JP6873870B2 - Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices - Google Patents

Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices Download PDF

Info

Publication number
JP6873870B2
JP6873870B2 JP2017167473A JP2017167473A JP6873870B2 JP 6873870 B2 JP6873870 B2 JP 6873870B2 JP 2017167473 A JP2017167473 A JP 2017167473A JP 2017167473 A JP2017167473 A JP 2017167473A JP 6873870 B2 JP6873870 B2 JP 6873870B2
Authority
JP
Japan
Prior art keywords
lubrication
lubricant
feature amount
bearing
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017167473A
Other languages
Japanese (ja)
Other versions
JP2019045259A (en
Inventor
拓 杉浦
拓 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2017167473A priority Critical patent/JP6873870B2/en
Publication of JP2019045259A publication Critical patent/JP2019045259A/en
Application granted granted Critical
Publication of JP6873870B2 publication Critical patent/JP6873870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工作機械の主軸装置等、回転軸を軸受で軸支してなる回転軸装置において、軸受の潤滑状態を診断する診断装置及び診断方法に関する。 The present invention relates to a diagnostic device and a diagnostic method for diagnosing a lubrication state of a bearing in a rotary shaft device in which a rotary shaft is pivotally supported by a bearing, such as a spindle device of a machine tool.

軸受は、工作機械の主軸装置等の多くの回転軸装置に使用されている。このような軸受においては、環境への配慮、コスト削減、摩擦発熱・動力損失抑制などの理由から軸受へ供給する油剤は可能な限り少なくすることが望ましい。このような極微量油潤滑法として潤滑油を圧縮空気によって搬送するオイルエア潤滑が知られており、工作機械の高速主軸軸受の潤滑に採用されている。オイルエア潤滑を採用した回転軸装置においては、潤滑不足による焼付きなどのトラブルを避けるために、潤滑剤の供給状態や潤滑状態を把握する技術が求められている。
この技術に関し、例えば特許文献1には、オイル粒子に応じて監視感度を設定可能なセンサにより、オイル粒子の流量を潤滑剤供給路で監視し所定の流量以上流れていると信号を発する潤滑剤供給装置が示されている。
特許文献2には、供給路を流れる潤滑剤の粒子量をセンサにより監視することで潤滑不良に起因する軸受損傷を回避する軸受潤滑機構が示されている。
特許文献3には、マイクロ波の定在波による空間フィルタにより通過油滴の体積と流量から流量を算出する流量計測装置が示されている。
特許文献4には、ミキシングバルブの後の管路で特定周波数の電磁波によって潤滑油の流れを検出する手法が示されている。
特許文献5には、機械動作が一定のサイクルである可動部材の潤滑状態を、物理量と測定時間を含む連続データから動作サイクル毎のサイクルデータを抽出して代表値を算出し、代表値の時系列推移に基づき潤滑不足の有無を診断する装置が示されている。
特許文献6には、工作機械主軸を慣性運転させたときの慣性回転時間や回転抵抗を予め設定されている閾値と比較して主軸の劣化状態を判断する手法が示されている。
特許文献7には、グリース潤滑の主軸について、グリース補給後の回転トルク上昇を検出して、グリース吐出がされたか否かを判断する手法が示されている。
Bearings are used in many rotary shaft devices such as spindle devices for machine tools. In such bearings, it is desirable to reduce the amount of oil supplied to the bearings as much as possible for the reasons of consideration for the environment, cost reduction, frictional heat generation and suppression of power loss. Oil-air lubrication, in which lubricating oil is conveyed by compressed air, is known as such a trace amount of oil lubrication method, and is used for lubrication of high-speed spindle bearings of machine tools. In a rotary shaft device that employs oil-air lubrication, a technique for grasping the supply state and the lubrication state of the lubricant is required in order to avoid troubles such as seizure due to insufficient lubrication.
Regarding this technique, for example, in Patent Document 1, a lubricant that monitors the flow rate of oil particles in a lubricant supply path by a sensor that can set the monitoring sensitivity according to the oil particles and emits a signal when the flow rate exceeds a predetermined flow rate. The feeder is shown.
Patent Document 2 discloses a bearing lubrication mechanism that avoids bearing damage due to poor lubrication by monitoring the amount of particles of the lubricant flowing through the supply path with a sensor.
Patent Document 3 discloses a flow rate measuring device that calculates a flow rate from the volume and flow rate of passing oil droplets by a spatial filter using a standing wave of microwaves.
Patent Document 4 discloses a method of detecting the flow of lubricating oil by an electromagnetic wave of a specific frequency in a pipeline after a mixing valve.
In Patent Document 5, a representative value is calculated by extracting cycle data for each operation cycle from continuous data including a physical quantity and a measurement time for the lubrication state of a movable member whose mechanical operation is a constant cycle, and when the representative value is used. A device for diagnosing the presence or absence of insufficient lubrication based on the sequence transition is shown.
Patent Document 6 discloses a method of determining the deterioration state of the spindle by comparing the inertial rotation time and the rotational resistance when the machine tool spindle is inertially operated with a preset threshold value.
Patent Document 7 discloses a method of detecting an increase in rotational torque after replenishing grease for a main shaft for grease lubrication to determine whether or not grease has been discharged.

特開2006−258263号公報Japanese Unexamined Patent Publication No. 2006-258263 特開2008−304036号公報Japanese Unexamined Patent Publication No. 2008-3004036 特許第4106075号公報Japanese Patent No. 4160575 特許第4920518号公報Japanese Patent No. 4920518 特許第4956261号公報Japanese Patent No. 4965261 特開2016−200523号公報Japanese Unexamined Patent Publication No. 2016-200523 特開2005−344784号公報Japanese Unexamined Patent Publication No. 2005-344784

特許文献1乃至4の発明では、いずれも潤滑剤が供給される流路において潤滑剤粒子の通過を検出することで、検出位置までの潤滑剤供給の異常を判断することが可能となるが、検出位置より先の軸受まで潤滑剤が供給されているかどうかを判断することはできないという課題がある。また、潤滑剤の供給状態を判断するために追加のセンサを必要とするため、製造コストが増加するという課題がある。さらに、軸受の組み込み予圧や加工時の主軸速度に応じて、最適な潤滑剤の供給量は異なるため、潤滑剤の流量を監視することで潤滑状態の良否を判断することは困難であるという課題がある。
特許文献5の発明では、射出成形機のような一定のサイクルで所定の動作を繰り返す回転軸装置に関しては、潤滑状態が初期状態から逸脱したことを判定できるが、相対的な判定となるため、初期状態から潤滑状態が適正でない場合は、異常として検出できないおそれがあるといった課題がある。
特許文献6の発明では、予め慣性回転時間や回転抵抗の閾値を設定することで工作機械主軸の劣化状態を判断することができるが、その閾値を決定するためには機台差によるばらつきや季節変動等を考慮するために多くの実験を必要とするという課題がある。また、回転速度が異なると潤滑剤の排出されやすさや発熱の大きさなどが異なるため、慣性運転中に大きく回転速度が変化する場合、慣性運転中の回転抵抗の値を算出したとしても、一定の回転速度で運転する通常使用時の状態を必ずしも反映しないため、適切に診断できない恐れがあるといった課題がある。
オイルエア潤滑では潤滑状態が周期的に変動するため、特許文献7の発明のように回転トルクが増大することを検出することでオイルエア潤滑が機能していることを検出することは可能である。しかしながら、潤滑剤の過不足に限らず潤滑状態が周期的に変動するため、回転トルクが増大することを検出しても潤滑不足か否かを判断できないという課題がある。
In the inventions of Patent Documents 1 to 4, it is possible to determine the abnormality of the lubricant supply to the detection position by detecting the passage of the lubricant particles in the flow path to which the lubricant is supplied. There is a problem that it is not possible to determine whether or not the lubricant is supplied to the bearing beyond the detection position. Further, since an additional sensor is required to determine the supply state of the lubricant, there is a problem that the manufacturing cost increases. Furthermore, since the optimum amount of lubricant supplied differs depending on the bearing built-in preload and the spindle speed during machining, it is difficult to judge the quality of the lubrication state by monitoring the flow rate of the lubricant. There is.
In the invention of Patent Document 5, it can be determined that the lubrication state deviates from the initial state with respect to the rotary shaft device that repeats a predetermined operation in a constant cycle such as an injection molding machine, but it is a relative determination. If the lubrication state is not appropriate from the initial state, there is a problem that it may not be detected as an abnormality.
In the invention of Patent Document 6, the deterioration state of the machine tool spindle can be determined by setting the thresholds of the inertial rotation time and the rotational resistance in advance, but in order to determine the thresholds, the variation due to the machine tool difference and the season There is a problem that many experiments are required to consider fluctuations and the like. In addition, if the rotation speed is different, the ease with which the lubricant is discharged and the amount of heat generated are different. Therefore, if the rotation speed changes significantly during inertial operation, even if the value of rotational resistance during inertial operation is calculated, it is constant. Since it does not necessarily reflect the state during normal use when operating at the rotation speed of, there is a problem that proper diagnosis may not be possible.
Since the lubrication state fluctuates periodically in oil-air lubrication, it is possible to detect that oil-air lubrication is functioning by detecting an increase in rotational torque as in the invention of Patent Document 7. However, since the lubrication state fluctuates periodically regardless of the excess or deficiency of the lubricant, there is a problem that it cannot be determined whether or not the lubrication is insufficient even if it is detected that the rotational torque increases.

上記目的を達成するために、請求項1に記載の発明は、周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、軸受の潤滑状態を診断する装置であって、
回転軸の回転抵抗の大きさを代表する特徴量を、軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中で互いに異なるタイミングで取得した情報に基づいて複数算出する特徴量算出手段と、
特徴量を算出する際に用いる情報を取得したタイミングである代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相をそれぞれ算出する潤滑位相算出手段と、
特徴量算出時潤滑位相が異なる複数の特徴量により軸受の潤滑状態の判定を行う潤滑状態判定手段と、を備えたことを特徴とする。
請求項2に記載の発明は、請求項1の構成において、潤滑状態判定手段は、複数の特徴量から潤滑剤減少区間において回転抵抗が増加しているか否かを表わす指標を算出し、指標が基準値を超過した場合に潤滑不足と判断することを特徴とする。
上記目的を達成するために、請求項3に記載の発明は、周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、軸受の潤滑状態を診断する装置であって、
回転軸の回転抵抗の大きさを代表する特徴量を、軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中で互いに異なるタイミングで取得した情報に基づいて複数算出する特徴量算出手段と、
各特徴量を算出する際に用いる情報を取得した前記タイミングである代表時刻が、潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相をそれぞれ算出する潤滑位相算出手段と、
特徴量と特徴量算出時潤滑位相とのいずれかの一方を縦軸、他方を横軸に持つグラフを表示する表示部と、を備えたことを特徴とする。
請求項に記載の発明は、請求項1乃至の何れかの構成において、回転軸の慣性運転を実行する慣性運転手段と、回転軸の回転速度を検出する回転速度検出手段と、を備え、特徴量算出手段は、慣性運転時の回転速度の変化様態に基づいて特徴量を算出することを特徴とする。
請求項に記載の発明は、請求項の構成において、慣性運転における慣性運転開始から終了までの回転速度範囲は、慣性運転中の回転速度範囲における特徴量の変動が基準値以下となるように決定することを特徴とする。
上記目的を達成するために、請求項に記載の発明は、周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、軸受の潤滑状態を診断する方法であって、
回転軸の回転抵抗の大きさを代表する特徴量を、軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中で互いに異なるタイミングで取得した情報に基づいて複数算出する特徴量算出ステップと、
特徴量を算出する際に用いる情報を取得したタイミングである代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相をそれぞれ算出する潤滑位相算出ステップと、
特徴量算出時潤滑位相が異なる複数の特徴量により軸受の潤滑状態の判定を行う潤滑状態判定ステップと、を実行することを特徴とする。
上記目的を達成するために、請求項7に記載の発明は、周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、軸受の潤滑状態を診断する方法であって、
回転軸の回転抵抗の大きさを代表する特徴量を、軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中で互いに異なるタイミングで取得した情報に基づいて複数算出する特徴量算出ステップと、
各特徴量を算出する際に用いる情報を取得したタイミングである代表時刻が、潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相をそれぞれ算出する潤滑位相算出ステップと、
特徴量と特徴量算出時潤滑位相とのいずれかの一方を縦軸、他方を横軸に持つグラフを表示する表示ステップと、を実行することを特徴とする。
In order to achieve the above object, the invention according to claim 1 is in a rotary shaft device having a rotary shaft supported by a bearing that is lubricated by being conveyed by compressed air of a lubricant that is periodically discharged. , A device for diagnosing the lubrication state of bearings
Based on the information acquired at different timings in the lubricant reduction section, which is the section where the amount of lubricant existing on the rolling surface of the bearing decreases , the feature amount representing the magnitude of the rotational resistance of the rotating shaft is obtained. Multiple feature amount calculation means and
Representative time information is a timing obtained the used to calculate each feature quantity, and the lubricating phase calculating means for calculating each feature calculation when lubricating phase indicating which timing the discharge cycle of the lubricant,
It is characterized in that it is provided with a lubrication state determining means for determining the lubrication state of the bearing by a plurality of feature amounts having different lubrication phases at the time of calculating the feature amount.
According to the second aspect of the present invention, in the configuration of the first aspect, the lubrication state determining means calculates an index indicating whether or not the rotational resistance is increased in the lubricant decreasing section from a plurality of feature amounts, and the index is It is characterized in that it is judged that the lubrication is insufficient when the reference value is exceeded.
In order to achieve the above object, the invention according to claim 3 is in a rotary shaft device having a rotary shaft supported by a bearing that is lubricated by being conveyed by compressed air of a lubricant that is periodically discharged. , A device for diagnosing the lubrication state of bearings
Based on the information acquired at different timings in the lubricant reduction section, which is the section where the amount of lubricant existing on the rolling surface of the bearing decreases, the feature amount representing the magnitude of the rotational resistance of the rotating shaft is obtained. Multiple feature amount calculation means and
Lubrication phase calculation means for calculating the lubrication phase at the time of feature amount calculation, which indicates which timing of the discharge cycle of the lubricant is the representative time, which is the timing at which the information used for calculating each feature amount is acquired.
Characterized by comprising a display unit for displaying a graph with the vertical axis of one of either the feature amount and the feature amount calculated during lubrication phase, the other on the horizontal axis, a.
The invention according to claim 4 includes, in any of the configurations of claims 1 to 3 , an inertial operating means for executing inertial operation of the rotating shaft and a rotating speed detecting means for detecting the rotational speed of the rotating shaft. The feature amount calculating means is characterized in that the feature amount is calculated based on the change mode of the rotation speed during inertial operation.
According to the fifth aspect of the present invention, in the configuration of the fourth aspect , the rotational speed range from the start to the end of the inertial operation in the inertial operation is such that the fluctuation of the feature amount in the rotational speed range during the inertial operation is equal to or less than the reference value. It is characterized by determining to.
In order to achieve the above object, the invention according to claim 6 is in a rotary shaft device having a rotary shaft supported by a bearing in which a lubricant periodically discharged is conveyed by compressed air to be lubricated. , A method of diagnosing the lubrication state of bearings,
Based on the information acquired at different timings in the lubricant reduction section, which is the section where the amount of lubricant existing on the rolling surface of the bearing decreases , the feature amount representing the magnitude of the rotational resistance of the rotating shaft is obtained. Multiple feature amount calculation steps and
Representative time information is a timing obtained the used to calculate each feature quantity, and the lubricating phase calculation step of calculating respective characteristic amount calculated during the lubricating phase indicating which timing the discharge cycle of the lubricant,
At the time of calculating the feature amount, the lubrication state determination step of determining the lubrication state of the bearing by a plurality of feature amounts having different lubrication phases is executed.
In order to achieve the above object, the invention according to claim 7 is in a rotary shaft device having a rotary shaft supported by a bearing in which a lubricant periodically discharged is conveyed by compressed air to be lubricated. , A method of diagnosing the lubrication state of bearings,
Based on the information acquired at different timings in the lubricant reduction section, which is the section where the amount of lubricant existing on the rolling surface of the bearing decreases, the feature amount representing the magnitude of the rotational resistance of the rotating shaft is obtained. Multiple feature amount calculation steps and
A lubrication phase calculation step for calculating the lubrication phase at the time of feature calculation, which indicates which timing of the lubricant discharge cycle is the representative time when the information used for calculating each feature is acquired.
It is characterized by executing a display step of displaying a graph having either one of the feature amount and the lubrication phase at the time of feature amount calculation on the vertical axis and the other on the horizontal axis.

上記目的を達成するために、請求項1に記載の発明は、周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、軸受の潤滑状態を診断する装置であって、
回転軸の回転抵抗の大きさを代表する特徴量を、異なるタイミングで複数算出する特徴量算出手段と、
特徴量を算出する際の代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相を算出する潤滑位相算出手段と、を備えたことを特徴とする。
請求項2に記載の発明は、請求項1の構成において、特徴量算出手段は、複数の特徴量を、軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中において算出することを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、特徴量算出時潤滑位相が異なる複数の特徴量により軸受の潤滑状態の判定を行う潤滑状態判定手段を備えたことを特徴とする。
請求項4に記載の発明は、請求項3の構成において、潤滑状態判定手段は、複数の特徴量から潤滑剤減少区間において回転抵抗が増加しているか否かを表わす指標を算出し、指標が基準値を超過した場合に潤滑不足と判断することを特徴とする。
請求項5に記載の発明は、請求項1乃至4の何れかの構成において、回転軸の慣性運転を実行する慣性運転手段と、回転軸の回転速度を検出する回転速度検出手段と、を備え、特徴量算出手段は、慣性運転時の回転速度の変化様態に基づいて特徴量を算出することを特徴とする。
請求項6に記載の発明は、請求項5の構成において、慣性運転における慣性運転開始から終了までの回転速度範囲は、慣性運転中の回転速度範囲における特徴量の変動が基準値以下となるように決定することを特徴とする。
請求項7に記載の発明は、請求項1乃至6の何れかの構成において、特徴量と特徴量算出時潤滑位相とのいずれかの一方を縦軸、他方を横軸に持つグラフを表示する表示部を備えたことを特徴とする。
上記目的を達成するために、請求項8に記載の発明は、周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、軸受の潤滑状態を診断する方法であって、
回転軸の回転抵抗の大きさを代表する特徴量を、異なるタイミングで複数算出する特徴量算出ステップと、
特徴量を算出する際の代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相を算出する潤滑位相算出ステップと、
特徴量算出時潤滑位相が異なる複数の特徴量により軸受の潤滑状態の判定を行う潤滑状態判定ステップと、を実行することを特徴とする。
In order to achieve the above object, the invention according to claim 1 is in a rotary shaft device having a rotary shaft supported by a bearing that is lubricated by being conveyed by compressed air of a lubricant that is periodically discharged. , A device for diagnosing the lubrication state of bearings
A feature amount calculation means that calculates a plurality of feature amounts representing the magnitude of the rotational resistance of the rotating shaft at different timings, and
It is characterized by including a lubrication phase calculating means for calculating the lubrication phase at the time of calculating the feature amount, which indicates which timing of the discharge cycle of the lubricant is the representative time when calculating the feature amount.
According to the second aspect of the present invention, in the configuration of the first aspect, the feature amount calculating means uses a plurality of feature amounts as a lubricant reduction section, which is a section in which the amount of the lubricant present on the rolling surface of the bearing is reduced. It is characterized in that it is calculated in.
The invention according to claim 3 is characterized in that, in the configuration of claim 1 or 2, a lubrication state determining means for determining the lubrication state of the bearing by a plurality of feature amounts having different lubrication phases at the time of calculating the feature amount is provided. To do.
According to the fourth aspect of the present invention, in the configuration of the third aspect, the lubrication state determining means calculates an index indicating whether or not the rotational resistance is increased in the lubricant decreasing section from a plurality of feature amounts, and the index is It is characterized in that it is judged that the lubrication is insufficient when the reference value is exceeded.
The invention according to claim 5 includes, in any of the configurations of claims 1 to 4, an inertial operating means for executing inertial operation of the rotating shaft and a rotating speed detecting means for detecting the rotational speed of the rotating shaft. The feature amount calculating means is characterized in that the feature amount is calculated based on the change mode of the rotation speed during inertial operation.
According to the sixth aspect of the present invention, in the configuration of the fifth aspect, the rotational speed range from the start to the end of the inertial operation in the inertial operation is such that the fluctuation of the feature amount in the rotational speed range during the inertial operation is equal to or less than the reference value. It is characterized by determining to.
The invention according to claim 7 displays a graph in which one of the feature amount and the lubrication phase at the time of calculating the feature amount is on the vertical axis and the other is on the horizontal axis in any of the configurations of claims 1 to 6. It is characterized by having a display unit.
In order to achieve the above object, the invention according to claim 8 is in a rotary shaft device having a rotary shaft supported by a bearing in which a lubricant periodically discharged is conveyed by compressed air to be lubricated. , A method of diagnosing the lubrication state of bearings,
A feature amount calculation step that calculates a plurality of feature amounts that represent the magnitude of the rotational resistance of the rotating shaft at different timings, and
A lubrication phase calculation step for calculating the lubrication phase at the time of feature calculation, which indicates which timing of the lubricant discharge cycle the representative time for calculating the feature amount is.
At the time of calculating the feature amount, the lubrication state determination step of determining the lubrication state of the bearing by a plurality of feature amounts having different lubrication phases is executed.

本発明によれば、軸受に存在する潤滑剤の量が過剰な場合と過少な場合に増加し適量に近づくと減少する特性を持つ回転抵抗の大きさを代表する特徴量を、軸受転走面に存在する潤滑剤が減少するタイミングで複数回算出し、当該特徴量が増加しているか否かをみることで潤滑不足か否かを判定するため、閾値を設定するために実験をする必要がない。また、一般の回転軸装置に備え付けられた制御装置と速度検出器を用いれば、追加のセンサが不要であり、低コストで軸受の潤滑状態を適切に把握、診断することが可能となる。さらに、慣性運転中に回転抵抗が大きく変動しないように慣性運転開始から終了までの回転速度範囲を決定するため、回転速度の変化が大きすぎて通常使用時とは大きく異なる状態で診断してしまうことを防ぐことができる。
そして、回転抵抗の推移を表示すれば、潤滑状態の変動を視覚的に把握することが可能となる。
According to the present invention, the bearing rolling surface has a characteristic amount representing the magnitude of rotational resistance, which has a characteristic of increasing when the amount of lubricant present in the bearing is excessive and excessive and decreasing when approaching an appropriate amount. It is necessary to carry out an experiment to set a threshold in order to determine whether or not lubrication is insufficient by calculating multiple times at the timing when the amount of lubricant present in the vehicle decreases and checking whether or not the characteristic amount is increasing. Absent. Further, if the control device and the speed detector provided in the general rotary shaft device are used, an additional sensor is not required, and it is possible to appropriately grasp and diagnose the lubrication state of the bearing at low cost. Furthermore, since the rotation speed range from the start to the end of the inertial operation is determined so that the rotational resistance does not fluctuate significantly during the inertial operation, the change in the rotational speed is too large and the diagnosis is made in a state significantly different from that during normal use. You can prevent that.
Then, by displaying the transition of the rotational resistance, it becomes possible to visually grasp the fluctuation of the lubrication state.

潤滑状態診断装置の概略図である。It is the schematic of the lubrication state diagnostic apparatus. 潤滑状態診断方法のフローチャートである。It is a flowchart of the lubrication state diagnosis method. 回転抵抗の測定例を示すグラフである。It is a graph which shows the measurement example of the rotation resistance. 診断動作時の回転速度波形を示すグラフである。It is a graph which shows the rotation speed waveform at the time of a diagnosis operation.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、回転軸装置としての工作機械の主軸装置に設けられる潤滑状態診断装置の構成を示したものであり、この図に基づいて具体的に説明する。
主軸1は、転がり軸受である軸受2a,2aを介して主軸ハウジング2に対して回転可能に取り付けられており、加工を行うための工具3が固定されている。モータ4は主軸1を駆動する。加工時は、制御装置6は、回転速度検出手段としての速度検出器5で測定されたモータ4の回転速度を指令回転速度に保つようにモータ4へ供給する電流の制御を行っている。潤滑装置7は、設定された時間間隔(以後、潤滑剤吐出周期と呼称)で潤滑剤を定量吐出し、圧縮空気と混合して図示しない配管を通過して軸受2a,2aに潤滑剤を供給する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a lubrication state diagnostic device provided in a spindle device of a machine tool as a rotary shaft device, and will be specifically described with reference to this figure.
The spindle 1 is rotatably attached to the spindle housing 2 via bearings 2a and 2a which are rolling bearings, and a tool 3 for processing is fixed to the spindle housing 2. The motor 4 drives the spindle 1. At the time of processing, the control device 6 controls the current supplied to the motor 4 so as to keep the rotation speed of the motor 4 measured by the speed detector 5 as the rotation speed detection means at the command rotation speed. The lubricant device 7 discharges a fixed amount of lubricant at a set time interval (hereinafter referred to as a lubricant discharge cycle), mixes it with compressed air, passes through a pipe (not shown), and supplies the lubricant to bearings 2a and 2a. To do.

軸受2aの潤滑状態は潤滑剤吐出周期で変動することになるため、最新の潤滑剤吐出からの経過時間が同一であれば異なる時刻においても軸受2aの潤滑状態は同じとみなすことができる。また、潤滑剤吐出周期によらず一般的に潤滑状態が同じタイミングを議論するために、最新の潤滑剤吐出からの経過時間を潤滑剤吐出周期で割った無次元の値を潤滑位相として定義する。潤滑位相は0以上1未満の値をとり、潤滑位相が0となるタイミングで潤滑剤が吐出される。 Since the lubrication state of the bearing 2a fluctuates with the lubricant discharge cycle, the lubrication state of the bearing 2a can be regarded as the same even at different times if the elapsed time from the latest lubricant discharge is the same. In addition, in order to discuss the timing when the lubrication state is generally the same regardless of the lubricant discharge cycle, a dimensionless value obtained by dividing the elapsed time from the latest lubricant discharge by the lubricant discharge cycle is defined as the lubrication phase. .. The lubrication phase takes a value of 0 or more and less than 1, and the lubricant is discharged at the timing when the lubrication phase becomes 0.

100は、軸受2aの潤滑状態診断装置で、記憶部8と演算部9と表示部10とを備えている。この潤滑状態診断装置100による診断動作時に、制御装置6はモータ4の回転速度を指令回転速度に保つ制御の他に、モータ4への電力供給を停止し慣性運転状態とする制御を行う。すなわち、制御装置6は慣性運転手段としても機能する。
記憶部8は、回転体の慣性モーメント、潤滑剤吐出周期、最新の潤滑剤吐出時刻、慣性運転開始予定時刻、予め設定する診断回転速度、予め設定する慣性運転開始速度、予め設定する慣性運転終了速度、慣性運転中の回転速度の時系列データ、各慣性運転開始時の潤滑位相における慣性運転を実施済みか否か、後述する特徴量算出時潤滑位相、後述する診断回転速度到達時刻の回転抵抗、診断実施日、回転抵抗の増加率、潤滑状態の判定結果を記憶する。
Reference numeral 100 denotes a lubrication state diagnostic device for the bearing 2a, which includes a storage unit 8, a calculation unit 9, and a display unit 10. During the diagnosis operation by the lubrication state diagnosis device 100, the control device 6 controls not only to keep the rotation speed of the motor 4 at the command rotation speed but also to stop the power supply to the motor 4 to enter the inertial operation state. That is, the control device 6 also functions as an inertial driving means.
The storage unit 8 has a moment of inertia of the rotating body, a lubricant discharge cycle, the latest lubricant discharge time, a scheduled inertial operation start time, a preset diagnostic rotation speed, a preset inertial operation start speed, and a preset inertial operation end. Time-series data of speed and rotation speed during inertial operation, whether or not inertial operation has been performed in the lubrication phase at the start of each inertial operation, lubrication phase at the time of feature calculation described later, and rotational resistance at the diagnostic rotation speed arrival time described later. , The date of diagnosis, the rate of increase in rotational resistance, and the judgment result of the lubrication state are stored.

演算部9は、潤滑剤吐出周期、最新の潤滑剤吐出時刻、各慣性運転開始時の潤滑位相における慣性運転を実施済みか否か、現在時刻より慣性運転開始予定時刻を算出する。また、慣性運転中の回転速度の時系列データ、診断回転速度と慣性運転中の回転速度の時系列データより診断回転速度到達時刻を算出する。さらに、潤滑剤吐出周期、最新の潤滑剤吐出時刻、診断回転速度到達時刻より特徴量算出時潤滑位相を算出する。加えて、回転体の慣性モーメント、慣性運転中の回転速度の時系列データ、診断回転速度より診断回転速度到達時刻の回転抵抗を算出する。そして、特徴量算出時潤滑位相、診断回転速度到達時刻の回転抵抗より回転抵抗の増加率を算出し、回転抵抗の増加率より潤滑状態の判定結果を算出する。すなわち、本発明の特徴量算出手段、潤滑位相算出手段、潤滑状態判定手段として機能する。
表示部10は、潤滑状態の判定結果と、潤滑位相を横軸に回転抵抗を縦軸にとった2次元グラフとを表示する。
The calculation unit 9 calculates the scheduled inertial operation start time from the current time, the lubricant discharge cycle, the latest lubricant discharge time, whether or not the inertial operation has been performed in the lubrication phase at the start of each inertial operation. Further, the time when the diagnostic rotation speed is reached is calculated from the time series data of the rotation speed during the inertial operation and the time series data of the diagnosis rotation speed and the rotation speed during the inertial operation. Further, the lubrication phase at the time of feature calculation is calculated from the lubricant discharge cycle, the latest lubricant discharge time, and the diagnostic rotation speed arrival time. In addition, the rotational resistance at the time when the diagnostic rotational speed is reached is calculated from the moment of inertia of the rotating body, the time-series data of the rotational speed during inertial operation, and the diagnostic rotational speed. Then, the increase rate of the rotational resistance is calculated from the lubrication phase at the time of calculating the feature amount and the rotational resistance at the time when the diagnostic rotation speed is reached, and the determination result of the lubrication state is calculated from the increase rate of the rotational resistance. That is, it functions as a feature amount calculation means, a lubrication phase calculation means, and a lubrication state determination means of the present invention.
The display unit 10 displays a determination result of the lubrication state and a two-dimensional graph in which the lubrication phase is on the horizontal axis and the rotational resistance is on the vertical axis.

軸受2aに供給される潤滑剤の量は、潤滑剤が定量吐出される(潤滑位相が0の)タイミングから潤滑剤が圧縮空気により搬送されて軸受2aまで到達する時間だけ遅れたタイミングに最大となり、時間経過とともに減少する。このため、軸受転走面に存在する潤滑剤の量は、潤滑位相0のタイミングから次の0のタイミングまでに、減少→増加→減少と変化する。
一方で、回転抵抗の値は、軸受転走面に存在する潤滑剤の量が過剰な状態から適切な状態に近づくと減少し、軸受転走面に存在する潤滑剤の量が適切な状態から不足した状態に近づくと増加する特性を持つ。
以上より、回転抵抗を潤滑位相の関数としてみなすと、図3に示すように、潤滑剤吐出直前に回転抵抗の傾きが異符号となるタイミング(同図の位相1/4付近)から潤滑剤吐出直後に回転抵抗の傾きが異符号になるタイミング(同図の位相3/8付近)においては、軸受転走面に存在する潤滑剤の量が減少していることになるため、この区間もしくはこれより狭い区間(図3に示す「潤滑剤減少区間」)において回転抵抗の値が増加していれば潤滑不足状態であると判断することが可能となる。
The amount of the lubricant supplied to the bearing 2a becomes maximum at the timing delayed by the time when the lubricant is conveyed by the compressed air and reaches the bearing 2a from the timing when the lubricant is discharged in a fixed amount (the lubrication phase is 0). , Decreases over time. Therefore, the amount of the lubricant present on the bearing rolling surface changes from the timing of the lubrication phase 0 to the timing of the next 0 in the order of decrease → increase → decrease.
On the other hand, the value of rotational resistance decreases as the amount of lubricant present on the bearing rolling surface approaches an appropriate state from an excessive state, and the amount of lubricant present on the bearing rolling surface decreases from an appropriate state. It has the property of increasing as it approaches the shortage state.
From the above, when the rotational resistance is regarded as a function of the lubrication phase, as shown in FIG. 3, the lubricant is discharged from the timing when the inclination of the rotational resistance becomes a different sign immediately before the lubricant is discharged (near 1/4 of the phase in the figure). Immediately after that, at the timing when the inclination of the rotational resistance becomes a different sign (around 3/8 of the phase in the figure), the amount of lubricant existing on the bearing rolling surface is decreasing, so this section or this If the value of the rotational resistance increases in a narrower section (“lubricant reduction section” shown in FIG. 3), it is possible to determine that the lubrication is insufficient.

図2は、潤滑状態診断装置100において軸受2aの潤滑状態の診断を行うためのフローチャートを示したものであり、図4は、診断動作時の回転速度の変化と、慣性運転開始速度、診断回転速度、慣性運転終了速度、慣性運転開始時刻、診断回転速度到達時刻の関係を示している。このフローチャート及び図4に基づいて具体的に説明する。
まず、S1で、制御装置6を介して診断回転速度(ここでは4000min−1)で主軸1を回転させ、慣性運転開始時刻を待つ(S2)。S2の判別で慣性運転開始時刻となると(S2でY:YES)、S3で、回転速度を慣性運転開始速度(ここでは4100min−1)に制御して慣性運転を開始する。慣性運転中は、回転速度を時系列で記録し(S4)、慣性運転終了速度(ここでは3900min−1)に到達するのを待つ(S5)。
FIG. 2 shows a flowchart for diagnosing the lubrication state of the bearing 2a in the lubrication state diagnosis device 100, and FIG. 4 shows a change in the rotation speed during the diagnosis operation, an inertial operation start speed, and a diagnosis rotation. The relationship between the speed, the inertial operation end speed, the inertial operation start time, and the diagnostic rotation speed arrival time is shown. A specific description will be given based on this flowchart and FIG.
First, in S1, the spindle 1 is rotated at the diagnostic rotation speed (here, 4000 min -1 ) via the control device 6 and waits for the inertial operation start time (S2). When the inertial operation start time is reached in the determination of S2 (Y: YES in S2), the inertial operation is started by controlling the rotation speed to the inertial operation start speed (here, 4100 min -1) in S3. During the inertial operation, the rotation speed is recorded in chronological order (S4), and the inertial operation end speed (here, 3900 min -1 ) is waited for to be reached (S5).

S5の判別で慣性運転終了速度以下に到達したら(S5でY:YES)、S6で、回転速度を診断回転速度に制御する。そして、S7では、記録した回転速度の時系列データと回転体の慣性モーメントの値より、本診断装置で特徴量として用いる慣性運転中に診断回転速度となった時刻(以後、診断回転速度到達時刻と呼称する)における回転抵抗の値を、以下の式(1)に従い算出するとともに、代表時刻における潤滑位相(特徴量算出時潤滑位相)を、以下の式(2)に従い算出する(特徴量算出ステップ及び潤滑位相算出ステップ)。なお、本診断装置では代表時刻として診断回転速度到達時刻を用いる。角加速度は回転速度の微分である。 When the inertial operation end speed or less is reached in the determination of S5 (Y: YES in S5), the rotation speed is controlled to the diagnostic rotation speed in S6. Then, in S7, from the recorded rotation speed time-series data and the value of the moment of inertia of the rotating body, the time when the diagnostic rotation speed is reached during the inertial operation used as the feature amount in this diagnostic device (hereinafter, the time when the diagnostic rotation speed is reached). The value of the rotational resistance in (referred to as) is calculated according to the following formula (1), and the lubrication phase (lubricating phase at the time of calculating the feature amount) at the representative time is calculated according to the following formula (2) (feature amount calculation). Step and lubrication phase calculation step). In this diagnostic device, the diagnostic rotation speed arrival time is used as the representative time. Angular acceleration is the derivative of rotational speed.

回転抵抗=−1×慣性モーメント×角加速度 ・・式(1)
特徴量算出時潤滑位相=(診断回転速度到達時刻−診断回転速度到達時刻における最新の潤滑剤吐出時刻)÷潤滑剤吐出周期 ・・式(2)
Rotational resistance = -1 x moment of inertia x angular acceleration ... Equation (1)
Lubrication phase at the time of feature calculation = (Diagnosis rotation speed arrival time-Latest lubricant discharge time at diagnosis rotation speed arrival time) ÷ Lubricant discharge cycle ・ ・ Equation (2)

但し、S7において、1回の慣性運転の慣性運転開始速度から慣性運転終了速度の間の回転抵抗の最大値と最小値の差の回転抵抗の平均に対する比が基準値(例えば15%)を超えた場合には、回転速度の変化が大きすぎるため、一定回転数で運転する通常使用時の回転抵抗の推定ができていないと判断して、慣性運転開始速度と慣性運転終了速度の差を小さくして再度最初から診断を行う。 However, in S7, the ratio of the difference between the maximum value and the minimum value of the rotational resistance between the inertial operation start speed and the inertial operation end speed of one inertial operation to the average of the rotational resistance exceeds the reference value (for example, 15%). In that case, it is judged that the rotation resistance during normal use when operating at a constant rotation speed cannot be estimated because the change in rotation speed is too large, and the difference between the inertial operation start speed and the inertial operation end speed is made small. Then make a diagnosis from the beginning again.

次に、S8で、診断回転速度到達時刻における回転抵抗、特徴量算出時潤滑位相を記録し、今回の慣性運転開始時の潤滑位相における慣性運転を実施済みと記録する。
S9で、全ての慣性運転開始時の潤滑位相における慣性運転が実施済みとなったか否か、すなわち診断が可能か否かを判断し、実施済みでない潤滑位相が残っていれば(S9でN:NO)、慣性運転開始時刻を算出し、S2に戻る。実施済みであれば(S9でY:YES)、S10で、特徴量算出時潤滑位相と診断回転速度到達時刻の回転抵抗から、本診断装置で診断指標として用いる回転抵抗の増加率を、以下の式(3)に従い算出する。
Next, in S8, the rotation resistance at the time when the diagnostic rotation speed is reached and the lubrication phase at the time of calculating the feature amount are recorded, and it is recorded that the inertial operation at the lubrication phase at the start of the inertial operation this time has been performed.
In S9, it is determined whether or not the inertial operation in all the lubrication phases at the start of the inertial operation has been performed, that is, whether or not the diagnosis is possible, and if the lubrication phase that has not been performed remains (N: in S9: NO), the inertial operation start time is calculated, and the process returns to S2. If it has already been carried out (Y: YES in S9), in S10, the rate of increase in rotational resistance used as a diagnostic index in this diagnostic device is calculated from the lubrication phase at the time of feature quantity calculation and the rotational resistance at the time when the diagnostic rotation speed is reached. Calculate according to equation (3).

回転抵抗の増加率=潤滑剤減少区間における回転抵抗の傾きの平均÷潤滑剤減少区間における回転抵抗の平均 ・・式(3) Increase rate of rotational resistance = average slope of rotational resistance in the lubricant decrease section ÷ average rotational resistance in the lubricant decrease section ・ ・ Equation (3)

そして、S11で潤滑状態の判定を行う(潤滑状態判定ステップ)。ここで、回転抵抗の増加率が基準値0%より大きい場合は潤滑剤減少区間において回転抵抗が増加していると判断できるため潤滑不足と判定する。
S12で、潤滑状態の推移を示す潤滑位相を横軸に回転抵抗を縦軸にとった2次元グラフと潤滑状態の診断結果とを表示部10に表示する。
Then, the lubrication state is determined in S11 (lubrication state determination step). Here, when the rate of increase in rotational resistance is greater than the reference value of 0%, it can be determined that the rotational resistance is increasing in the lubricant decreasing section, and thus it is determined that the lubrication is insufficient.
In S12, a two-dimensional graph in which the lubrication phase indicating the transition of the lubrication state is plotted on the horizontal axis and the rotational resistance is plotted on the vertical axis, and the diagnosis result of the lubrication state are displayed on the display unit 10.

このように、上記形態の潤滑状態診断装置100によれば、演算部9が、主軸1の回転抵抗の大きさを代表する特徴量を、異なるタイミングで複数算出すると共に、当該特徴量を算出する際の代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相を算出し、特徴量算出時潤滑位相が異なる複数の特徴量により軸受2aの潤滑状態の判定を行う。すなわち、軸受2aに存在する潤滑剤の量が過剰な場合と過少な場合に増加し適量に近づくと減少する特性を持つ回転抵抗の値を、軸受転走面に存在する潤滑剤が減少するタイミングで複数回算出し、回転抵抗が増加しているか否かをみることで潤滑不足か否かを判定するため、閾値を設定するために実験をする必要がない。また、主軸装置に備え付けられた制御装置6と速度検出器5を用いるため、追加のセンサが不要であり、低コストで軸受2aの潤滑状態を適切に把握、診断することが可能となる。さらに、慣性運転中に回転抵抗が大きく変動しないように慣性運転開始から終了までの回転速度範囲を決定するため、回転速度の変化が大きすぎて通常使用時とは大きく異なる状態で診断してしまうことを防ぐことができる。
特にここでは、回転抵抗の推移を表示部10に表示するので、潤滑状態の変動を視覚的に把握することが可能となる。
As described above, according to the lubrication state diagnosis device 100 of the above-described embodiment, the calculation unit 9 calculates a plurality of feature amounts representing the magnitude of the rotational resistance of the spindle 1 at different timings, and calculates the feature amounts. The lubrication phase at the time of feature amount calculation, which indicates which timing of the discharge cycle of the lubricant is the representative time, is calculated, and the lubrication state of the bearing 2a is determined by a plurality of feature amounts having different lubrication phases at the time of feature amount calculation. .. That is, the timing at which the lubricant present on the bearing rolling surface decreases is the value of the rotational resistance, which has the characteristic of increasing when the amount of lubricant present in the bearing 2a is excessive or too small and decreasing when approaching an appropriate amount. Since it is determined whether or not the lubrication is insufficient by calculating multiple times and checking whether or not the rotational resistance is increasing, it is not necessary to carry out an experiment to set the threshold value. Further, since the control device 6 and the speed detector 5 provided in the spindle device are used, no additional sensor is required, and it is possible to appropriately grasp and diagnose the lubrication state of the bearing 2a at low cost. Furthermore, since the rotation speed range from the start to the end of the inertial operation is determined so that the rotational resistance does not fluctuate significantly during the inertial operation, the change in the rotational speed is too large and the diagnosis is made in a state significantly different from that during normal use. You can prevent that.
In particular, here, since the transition of the rotational resistance is displayed on the display unit 10, it is possible to visually grasp the fluctuation of the lubrication state.

なお、上記形態では、回転抵抗の大きさを代表する特徴量として、軸受の潤滑状態と直接的な関係のある慣性運転時の回転抵抗の値を用いたが、診断時の慣性モーメントの変化が無視できるのであれば、慣性運転時の角加速度の絶対値などを用いてもよい。
また、特徴量算出手段として、慣性運転時の角加速度と慣性モーメントの値から回転抵抗を算出する例を示したが、回転抵抗の変動を捉えるために十分な測定精度が得られるのであれば、回転速度を一定の指令回転速度に保つためにモータに供給する電力の大きさと回転速度の値から回転抵抗を算出しても良いし、回転速度を一定の指令回転速度に保つためにモータに流す電流の大きさを特徴量としても良い。この場合、特徴量は潤滑位相に対して離散的ではなく連続的に測定することも可能となる。特徴量を算出する際の代表時刻は、モータに供給する電力や電流の大きさを測定もしくは指令した時刻とすればよい。
In the above embodiment, the value of the rotational resistance during inertial operation, which is directly related to the lubrication state of the bearing, is used as the feature quantity representing the magnitude of the rotational resistance, but the change in the moment of inertia at the time of diagnosis is used. If it can be ignored, the absolute value of the angular acceleration during inertial operation may be used.
In addition, as an example of calculating the feature amount, the rotational resistance is calculated from the values of the angular acceleration and the moment of inertia during inertial operation. However, if sufficient measurement accuracy can be obtained to capture the fluctuation of the rotational resistance, The rotation resistance may be calculated from the magnitude of the power supplied to the motor and the value of the rotation speed to keep the rotation speed at a constant command rotation speed, or flow to the motor to keep the rotation speed at a constant command rotation speed. The magnitude of the current may be used as a feature quantity. In this case, the feature amount can be measured continuously rather than discretely with respect to the lubrication phase. The representative time when calculating the feature amount may be the time when the magnitude of the electric power or current supplied to the motor is measured or commanded.

さらに、回転抵抗の増加率の基準値として0%の例を示したが、測定ばらつきによる誤判定を避けるために0%よりも大きな値としてもよいし、潤滑不足を確実に避けるために0%よりも小さな値としてもよい。
一方、潤滑状態分類を行うための指標として回転抵抗の増加率を用いる例を示したが、潤滑剤減少区間における回転抵抗の増減を表現した指標であればよく、潤滑剤減少区間おいて回転抵抗が増加した位相の割合などに置き換えてもよい。
慣性運転開始時刻と診断回転速度到達時刻との差の潤滑剤吐出周期に対する比が、慣性運転を開始する潤滑位相の間隔に比べて小さければ、診断回転速度到達時刻ではなく慣性運転開始時刻を代表時刻としてもよい。
またさらに、回転抵抗の増加率より潤滑状態の判定結果を算出し、判定結果を表示する例を示したが、回転抵抗の増加率や二次元グラフの表示にとどめ、表示内容から作業者が判定するようにしてもよい。
Further, although an example of 0% is shown as a reference value for the rate of increase in rotational resistance, it may be set to a value larger than 0% to avoid erroneous judgment due to measurement variation, or 0% to surely avoid insufficient lubrication. It may be smaller than the value.
On the other hand, an example is shown in which the rate of increase in rotational resistance is used as an index for classifying the lubrication state, but any index that expresses the increase or decrease in rotational resistance in the lubricant decrease section may be used, and the rotational resistance may be used in the lubricant decrease section. May be replaced with the ratio of the phase in which is increased.
If the ratio of the difference between the inertial operation start time and the diagnostic rotation speed arrival time to the lubricant discharge cycle is smaller than the interval between the lubrication phases at which the inertial operation starts, it represents the inertial operation start time instead of the diagnostic rotation speed arrival time. It may be the time.
Furthermore, an example was shown in which the judgment result of the lubrication state was calculated from the increase rate of the rotational resistance and the judgment result was displayed, but the increase rate of the rotational resistance and the display of the two-dimensional graph were limited, and the operator judged from the displayed contents. You may try to do it.

その他、本発明の軸受の診断装置及び方法は、工作機械の主軸装置に限らず、自動車や鉄道車両、船舶等の他の機械設備の回転軸装置においても適用可能である。 In addition, the bearing diagnostic device and method of the present invention can be applied not only to the spindle device of a machine tool but also to the rotary shaft device of other mechanical equipment such as an automobile, a railroad vehicle, and a ship.

1・・主軸、2・・主軸ハウジング、2a・・軸受、3・・工具、4・・モータ、5・・速度検出器、6・・制御装置、7・・潤滑装置、8・・記憶部、9・・演算部、100・潤滑状態診断装置。 1 ... Spindle, 2 ... Main shaft housing, 2a ... Bearing, 3 ... Tool, 4 ... Motor, 5 ... Speed detector, 6 ... Control device, 7 ... Lubrication device, 8 ... Storage unit , 9 ... Calculation unit, 100 ... Lubrication condition diagnostic device.

Claims (7)

周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、前記軸受の潤滑状態を診断する装置であって、
前記回転軸の回転抵抗の大きさを代表する特徴量を、前記軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中で互いに異なるタイミングで取得した情報に基づいて複数算出する特徴量算出手段と、
前記特徴量を算出する際に用いる前記情報を取得した前記タイミングである代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相をそれぞれ算出する潤滑位相算出手段と、
前記特徴量算出時潤滑位相が異なる複数の前記特徴量により前記軸受の潤滑状態の判定を行う潤滑状態判定手段と、
を備えたことを特徴とする回転軸装置における軸受の潤滑状態診断装置。
A device for diagnosing the lubrication state of a bearing in a rotary shaft device having a rotary shaft supported by a bearing that is lubricated by being conveyed by compressed air of a lubricant that is periodically discharged.
The feature amount representing the magnitude of the rotational resistance of the rotating shaft is added to the information acquired at different timings in the lubricant reducing section, which is the section in which the amount of the lubricant existing on the rolling surface of the bearing is reduced. A feature amount calculation means that calculates multiple features based on
Representative time the a timing acquired the information used in calculating each said feature amount, lubricating phase calculation means for calculating each feature calculation when lubricating phase indicating which timing the discharge cycle of the lubricant When,
Lubrication state determining means for determining the lubrication state of the bearing by a plurality of the feature amounts having different lubrication phases at the time of calculating the feature amount.
A device for diagnosing the lubrication state of bearings in a rotary shaft device.
前記潤滑状態判定手段は、前記複数の特徴量から前記潤滑剤減少区間において回転抵抗が増加しているか否かを表わす指標を算出し、前記指標が基準値を超過した場合に潤滑不足と判断することを特徴とする請求項に記載の回転軸装置における軸受の潤滑状態診断装置。 The lubrication state determining means calculates an index indicating whether or not the rotational resistance is increased in the lubricant decreasing section from the plurality of feature amounts, and if the index exceeds the reference value, it is determined that the lubrication is insufficient. The device for diagnosing the lubrication state of a bearing in the rotary shaft device according to claim 1. 周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、前記軸受の潤滑状態を診断する装置であって、
前記回転軸の回転抵抗の大きさを代表する特徴量を、前記軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中で互いに異なるタイミングで取得した情報に基づいて複数算出する特徴量算出手段と、
各前記特徴量を算出する際に用いる前記情報を取得した前記タイミングである代表時刻が、潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相をそれぞれ算出する潤滑位相算出手段と、
前記特徴量と前記特徴量算出時潤滑位相とのいずれかの一方を縦軸、他方を横軸に持つグラフを表示する表示部と、
を備えたことを特徴とする回転軸装置における軸受の潤滑状態診断装置。
A device for diagnosing the lubrication state of a bearing in a rotary shaft device having a rotary shaft supported by a bearing that is lubricated by being conveyed by compressed air of a lubricant that is periodically discharged.
The feature amount representing the magnitude of the rotational resistance of the rotating shaft is added to the information acquired at different timings in the lubricant reducing section, which is the section in which the amount of the lubricant existing on the rolling surface of the bearing is reduced. A feature amount calculation means that calculates multiple features based on
Lubrication phase calculation means for calculating the lubrication phase at the time of feature amount calculation, which indicates which timing of the discharge cycle of the lubricant is the representative time, which is the timing at which the information used for calculating each feature amount is acquired. When,
A display unit that displays a graph having either one of the feature amount and the lubrication phase at the time of calculating the feature amount on the vertical axis and the other on the horizontal axis .
A device for diagnosing the lubrication state of bearings in a rotary shaft device.
前記回転軸の慣性運転を実行する慣性運転手段と、
前記回転軸の回転速度を検出する回転速度検出手段と、を備え、
前記特徴量算出手段は、前記慣性運転時の前記回転速度の変化様態に基づいて特徴量を算出することを特徴とする請求項1乃至の何れかに記載の回転軸装置における軸受の潤滑状態診断装置。
An inertial operation means for executing the inertial operation of the rotating shaft, and
A rotation speed detecting means for detecting the rotation speed of the rotation shaft is provided.
The lubrication state of the bearing in the rotary shaft device according to any one of claims 1 to 3 , wherein the feature amount calculation means calculates the feature amount based on the change mode of the rotation speed during the inertial operation. Diagnostic device.
前記慣性運転における慣性運転開始から終了までの回転速度範囲は、慣性運転中の前記回転速度範囲における前記特徴量の変動が基準値以下となるように決定することを特徴とする請求項に記載の回転軸装置における軸受の潤滑状態診断装置。 The fourth aspect of claim 4, wherein the rotation speed range from the start to the end of the inertial operation in the inertial operation is determined so that the fluctuation of the feature amount in the rotation speed range during the inertial operation is equal to or less than a reference value. Bearing lubrication condition diagnostic device in the rotary shaft device. 周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、前記軸受の潤滑状態を診断する方法であって、
前記回転軸の回転抵抗の大きさを代表する特徴量を、前記軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中で互いに異なるタイミングで取得した情報に基づいて複数算出する特徴量算出ステップと、
前記特徴量を算出する際に用いる前記情報を取得した前記タイミングである代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相をそれぞれ算出する潤滑位相算出ステップと、
前記特徴量算出時潤滑位相が異なる複数の前記特徴量により前記軸受の潤滑状態の判定を行う潤滑状態判定ステップと、
を実行することを特徴とする回転軸装置における軸受の潤滑状態診断方法。
A method of diagnosing the lubrication state of a bearing in a rotary shaft device having a rotary shaft supported by a bearing that is lubricated by being conveyed by compressed air of a lubricant that is periodically discharged.
The feature amount representing the magnitude of the rotational resistance of the rotating shaft is added to the information acquired at different timings in the lubricant reducing section, which is the section in which the amount of the lubricant existing on the rolling surface of the bearing is reduced. Feature calculation steps to calculate multiple features based on
Lubricating phase calculation step representative time said a timing acquired the information, to calculate each feature calculation when lubricating phase indicating which timing the discharge cycle of the lubricant to be used for calculating each said feature quantity When,
A lubrication state determination step for determining the lubrication state of the bearing based on a plurality of the feature amounts having different lubrication phases at the time of calculating the feature amount, and a lubrication state determination step.
A method for diagnosing the lubrication state of bearings in a rotary shaft device, which comprises performing.
周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、前記軸受の潤滑状態を診断する方法であって、A method of diagnosing the lubrication state of a bearing in a rotary shaft device having a rotary shaft supported by a bearing that is lubricated by being conveyed by compressed air of a lubricant that is periodically discharged.
前記回転軸の回転抵抗の大きさを代表する特徴量を、前記軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中で互いに異なるタイミングで取得した情報に基づいて複数算出する特徴量算出ステップと、The feature amount representing the magnitude of the rotational resistance of the rotating shaft is added to the information acquired at different timings in the lubricant reducing section, which is the section in which the amount of the lubricant existing on the rolling surface of the bearing is reduced. Feature calculation steps to calculate multiple features based on
各前記特徴量を算出する際に用いる前記情報を取得した前記タイミングである代表時刻が、潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相をそれぞれ算出する潤滑位相算出ステップと、Lubrication phase calculation step for calculating the lubrication phase at the time of feature amount calculation, which indicates which timing of the discharge cycle of the lubricant is the representative time, which is the timing at which the information used for calculating each feature amount is acquired. When,
前記特徴量と前記特徴量算出時潤滑位相とのいずれかの一方を縦軸、他方を横軸に持つグラフを表示する表示ステップと、A display step for displaying a graph having either one of the feature amount and the lubrication phase at the time of calculating the feature amount on the vertical axis and the other on the horizontal axis.
を実行することを特徴とする回転軸装置における軸受の潤滑状態診断方法。A method for diagnosing the lubrication state of bearings in a rotary shaft device, which comprises performing.
JP2017167473A 2017-08-31 2017-08-31 Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices Active JP6873870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017167473A JP6873870B2 (en) 2017-08-31 2017-08-31 Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167473A JP6873870B2 (en) 2017-08-31 2017-08-31 Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices

Publications (2)

Publication Number Publication Date
JP2019045259A JP2019045259A (en) 2019-03-22
JP6873870B2 true JP6873870B2 (en) 2021-05-19

Family

ID=65814696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167473A Active JP6873870B2 (en) 2017-08-31 2017-08-31 Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices

Country Status (1)

Country Link
JP (1) JP6873870B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022113521A (en) * 2021-01-25 2022-08-04 株式会社日本製鋼所 Anomaly detection system, molding machine system, anomaly detection device, anomaly detection method, and computer program
WO2024057461A1 (en) * 2022-09-14 2024-03-21 ファナック株式会社 Determination device and determination method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665189B2 (en) * 1986-05-02 1994-08-22 株式会社日立メディコ X-ray tube with bearing life determining device
JP2016217726A (en) * 2015-05-14 2016-12-22 株式会社ジェイテクト Apparatus and method for diagnosing lubrication condition of rolling bearing
JP6499946B2 (en) * 2015-09-07 2019-04-10 オークマ株式会社 Machine tool bearing diagnostic device

Also Published As

Publication number Publication date
JP2019045259A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US10024758B2 (en) Abnormality detecting device having function for detecting abnormality of machine tool, and abnormality detecting method
US11614728B2 (en) Machine tool management system that obtains a next maintenance period from a maintenance period model and a refinement algorithm
US10513001B2 (en) Bearing diagnostic device
TWI533589B (en) Electric motor control device
CN102401225B (en) Lubrication monitoring system of linear transmission device
JP6657256B2 (en) Fault diagnosis method and fault diagnosis device for feed axis
KR20170029387A (en) Bearing diagnostic device for machine tool
JP2008097363A (en) Abnormality diagnosis method and device thereof
JP6873870B2 (en) Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices
CN106985001B (en) The main shaft abnormal detector and main shaft method for detecting abnormality of lathe
KR102419726B1 (en) A device for diagnosing deterioration of a mechanical device, a method for diagnosing deterioration of a mechanical device executed by the device for diagnosing deterioration of a mechanical device, and a method for diagnosing deterioration of a mechanical device
JP2018017689A (en) Abnormality determination method of feed shaft
JP3525736B2 (en) Diagnostic device for machine driven by motor
CN115103976A (en) Automatic lubricator for lubricating objects
JP2005074545A (en) Condition monitoring device for machine tool
US10203677B2 (en) Apparatus for checking a state of a machine part
JP6014400B2 (en) In-vehicle rotating electrical machine deterioration diagnosis device and deterioration diagnosis method
JP7131611B2 (en) Abnormality determination device and abnormality determination method
JP6799977B2 (en) Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device
JP5516839B2 (en) Spindle device abnormality detection device, spindle device abnormality detection method, spindle device, and machine tool
JP6742205B2 (en) Rotating shaft device and bearing abnormality diagnosis method in rotating shaft device
JP7275008B2 (en) Diagnostic device, motor drive device and diagnostic method
JP2018028865A (en) Machine with rotation axis
JP6850553B2 (en) Robot reducer condition monitoring device and method
EP4040134A1 (en) Remaining life prediction system, remaining life prediction device, and remaining life prediction program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210421

R150 Certificate of patent or registration of utility model

Ref document number: 6873870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150