つ複列円すいころ軸受11の回転速度情報が予め設定された所定の回転速度領域内である場合に検出された温度信号は、温度計測値分析部51にて処理された後、異常判定部42に出力される。   On the other hand, a temperature signal detected when an OFF signal on the drive motor side is output and the rotational speed information of the double-row tapered roller bearing 11 is within a predetermined rotational speed range set in advance is a temperature measurement value analysis unit. After being processed at 51, it is output to the abnormality determination unit 42.

該異常判定部42では予め設定した閾値を超えるか否かを判定し、閾値を超えない場合は軸受に異常は発生していないと判断し、閾値を超えた場合は焼付き等の異常が軸受に発生したと判断して、結果出力部43で複列円すいころ軸受11の異常判定の結果の出力が行われ、アラーム等の警報が発せられる。   The abnormality determination unit 42 determines whether or not a preset threshold value is exceeded. If the threshold value is not exceeded, it is determined that no abnormality has occurred in the bearing. If the threshold value is exceeded, an abnormality such as seizure has occurred. Therefore, the result output unit 43 outputs the result of the abnormality determination of the double-row tapered roller bearing 11, and an alarm such as an alarm is issued.

なお、増幅後の振動信号処理は、各種データ処理と演算を行うもので、例えば、マイクロコンピュータ或いは専用マイクロチップ等を用いることが可能である。また、検出した信号をメモリ等の記憶手段に格納後に、演算処理を行うようにしても良い。   In addition, the vibration signal processing after amplification performs various data processing and calculations, and for example, a microcomputer or a dedicated microchip can be used. Further, the arithmetic processing may be performed after the detected signal is stored in a storage means such as a memory.

このように本実施形態では、駆動モータ13aの非通電時における複列円すいころ軸受11の所定の回転速度領域内での慣性回転状態において、振動センサ32及び温度センサ33による検出信号に基づいて複列円すいころ軸受11の異常を診断するようにしているので、複列円すいころ軸受11が組み込まれている鉄道車両用転がり軸受装置10を分解することなく実稼動状態で複列円すいころ軸受11の異常を診断することができると共に、駆動モータ13a駆動時の電磁音等、電気的な外乱ノイズを抑制することにより、高感度で高SN比(信号対雑音比)での信号の検出が可能となり、信頼性の高い異常診断を行うことができる。   As described above, in the present embodiment, in the inertial rotation state within the predetermined rotation speed region of the double row tapered roller bearing 11 when the drive motor 13a is not energized, the double sensor is based on the detection signals from the vibration sensor 32 and the temperature sensor 33. Since the abnormality of the row tapered roller bearing 11 is diagnosed, the rolling train rolling bearing device 10 incorporating the double row tapered roller bearing 11 is not disassembled, and the double row tapered roller bearing 11 can be used in actual operation. Abnormalities can be diagnosed, and by suppressing electrical disturbance noise such as electromagnetic noise when driving the drive motor 13a, it is possible to detect signals with high sensitivity and high signal-to-noise ratio (signal-to-noise ratio). Highly reliable abnormality diagnosis can be performed.

また、振動の情報については、回転速度信号に基づき算出した複列円すいころ軸受11の損傷に起因した周波数成分と振動センサ32により検出された信号の振動波形にフィルタ処理及びエンベロープ処理を施して得られた実測データの周波数成分とを比較することにより、複列円すいころ軸受11の異常の有無の判定や損傷部位を特定することもでき、異常診断の信頼性をより確実なものとすることができる。   The vibration information is obtained by subjecting the frequency component resulting from the damage of the double row tapered roller bearing 11 calculated based on the rotational speed signal and the vibration waveform of the signal detected by the vibration sensor 32 to filter processing and envelope processing. By comparing the frequency components of the measured data obtained, it is possible to determine the presence / absence of an abnormality in the double-row tapered roller bearing 11 and to specify the damaged part, and to further ensure the reliability of the abnormality diagnosis. it can.

(第2実施形態)
次に、本発明の第2実施形態に係る異常診断装置について説明する。なお、第1実施形態と同等部分については、同一符号を付して説明を省略或いは簡略化する。
(Second Embodiment)
Next, an abnormality diagnosis apparatus according to the second embodiment of the present invention will be described. In addition, about the part equivalent to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted or simplified.

本実施形態の異常診断装置では、図5のフローチャートに示すように、回転状態判定部50は、回転速度センサ40からの複列円すいころ軸受11の回転速度情報が100min−1以上1500min−1以下の回転速度領域内であるか否かを判定する(ステップS201)。そして、複列円すいころ軸受11の回転速度情報が100min−1以上1500min−1以下の回転速度領域外である場合は、ステップS201に戻って処理を繰り返す。一方、複列円すいころ軸受11の回転速度情報が100min−1以上1500min−1以下の回転速度領域内である場合には、その時点の振動信号及び温度信号を検出し、フィルタ部35、温度計測値分析部51に転送する(ステップS202)。 In the abnormality diagnosis apparatus of the present embodiment, as shown in the flowchart of FIG. 5, the rotation state determination unit 50 has the rotation speed information of the double-row tapered roller bearing 11 from the rotation speed sensor 40 between 100 min −1 and 1500 min −1. It is determined whether it is within the rotation speed region (step S201). And when the rotational speed information of the double row tapered roller bearing 11 is outside the rotational speed region of 100 min −1 or more and 1500 min −1 or less, the process returns to step S201 and is repeated. On the other hand, when the rotational speed information of the double row tapered roller bearing 11 is in the rotational speed region of 100 min −1 or more and 1500 min −1 or less, the vibration signal and the temperature signal at that time are detected, and the filter unit 35 and the temperature measurement are detected. It transfers to the value analysis part 51 (step S202).

従って、本実施形態の異常診断装置では、図2の回転状態判定部50は、駆動モータ13aのOFF信号の出力を用いずに、複列円すいころ軸受11が100min−1以上1500min−1以下の回転速度領域内であるかどうかを判定するように構成される。 Therefore, in the abnormality diagnosis device of the present embodiment, the rotation state determination unit 50 in FIG. 2 does not use the output of the OFF signal of the drive motor 13a, and the double-row tapered roller bearing 11 is 100 min −1 or more and 1500 min −1 or less. It is configured to determine whether it is within the rotational speed region.

ただし、本実施形態の異常診断装置でも、第1実施形態と同様に、回転状態判定部50が、駆動モータ13aのOFF信号の出力を用いて、或いは、回転速度センサ40による回転速度情報の推移によって駆動モータ13aが非通電時であることを判断するようにしても良い。従って、複列円すいころ軸受11が100min−1以上1500min−1以下の回転速度領域内で慣性回転する時に、振動信号及び温度信号を検出することで、駆動モータ13a通電時の電磁成分の影響がなくなり、より高精度な異常診断が可能となる。 However, also in the abnormality diagnosis device of the present embodiment, the rotation state determination unit 50 uses the output of the OFF signal of the drive motor 13a or the change of the rotation speed information by the rotation speed sensor 40 as in the first embodiment. Thus, it may be determined that the drive motor 13a is not energized. Therefore, when the double-row tapered roller bearing 11 is inertially rotated within a rotation speed region of 100 min −1 or more and 1500 min −1 or less, the vibration signal and the temperature signal are detected, so that the influence of the electromagnetic component when the drive motor 13a is energized is affected. This makes it possible to diagnose abnormality with higher accuracy.

従って、本実施形態の異常診断装置によれば、複列円すいころ軸受11が100min−1以上1500min−1以下の回転速度領域内で回転する時、振動センサ32及び温度センサ33による検出信号に基づいて複列円すいころ軸受11の異常を診断するようにしているので、複列円すいころ軸受11が組み込まれている鉄道車両用転がり軸受装置10を分解することなく実稼動状態で複列円すいころ軸受11の異常を診断することができると共に、複列円すいころ軸受11の剥離や車輪のフラット摩耗等の損傷による加振力を外乱ノイズ等の影響を受けることなく高SN比で検出可能となり、その結果、信頼性の高い異常診断を行うことができる。
特に、外径がφ200mm(内径φ100mm、幅150mm)以上の複列円すいころ軸受11が組み込まれる鉄道車両用転がり軸受装置10において、複列円すいころ軸受11が上記回転速度領域内で回転する場合に異常診断を行うことで、信頼性の高い異常診断が可能である。
その他の構成及び作用については、第1実施形態のものと同様である。
Therefore, according to the abnormality diagnosis device of the present embodiment, when the double-row tapered roller bearing 11 rotates in the rotational speed region of 100 min −1 or more and 1500 min −1 or less, based on the detection signals from the vibration sensor 32 and the temperature sensor 33. Thus, the abnormality of the double-row tapered roller bearing 11 is diagnosed. Therefore, the double-row tapered roller bearing 10 in which the double-row tapered roller bearing 11 is incorporated is actually disassembled without disassembling. 11 can be diagnosed, and the excitation force caused by damage such as peeling of the double-row tapered roller bearing 11 or flat wear of the wheel can be detected with a high S / N ratio without being affected by disturbance noise, etc. As a result, a highly reliable abnormality diagnosis can be performed.
In particular, in the rolling bearing device 10 for a railway vehicle in which the double row tapered roller bearing 11 having an outer diameter of φ200 mm (inner diameter φ100 mm, width 150 mm) or more is incorporated, the double row tapered roller bearing 11 rotates within the rotation speed region. By performing abnormality diagnosis, highly reliable abnormality diagnosis is possible.
Other configurations and operations are the same as those in the first embodiment.

なお、本発明は上記実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、本実施形態では、回転部品として鉄道車両用転がり軸受装置に組み込まれる複列円すいころ軸受を例示したが、これに代えて、発電用風車の減速機に組み込まれる転がり軸受や歯車等を診断対象にして本発明を適用してもよい。
In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.
For example, in the present embodiment, a double-row tapered roller bearing incorporated in a rolling bearing device for a railway vehicle is illustrated as a rotating part, but instead, a rolling bearing or gear incorporated in a reduction gear of a wind turbine for power generation is diagnosed. The present invention may be applied to a target.

また、機械装置によってはクラッチ機構等を用いて歯車列の噛合いが間欠的に行われる場合があり、上記実施形態に加えて、クラッチによる歯車列の噛合いが離れた時に振動センサ32及び温度センサ33による検出信号に基づいて複列円すいころ軸受11の異常を診断することにより、機械的な歯車列の噛合いノイズと電気的なノイズの影響を受けることがなくなり、さらに高SN比な異常診断が可能となる。なお、歯車列の噛み合いが離れた時に駆動モータ側に信号を出力し、駆動モータの非通電状態後に振動や温度の信号検出及び異常診断を行うと、診断の効率化が図れる。   Further, depending on the mechanical device, the gear train may be intermittently engaged using a clutch mechanism or the like. In addition to the above-described embodiment, the vibration sensor 32 and the temperature when the gear train is disengaged by the clutch are separated. By diagnosing the abnormality of the double-row tapered roller bearing 11 based on the detection signal from the sensor 33, it is not affected by the meshing noise and electrical noise of the mechanical gear train, and the abnormality has a high SN ratio. Diagnosis is possible. If the gear train is disengaged, a signal is output to the drive motor side, and vibration and temperature signal detection and abnormality diagnosis are performed after the drive motor is de-energized, so that diagnosis efficiency can be improved.

更に、鉄道車両用においては、上記実施形態に加えて、線路の繋ぎ目やポイント等がなく、且つ直線走行時に、振動センサ32及び温度センサ33による検出信号に基づいて複列円すいころ軸受11の異常を診断することによっても同様の作用効果を得ることができる、この場合、例えば、直線走行になる場所を通過した時に運転席側または駆動モータ側に信号を出力し、駆動モータの非通電状態後に振動や温度の信号検出及び異常診断を行うと診断の効率化が図れる。   Further, in the case of a railway vehicle, in addition to the above-described embodiment, there are no joints or points of the track, and the double row tapered roller bearing 11 is based on detection signals from the vibration sensor 32 and the temperature sensor 33 during straight running. A similar effect can be obtained by diagnosing the abnormality. In this case, for example, a signal is output to the driver's seat side or the drive motor side when passing through a place where the vehicle runs linearly, and the drive motor is not energized. If the vibration and temperature signal detection and abnormality diagnosis are performed later, the diagnosis efficiency can be improved.

(試験1)
ここで、本発明の第1実施形態の異常診断装置を用いた場合の診断結果の信頼性を確認するため、以下の試験1を行った。試験1は、外輪軌道面に欠陥がある円すいころ軸受(外径=245mm,内径=130mm,幅=170mm)を軸受箱のハウジングに組み込み、150min-1で内輪を回転させた時に発生する振動をハウジングに取り付けた圧電式絶縁型加速度センサにより検出し、増幅後の信号を周波数分析(エンベロープ分析)して比較した。
(Test 1)
Here, in order to confirm the reliability of the diagnosis result when using the abnormality diagnosis apparatus of the first embodiment of the present invention, the following test 1 was performed. Test 1 shows the vibration generated when a tapered roller bearing (outer diameter = 245 mm, inner diameter = 130 mm, width = 170 mm) with a defective outer ring raceway surface is incorporated in the housing of the bearing box and the inner ring is rotated at 150 min −1. The signal was detected by a piezoelectric insulated acceleration sensor attached to the housing, and the amplified signal was compared by frequency analysis (envelope analysis).

図6は、軸受の内輪が150min-1になった時に、軸受に回転を伝達する駆動モータを非通電状態(OFF状態)として軸受を慣性回転させたときのハウジングの振動を周波数分析(エンベロープ分析)した結果の一例を示したものである。また、図7は、軸受の内輪が150min-1になった時に、軸受に回転を伝達する駆動モータを通電状態(ON状態)として軸受を回転駆動させたときのハウジングの振動を周波数分析(エンベロープ分析)した結果の一例を示したものである。 FIG. 6 is a frequency analysis (envelope analysis) of the housing vibration when the bearing is rotated by inertia when the inner ring of the bearing reaches 150 min −1 and the drive motor that transmits rotation to the bearing is deenergized (OFF state). ) Shows an example of the result. FIG. 7 shows a frequency analysis of the vibration of the housing when the bearing is driven to rotate when the inner ring of the bearing reaches 150 min −1 and the drive motor that transmits rotation to the bearing is energized (ON state). This shows an example of the result of analysis.

図6及び図7から、駆動モータを非通電状態(OFF状態)として軸受を慣性回転させたときの振動波形には外輪損傷に起因した複数の周波数成分が顕著に存在しているが、駆動モータを通電状態(ON状態)として軸受を回転駆動させたときの振動波形には、駆動モータの駆動による電磁成分の影響が大きく前述した顕著なノイズ成分が発生しているのが判る。   From FIG. 6 and FIG. 7, the vibration waveform when the drive motor is deenergized (OFF state) and the bearing is rotated inertially has a plurality of frequency components due to the outer ring damage. It can be seen that in the vibration waveform when the bearing is rotationally driven in the energized state (ON state), the influence of the electromagnetic component due to the drive motor is large, and the above-described remarkable noise component is generated.

従って、回転状態判定部により回転駆動手段の非運転時の慣性回転領域内で振動を検出することにより、上記振動による外乱ノイズの影響を受けることなく高SN比な異常診断が可能となることが分かる。   Therefore, by detecting the vibration in the inertial rotation region when the rotation driving means is not operated by the rotation state determination unit, it is possible to perform an abnormality diagnosis with a high S / N ratio without being affected by disturbance noise due to the vibration. I understand.

(試験2)
次に、本発明の第2実施形態の異常診断装置を用いた場合の診断結果の信頼性を確認するため、以下の試験2を行った。試験2は、外輪軌道面に欠陥がある円すいころ軸受(外径=208mm,内径=130mm,幅=152mm)を軸受箱のハウジングに組み込み、50〜2000min-1で内輪を回転させた時に発生する振動をハウジングの負荷圏に取り付けた圧電式絶縁型加速度センサにより検出し、増幅後の信号を周波数分析(エンベロープ分析)した。
(Test 2)
Next, the following test 2 was performed in order to confirm the reliability of the diagnosis result when the abnormality diagnosis apparatus of the second embodiment of the present invention was used. Test 2 occurs when a tapered roller bearing (outer diameter = 208 mm, inner diameter = 130 mm, width = 152 mm) with a defective outer ring raceway surface is incorporated in the housing of the bearing box and the inner ring is rotated at 50 to 2000 min −1. Vibration was detected by a piezoelectric insulated acceleration sensor attached to the load zone of the housing, and the amplified signal was subjected to frequency analysis (envelope analysis).

欠陥検知の可否は、エンベロープ分析後の周波数分析結果において、図4の式を用いて算出された、各回転速度毎の外輪欠陥に起因した特徴周波数成分の出現の有無から判定した。   Whether or not the defect can be detected was determined based on the frequency analysis result after the envelope analysis based on the presence or absence of the appearance of a characteristic frequency component due to the outer ring defect at each rotational speed calculated using the equation of FIG.

図8は、軸受の内輪が50min−1,100min−1,150min−1,300min−1,650min−1,1000min−1,1500min−1,1600min−1で回転している時のハウジングの振動を周波数分析(エンベロープ分析)した結果の例である。 8, the inner ring of the bearing 50min -1, 100min -1, 150min -1 , 300min -1, 650min -1, 1000min -1, 1500min -1, the oscillation of the housing when rotating at 1600Min -1 It is an example of the result of frequency analysis (envelope analysis).

ここで、実線は実測した振動データに基づくエンベロープ周波数スペクトルであり、点線は図4に示した軸受の設計諸元に基づく外輪損傷に起因した周波数成分を表している。 この結果より、内輪を50min−1,1600min−1で回転させた時には実測スペクトルに顕著なピークが存在していないが、100min−1〜1500min−1では、外輪損傷に起因した周波数成分上に顕著なピークが存在しており、外輪が損傷していることがわかる。 Here, the solid line is the envelope frequency spectrum based on the actually measured vibration data, and the dotted line represents the frequency component due to the outer ring damage based on the design specifications of the bearing shown in FIG. From this result, the inner ring 50min -1, but significant peak is not present in the measured spectrum when rotated at 1600Min -1, in 100min -1 ~1500min -1, notably on the frequency component caused in the outer ring damage It can be seen that a large peak exists and the outer ring is damaged.

表1は、上記分析に基づく異常の有無の判定結果を回転速度毎にまとめたものである。 ○は、上記分析において外輪欠陥に起因した特徴周波数成分が出現した場合を、×は、出現していない場合を示している。   Table 1 summarizes the determination results of the presence or absence of abnormality based on the above analysis for each rotation speed. In the above analysis, a case where a characteristic frequency component due to an outer ring defect appears, and a case where x does not appear.

Figure 0004581693
Figure 0004581693

以上の分析結果より、回転速度が100min−1〜1500min−1時の振動波形には外輪損傷に起因した複数の周波数成分が顕著に出現しているが、この回転速度領域以外の振動波形には、特徴周波数成分が出現していないことがわかる。
従って、円すいころ軸受が上記回転速度領域内で回転する時に振動を検出することで、外乱ノイズ等の影響を受けることなく高SN比で異常診断を行うことができる。
From the above analysis results, a plurality of frequency components due to damage to the outer ring appears remarkably in the vibration waveform when the rotation speed is 100 min −1 to 1500 min −1, but in the vibration waveform outside this rotation speed region, It can be seen that the characteristic frequency component does not appear.
Therefore, by detecting vibration when the tapered roller bearing rotates within the rotation speed region, abnormality diagnosis can be performed with a high S / N ratio without being affected by disturbance noise or the like.

本発明の異常診断装置の診断対象である複列円すいころ軸受を備えた鉄道車両用転がり軸受装置の断面図である。It is sectional drawing of the rolling bearing apparatus for rail vehicles provided with the double row tapered roller bearing which is a diagnostic object of the abnormality diagnostic apparatus of this invention. 第1実施形態における異常診断装置の信号処理系統のブロック図である。It is a block diagram of the signal processing system of the abnormality diagnosis device in the first embodiment. 第1実施形態における回転状態判定部の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow of the rotation state determination part in 1st Embodiment. 転がり軸受の傷の部位と、傷に起因して発生する特徴周波数との関係を示す図である。It is a figure which shows the relationship between the site | part of the damage of a rolling bearing, and the characteristic frequency which arises resulting from a damage | wound. 本発明の第2実施形態における異常診断装置の回転状態判定部の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow of the rotation state determination part of the abnormality diagnosis apparatus in 2nd Embodiment of this invention. モータ非通電時の振動センサによる振動波形を示すグラフである。It is a graph which shows the vibration waveform by the vibration sensor at the time of motor non-energization. モータ通電時の振動センサによる振動波形を示すグラフである。It is a graph which shows the vibration waveform by the vibration sensor at the time of motor energization. 回転速度を変化させた時のハウジングの振動を周波数分析したグラフである。It is the graph which analyzed the vibration of the housing when changing a rotational speed.

符号の説明Explanation of symbols

11 鉄道車両用複列円すいころ軸受(回転部品)
12 軸受箱(静止部材)
32 振動センサ(振動系センサ)
33 温度センサ
35 フィルタ処理部
37 エンベロープ処理部
38 周波数分析部
39 比較照合部
40 回転速度センサ
42 異常判定部
43 結果出力部
50 回転状態判定部
11 Double-row tapered roller bearings for rolling stock (rotary parts)
12 Bearing box (stationary member)
32 Vibration sensor (vibration system sensor)
33 Temperature sensor 35 Filter processing unit 37 Envelope processing unit 38 Frequency analysis unit 39 Comparison verification unit 40 Rotational speed sensor 42 Abnormality determination unit 43 Result output unit 50 Rotation state determination unit

Claims (10)

静止部材に対して相対的に回転する回転部品の異常を診断する異常診断装置であって、
前記回転部品を回転駆動する回転駆動手段と、前記回転部品又は前記静止部材に固定されるセンサとを備え、
前記静止部材が、鉄道車両用台車の一部を構成する軸受箱であり、
前記回転部品が、前記鉄道車両の車軸を支持するために該鉄道車両に組み込まれた転がり軸受装置であり、
前記回転駆動手段の非通電時における前記回転部品の所定の回転速度領域内での慣性回転時に、前記センサによる振動又は温度の検出信号に基づいて前記回転部品の異常診断され、
前記転がり軸受装置の外輪の周方向の上側部が、転動体に対して荷重が付加される領域である負荷圏になっている実稼動状態で、前記回転部品の異常が診断されることを特徴とする異常診断装置。
An abnormality diagnosis device for diagnosing an abnormality of a rotating component that rotates relative to a stationary member,
A rotation driving means for rotating the rotating component; and a sensor fixed to the rotating component or the stationary member,
The stationary member is a bearing box constituting a part of a railcar carriage,
The rotating component is a rolling bearing device incorporated in the railway vehicle in order to support the axle of the railway vehicle;
Abnormality of the rotating component is diagnosed based on a vibration or temperature detection signal by the sensor at the time of inertia rotation within a predetermined rotation speed region of the rotating component when the rotation driving means is not energized ,
An abnormality of the rotating component is diagnosed in an actual operating state in which an upper portion in a circumferential direction of the outer ring of the rolling bearing device is in a load zone that is a region where a load is applied to the rolling element. An abnormality diagnosis device.
静止部材に対して相対的に回転する回転部品の異常を診断する異常診断装置であって、
前記回転部品を回転駆動する回転駆動手段と、前記回転部品又は前記静止部材に固定されるセンサとを備え、
前記静止部材が、鉄道車両用台車の一部を構成する軸受箱であり、
前記回転部品が、前記鉄道車両の車軸を支持するために該鉄道車両に組み込まれた転がり軸受装置であり、
前記回転部品が100min−1以上1500min−1以下の回転速度領域内で回転する時、前記センサによる振動又は温度の検出信号に基づいて前記回転部品の異常診断され、
前記転がり軸受装置の外輪の周方向の上側部が、転動体に対して荷重が付加される領域である負荷圏になっている実稼動状態で、前記回転部品の異常が診断されることを特徴とする異常診断装置。
An abnormality diagnosis device for diagnosing an abnormality of a rotating component that rotates relative to a stationary member,
A rotation driving means for rotating the rotating component; and a sensor fixed to the rotating component or the stationary member,
The stationary member is a bearing box constituting a part of a railcar carriage,
The rotating component is a rolling bearing device incorporated in the railway vehicle in order to support the axle of the railway vehicle;
When the rotating component rotates within a rotation speed region of 100 min −1 or more and 1500 min −1 or less, abnormality of the rotating component is diagnosed based on a vibration or temperature detection signal by the sensor ,
An abnormality of the rotating component is diagnosed in an actual operating state in which an upper portion in a circumferential direction of the outer ring of the rolling bearing device is in a load zone that is a region where a load is applied to the rolling element. An abnormality diagnosis device.
前記回転駆動手段の非通電時における前記回転部品の前記回転速度領域内での慣性回転時に、前記センサによる振動又は温度の検出信号に基づいて前記回転部品の異常を診断することを特徴とする請求項2に記載の異常診断装置。 An abnormality of the rotating component is diagnosed based on a vibration or temperature detection signal from the sensor during inertial rotation of the rotating component in the rotation speed region when the rotation driving unit is not energized. Item 3. The abnormality diagnosis device according to Item 2. 前記回転駆動手段は通電及び非通電を繰り返して用いられると共に、該回転駆動手段の非通電時に前記回転部品が慣性回転可能であることを特徴とする請求項1又は3に記載の異常診断装置。 The abnormality diagnosis apparatus according to claim 1 or 3, wherein the rotation driving means is used by repeatedly energizing and de-energizing, and the rotating component is capable of inertial rotation when the rotation driving means is de-energized. 前記回転駆動手段の非通電時の前記回転部品の慣性回転状態を該回転駆動手段のOFF信号に基づいて検出することを特徴とする請求項1,3及び4のいずれかに記載の異常診断装置。 5. The abnormality diagnosis apparatus according to claim 1, wherein an inertial rotation state of the rotating component when the rotation driving unit is not energized is detected based on an OFF signal of the rotation driving unit. . 前記センサは、振動センサ、音響センサ、超音波センサ、AEセンサ及び温度センサの少なくとも一つであることを特徴とする請求項1〜5のいずれかに記載の異常診断装置。 The abnormality diagnosis apparatus according to claim 1, wherein the sensor is at least one of a vibration sensor, an acoustic sensor, an ultrasonic sensor, an AE sensor, and a temperature sensor. 前記回転駆動手段の回転速度を検出する回転速度センサを備え、該回転速度センサによる回転速度の検出信号と前記センサによる振動又は温度の検出信号とを連動して前記回転部品の異常を診断することを特徴とする請求項1〜6のいずれかに記載の異常診断装置。 A rotation speed sensor for detecting a rotation speed of the rotation drive means, and diagnosing an abnormality of the rotating component in conjunction with a rotation speed detection signal from the rotation speed sensor and a vibration or temperature detection signal from the sensor; The abnormality diagnosis device according to any one of claims 1 to 6. 回転速度信号に基づき算出した前記回転部品の損傷に起因した周波数成分と前記振動センサ、前記音響センサ、前記超音波センサ及び前記AEセンサのいずれかにより検出された信号に基づく実測データの周波数成分とを比較する比較照合部と、該比較照合部での比較結果に基づき、前記回転部品の異常の有無の判定や損傷部位を特定する異常判定部とを備えていることを特徴とする請求項1〜7のいずれかに記載の異常診断装置。 A frequency component resulting from damage to the rotating component calculated based on a rotation speed signal and a frequency component of measured data based on a signal detected by any of the vibration sensor, the acoustic sensor, the ultrasonic sensor, and the AE sensor; 2. A comparison verification unit that compares the two, and a determination unit for determining whether there is an abnormality in the rotating component and an abnormality determination unit that identifies a damaged part based on a comparison result in the comparison verification unit. The abnormality diagnostic apparatus in any one of -7. 前記振動センサ、前記音響センサ、前記超音波センサ又は前記AEセンサにより検出された信号波形から不要な周波数帯域を除去するフィルタ処理部と、
前記フィルタ処理部から転送されたフィルタ処理後の波形の絶対値を検波するエンベロープ処理部と、
前記エンベロープ処理部から転送された波形の周波数を分析する周波数分析部とを備えていることを特徴とする請求項8に記載の異常診断装置。
A filter processing unit for removing an unnecessary frequency band from a signal waveform detected by the vibration sensor, the acoustic sensor, the ultrasonic sensor, or the AE sensor;
An envelope processing unit for detecting the absolute value of the filtered waveform transferred from the filter processing unit;
The abnormality diagnosis apparatus according to claim 8, further comprising a frequency analysis unit that analyzes a frequency of a waveform transferred from the envelope processing unit.
前記回転部品の異常の診断結果を伝送するデータ伝送手段をさらに有することを特徴とする請求項1〜9のいずれかに記載の異常診断装置。 The abnormality diagnosis apparatus according to claim 1, further comprising data transmission means for transmitting a diagnosis result of abnormality of the rotating component.
JP2005004128A 2004-09-13 2005-01-11 Abnormality diagnosis device Active JP4581693B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005004128A JP4581693B2 (en) 2004-09-13 2005-01-11 Abnormality diagnosis device
PCT/JP2005/016845 WO2006030786A1 (en) 2004-09-13 2005-09-13 Abnormality diagnosis device and abnormality diagnosis method
CN200580001831XA CN1906473B (en) 2004-09-13 2005-09-13 Abnormality diagnosis device
US10/586,996 US7860663B2 (en) 2004-09-13 2005-09-13 Abnormality diagnosing apparatus and abnormality diagnosing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004265219 2004-09-13
JP2005004128A JP4581693B2 (en) 2004-09-13 2005-01-11 Abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JP2006105956A JP2006105956A (en) 2006-04-20
JP4581693B2 true JP4581693B2 (en) 2010-11-17

Family

ID=36375855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004128A Active JP4581693B2 (en) 2004-09-13 2005-01-11 Abnormality diagnosis device

Country Status (1)

Country Link
JP (1) JP4581693B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495119B2 (en) * 2006-08-02 2010-06-30 新日本製鐵株式会社 Degradation diagnosis method for rolling bearings
JP5567579B2 (en) * 2009-02-12 2014-08-06 オーチス エレベータ カンパニー Elevator tension member monitoring device
JP5725833B2 (en) 2010-01-04 2015-05-27 Ntn株式会社 Rolling bearing abnormality diagnosis device, wind power generation device and abnormality diagnosis system
EP2498076A1 (en) * 2011-03-11 2012-09-12 Hexagon Technology Center GmbH Wear-Monitoring of a Gearbox in a Power Station
JP5351219B2 (en) * 2011-07-26 2013-11-27 独立行政法人交通安全環境研究所 VEHICLE STATE DIAGNOSIS DEVICE, DIAGNOSIS METHOD, AND PROGRAM USING RAILWAY VEHICLE
DK2824324T3 (en) 2012-03-08 2018-08-06 Ntn Toyo Bearing Co Ltd Condition Monitoring
JP5917956B2 (en) * 2012-03-08 2016-05-18 Ntn株式会社 Condition monitoring system
WO2014118907A1 (en) * 2013-01-30 2014-08-07 三菱重工業株式会社 Diagnostic system and diagnostic method for wind power generation device
JP6407592B2 (en) * 2013-07-22 2018-10-17 Ntn株式会社 Wind turbine generator abnormality diagnosis device and abnormality diagnosis method
CN103538524A (en) * 2013-10-11 2014-01-29 徐州徐工筑路机械有限公司 Hub reduction gear real-time monitoring system of land leveler
CN106471247B (en) 2014-06-24 2019-06-28 Ntn株式会社 Condition monitoring system and the wind generator system for using the system
EP3176427A4 (en) * 2014-07-29 2018-03-14 NTN Corporation State monitoring system and wind power generation system provided with same
JP6320218B2 (en) * 2014-07-29 2018-05-09 Ntn株式会社 Condition monitoring system and wind power generation system including the same
JP6183346B2 (en) 2014-12-10 2017-08-23 日本精工株式会社 Abnormality diagnosis device, bearing, rotating device, industrial machine and vehicle
JP2017173041A (en) 2016-03-22 2017-09-28 Ntn株式会社 State monitor, wind power generation facility having the same, and electrical noise elimination method
JP6592396B2 (en) * 2016-04-22 2019-10-16 大豊工業株式会社 Detection device, bearing test device, and vehicle
RU174466U1 (en) * 2016-09-09 2017-10-16 Владимир Александрович Утробин VIBRODIAGNOSTIC DEVICE FOR ROLLING BEARING
JP6799977B2 (en) * 2016-09-15 2020-12-16 オークマ株式会社 Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device
JP6834391B2 (en) * 2016-11-17 2021-02-24 宇部興産機械株式会社 Bearing abnormality detection device and method for crushing rollers
WO2018152575A1 (en) * 2017-02-22 2018-08-30 Cmte Development Limited Optical acoustic sensing system and method
JP6867826B2 (en) * 2017-02-23 2021-05-12 三菱重工エンジニアリング株式会社 Abnormality monitoring device, abnormality monitoring method and program
US10655607B2 (en) * 2017-06-02 2020-05-19 General Electric Company Systems and methods for detecting damage in wind turbine bearings
JP6476250B1 (en) 2017-08-29 2019-02-27 三菱重工業株式会社 Wind power generator diagnosis method and diagnosis system
JP6657162B2 (en) 2017-10-31 2020-03-04 三菱重工業株式会社 Error detection device, error detection method, program
JP2021012032A (en) * 2019-07-03 2021-02-04 三菱電機株式会社 Abnormality diagnosis device and robot controller
EP3889571A1 (en) * 2020-03-29 2021-10-06 Hitachi, Ltd. Method and system for diagnosing a rotation machine
KR102409770B1 (en) * 2020-07-22 2022-06-20 케이티엠엔지니어링(주) A System for Investigating a Condition of a Motor Car
CN112432771B (en) * 2020-09-30 2022-08-19 中核核电运行管理有限公司 Method for detecting installation reliability of electric eddy current vibration sensor of steam turbine
JP7513039B2 (en) 2022-01-14 2024-07-09 トヨタ自動車株式会社 Wind power generation equipment
CN115597863B (en) * 2022-09-07 2023-05-30 安徽家瑞轴承有限公司 Bearing surface defect regionalization high-precision detection method based on data analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523432A (en) * 1978-08-09 1980-02-19 Toshiba Corp Abnormality diagnostic unit for rotary machine
JP2002131187A (en) * 2000-10-20 2002-05-09 Sankyo Seiki Mfg Co Ltd Bearing test method and bearing test device
JP2004150974A (en) * 2002-10-31 2004-05-27 Nippon Densan Corp Operation evaluation method and operation evaluation device
JP2004233284A (en) * 2003-01-31 2004-08-19 Nsk Ltd Diagnostic device and diagnostic method of rolling bearing unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523432A (en) * 1978-08-09 1980-02-19 Toshiba Corp Abnormality diagnostic unit for rotary machine
JP2002131187A (en) * 2000-10-20 2002-05-09 Sankyo Seiki Mfg Co Ltd Bearing test method and bearing test device
JP2004150974A (en) * 2002-10-31 2004-05-27 Nippon Densan Corp Operation evaluation method and operation evaluation device
JP2004233284A (en) * 2003-01-31 2004-08-19 Nsk Ltd Diagnostic device and diagnostic method of rolling bearing unit

Also Published As

Publication number Publication date
JP2006105956A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4581693B2 (en) Abnormality diagnosis device
JP2006077938A (en) Abnormality diagnosing device
JP4117500B2 (en) Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
JP3944744B2 (en) Abnormality diagnosis device and rolling bearing device having the same
US7860663B2 (en) Abnormality diagnosing apparatus and abnormality diagnosing method
US9423290B2 (en) Abnormality diagnostic device for rolling bearing, wind turbine generation apparatus and abnormality diagnostic system
JP5146008B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP4477242B2 (en) Railway axle hub unit
JP4529602B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
US7555953B2 (en) Condition-detecting device, method, and program, and information-recording medium
JP4710455B2 (en) Abnormality diagnosis device for axle support device of railway vehicle
JP7027782B2 (en) Rolling bearing abnormality diagnostic device
US7523615B2 (en) Telemetry system
JP5003331B2 (en) Hub unit evaluation device and hub unit evaluation method
JP2004233284A (en) Diagnostic device and diagnostic method of rolling bearing unit
WO2016175322A1 (en) Abnormality diagnosis system
JP6714806B2 (en) Status monitoring device and status monitoring method
JP2005345277A (en) Monitoring device and monitoring method
JP2006234785A (en) Abnormality diagnosis device and abnormality diagnosis method for mechanical equipment
JP2009031100A5 (en)
JP2006234786A (en) Abnormality diagnostic device and abnormality diagnostic method for mechanical facility
JP3871054B2 (en) Machine equipment condition monitoring method and apparatus
JP6714844B2 (en) Abnormality diagnosis method
JP2004218814A (en) Bearing device
JPWO2006030786A1 (en) Abnormality diagnosis apparatus and abnormality diagnosis method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3