JP6742205B2 - Rotating shaft device and bearing abnormality diagnosis method in rotating shaft device - Google Patents

Rotating shaft device and bearing abnormality diagnosis method in rotating shaft device Download PDF

Info

Publication number
JP6742205B2
JP6742205B2 JP2016175834A JP2016175834A JP6742205B2 JP 6742205 B2 JP6742205 B2 JP 6742205B2 JP 2016175834 A JP2016175834 A JP 2016175834A JP 2016175834 A JP2016175834 A JP 2016175834A JP 6742205 B2 JP6742205 B2 JP 6742205B2
Authority
JP
Japan
Prior art keywords
rotation
rotation speed
bearing
inertial
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016175834A
Other languages
Japanese (ja)
Other versions
JP2018040456A (en
Inventor
一成 小池
一成 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2016175834A priority Critical patent/JP6742205B2/en
Publication of JP2018040456A publication Critical patent/JP2018040456A/en
Application granted granted Critical
Publication of JP6742205B2 publication Critical patent/JP6742205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工作機械の主軸装置等、回転軸を軸受で軸支してなる回転軸装置と、当該回転軸装置における軸受の異常診断方法とに関する。 The present invention relates to a rotary shaft device such as a spindle device of a machine tool in which a rotary shaft is supported by bearings, and a bearing abnormality diagnosis method in the rotary shaft device.

軸受は、工作機械の主軸装置等の多くの回転軸装置に使用されている。中でも、ころがり軸受は、一般的に、内輪、外輪、複数個の転動体、転動体を等間隔に保つための保持器で構成され、内輪が回転軸と共に回転し、外輪はハウジングに組み込まれ、固定されている。
このような軸受の異常としては、潤滑不良、異物の混入、摩耗、過大荷重等があり、これらによって回転不良や焼き付きが発生すると、回転軸装置が正常に運転できず、装置が修理されるまでの間、停止状態が続いてしまう。よって、このような状況を未然に防ぐため、軸受の異常を早期に診断する予防保全が必要となっている。例えば特許文献1〜3には、振動センサや音センサ、温度センサ等のセンサによる計測情報を監視して、リアルタイムに軸受の異常や寿命を事前に診断する方法が開示されている。
しかし、これらの方法を実施するためには、ハードウェアの追加費用(振動、音)や検出感度の低さ(温度)が問題となる。そこで、特許文献4に開示のように、工作機械に標準搭載されている回転速度検出器を用いて回転軸を惰性回転させた際の回転速度の変化から軸受で発生する抵抗トルクを算出し、この抵抗トルクを基準値と比較して軸受の異常を診断するようにすれば、軸受の異常を精度よく診断でき、追加のコストも発生しない。
Bearings are used in many rotary shaft devices such as main shaft devices of machine tools. Among them, the rolling bearing is generally composed of an inner ring, an outer ring, a plurality of rolling elements, and a cage for keeping the rolling elements at equal intervals, the inner ring rotates together with the rotating shaft, and the outer ring is incorporated in the housing. It is fixed.
Abnormalities in such bearings include poor lubrication, contamination of foreign matter, wear, and excessive load. If defective rotation or seizure occurs due to these, the rotating shaft device cannot operate normally until the device is repaired. During that time, the stopped state continues. Therefore, in order to prevent such a situation, it is necessary to perform preventive maintenance for early diagnosis of bearing abnormality. For example, Patent Documents 1 to 3 disclose a method of monitoring the measurement information by a sensor such as a vibration sensor, a sound sensor, or a temperature sensor, and diagnosing an abnormality or life of the bearing in advance in real time.
However, in order to carry out these methods, additional cost of hardware (vibration, sound) and low detection sensitivity (temperature) pose a problem. Therefore, as disclosed in Patent Document 4, the resistance torque generated in the bearing is calculated from the change in the rotation speed when the rotation axis is inertially rotated by using the rotation speed detector that is standardly installed in the machine tool, If the bearing abnormality is diagnosed by comparing the resistance torque with a reference value, the bearing abnormality can be accurately diagnosed and no additional cost is required.

特開2009−20090号公報JP, 2009-20090, A 特開2013−47690号公報JP, 2013-47690, A 特開2002−346884号公報JP 2002-346884 A 特公平6−65189号公報Japanese Patent Publication No. 6-65189

ところが、特許文献4のような惰性回転を利用した方法では、惰性回転を開始する速度が任意であるため、軸受に異常が発生している回転軸を異常診断のために高速回転から惰性回転させると、軸受に焼き付きが発生するおそれがある。 However, in the method using inertial rotation as in Patent Document 4, since the speed at which inertial rotation starts is arbitrary, the rotating shaft in which the bearing has an abnormality is inertially rotated from high speed rotation for abnormality diagnosis. If so, the bearing may be seized.

そこで、本発明は、惰性回転を利用して軸受の異常の有無を低コストかつ高精度に診断可能とすると共に、軸受に焼き付きが発生するおそれも低減することができる回転軸装置及び、回転軸装置における軸受の異常診断方法とを提供することを目的としたものである。 Therefore, the present invention makes it possible to diagnose the presence or absence of abnormality of the bearing by inertial rotation at low cost and with high accuracy, and also to reduce the risk of seizure of the bearing, and a rotating shaft. An object of the present invention is to provide a method for diagnosing a bearing abnormality in a device.

上記目的を達成するために、請求項1に記載の発明は、回転軸を軸受で軸支してなる回転軸装置であって、
前記回転軸を所定の回転速度から惰性回転させる惰性回転手段と、前記惰性回転中の回転速度を検出する回転速度検出手段と、少なくとも前記惰性回転時の回転速度と惰性回転の時間とに基づいて前記惰性回転時の前記軸受の抵抗トルクを算出する軸受特性算出手段と、算出した前記抵抗トルクを予め設定された閾値と比較して異常の有無を判定する判定手段と、を備え、前記惰性回転手段では、前記所定の回転速度を、前記軸受の諸元から求めた所定の指標に基づいて前記回転軸の最高回転速度より低く設定された低回転速度として前記惰性回転を実行することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記軸受の諸元が、前記回転速度に対する前記軸受の発熱量であり、前記所定の指標が、前記発熱量を基準にした係数であって、前記低回転速度は、前記最高回転速度に前記係数を乗じて決定されることを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、前記惰性回転手段は、前記所定の回転速度を前記最高回転速度として前記惰性回転を実行可能であり、前記低回転速度で前記惰性回転を実行して前記判定手段が前記軸受に異常なしと判定した場合、前記惰性回転手段は、前記最高回転速度から前記惰性回転を実行し、前記軸受特性算出手段は、前記最高回転速度からの前記惰性回転時の回転速度と前記時間とに基づいて前記所定の軸受特性を算出し、前記判定手段は、算出した前記軸受特性を前記基準の軸受特性と比較して異常の有無を判定することを特徴とする。
上記目的を達成するために、請求項4に記載の発明は、回転軸を軸受で軸支してなる回転軸装置において、前記軸受の異常の有無を診断する方法であって、
前記回転軸を所定の回転速度から惰性回転させる惰性回転ステップと、前記惰性回転中の回転速度を検出する回転速度検出ステップと、少なくとも前記惰性回転時の回転速度と惰性回転の時間とに基づいて前記惰性回転時の前記軸受の抵抗トルクを算出する軸受特性算出ステップと、算出した前記抵抗トルクを予め設定された閾値と比較して異常の有無を判定する判定ステップと、を実行し、前記惰性回転ステップでは、前記所定の回転速度を、前記軸受の諸元から求めた所定の指標に基づいて前記回転軸の最高回転速度より低く設定された低回転速度として前記惰性回転を実行することを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a rotary shaft device in which a rotary shaft is supported by bearings.
Based on the inertial rotation means for inertially rotating the rotation shaft from a predetermined rotation speed, the rotation speed detection means for detecting the rotation speed during the inertial rotation, and at least the rotation speed during the inertial rotation and the time for the inertial rotation. The inertial rotation is provided with a bearing characteristic calculation means for calculating a resistance torque of the bearing during the inertia rotation, and a determination means for comparing the calculated resistance torque with a preset threshold value to determine whether or not there is an abnormality. In the means, the predetermined rotation speed is set as a low rotation speed set lower than a maximum rotation speed of the rotation shaft based on a predetermined index obtained from specifications of the bearing, and the inertia rotation is executed. To do.
According to a second aspect of the present invention, in the configuration of the first aspect, the specifications of the bearing are the heat generation amount of the bearing with respect to the rotation speed, and the predetermined index is a coefficient based on the heat generation amount. The low rotation speed is determined by multiplying the maximum rotation speed by the coefficient.
According to a third aspect of the present invention, in the configuration according to the first or second aspect, the inertial rotation means can execute the inertial rotation with the predetermined rotation speed as the maximum rotation speed, and at the low rotation speed. When performing the inertial rotation and the determination means determines that there is no abnormality in the bearing, the inertial rotation means executes the inertial rotation from the maximum rotation speed, the bearing characteristic calculation means, from the maximum rotation speed. The predetermined bearing characteristic is calculated based on the rotation speed during the inertia rotation and the time, and the determination means compares the calculated bearing characteristic with the reference bearing characteristic to determine whether there is an abnormality. It is characterized by
In order to achieve the above object, the invention according to claim 4 is a method for diagnosing the presence or absence of abnormality of the bearing in a rotating shaft device in which a rotating shaft is supported by a bearing.
An inertial rotation step of inertially rotating the rotation shaft from a predetermined rotation speed, a rotation speed detection step of detecting a rotation speed during the inertial rotation, and at least the rotation speed during the inertial rotation and the time of the inertial rotation. A bearing characteristic calculation step of calculating a resistance torque of the bearing during the inertia rotation, and a determination step of comparing the calculated resistance torque with a preset threshold value to determine whether or not there is an abnormality, In the rotating step, the inertial rotation is executed by setting the predetermined rotation speed as a low rotation speed set lower than a maximum rotation speed of the rotation shaft based on a predetermined index obtained from specifications of the bearing. And

本発明によれば、軸受に異常があっても主軸が回転不能とならない低回転速度から惰性回転を行って軸受を診断することができる。よって、惰性回転を利用して軸受の異常の有無を低コストかつ高精度に診断できると共に、軸受に焼き付きが発生するおそれも低減することができる。 According to the present invention, it is possible to diagnose the bearing by performing inertial rotation from a low rotation speed at which the main shaft cannot rotate even if the bearing has an abnormality. Therefore, the presence/absence of a bearing can be diagnosed at low cost and with high accuracy by utilizing inertial rotation, and the risk of seizure on the bearing can be reduced.

主軸装置の概略図である。It is a schematic diagram of a spindle device. 異常診断制御のフローチャートである。It is a flowchart of abnormality diagnosis control. 診断モードの選択画面を示す説明図である。It is explanatory drawing which shows the selection screen of a diagnostic mode. 回転速度と軸受の発熱量との関係を示すグラフである。が転動体である。It is a graph which shows the relationship between rotation speed and the amount of heat generation of a bearing. Are rolling elements.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、回転軸装置の一例である工作機械の主軸装置を示す概略図である。
この主軸装置1は、ハウジング2内に、モータ3によって回転駆動する回転軸としての主軸4を、転がり軸受である軸受5,5・・によって軸支してなり、主軸4の先端に工具が着脱可能となっている。ハウジング2には、主軸4の回転速度を検出する回転速度検出手段としての回転速度検出器6が取り付けられている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view showing a spindle device of a machine tool which is an example of a rotary shaft device.
In this main spindle device 1, a main spindle 4 as a rotary shaft that is rotationally driven by a motor 3 is supported in a housing 2 by bearings 5 and 5 which are rolling bearings, and a tool is attached to and detached from the tip of the main spindle 4. It is possible. A rotation speed detector 6 is attached to the housing 2 as a rotation speed detecting means for detecting the rotation speed of the main shaft 4.

7は制御装置で、制御装置7には、演算装置8と、記憶装置9と、表示装置10と、入力装置11とが設けられている。制御装置7は、記憶装置9に記憶された加工プログラムに従ってモータ3を回転駆動させて加工を行う他、本発明の惰性回転手段、軸受特性算出手段、判定手段としても機能し、入力装置11(キーボードやタッチパネル等)による指令を受けて診断モードに移行して軸受5の異常診断を実行する。以下、この異常診断制御を、図2のフローチャートに基づいて説明する。 Reference numeral 7 is a control device, and the control device 7 is provided with a computing device 8, a storage device 9, a display device 10, and an input device 11. The control device 7 rotates the motor 3 in accordance with the machining program stored in the storage device 9 to perform machining, and also functions as inertial rotation means, bearing characteristic calculation means, and determination means of the present invention, and the input device 11 ( In response to a command from the keyboard, touch panel, etc., the mode is shifted to the diagnostic mode and the abnormality diagnosis of the bearing 5 is executed. Hereinafter, this abnormality diagnosis control will be described based on the flowchart of FIG.

まず、S1で、診断モードが判別される。この診断モードは、「安全モード」と「標準モード」との2つのモードを備えており、図3に示すように、表示装置10に選択画面を表示して入力装置11により何れかのモードの選択を促すものである。
ここで安全モードが選択されると、S2で、主軸4を第1の回転速度で回転させる。この第1の回転速度は、主軸4の最高回転速度よりも低く設定され、軸受5に異常があっても主軸4が回転不能とならない低回転速度で、軸受5の諸元から求めた所定の指標に基づいて予め設定される。ここでは諸元として図4に示す回転速度と発熱量との関係を選択し、この関係に基づいて、最高回転時の発熱量の3分の1となる係数を指標として設定している。そして、最高回転速度(ここでは15000min−1)に当該係数を積算することで、第1の回転速度(ここでは7000min−1)を決定して記憶装置9に記憶している。
First, in S1, the diagnosis mode is determined. This diagnostic mode has two modes of "safety mode" and "standard mode". As shown in FIG. 3, the selection screen is displayed on the display device 10 and the input device 11 selects one of the modes. It encourages choice.
When the safety mode is selected here, in S2, the spindle 4 is rotated at the first rotation speed. This first rotation speed is set to be lower than the maximum rotation speed of the main shaft 4, and is a low rotation speed at which the main shaft 4 does not become unrotatable even if the bearing 5 has an abnormality. It is preset based on the index. Here, the relationship between the rotation speed and the heat generation amount shown in FIG. 4 is selected as specifications, and based on this relationship, a coefficient that is one third of the heat generation amount at the maximum rotation is set as an index. Then, the first rotation speed (here, 7,000 min −1 ) is determined and stored in the storage device 9 by integrating the coefficient with the highest rotation speed (here, 15,000 min −1 ).

次に、S3で、モータ3への通電を停止させて惰性回転を行わせて(惰性回転ステップ)、S4で、回転速度検出器6で主軸4の回転速度を計測すると共に、内蔵したタイマーで通電停止からの時間を計測する(回転速度検出ステップ)。
S5で主軸4の回転停止が確認されると、S6で、演算装置8が、軸受特性としての惰性回転の停止時間と惰性回転時の抵抗トルクとを算出する(軸受特性算出ステップ)。抵抗トルクTは、例えば回転速度Vと慣性イナーシャMと加速度とを用いた以下の式に基づいて算出される。
T=−(2πM/60)×(dV/dt)
Next, in S3, the energization to the motor 3 is stopped and inertia rotation is performed (inertia rotation step), and in S4, the rotation speed of the spindle 4 is measured by the rotation speed detector 6 and the built-in timer is used. The time from the stop of energization is measured (rotational speed detection step).
When the rotation stop of the spindle 4 is confirmed in S5, the computing device 8 calculates the inertia rotation stop time and the resistance torque during inertia rotation as the bearing characteristics in S6 (bearing characteristic calculation step). The resistance torque T is calculated, for example, based on the following equation using the rotation speed V, the inertia inertia M, and the acceleration.
T=-(2πM/60)×(dV/dt)

次に、S7で、演算装置8が、主軸4の停止時間が予め設定した閾値時間より短いか、或いは抵抗トルクが予め設定した閾値より大きいか否かを判別し(判定ステップ)、どちらかに該当する場合は、S8で軸受5に異常があると判定してその旨を表示装置10に表示する。一方、どちらも該当しない場合は、S9で軸受5が正常であると判定してその旨を表示装置10に表示する。 Next, in S7, the arithmetic unit 8 determines whether the stop time of the spindle 4 is shorter than a preset threshold time or whether the resistance torque is larger than a preset threshold value (determination step), and either of them is determined. When it corresponds, it is determined in S8 that the bearing 5 has an abnormality, and the fact is displayed on the display device 10. On the other hand, if neither of them applies, it is determined in S9 that the bearing 5 is normal, and that fact is displayed on the display device 10.

そして、S9で軸受5が正常と判定されると、S10で、診断終了か否かの選択画面が併せて表示される。ここで診断終了を選択すると異常診断制御は終了するが、診断続行を選択すると、S1へ戻って図3の選択画面を表示する。よって、ここで標準モードを選択すると、S11で、主軸4を第2の回転速度で回転させる。この第2の回転速度は、第1の回転速度よりも高い回転速度で、ここでは設定されている最高回転速度となっている。
S3以降の処理は安全モードと同じで、惰性回転を行わせてS4で主軸4の回転速度と通電停止からの時間とを計測し、S5で主軸4の停止が確認されると、S6で、停止時間と抵抗トルクとを算出し、S7で、停止時間が閾値時間より短いか、或いは抵抗トルクが閾値より大きいか否かを判別する。ここでどちらかに該当する場合は、S8で軸受5に異常があると判定してその旨を表示装置10に表示する。一方、どちらも該当しない場合は、S9で軸受5が正常であると判定してその旨を表示装置10に表示する。
When it is determined that the bearing 5 is normal in S9, a selection screen for determining whether or not the diagnosis is completed is also displayed in S10. If the diagnosis end is selected here, the abnormality diagnosis control ends, but if the diagnosis continuation is selected, the process returns to S1 and the selection screen of FIG. 3 is displayed. Therefore, if the standard mode is selected here, the spindle 4 is rotated at the second rotation speed in S11. The second rotation speed is higher than the first rotation speed, and is the set maximum rotation speed here.
The process after S3 is the same as the safety mode, the inertial rotation is performed, the rotation speed of the spindle 4 and the time from the stop of energization are measured in S4, and the stop of the spindle 4 is confirmed in S5. The stop time and the resistance torque are calculated, and in S7, it is determined whether the stop time is shorter than the threshold time or the resistance torque is larger than the threshold. If either of the conditions applies, it is determined in S8 that the bearing 5 has an abnormality, and the fact is displayed on the display device 10. On the other hand, if neither of them applies, it is determined in S9 that the bearing 5 is normal, and the fact is displayed on the display device 10.

このように、上記形態の主軸装置1によれば、惰性回転を開始する所定の回転速度を、軸受5の諸元(回転速度に対する発熱量)から求めた所定の指標(係数)に基づいて主軸4の最高回転速度より低く設定された第1の回転速度(低回転速度)として惰性回転を実行することで、軸受5に異常があっても主軸4が回転不能とならない低回転速度から惰性回転を行って軸受5を診断することができる。よって、惰性回転を利用して軸受5の異常の有無を低コストかつ高精度に診断できると共に、軸受5に焼き付きが発生するおそれも低減することができる。 Thus, according to the spindle device 1 of the above-described embodiment, the predetermined rotation speed at which the inertial rotation is started is determined based on the predetermined index (coefficient) obtained from the specifications of the bearing 5 (heat generation amount with respect to the rotation speed). By performing inertial rotation as the first rotational speed (low rotational speed) set lower than the maximum rotational speed of 4, even if there is an abnormality in the bearing 5, the main shaft 4 does not become unrotatable Then, the bearing 5 can be diagnosed. Therefore, the presence or absence of abnormality of the bearing 5 can be diagnosed at low cost and with high accuracy by utilizing inertial rotation, and the risk of seizure of the bearing 5 can be reduced.

なお、上記形態では、軸受特性として惰性回転時の停止時間と抵抗トルクとを算出してそれぞれ基準の軸受特性となる閾値時間や閾値と比較しているが、どちらか一方のみとしてもよい。また、転がり速度等の他の軸受特性を採用してもよい。さらに、停止時間についても、回転速度との関係で特性が導き出せる値であれば、所定の回転速度まで減速する時間等でもよく、停止までの時間に限定されない。
一方、低回転速度となる第1の回転速度は、最高回転速度の発熱量の3分の1の発熱量を目安として最高回転速度に乗じる係数に限らず、他の割合でも差し支えない。
また、低回転速度の決定は、発熱量を基準にした係数に限らず、例えば、諸元として軸受の基本定格寿命を基準にした係数(例えば、基本定格寿命が10倍になる回転速度とする係数)や、軸受の接触面圧を基準にした係数(例えば、接触面圧が疲労限界以下となる回転速度とする係数)としてもよい。
In the above embodiment, the stop time during inertial rotation and the resistance torque are calculated as the bearing characteristics and compared with the threshold time or threshold value that is the reference bearing characteristic, but only one of them may be used. Further, other bearing characteristics such as rolling speed may be adopted. Further, the stop time may be a time for decelerating to a predetermined rotation speed or the like as long as the characteristic can be derived in relation to the rotation speed, and is not limited to the time until the stop.
On the other hand, the first rotation speed, which is a low rotation speed, is not limited to a coefficient by which the maximum rotation speed is multiplied by one-third the heat generation amount of the maximum rotation speed as a guide, and other ratios may be used.
In addition, the determination of the low rotation speed is not limited to the coefficient based on the heat generation amount. For example, as a specification, a coefficient based on the basic rated life of the bearing (for example, the rotational speed at which the basic rated life becomes 10 times is set. Coefficient) or a coefficient based on the contact surface pressure of the bearing (for example, a coefficient that makes the contact surface pressure the rotational speed at which the contact surface pressure is below the fatigue limit).

さらに、軸受近傍に温度センサを設けて、軸受近傍の温度を基準にした係数(例えば、回転停止時からの軸受上昇温度が10℃以下となる回転速度とする係数)や、回転速度と時間とから算出した軸受の総走行距離を基準にした係数(例えば、総走行距離が10000m以下の場合は1、15000m以下の場合は0.5)としてもよい。
加えて、これらの係数を複数組み合わせて第1の回転速度を算出することもできる。
Further, by providing a temperature sensor near the bearing, the coefficient based on the temperature near the bearing (for example, the coefficient that makes the bearing rise temperature 10° C. or less after the rotation is stopped is a rotation speed), the rotation speed and the time A coefficient based on the total traveling distance of the bearing calculated from (for example, 1 when the total traveling distance is 10,000 m or less, 0.5 when the total traveling distance is 15,000 m or less) may be used.
In addition, the first rotation speed can be calculated by combining a plurality of these coefficients.

そして、上記形態では、低回転速度を1つのみ設定しているが、複数の低回転速度を設定して安全モードを複数設定し、回転速度の小さいモードから診断できるようにしてもよい。
また、上記形態では、安全モードで正常判定がされた場合、再び選択画面を表示してモード選択を促すようにしているが、安全モードで正常判定がされた場合、続いて自動的に標準モードで異常診断制御を行うようにしてもよい。
In the above embodiment, only one low rotation speed is set, but a plurality of low rotation speeds may be set to set a plurality of safety modes so that diagnosis can be performed from a mode having a low rotation speed.
Further, in the above embodiment, when the normal judgment is made in the safety mode, the selection screen is displayed again to prompt the user to select the mode, but when the normal judgment is made in the safety mode, the standard mode is automatically followed. The abnormality diagnosis control may be performed by.

その他、本発明の回転軸装置や軸受の異常診断方法は、工作機械の主軸装置に限らず、自動車や鉄道車両、船舶等の他の機械設備においても適用可能である。 In addition, the rotating shaft device and the bearing abnormality diagnosing method of the present invention can be applied not only to the spindle device of a machine tool but also to other mechanical equipment such as an automobile, a railroad vehicle, and a ship.

1・・主軸装置、2・・ハウジング、3・・モータ、4・・主軸、5・・軸受、6・・回転速度検出器、7・・制御装置、8・・演算装置、9・・記憶装置、10・・表示装置、11・・入力装置。 1...Main spindle device, 2...Housing, 3...Motor, 4...Main spindle, 5...Bearing, 6...Rotation speed detector, 7...Control device, 8...Calculation device, 9...Memory Device, 10... Display device, 11... Input device

Claims (4)

回転軸を軸受で軸支してなる回転軸装置であって、
前記回転軸を所定の回転速度から惰性回転させる惰性回転手段と、
前記惰性回転中の回転速度を検出する回転速度検出手段と、
少なくとも前記惰性回転時の回転速度と惰性回転の時間とに基づいて前記惰性回転時の前記軸受の抵抗トルクを算出する軸受特性算出手段と、
算出した前記抵抗トルクを予め設定された閾値と比較して異常の有無を判定する判定手段と、を備え、
前記惰性回転手段では、前記所定の回転速度を、前記軸受の諸元から求めた所定の指標に基づいて前記回転軸の最高回転速度より低く設定された低回転速度として前記惰性回転を実行することを特徴とする回転軸装置。
A rotary shaft device in which a rotary shaft is supported by bearings,
An inertial rotation means for inertially rotating the rotation shaft from a predetermined rotation speed,
Rotation speed detection means for detecting the rotation speed during the inertia rotation,
Bearing characteristic calculation means for calculating a resistance torque of the bearing during the inertial rotation based on at least the rotational speed during the inertial rotation and the time for the inertial rotation ,
And a determination unit that determines whether or not there is an abnormality by comparing the calculated resistance torque with a preset threshold value ,
In the inertial rotation means, the inertial rotation is performed by setting the predetermined rotation speed as a low rotation speed set lower than a maximum rotation speed of the rotation shaft based on a predetermined index obtained from specifications of the bearing. A rotary shaft device characterized by.
前記軸受の諸元が、前記回転速度に対する前記軸受の発熱量であり、前記所定の指標が、前記発熱量を基準にした係数であって、前記低回転速度は、前記最高回転速度に前記係数を乗じて決定されることを特徴とする請求項1に記載の回転軸装置。 The specifications of the bearing are the heat generation amount of the bearing with respect to the rotation speed, the predetermined index is a coefficient based on the heat generation amount, the low rotation speed is the coefficient to the maximum rotation speed The rotary shaft device according to claim 1, wherein the rotary shaft device is determined by multiplying by. 前記惰性回転手段は、前記所定の回転速度を前記最高回転速度として前記惰性回転を実行可能であり、前記低回転速度で前記惰性回転を実行して前記判定手段が前記軸受に異常なしと判定した場合、前記惰性回転手段は、前記最高回転速度から前記惰性回転を実行し、前記軸受特性算出手段は、前記最高回転速度からの前記惰性回転時の回転速度と前記時間とに基づいて前記所定の軸受特性を算出し、前記判定手段は、算出した前記軸受特性を前記基準の軸受特性と比較して異常の有無を判定することを特徴とする請求項1又は2に記載の回転軸装置。 The inertial rotation means can execute the inertial rotation with the predetermined rotation speed as the maximum rotation speed, and execute the inertial rotation at the low rotation speed and the determination means determines that there is no abnormality in the bearing. In this case, the inertial rotation means executes the inertial rotation from the maximum rotation speed, and the bearing characteristic calculation means determines the predetermined value based on the rotation speed and the time during the inertial rotation from the maximum rotation speed. The rotating shaft device according to claim 1 or 2, wherein a bearing characteristic is calculated, and the determining unit compares the calculated bearing characteristic with the reference bearing characteristic to determine whether there is an abnormality. 回転軸を軸受で軸支してなる回転軸装置において、前記軸受の異常の有無を診断する方法であって、
前記回転軸を所定の回転速度から惰性回転させる惰性回転ステップと、
前記惰性回転中の回転速度を検出する回転速度検出ステップと、
少なくとも前記惰性回転時の回転速度と惰性回転の時間とに基づいて前記惰性回転時の前記軸受の抵抗トルクを算出する軸受特性算出ステップと、
算出した前記抵抗トルクを予め設定された閾値と比較して異常の有無を判定する判定ステップと、を実行し、
前記惰性回転ステップでは、前記所定の回転速度を、前記軸受の諸元から求めた所定の指標に基づいて前記回転軸の最高回転速度より低く設定された低回転速度として前記惰性回転を実行することを特徴とする回転軸装置における軸受の異常診断方法。
In a rotating shaft device in which a rotating shaft is rotatably supported by a bearing, a method for diagnosing the presence or absence of abnormality of the bearing,
An inertial rotation step of inertially rotating the rotation shaft from a predetermined rotation speed,
A rotation speed detection step of detecting the rotation speed during the inertia rotation,
A bearing characteristic calculation step of calculating a resistance torque of the bearing during the inertial rotation based on at least the rotational speed during the inertial rotation and the time of the inertial rotation ,
A determination step of determining whether or not there is an abnormality by comparing the calculated resistance torque with a preset threshold value ,
In the inertial rotation step, the inertial rotation is executed by setting the predetermined rotation speed as a low rotation speed that is set lower than the maximum rotation speed of the rotation shaft based on a predetermined index obtained from the specifications of the bearing. A method for diagnosing a bearing abnormality in a rotating shaft device.
JP2016175834A 2016-09-08 2016-09-08 Rotating shaft device and bearing abnormality diagnosis method in rotating shaft device Active JP6742205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175834A JP6742205B2 (en) 2016-09-08 2016-09-08 Rotating shaft device and bearing abnormality diagnosis method in rotating shaft device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175834A JP6742205B2 (en) 2016-09-08 2016-09-08 Rotating shaft device and bearing abnormality diagnosis method in rotating shaft device

Publications (2)

Publication Number Publication Date
JP2018040456A JP2018040456A (en) 2018-03-15
JP6742205B2 true JP6742205B2 (en) 2020-08-19

Family

ID=61625725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175834A Active JP6742205B2 (en) 2016-09-08 2016-09-08 Rotating shaft device and bearing abnormality diagnosis method in rotating shaft device

Country Status (1)

Country Link
JP (1) JP6742205B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246835B2 (en) * 2019-12-27 2023-03-28 株式会社アーステクニカ Spinning Crusher and Method for Detecting Abnormal Bearing of Spinning Crusher
US20230251645A1 (en) * 2020-07-21 2023-08-10 Fanuc Corporation Abnormality detection device
CN114235387B (en) * 2021-11-08 2024-04-30 三一重能股份有限公司 High-speed shaft rotating speed vibration detection method and device and working machine

Also Published As

Publication number Publication date
JP2018040456A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
TWI665435B (en) Bearing diagnostic device for machine tool
JP6193911B2 (en) Machine tools with inspection function for spindle deterioration
EP2208571B1 (en) Spindle device with a temperature sensor
JP6308922B2 (en) Rolling bearing abnormality diagnosis apparatus, wind power generation apparatus, and rolling bearing abnormality diagnosis method
JP6294262B2 (en) Abnormality detection device having abnormality detection function of machine tool and abnormality detection method
JP6742205B2 (en) Rotating shaft device and bearing abnormality diagnosis method in rotating shaft device
JP6495797B2 (en) Spindle abnormality detection device and spindle abnormality detection method for machine tools
JP6657256B2 (en) Fault diagnosis method and fault diagnosis device for feed axis
JP7000135B2 (en) Feed shaft abnormality diagnosis method and abnormality diagnosis device
JP2009154274A (en) Method and apparatus for diagnosing machine
JP2008097363A (en) Abnormality diagnosis method and device thereof
JP6735183B2 (en) Machine tool with rotating shaft
EP3260838A1 (en) Abnormality diagnosis system
JP6799977B2 (en) Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device
JP6845192B2 (en) Processing environment measuring device
US9356550B2 (en) Motor controller having abnormality detection function of power transmission unit between motor and main shaft
JP2018028865A (en) Machine with rotation axis
JP6637844B2 (en) Method for determining warm-up operation time before bearing diagnosis in machine tool, machine tool
JP6873870B2 (en) Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices
JP2019110628A (en) Servo motor load state diagnostic device, and load state diagnostic method thereof
JP6963456B2 (en) Gear diagnostic device and gear diagnostic method
JP2021012032A (en) Abnormality diagnosis device and robot controller
WO2021241468A1 (en) Diagnosis device, diagnosis method, and diagnosis program
JPS6130702B2 (en)
JP2023106207A (en) Machine tool main shaft diagnosis method and main shaft diagnosis system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200728

R150 Certificate of patent or registration of utility model

Ref document number: 6742205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150