JP6799977B2 - Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device - Google Patents

Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device Download PDF

Info

Publication number
JP6799977B2
JP6799977B2 JP2016180816A JP2016180816A JP6799977B2 JP 6799977 B2 JP6799977 B2 JP 6799977B2 JP 2016180816 A JP2016180816 A JP 2016180816A JP 2016180816 A JP2016180816 A JP 2016180816A JP 6799977 B2 JP6799977 B2 JP 6799977B2
Authority
JP
Japan
Prior art keywords
rotation
speed
bearing
rotary shaft
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016180816A
Other languages
Japanese (ja)
Other versions
JP2018044892A (en
Inventor
一成 小池
一成 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2016180816A priority Critical patent/JP6799977B2/en
Publication of JP2018044892A publication Critical patent/JP2018044892A/en
Application granted granted Critical
Publication of JP6799977B2 publication Critical patent/JP6799977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、工作機械の主軸装置等、回転軸を軸受で軸支してなる回転軸装置において、軸受の異常を診断する方法と、当該方法を実行可能な回転軸装置とに関する。 The present invention relates to a method of diagnosing an abnormality in a bearing in a rotary shaft device in which a rotary shaft is pivotally supported by a bearing, such as a spindle device of a machine tool, and a rotary shaft device capable of carrying out the method.

軸受は、工作機械の主軸装置等の多くの回転軸装置に使用されている。中でも、ころがり軸受は、一般的に、内輪、外輪、複数個の転動体、転動体を等間隔に保つための保持器で構成され、内輪が回転軸と共に回転し、外輪はハウジングに組み込まれ、固定されている。
このような軸受の異常としては、潤滑不良、異物の混入、摩耗、過大荷重等があり、これらによって回転不良や焼き付きが発生すると、回転軸装置が正常に運転できず、装置が修理されるまでの間、停止状態が続いてしまう。よって、このような状況を未然に防ぐため、軸受の異常を早期に診断する予防保全が必要となっている。例えば特許文献1〜3には、振動センサや音センサ、温度センサ等のセンサによる計測情報を監視して、リアルタイムに軸受の異常や寿命を事前に診断する方法が開示されている。
また、特許文献4には、工作機械に標準搭載されている回転速度検出器を用いて回転軸を惰性回転させた際の回転速度の変化から軸受で発生する抵抗トルクを算出し、この抵抗トルクを基準値と比較して軸受の異常を診断する方法が開示されている。
Bearings are used in many rotary shaft devices such as spindle devices for machine tools. Among them, a rolling bearing is generally composed of an inner ring, an outer ring, a plurality of rolling elements, and a cage for keeping the rolling elements at equal intervals, the inner ring rotates with a rotating shaft, and the outer ring is incorporated in a housing. It is fixed.
Such bearing abnormalities include poor lubrication, foreign matter contamination, wear, and excessive load. If rotation failure or seizure occurs due to these, the rotary shaft device cannot operate normally and until the device is repaired. During that time, the stopped state continues. Therefore, in order to prevent such a situation, preventive maintenance for early diagnosis of bearing abnormality is required. For example, Patent Documents 1 to 3 disclose a method of monitoring measurement information by sensors such as a vibration sensor, a sound sensor, and a temperature sensor to diagnose a bearing abnormality and a life in advance in real time.
Further, in Patent Document 4, the resistance torque generated in the bearing is calculated from the change in the rotation speed when the rotation shaft is inertially rotated by using the rotation speed detector installed as standard in the machine tool, and this resistance torque is calculated. Is disclosed as a method of diagnosing a bearing abnormality by comparing with a reference value.

特開2009−20090号公報JP-A-2009-2009 特開2013−47690号公報Japanese Unexamined Patent Publication No. 2013-47690 特開2002−346884号公報JP-A-2002-346884 特公平6−65189号公報Special Fair 6-65189

特許文献1〜3の方法を実施するためには、ハードウェアの追加費用(振動、音)や検出感度の低さ(温度)が問題となる。
特許文献4の方法では、このような問題が生じず、軸受の異常を精度よく診断でき、追加のコストも発生しないが、惰性回転から回転軸の自然停止を待つ必要があり、高速回転仕様の場合、異常診断に多大な時間を要してしまう。
In order to carry out the methods of Patent Documents 1 to 3, additional hardware costs (vibration, sound) and low detection sensitivity (temperature) become problems.
The method of Patent Document 4 does not cause such a problem, can accurately diagnose bearing abnormalities, and does not incur additional costs, but it is necessary to wait for the natural stop of the rotating shaft from inertial rotation, and it is a high-speed rotation specification. In that case, it takes a lot of time to diagnose the abnormality.

そこで、本発明は、惰性回転を利用して軸受の異常を診断するものであっても、異常の有無を低コストかつ高精度に診断できると共に、診断時間の短縮化も図ることができる回転軸装置における軸受の異常診断方法及び回転軸装置を提供することを目的としたものである。 Therefore, the present invention can diagnose the presence or absence of an abnormality at low cost and with high accuracy even if the abnormality of the bearing is diagnosed by using the coastal rotation, and the diagnosis time can be shortened. It is an object of the present invention to provide a method for diagnosing an abnormality of a bearing in an apparatus and a rotary shaft apparatus.

上記目的を達成するために、請求項1に記載の発明は、回転軸を軸受で軸支してなる回転軸装置において、所定の回転速度から前記回転軸を惰性回転させ、当該惰性回転時に得られる情報に基づいて前記軸受の異常を診断する方法であって、
前記惰性回転の開始後、前記回転軸の回転速度が、回転停止前の予め設定された目標速度まで低下したら、前記惰性回転を終了する第1の惰性回転ステップと、前記回転速度を前記目標速度よりも低い開始速度まで減速する減速ステップと、前記開始速度から再び前記惰性回転を行う第2の惰性回転ステップと、を合わせて少なくとも1回実行した後、各前記惰性回転ステップでそれぞれ得られる前記情報に基づいて前記軸受の異常の有無を判定することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記惰性回転は、回転中の前記回転軸への動力供給の遮断により開始することを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、前記目標速度までの低下は、前記回転軸の惰性回転中にセンサから得られる情報によって確認することを特徴とする。
請求項4に記載の発明は、請求項3の構成において、前記センサは、前記回転速度の検出器であることを特徴とする。
上記目的を達成するために、請求項5に記載の発明は、回転軸を軸受で軸支してなる回転軸装置であって、
前記回転軸を所定の回転速度から、回転停止前の予め設定された目標速度へ低下するまで惰性回転させる第1の惰性回転手段と、前記目標速度で前記惰性回転を終了して前記目標速度よりも低い開始速度まで前記回転軸を減速させる減速手段と、前記開始速度から再び前記回転軸を惰性回転させる第2の惰性回転手段と、各前記惰性回転手段の実行時にそれぞれ得られる情報に基づいて前記軸受の異常の有無を判定する判定手段と、を備えることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is obtained by coasting the rotating shaft from a predetermined rotation speed in a rotating shaft device in which the rotating shaft is pivotally supported by a bearing, and obtaining the rotating shaft at the time of the coasting rotation. It is a method of diagnosing an abnormality of the bearing based on the information obtained.
After the start of the coastal rotation, when the rotation speed of the rotation shaft drops to a preset target speed before the rotation is stopped, the first coastal rotation step for ending the coastal rotation and the rotation speed are set to the target speed. a reduction step of decelerating to a lower initial rate than, after combined, the second coasting steps performed again the inertial rotation from the starting speed running at least once, the respectively obtained by each of said inertial rotation step It is characterized in that the presence or absence of abnormality of the bearing is determined based on the information.
The invention according to claim 2 is characterized in that, in the configuration of claim 1, the inertial rotation is started by shutting off the power supply to the rotating shaft during rotation.
The invention according to claim 3 is characterized in that, in the configuration of claim 1 or 2, the decrease to the target speed is confirmed by the information obtained from the sensor during the inertial rotation of the rotating shaft.
The invention according to claim 4 is characterized in that, in the configuration of claim 3, the sensor is a detector of the rotational speed.
In order to achieve the above object, the invention according to claim 5 is a rotary shaft device in which a rotary shaft is pivotally supported by a bearing.
A first inertial rotation means for coasting the rotation axis from a predetermined rotation speed to a preset target speed before the rotation is stopped, and a first coastal rotation means for finishing the coastal rotation at the target speed and exceeding the target speed. Based on the deceleration means for decelerating the rotating shaft to a lower starting speed, the second coasting rotating means for coasting the rotating shaft again from the starting speed, and the information obtained at the time of executing each of the coasting rotating means. It is characterized by comprising a determination means for determining the presence or absence of abnormality of the bearing.

本発明によれば、惰性回転を利用して軸受の異常を診断するものであっても、惰性回転の停止まで待たないので、異常の有無を低コストかつ高精度に診断できると共に、診断時間の短縮化も図ることができる。 According to the present invention, even if an abnormality of a bearing is diagnosed by using inertial rotation, the presence or absence of an abnormality can be diagnosed with low cost and high accuracy because it does not wait until the inertial rotation is stopped, and the diagnosis time is increased. It can also be shortened.

主軸装置の概略図である。It is a schematic diagram of a spindle device. 異常診断制御のフローチャートである。It is a flowchart of abnormality diagnosis control. 異常診断制御の回転速度の変化を示す説明図である。It is explanatory drawing which shows the change of the rotation speed of abnormality diagnosis control. 回転速度と抵抗トルクとの関係を示すグラフである。が転動体である。It is a graph which shows the relationship between a rotation speed and a resistance torque. Is a rolling element.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、回転軸装置の一例である工作機械の主軸装置を示す概略図である。
この主軸装置1は、ハウジング2内に、ステータとロータとからなるモータ3によって回転駆動する回転軸としての主軸4を、転がり軸受である軸受5,5・・によって軸支してなり、主軸4の先端に工具が着脱可能となっている。転がり軸受としては玉軸受やころ軸受、テーパころ軸受が採用されるが、すべり軸受でも差し支えない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing a spindle device of a machine tool, which is an example of a rotary shaft device.
The spindle device 1 comprises a spindle 4 as a rotating shaft that is rotationally driven by a motor 3 including a stator and a rotor in a housing 2, and is pivotally supported by bearings 5, 5 and ... That are rolling bearings. The tool can be attached to and detached from the tip of the bearing. Ball bearings, roller bearings, and tapered roller bearings are used as rolling bearings, but sliding bearings may also be used.

主軸4内には、工具を保持するための図示しないドローバーが設けられて、ハウジング2には、軸受5に潤滑油を供給するための潤滑油供給機構と、軸受5やステータを冷却液で冷却するための冷却機構とが設けられている(何れも図示略)。
但し、主軸4への動力供給は、モータ3に限らず、例えばギヤを介して主軸4を駆動したり、カップリングによって主軸4とモータとを連結して駆動したり、ベルトを介して主軸4を駆動したり、ロータが磁石になって駆動したり等、各方法が採用できる。
A draw bar (not shown) for holding a tool is provided in the spindle 4, and the housing 2 has a lubricating oil supply mechanism for supplying lubricating oil to the bearing 5, and the bearing 5 and the stator are cooled by a coolant. A cooling mechanism is provided for this purpose (both are not shown).
However, the power supply to the spindle 4 is not limited to the motor 3, for example, the spindle 4 is driven via a gear, the spindle 4 and the motor are connected and driven by a coupling, or the spindle 4 is driven via a belt. Each method can be adopted, such as driving the rotor or driving the rotor as a magnet.

また、ハウジング2には、軸受5近傍の温度を検出する温度センサ6と、主軸4の回転速度を検出する回転速度検出器7とが取り付けられている。但し、センサ類はこの限りでなく、主軸4の振動を検出するための加速度計や変位計、軸受5に潤滑供給を行う際のエア圧力検出器、潤滑油の粘度計測器、主軸4の回転時に発生する音を計測するマイクロフォン等も含まれる。 Further, a temperature sensor 6 for detecting the temperature in the vicinity of the bearing 5 and a rotation speed detector 7 for detecting the rotation speed of the spindle 4 are attached to the housing 2. However, the sensors are not limited to this, and the accelerometer and displacement meter for detecting the vibration of the spindle 4, the air pressure detector when supplying lubrication to the bearing 5, the viscosity measuring instrument for lubricating oil, and the rotation of the spindle 4 It also includes a microphone that measures the sound that sometimes occurs.

10は制御装置で、制御装置10には、指令装置11と、判定装置12と、演算装置13と、記憶装置14と、表示装置15とが設けられている。
指令装置11は、タッチパネル(入力装置)としても機能する表示装置15に入力された指令情報若しくは入力されたプログラム情報により、主軸4のロータに指令された回転速度で駆動するための指令を行う。一方、後述する軸受5の異常診断制御において、惰性回転指令が入力された際には、動力供給を遮断することで、主軸4を惰性回転(慣性回転)状態にすることができる。その際、潤滑油供給機構や冷却機構は作動し続けるようにする。
また、惰性回転中に指定した目標速度に到達した場合は、動力供給を再開することで、惰性回転状態から制御を復帰して、指定した回転速度まで減速する指令を出すこともできる。すなわち、本発明の第1、第2の惰性回転手段及び減速手段として機能する。
Reference numeral 10 denotes a control device, and the control device 10 is provided with a command device 11, a determination device 12, an arithmetic device 13, a storage device 14, and a display device 15.
The command device 11 issues a command to drive the rotor of the spindle 4 at the commanded rotation speed by the command information input to the display device 15 which also functions as a touch panel (input device) or the input program information. On the other hand, in the abnormality diagnosis control of the bearing 5 described later, when an inertial rotation command is input, the spindle 4 can be brought into an inertial rotation (inertial rotation) state by shutting off the power supply. At that time, the lubricating oil supply mechanism and the cooling mechanism should continue to operate.
Further, when the specified target speed is reached during the inertial rotation, the power supply can be restarted to return the control from the inertial rotation state and issue a command to decelerate to the specified rotation speed. That is, it functions as the first and second inertial rotation means and deceleration means of the present invention.

但し、指令方法は上記方法に限らず、例えば、制御装置10に取り付けられたボタンでの動作実行や、通信ネットワーク等を介した遠隔操作により実行する手段も採用できる。
また、惰性回転を終了させる目標速度は、上記指令方法以外に、記憶装置14にパラメータとして予め保存されている情報を取得するものとしてもよい。
さらに、惰性回転中の潤滑油供給機構や冷却機構の駆動の有無は変更可能である。
そして、惰性回転状態は、動力供給を遮断する以外に、惰性回転時の回転速度変化に相当する回転指令を送ることで、惰性回転状態を模擬的に生じさせることができる。
However, the command method is not limited to the above method, and for example, a means for executing an operation with a button attached to the control device 10 or a means for executing the operation by remote control via a communication network or the like can be adopted.
Further, as the target speed for terminating the inertial rotation, information stored in advance as a parameter in the storage device 14 may be acquired in addition to the above command method.
Further, it is possible to change whether or not the lubricating oil supply mechanism and the cooling mechanism are driven during the inertial rotation.
Then, in the inertial rotation state, in addition to shutting off the power supply, the inertial rotation state can be simulated by sending a rotation command corresponding to the change in the rotation speed during the inertial rotation.

判定装置12は、回転速度検出器7から主軸4の回転速度情報を取得する。指令装置11により、目標速度までの惰性回転指令が出た場合、主軸4の回転速度情報を取得し、目標速度に到達した場合、その情報を指令装置11に送ることができる。
記憶装置14は、異常診断制御時の目標速度や開始速度、演算装置13における演算時に使用する主軸4の慣性モーメント等の演算パラメータをパラメータとして持ち、惰性回転時の回転速度やその情報を演算装置13により処理して得た抵抗トルク情報を記憶する。
但し、記憶する項目としては、これ以外にも、例えば、温度センサ6、前述した加速度計や変位計、エア圧力検出器、粘度計測器、マイクロフォン等の情報も記憶することができる。
The determination device 12 acquires the rotation speed information of the spindle 4 from the rotation speed detector 7. When the command device 11 issues an inertial rotation command to the target speed, the rotation speed information of the spindle 4 can be acquired, and when the target speed is reached, the information can be sent to the command device 11.
The storage device 14 has calculation parameters such as a target speed and a start speed at the time of abnormality diagnosis control, a moment of inertia of the spindle 4 used at the time of calculation in the calculation device 13, and a rotation speed at the time of inertial rotation and its information. The resistance torque information obtained by processing in step 13 is stored.
However, as the items to be stored, for example, information such as the temperature sensor 6, the above-mentioned accelerometer and displacement meter, the air pressure detector, the viscosity measuring instrument, and the microphone can be stored.

演算装置13は、異常診断制御の際には、記憶装置14に記憶された惰性回転時の回転速度Vと慣性モーメントMと加速度とを用いた下記の式(1)によって、惰性回転時の抵抗トルクTを算出し、算出した抵抗トルクに基づいて軸受5の異常の有無を判定する。すなわち、本発明の判定手段として機能する。
T=−(2πM/60)×(dV/dt) ・・(1)
At the time of abnormality diagnosis control, the arithmetic device 13 uses the following equation (1), which uses the rotational speed V at the time of inertial rotation, the moment of inertia M, and the acceleration stored in the storage device 14, to resist the inertial rotation. The torque T is calculated, and the presence or absence of an abnormality in the bearing 5 is determined based on the calculated resistance torque. That is, it functions as a determination means of the present invention.
T =-(2πM / 60) x (dV / dt) ... (1)

表示装置15には、タッチパネルを利用して、記憶装置14に惰性回転時の目標速度や演算装置13における演算時に使用する演算パラメータ等の値を入力することができる。
また、記憶装置14に記憶されている惰性回転時の回転速度やその情報を演算装置13により処理して得た抵抗トルク情報等の記憶情報をグラフ表示したり、異常診断制御の判定結果を表示したりすることができる。
但し、表示する情報はこれに限らず、記憶装置14に記憶された、例えば、温度センサ6、前述した加速度計や変位計、エア圧力検出器、粘度計測器、マイクロフォン等の情報も表示することができる。
Using a touch panel, the display device 15 can input values such as a target speed at the time of inertial rotation and a calculation parameter used at the time of calculation in the calculation device 13 to the storage device 14.
Further, the stored information such as the rotation speed at the time of inertial rotation stored in the storage device 14 and the resistance torque information obtained by processing the information by the arithmetic device 13 can be displayed as a graph, and the determination result of the abnormality diagnosis control can be displayed. Can be done.
However, the information to be displayed is not limited to this, and information such as the temperature sensor 6, the accelerometer and displacement meter described above, the air pressure detector, the viscosity measuring instrument, and the microphone stored in the storage device 14 should also be displayed. Can be done.

以上の如く構成された主軸装置1において、制御装置10が実行する軸受5の異常診断制御を、図2のフローチャートに基づいて説明する。
まず、S1で、主軸4を所定の第1開始速度(ここでは8000min−1)で回転させた後、S2で回転中の主軸4の動力供給を遮断して第1の惰性回転を開始する(図3のA部)と共に、上記式(1)によって1回目の抵抗トルクT1の算出を行う。
次に、S3で、惰性回転中に回転速度検出器7から得られる回転速度が、第1目標速度(ここでは7000min−1)まで低下したか否かを判別する。ここで第1目標速度に達したことが確認されると、S4で、動力供給を再開して惰性回転を終了する(ここまで第1の惰性回転ステップ)。
The abnormality diagnosis control of the bearing 5 executed by the control device 10 in the spindle device 1 configured as described above will be described with reference to the flowchart of FIG.
First, in S1, the spindle 4 is rotated at a predetermined first starting speed (here, 8000 min -1 ), and then the power supply of the spindle 4 rotating in S2 is cut off to start the first inertial rotation (in this case, 8000 min -1 ). The first resistance torque T1 is calculated by the above equation (1) together with the part A in FIG.
Next, in S3, it is determined whether or not the rotation speed obtained from the rotation speed detector 7 during the inertial rotation has decreased to the first target speed (here, 7000 min -1 ). When it is confirmed that the first target speed has been reached here, the power supply is restarted in S4 to end the inertial rotation (up to this point, the first inertial rotation step).

次に、S5で、主軸4の回転速度を、第1目標速度より低い第2開始速度(ここでは4000min−1)まで減速する(減速ステップ)。その後、S6で主軸4の動力供給を遮断して第2の惰性回転を開始する(図3のB部、第2の惰性回転ステップ)と共に、上記式(1)によって2回目の抵抗トルクT2の算出を行う。 Next, in S5, the rotation speed of the spindle 4 is decelerated to a second start speed (here, 4000 min -1 ) lower than the first target speed (deceleration step). After that, in S6, the power supply of the spindle 4 is cut off and the second inertial rotation is started (part B in FIG. 3, the second inertial rotation step), and the second resistance torque T2 is calculated by the above equation (1). Make a calculation.

次に、S7で、惰性回転中に回転速度検出器7から得られる回転速度が、第2目標速度(ここでは2000min−1)まで低下したか否かを判別する。ここで第2目標速度に達したことが確認されると、S8で、動力供給を再開して惰性回転を終了する。
次に、S9で、主軸4の回転速度を、第2目標速度より低い第3開始速度(ここでは1000min−1)まで減速する(減速ステップ)。その後、S10で主軸4の動力供給を遮断して第3の惰性回転を開始する(図3のC部、第2の惰性回転ステップ)と共に、上記式(1)によって3回目の抵抗トルクT3の算出を行う。
次に、S11で、惰性回転中に回転速度検出器7から得られる回転速度が、第3目標速度(ここでは0min−1)まで低下したか否かを判別する。
Next, in S7, it is determined whether or not the rotation speed obtained from the rotation speed detector 7 during the inertial rotation has decreased to the second target speed (2000 min -1 in this case). When it is confirmed that the second target speed has been reached here, the power supply is restarted in S8 to end the inertial rotation.
Next, in S9, the rotation speed of the spindle 4 is decelerated to a third start speed (here, 1000 min -1 ) lower than the second target speed (deceleration step). After that, in S10, the power supply of the spindle 4 is cut off and the third inertial rotation is started (C part in FIG. 3, the second inertial rotation step), and the third resistance torque T3 is calculated by the above equation (1). Make a calculation.
Next, in S11, it is determined whether or not the rotation speed obtained from the rotation speed detector 7 during the inertial rotation has decreased to the third target speed (here, 0 min -1 ).

ここで第3目標速度に達したことが確認されると、S12で、図4に示すように各惰性回転時に得られた3つの抵抗トルクT1〜T3の波形を分析して異常の有無の判定を行う。例えば、抵抗トルクT1〜T3が各段階でそれぞれ予め設定した閾値より大きいか否かを判別し、閾値より大きい場合に異常判定を行ったり、前回の測定結果と比較してその変化量が所定量より大きい場合に異常判定を行ったり、各波形の特徴量を算出して基準の特徴量と比較して誤差が大きい場合に異常判定を行ったりすることが考えられる。
こうして判定した結果は、S13で表示装置15に表示される。
When it is confirmed that the third target speed has been reached, the waveforms of the three resistance torques T1 to T3 obtained during each inertial rotation are analyzed in S12 to determine the presence or absence of an abnormality as shown in FIG. I do. For example, it is determined whether or not the resistance torques T1 to T3 are larger than the preset threshold value at each stage, and if it is larger than the threshold value, an abnormality determination is performed, or the amount of change is a predetermined amount as compared with the previous measurement result. It is conceivable to perform an abnormality determination when the value is larger, or to perform an abnormality determination when the error is large compared to the reference feature amount by calculating the feature amount of each waveform.
The result of the determination in this way is displayed on the display device 15 in S13.

このように、上記形態の主軸装置1によれば、惰性回転の開始後、主軸4の回転速度が、回転停止前の予め設定された目標速度まで低下したら(S3,S7)、惰性回転を終了する第1の惰性回転ステップ(S4,S8)と、回転速度を目標速度よりも低い開始速度まで減速する減速ステップ(S5,S9)と、開始速度から再び惰性回転を行う第2の惰性回転ステップ(S6,S10)とを2回実行した後、各惰性回転ステップでそれぞれ得られる抵抗トルクに基づいて軸受5の異常の有無を判定するようにしているので、惰性回転を利用して軸受5の異常を診断するものであっても、異常の有無を低コストかつ高精度に診断できる。特に、従来のように最高回転速度から惰性回転が停止するまでの間で診断しないので、診断時間の短縮化も図ることができる。
図3に示す点線は、従来のように回転停止まで惰性回転を継続実施した場合を示すものであるが、ここでの診断時間t0に比べて、本形態での第3の惰性回転が終了する診断時間t1の方が短いことが分かる。
As described above, according to the spindle device 1 of the above-described embodiment, when the rotation speed of the spindle 4 drops to the preset target speed before the rotation is stopped (S3, S7) after the start of the coastal rotation, the coastal rotation is terminated. A first coasting rotation step (S4, S8), a deceleration step (S5, S9) for decelerating the rotation speed to a start speed lower than the target speed, and a second coasting rotation step for performing coasting rotation again from the start speed. After executing (S6, S10) twice, it is determined whether or not there is an abnormality in the bearing 5 based on the resistance torque obtained in each inertial rotation step. Therefore, the inertial rotation of the bearing 5 is used. Even if an abnormality is diagnosed, the presence or absence of the abnormality can be diagnosed at low cost and with high accuracy. In particular, since the diagnosis is not performed between the maximum rotation speed and the stop of the inertial rotation as in the conventional case, the diagnosis time can be shortened.
The dotted line shown in FIG. 3 shows the case where the inertial rotation is continuously performed until the rotation is stopped as in the conventional case, but the third inertial rotation in the present embodiment is completed as compared with the diagnosis time t0 here. It can be seen that the diagnosis time t1 is shorter.

なお、上記形態では、第1の惰性回転ステップ、減速ステップの後第2の惰性回転ステップを2回繰り返して異常診断を行っているが、1回のみ実行してもよいし、逆に3回以上繰り返して実行してもよい。また、開始速度や目標速度は上記形態に限らず、適宜変更可能である。
さらに、惰性回転時の目標速度への到達の確認は、回転速度検出器からの速度情報に限らず、前述のようにセンサとして加速度計や変位計、マイクロフォン等を設けている場合は、これらのセンサから得られる周波数が設定した任意の周波数に達した場合に目標速度への到達と判定することもできる。
その他、本発明の回転軸装置や軸受の異常診断方法は、工作機械の主軸装置に限らず、自動車や鉄道車両、船舶等の他の機械設備においても適用可能である。
In the above embodiment, the first inertial rotation step and the second inertial rotation step after the deceleration step are repeated twice to perform the abnormality diagnosis, but the abnormality diagnosis may be performed only once, or conversely, 3 It may be repeated more than once. Further, the start speed and the target speed are not limited to the above-mentioned form, and can be changed as appropriate.
Furthermore, the confirmation of reaching the target speed during inertial rotation is not limited to the speed information from the rotation speed detector, but when an accelerometer, displacement meter, microphone, etc. are provided as sensors as described above, these When the frequency obtained from the sensor reaches an arbitrary set frequency, it can be determined that the target speed has been reached.
In addition, the method for diagnosing an abnormality of a rotary shaft device or a bearing of the present invention is applicable not only to the spindle device of a machine tool but also to other mechanical equipment such as an automobile, a railroad vehicle, and a ship.

1・・主軸装置、2・・ハウジング、3・・モータ、4・・主軸、5・・軸受、6・・温度センサ、7・・回転速度検出器、10・・制御装置、11・・指令装置、12・・判定装置、13・・演算装置、14・・記憶装置、15・・表示装置。 1 ... Spindle device, 2 ... Housing, 3 ... Motor, 4 ... Spindle, 5 ... Bearing, 6 ... Temperature sensor, 7 ... Rotation speed detector, 10 ... Control device, 11 ... Command Device, 12 ... Judgment device, 13 ... Arithmetic device, 14 ... Storage device, 15 ... Display device.

Claims (5)

回転軸を軸受で軸支してなる回転軸装置において、所定の回転速度から前記回転軸を惰性回転させ、当該惰性回転時に得られる情報に基づいて前記軸受の異常を診断する方法であって、
前記惰性回転の開始後、前記回転軸の回転速度が、回転停止前の予め設定された目標速度まで低下したら、前記惰性回転を終了する第1の惰性回転ステップと、
前記回転速度を前記目標速度よりも低い開始速度まで減速する減速ステップと、
前記開始速度から再び前記惰性回転を行う第2の惰性回転ステップと、
合わせて少なくとも1回実行した後、各前記惰性回転ステップでそれぞれ得られる前記情報に基づいて前記軸受の異常の有無を判定することを特徴とする回転軸装置における軸受の異常診断方法。
In a rotary shaft device in which a rotary shaft is pivotally supported by a bearing, the rotary shaft is coasted from a predetermined rotation speed, and an abnormality of the bearing is diagnosed based on the information obtained during the coastal rotation.
After the start of the inertial rotation, when the rotation speed of the rotation shaft drops to a preset target speed before the rotation stops, the first inertial rotation step for ending the inertial rotation
A deceleration step that reduces the rotation speed to a start speed lower than the target speed, and
A second inertial rotation step in which the inertial rotation is performed again from the start speed,
A method for diagnosing a bearing abnormality in a rotary shaft device, which comprises determining the presence or absence of an abnormality in the bearing based on the information obtained in each of the inertial rotation steps after a total of at least one execution.
前記惰性回転は、回転中の前記回転軸への動力供給の遮断により開始することを特徴とする請求項1に記載の回転軸装置における軸受の異常診断方法。 The method for diagnosing an abnormality in a bearing in a rotating shaft device according to claim 1, wherein the inertial rotation is started by cutting off the power supply to the rotating shaft during rotation. 前記目標速度までの低下は、前記回転軸の惰性回転中にセンサから得られる情報によって確認することを特徴とする請求項1又は2に記載の回転軸装置における軸受の異常診断方法。 The method for diagnosing an abnormality in a bearing in a rotating shaft device according to claim 1 or 2, wherein the decrease to the target speed is confirmed by information obtained from a sensor during inertial rotation of the rotating shaft. 前記センサは、前記回転速度の検出器であることを特徴とする請求項3に記載の回転軸装置における軸受の異常診断方法。 The method for diagnosing an abnormality of a bearing in a rotary shaft device according to claim 3, wherein the sensor is a detector for the rotational speed. 回転軸を軸受で軸支してなる回転軸装置であって、
前記回転軸を所定の回転速度から、回転停止前の予め設定された目標速度へ低下するまで惰性回転させる第1の惰性回転手段と、
前記目標速度で前記惰性回転を終了して前記目標速度よりも低い開始速度まで前記回転軸を減速させる減速手段と、
前記開始速度から再び前記回転軸を惰性回転させる第2の惰性回転手段と、
各前記惰性回転手段の実行時にそれぞれ得られる情報に基づいて前記軸受の異常の有無を判定する判定手段と、
を備えることを特徴とする回転軸装置。
A rotary shaft device in which the rotary shaft is supported by bearings.
A first inertial rotation means for inertially rotating the rotation axis from a predetermined rotation speed until the rotation speed drops to a preset target speed before the rotation is stopped.
A deceleration means for terminating the inertial rotation at the target speed and decelerating the rotation shaft to a start speed lower than the target speed.
A second inertial rotation means for inertially rotating the rotation axis from the start speed,
A determination means for determining the presence or absence of an abnormality in the bearing based on the information obtained at the time of execution of each of the inertial rotation means, and
A rotary shaft device characterized by comprising.
JP2016180816A 2016-09-15 2016-09-15 Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device Active JP6799977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180816A JP6799977B2 (en) 2016-09-15 2016-09-15 Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180816A JP6799977B2 (en) 2016-09-15 2016-09-15 Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device

Publications (2)

Publication Number Publication Date
JP2018044892A JP2018044892A (en) 2018-03-22
JP6799977B2 true JP6799977B2 (en) 2020-12-16

Family

ID=61692440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180816A Active JP6799977B2 (en) 2016-09-15 2016-09-15 Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device

Country Status (1)

Country Link
JP (1) JP6799977B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989198B (en) 2018-03-29 2023-06-27 日产自动车株式会社 Abnormality detection device and abnormality detection method
CN110864900B (en) * 2019-12-23 2021-08-17 靳普 Bearing detection method, bearing detection system, gas turbine starting method and gas turbine starting system
CN112304608B (en) * 2020-10-14 2021-11-23 中车株洲电力机车研究所有限公司 Fault diagnosis method and system for traction transmission system and related components

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581693B2 (en) * 2004-09-13 2010-11-17 日本精工株式会社 Abnormality diagnosis device
JP5711185B2 (en) * 2012-05-17 2015-04-30 レノボ・シンガポール・プライベート・リミテッド Method for extending the life of fluid dynamic pressure bearings used in thin electronic devices and electronic devices

Also Published As

Publication number Publication date
JP2018044892A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
CN106168534B (en) Abnormality detection device and abnormality detection method having abnormality detection function for machine tool
US10124457B2 (en) Machine tool having inspection function for deteriorated state of spindle
US10513001B2 (en) Bearing diagnostic device
JP5710391B2 (en) Processing abnormality detection device and processing abnormality detection method for machine tools
JP6657256B2 (en) Fault diagnosis method and fault diagnosis device for feed axis
US9933333B2 (en) Bearing diagnostic device for machine tool
JP6799977B2 (en) Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device
JP5608036B2 (en) Operation history management method and operation history management device
JP6495797B2 (en) Spindle abnormality detection device and spindle abnormality detection method for machine tools
JP7000135B2 (en) Feed shaft abnormality diagnosis method and abnormality diagnosis device
WO2019167180A1 (en) Abnormality type determining device and abnormality type determining method
JP2019132773A (en) Diagnosis device of rotating shaft device
US11333577B2 (en) Method and device for diagnosing abnormality in rolling bearing
JP6742205B2 (en) Rotating shaft device and bearing abnormality diagnosis method in rotating shaft device
JP2018028865A (en) Machine with rotation axis
CN105591364A (en) Motor control device that detects overload
JP6637844B2 (en) Method for determining warm-up operation time before bearing diagnosis in machine tool, machine tool
JP6873870B2 (en) Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices
CN107893270B (en) Method for operating an open-end spinning device and open-end spinning device
CN107797518A (en) Numerical control device
JP2018028513A (en) Method of checking lubrication condition of bearing in rotary shaft device, and rotary shaft device
JP2021012032A (en) Abnormality diagnosis device and robot controller
KR102712821B1 (en) System and method for detecting an abnormal state of a spindle unit of a cnc machine
JP7423422B2 (en) Diagnostic equipment, diagnostic methods and diagnostic programs
KR20240100848A (en) System and method for detecting an abnormal state of a spindle unit of a cnc machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R150 Certificate of patent or registration of utility model

Ref document number: 6799977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150