JP2018017689A - Abnormality determination method of feed shaft - Google Patents

Abnormality determination method of feed shaft Download PDF

Info

Publication number
JP2018017689A
JP2018017689A JP2016150318A JP2016150318A JP2018017689A JP 2018017689 A JP2018017689 A JP 2018017689A JP 2016150318 A JP2016150318 A JP 2016150318A JP 2016150318 A JP2016150318 A JP 2016150318A JP 2018017689 A JP2018017689 A JP 2018017689A
Authority
JP
Japan
Prior art keywords
frequency characteristic
abnormality
feed
feed shaft
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016150318A
Other languages
Japanese (ja)
Other versions
JP6837771B2 (en
JP2018017689A5 (en
Inventor
鈴木 陽介
Yosuke Suzuki
陽介 鈴木
匠 北郷
Takumi Kitago
匠 北郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2016150318A priority Critical patent/JP6837771B2/en
Publication of JP2018017689A publication Critical patent/JP2018017689A/en
Publication of JP2018017689A5 publication Critical patent/JP2018017689A5/ja
Application granted granted Critical
Publication of JP6837771B2 publication Critical patent/JP6837771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality determination method of a feed shaft which can determine an abnormality of the feed shaft of a machine tool without adding a sensor.SOLUTION: A frequency characteristic Gin a prescribed position is calculated from a speed command value and speed deviation which are sent from a control part 3 by using frequency characteristic calculation means 5. The frequency characteristic Gin a state 26 that a preload is reduced due to the wear of a rolling face of a support bearing compared with a frequency characteristic Gin a state 25 that a proper preload is applied is increased in a gain characteristic in 10 to 20 Hz. Therefore, a gain characteristic change amount G is calculated by a gain characteristic change amount calculation part 21 which calculates a difference between measurement data Gsent from an initial state storage part 22 which stores a frequency characteristic of a part in an initial state in advance, and acquired measurement data G. By comparing and collating the gain characteristic change amount with a threshold Gwhich is set in advance in an abnormality determination part 23, a state that the bearing is worn is determined to be abnormal.SELECTED DRAWING: Figure 3

Description

本発明は、たとえばボールねじ等の送り軸の回転により移動体をねじ送りして特定位置へ位置決めするねじ送り装置において、送り軸の異常を判定する方法に関する。   The present invention relates to a method for determining an abnormality of a feed shaft in a screw feed apparatus that positions a specific position by screw feeding a moving body by rotating a feed shaft such as a ball screw.

工作機械の稼働における安定した生産体制を実現させるためには、前記機械の異常を検知し、機械の状態を管理者に知らせて事故や不良を未然に防ぐといったことが必要とされ、これまで多くの機械の異常判定方法が提案されている。
送り軸に構成されるボールねじおよびサポート軸受において、特許文献1では、損傷による軸受の回転や摺動を阻害する物理量信号を検知する手段を用いて、この検出結果にエンベロープ分析および周波数分析を行って実測データの周波数スペクトルのレベルを抽出し、その周波数スペクトルごとに設定されたしきい値とそれぞれ比較照合し、異常の有無および異常部位を診断する提案がなされている。特許文献2ではボールねじにおいて前記経年劣化によるリターンチューブの振動を物理量信号にて検知する手段によって、検出値から異常判定手段を用いて異常を検知する提案がなされている。
In order to realize a stable production system in the operation of machine tools, it is necessary to detect abnormalities in the machine and notify the manager of the machine status to prevent accidents and defects. A method for determining an abnormality in a machine has been proposed.
In a ball screw and a support bearing configured in a feed shaft, in Patent Document 1, an envelope analysis and a frequency analysis are performed on a detection result using a means for detecting a physical quantity signal that inhibits rotation and sliding of the bearing due to damage. Thus, a proposal has been made to extract the level of the frequency spectrum of the actually measured data, compare it with the threshold value set for each frequency spectrum, and diagnose the presence or absence of abnormality and the abnormal part. In Patent Document 2, a proposal has been made to detect an abnormality from a detected value using an abnormality determining means by means for detecting vibration of a return tube due to the above-mentioned deterioration in a ball screw by a physical quantity signal.

特開2009−20090号公報JP 2009-20090 A 特開2001−349407号公報JP 2001-349407 A

しかしながら、特許文献1、特許文献2に係わる送り軸の異常検知方法においては、機械の各軸に追加センサーを設けるコストを必要としており、多軸を有する工作機械においては機械全体のコストが大きくなってしまう。   However, the feed axis abnormality detection method according to Patent Document 1 and Patent Document 2 requires the cost of providing an additional sensor for each axis of the machine, and the cost of the entire machine is increased in a machine tool having multiple axes. End up.

本発明は、上記提案を鑑みなされたもので、センサーを追加することなく、工作機械の送り軸の異常を判定することができる送り軸の異常判定方法を提供することである。   The present invention has been made in view of the above proposal, and provides a feed axis abnormality determination method capable of determining a feed axis abnormality of a machine tool without adding a sensor.

上記目的を達成するために、本発明のうち請求項1に記載の発明は、NC制御された工作機械の送り軸において、前記送り軸の正常状態とした周波数特性の基準値と測定時の周波数特性を比較照合し、前記送り軸の異常を判定することを特徴とする。
また、上記目的を達成するために、本発明のうち請求項2に記載の発明は、NC制御された工作機械の送り軸において、前記送り軸の正常状態とした周波数特性の基準値と測定時の周波数特性のゲインの差によって、前記送り軸の異常を判定することを特徴とする。
また、上記目的を達成するために、本発明のうち請求項3に記載の発明は、NC制御された工作機械の送り軸において、特定の周波数に対する応答性と送り軸の軸位置とを関連付けて取得する方法を備え、前記軸位置に関連した応答性の正常状態とする基準値と測定時の応答性のゲインの差によって、前記送り軸の異常の判定することを特徴とする。
In order to achieve the above object, the invention according to claim 1 of the present invention is characterized in that, in a feed axis of a machine tool controlled by NC, a reference value of a frequency characteristic in which the feed axis is in a normal state and a frequency at the time of measurement. The characteristics are compared and checked, and abnormality of the feed axis is determined.
In order to achieve the above object, the invention according to claim 2 of the present invention is characterized in that, in the feed axis of the NC-controlled machine tool, the reference value of the frequency characteristic in which the feed axis is in a normal state and the measurement time It is characterized in that the abnormality of the feed axis is determined based on the difference in gain of the frequency characteristics.
In order to achieve the above object, the invention according to claim 3 of the present invention relates to the responsiveness to a specific frequency and the axis position of the feed shaft in the feed shaft of the NC controlled machine tool. And a method for obtaining an abnormality of the feed shaft based on a difference between a reference value for normality of responsiveness related to the axis position and a gain of responsiveness at the time of measurement.

本発明によれば、センサーを追加する必要がないために低コストで、送り軸の異常か否かの判定ができる。   According to the present invention, since it is not necessary to add a sensor, it is possible to determine whether the feed axis is abnormal at low cost.

送り軸と位置制御装置のブロック図である。It is a block diagram of a feed shaft and a position control device. 摩耗量とゲイン特性の関係図である。FIG. 6 is a relationship diagram between an amount of wear and a gain characteristic. 第1の実施形態における異常判定方法の手順である。It is the procedure of the abnormality determination method in 1st Embodiment. 第2の実施形態における異常判定方法の手順である。It is the procedure of the abnormality determination method in 2nd Embodiment. 周波数特性の例である。It is an example of a frequency characteristic. 特定位置におけるボールねじ・軸受の摩耗判定の例である。It is an example of the wear determination of a ball screw and a bearing in a specific position. 送り軸位置に関する応答性によるボールねじ・軸受の摩耗判定の例である。It is an example of the wear determination of a ball screw and a bearing by the responsiveness regarding a feed shaft position.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明を適用する工作機械の送り軸の位置制御装置のブロック図の一例である。位置指令7と位置検出器15からの現在位置が加算器8に入力され、演算された位置偏差が位置制御器9に入力される。位置制御器9は前記位置偏差に応じた速度指令値を生成する。速度制御器12は前記速度指令値と現在位置を微分器13により演算された速度検出値が加算器11に入力され演算された速度偏差に応じてトルク指令値を生成する。電流制御器14は、入力されるトルク指令に基づき電流を制御する。電流制御器14にてトルク指令値に応じた電流をモータ16に出力し、モータ16はトルクを出力する。モータ16から出力されるトルクは継手17を介してボールねじ20に伝達され、ボールねじ20のナットが移動する。位置検出器15はモータ16の回転に同期されており、検出した位置をフィードバックしていることにより所定の位置へ制御するクローズド制御がなされている。ボールねじ20のネジ軸はブラケット18に組み付けられたサポート軸受19によって支持されており、ボールねじ20には予張力が掛けられている。   FIG. 1 is an example of a block diagram of a position control device for a feed axis of a machine tool to which the present invention is applied. The position command 7 and the current position from the position detector 15 are input to the adder 8, and the calculated position deviation is input to the position controller 9. The position controller 9 generates a speed command value corresponding to the position deviation. The speed controller 12 inputs the speed command value and the speed detection value obtained by calculating the current position by the differentiator 13 to the adder 11 and generates a torque command value according to the calculated speed deviation. The current controller 14 controls the current based on the input torque command. The current controller 14 outputs a current corresponding to the torque command value to the motor 16, and the motor 16 outputs torque. Torque output from the motor 16 is transmitted to the ball screw 20 through the joint 17 and the nut of the ball screw 20 moves. The position detector 15 is synchronized with the rotation of the motor 16, and closed control for controlling the position to a predetermined position by feeding back the detected position is performed. The screw shaft of the ball screw 20 is supported by a support bearing 19 assembled to the bracket 18, and the ball screw 20 is pretensioned.

周波数特性を計測する場合、スイープ信号生成手段2から生成されたスイープ信号が前記速度指令値に加算器10で加算される。位置検出器15で検出された現在位置をはじめ、制御中の処理内で使用された情報は、上位コントローラ1で記録、表示が可能である。   When measuring the frequency characteristic, the sweep signal generated from the sweep signal generating means 2 is added to the speed command value by the adder 10. The host controller 1 can record and display information used in the process under control, including the current position detected by the position detector 15.

次に送り軸の周波数特性によるボールねじ・サポート軸受の摩耗状態の判定方法について述べる。ボールねじやサポート軸受の摩耗によって送り軸の周波数特性に図2のような差が生じる。この関係は機械によって異なるため、予め機械毎に摩耗量と周波数特性の関係を実験的に求めておく必要がある。   Next, a method for determining the wear state of the ball screw / support bearing based on the frequency characteristics of the feed shaft will be described. A difference as shown in FIG. 2 is produced in the frequency characteristics of the feed shaft due to wear of the ball screw and the support bearing. Since this relationship differs depending on the machine, it is necessary to experimentally obtain the relationship between the wear amount and the frequency characteristic for each machine in advance.

前記ブロック図の一例では入力を前記速度指令値と、応答を速度検出値とするオープンループ周波数特性と応答を速度指令値としたクローズドループ周波数特性が取得できる。本発明では前者オープンループ制御における周波数特性を一例として述べるが、これに限ることではない。   In the example of the block diagram, an open loop frequency characteristic with the input as the speed command value and a response as a speed detection value and a closed loop frequency characteristic with a response as the speed command value can be acquired. In the present invention, the frequency characteristic in the former open loop control is described as an example, but the present invention is not limited to this.

第1の実施形態の異常判定方法について述べる。図3には異常判定を行う手順について示している。制御部3から送られてきた速度指令値と速度偏差から周波数特性演算手段5にて所定の位置における周波数特性Gが算出される。特定の軸位置における周波数系列を軸にとった周波数特性のゲイン特性は図5のようになる。適切な予圧が掛かっている初期の状態25における周波数特性Gに比べ、サポート軸受の転走面が摩耗して予圧が減少した状態26の周波数特性Gは、10〜20Hzにおいてゲイン特性の値が増加する。そのため、予め当該部品の初期状態時の周波数特性(測定データ)を記憶している初期状態記憶部22から送られてくる測定データGと取得した測定データGの差分を演算するゲイン特性変化量演算部21にてゲイン特性変化量Gが算出されると図6のようになる。異常判定部23にて設定されているしきい値Gthと比較照合することによって、軸受の摩耗した状態を異常と判定することができる。その結果を判定結果記憶部24に送り、上位コントローラに記憶・表示される。 The abnormality determination method of the first embodiment will be described. FIG. 3 shows a procedure for performing abnormality determination. Frequency characteristic of G 1 in the predetermined position is calculated from the speed command value and the speed deviation that has been transmitted from the control unit 3 at a frequency characteristic calculation means 5. The gain characteristic of the frequency characteristic with the frequency series at a specific axis position as an axis is as shown in FIG. Compared with the frequency characteristic G 0 in the initial state 25 in which an appropriate preload is applied, the frequency characteristic G 1 in the state 26 in which the rolling force of the support bearing is worn and the preload is reduced is a gain characteristic value at 10 to 20 Hz. Will increase. Therefore, the gain characteristic change for calculating the difference between the measurement data G 0 sent from the initial state storage unit 22 storing the frequency characteristics (measurement data) at the initial state of the component in advance and the acquired measurement data G 1. When the gain characteristic change amount G is calculated by the amount calculation unit 21, it is as shown in FIG. By comparing and comparing with the threshold value Gth set in the abnormality determination unit 23, the worn state of the bearing can be determined as abnormal. The result is sent to the determination result storage unit 24 and stored and displayed on the host controller.

第2の実施形態の異常判定方法について述べる。図4には異常判定を行う手順について示している。周波数特性演算手段5では特定の周波数のみで加振された速度指令値と速度偏差によって得られた応答は検出器から送られてくる送り軸の位置Xに関連付けられる。軸の位置Xに関する応答性G(X)は所定の軸範囲内で、一定速度で送り軸の移動体を移動させながら測定し、前記範囲内の応答性G(X)が算出される。予め当該部品の初期状態時の軸の位置Xに関する応答性G(X)が記憶されている初期状態記憶部22からゲイン特性変化量演算部21に送られ、測定した応答性G(X)との差分をとることにより、軸の位置Xにおけるゲイン特性変化量G(X)が算出される。これを異常判定部23にて設定されているしきい値Gth(X)と比較照合され、比較して大きい場合は異常の判定、小さい場合は正常の判定とされ、その結果を判定結果記憶部24に送り、上位コントローラに記憶・表示される。 An abnormality determination method according to the second embodiment will be described. FIG. 4 shows a procedure for performing abnormality determination. In the frequency characteristic calculation means 5, the speed command value vibrated only at a specific frequency and the response obtained by the speed deviation are related to the position X of the feed shaft sent from the detector. The response G 1 (X) related to the shaft position X is measured while moving the moving body of the feed shaft at a constant speed within a predetermined axis range, and the response G 1 (X) within the range is calculated. . The responsiveness G 0 (X) relating to the position X of the axis in the initial state of the component is sent from the initial state storage unit 22 in which the responsiveness G 0 (X) is stored in advance to the gain characteristic change amount calculation unit 21 and measured responsiveness G 1 (X ), The gain characteristic change amount G (X) at the axis position X is calculated. This is compared with the threshold value G th (X) set by the abnormality determination unit 23, and if the comparison is larger, the abnormality is determined, and if the comparison is smaller, the determination is normal, and the result is stored as a determination result. Sent to the unit 24 and stored and displayed in the host controller.

判定結果記録部24に記録されている判定結果は上位コントローラにて判定結果のみを表示させることに限られる必要はなく、初期状態の演算データG(X)、ゲイン特性変化量G(X)、しきい値Gth(X)を必要に応じて周波数系列または軸位置系列データとともに判定結果を表示・警告してもよい。 The determination result recorded in the determination result recording unit 24 is not necessarily limited to displaying only the determination result on the host controller, and the initial calculation data G 0 (X) and the gain characteristic change amount G (X) The threshold value G th (X) may be displayed / warned with the determination result together with the frequency series or the axis position series data as necessary.

送り軸の位置Xに関する応答性G(X)の取得には一定速度で移動する送り軸に対して行われるため、離散フーリエ変換による算出する場合には、加振するスイープ波形の少なくとも1周期分の時間信号を必要とされる。そのため、軸の位置それぞれの応答性はある1周期分の移動量で区分される区間毎に計算される。ただし、1周期の移動量に分ける必要はなく1周期以上の移動量毎に測定点を設け、その平均化処理やさいだいちピークホールドにより求めてもよい。並びに、1周期毎の移動量に合わせた応答性を前記移動量の区間前後の応答性と平均化処理した値をその測定点の応答性としてもよい。   Since the responsiveness G (X) relating to the position X of the feed axis is obtained for the feed axis moving at a constant speed, when calculating by the discrete Fourier transform, at least one cycle of the excited sweep waveform A time signal is needed. Therefore, the responsiveness of each axis position is calculated for each section divided by the movement amount for one period. However, it is not necessary to divide the movement amount in one cycle, and a measurement point may be provided for each movement amount in one cycle or more, and the averaging process or peak hold may be used. In addition, the responsiveness according to the movement amount for each cycle may be a response value obtained by averaging the responsiveness before and after the movement amount section as the responsiveness of the measurement point.

これにより、前記測定区間毎の摩耗の異常判定が可能となる。図7(A)はある一部の軸位置範囲21の応答性における初期状態との差が増加している場合と図7(B)には軸位置全域において応答性の増加が見られる場合について示している。前者の場合はある範囲の部分のみ摩耗が見られるため、ボールねじにおけるねじ溝の一部範囲のみ摩耗している状態22である。後者ではサポート軸受の摩耗、またはボールねじにおけるナットのねじ溝の摩耗がしている状態23が危惧される。   This makes it possible to determine the abnormality of wear for each measurement section. FIG. 7A shows a case where the difference from the initial state in the responsiveness of a part of the shaft position range 21 is increased, and FIG. 7B shows a case where the responsiveness is increased in the entire axial position. Show. In the former case, wear is observed only in a certain range, so that only a partial range of the thread groove in the ball screw is worn 22. In the latter case, a state 23 in which the support bearing is worn or the thread groove of the nut in the ball screw is worn is feared.

これらのような異常判定が表れた場合、工作機械の管理者がボールねじやサポート軸受が摩耗したことを判断できることにより、また、異常判定された当該軸の範囲以外での動作させることで、加工不良等を少なくすることができる。また定期的にこれらの計測を繰り返すことで、摩耗判定とされる前に当該部品を用意するなどして部品交換にかかる長期間の工作機械の停止を避けることができ、安定した生産体制の運用を実現できる。   If an abnormality such as these appears, the machine tool administrator can determine that the ball screw or the support bearing has worn, and by operating outside the range of the axis where the abnormality has been determined, Defects can be reduced. In addition, by repeating these measurements periodically, it is possible to avoid long-term machine tool outages for parts replacement, such as by preparing the parts before they are judged as worn, and operating a stable production system. Can be realized.

1・・上位コントローラ、2・・スイープ信号生成手段、3・・制御部、 4・・アクチュエータ、5・・伝達関数または周波数特性演算手段、6・・異常判定手段、7・・位置指令、8・・加算器、9・・位置制御器、10・・加算器、11・・加算器、12・・速度制御器、13・・微分器、14・・電流制御器、15・・位置検出器、16・・モータ、17・・継手、18・・ブラケット、19・・サポート軸受、20・・ボールねじ、21・・ゲイン特性変化量演算部、22・・初期状態記録部、23・・異常判定部、24・・判定結果記録部、25・・適切な予圧が掛かっている初期の状態、26・・サポート軸受が摩耗している状態、27・・送り軸の軸上の摩耗の異常判定される範囲、28・・ボールねじのネジ軸の一部範囲が摩耗している状態、29・・サポート軸受の摩耗やボールねじのナットもしくは玉が摩耗している状態。   1 ··· Higher-level controller 2 · · Sweep signal generation means 3 · · Control unit · · · Actuator 5 · · Transfer function or frequency characteristic calculation means · 6 · · Abnormality determination means · 7 · · Position command 8 ..Adder, 9 ... Position controller, 10 ... Adder, 11 ... Adder, 12 ... Speed controller, 13 ... Differentiator, 14 ... Current controller, 15 ... Position detector , 16 ··· Motor, 17 ·· Joint, 18 · · Bracket, 19 · · Support bearing, 20 · · Ball screw, 21 · · Gain characteristic change amount calculation unit, 22 · · Initial state recording unit, 23 · · Abnormal Judgment unit 24 ・ ・ Judgment result recording unit 25 ・ ・ Initial state in which appropriate preload is applied, 26 ・ In a state where the support bearing is worn, 27 ・ ・ Determine abnormality of wear on the shaft of the feed shaft Range, 28 ・ ・ Partial range of the screw axis of the ball screw Wearing state, 29 .... Wearing of support bearings or wearing of ball screw nuts or balls.

Claims (3)

NC制御された工作機械の送り軸において、前記送り軸の正常状態とした周波数特性の基準値と測定時の周波数特性を比較照合し、前記送り軸の異常を判定することを特徴とする送り軸の異常判定方法。   In a feed axis of a machine tool controlled by NC, a feed axis characterized by comparing and collating a reference value of a frequency characteristic in a normal state of the feed axis with a frequency characteristic at the time of measurement, and determining an abnormality of the feed axis. Anomaly judgment method. NC制御された工作機械の送り軸において、前記送り軸の正常状態とした周波数特性の基準値と測定時の周波数特性のゲインの差によって、前記送り軸の異常を判定することを特徴とする送り軸の異常判定方法。   In the feed axis of a machine tool controlled by NC, the feed axis abnormality is determined based on a difference between a reference value of the frequency characteristic in which the feed axis is in a normal state and a gain of the frequency characteristic at the time of measurement. Axis abnormality judgment method. NC制御された工作機械の送り軸において、特定の周波数に対する応答性と送り軸の軸位置とを関連付けて取得する方法を備え、前記軸位置に関連した応答性の正常状態とする基準値と測定時の応答性のゲインの差によって、前記送り軸の異常の判定することを特徴とする送り軸の異常判定方法。   In a feed axis of a machine tool controlled by NC, there is provided a method for acquiring a response to a specific frequency in association with a shaft position of the feed shaft, and a reference value and a measurement for making the response state related to the shaft position normal. An abnormality determination method for a feed shaft, wherein the abnormality of the feed shaft is determined based on a difference in response gain at the time.
JP2016150318A 2016-07-29 2016-07-29 Feed axis abnormality judgment method Active JP6837771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150318A JP6837771B2 (en) 2016-07-29 2016-07-29 Feed axis abnormality judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150318A JP6837771B2 (en) 2016-07-29 2016-07-29 Feed axis abnormality judgment method

Publications (3)

Publication Number Publication Date
JP2018017689A true JP2018017689A (en) 2018-02-01
JP2018017689A5 JP2018017689A5 (en) 2019-06-13
JP6837771B2 JP6837771B2 (en) 2021-03-03

Family

ID=61081374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150318A Active JP6837771B2 (en) 2016-07-29 2016-07-29 Feed axis abnormality judgment method

Country Status (1)

Country Link
JP (1) JP6837771B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022260A (en) * 2018-07-31 2020-02-06 東洋電機製造株式会社 Machine abnormality prediction device
JP2020071633A (en) * 2018-10-31 2020-05-07 株式会社日研工作所 Feed shaft and warm gear abnormality determining system
WO2020090479A1 (en) * 2018-10-29 2020-05-07 日本精工株式会社 Method for detecting decreased preload in ball screw and linear motion drive device
JP2020078841A (en) * 2018-11-13 2020-05-28 ファナック株式会社 Machine tool and vibration diagnosis support method
CN112518421A (en) * 2019-09-18 2021-03-19 发那科株式会社 Diagnostic device and diagnostic method
JP2021096707A (en) * 2019-12-18 2021-06-24 オークマ株式会社 Feed shaft diagnostic device and feed shaft diagnostic method for machine tool
CN114063565A (en) * 2020-08-03 2022-02-18 沈机(上海)智能系统研发设计有限公司 Fault detection method and system for feed shaft of numerical control machine tool, medium and numerical control machine tool
DE112021005064T5 (en) 2020-11-27 2023-07-06 Fanuc Corporation MACHINE TOOL AND DIAGNOSTIC PROCEDURES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150287A (en) * 1999-11-29 2001-06-05 Mitsubishi Electric Corp Numerically controlled machine tool
JP2009154274A (en) * 2007-12-27 2009-07-16 Okuma Corp Method and apparatus for diagnosing machine
JP2010123018A (en) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd Servo control apparatus
JP2013164386A (en) * 2012-02-13 2013-08-22 Nsk Ltd Ball screw abnormality diagnostic device and ball screw abnormality diagnostic method
JP2013257253A (en) * 2012-06-14 2013-12-26 Nsk Ltd Device and method for detecting abnormality of ball screw device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150287A (en) * 1999-11-29 2001-06-05 Mitsubishi Electric Corp Numerically controlled machine tool
JP2009154274A (en) * 2007-12-27 2009-07-16 Okuma Corp Method and apparatus for diagnosing machine
JP2010123018A (en) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd Servo control apparatus
JP2013164386A (en) * 2012-02-13 2013-08-22 Nsk Ltd Ball screw abnormality diagnostic device and ball screw abnormality diagnostic method
JP2013257253A (en) * 2012-06-14 2013-12-26 Nsk Ltd Device and method for detecting abnormality of ball screw device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022260A (en) * 2018-07-31 2020-02-06 東洋電機製造株式会社 Machine abnormality prediction device
EP3875937A4 (en) * 2018-10-29 2021-12-22 NSK Ltd. Method for detecting decreased preload in ball screw and linear motion drive device
JPWO2020090479A1 (en) * 2018-10-29 2021-02-15 日本精工株式会社 Ball screw preload drop detection method and linear drive device
JP2021028642A (en) * 2018-10-29 2021-02-25 日本精工株式会社 Method for detecting reduction in preload of ball screw, and linear motion driving device
WO2020090479A1 (en) * 2018-10-29 2020-05-07 日本精工株式会社 Method for detecting decreased preload in ball screw and linear motion drive device
JP7375733B2 (en) 2018-10-29 2023-11-08 日本精工株式会社 Ball screw preload drop detection method and direct drive device
US11921004B2 (en) 2018-10-29 2024-03-05 Nsk Ltd. Method for detecting decreased preload in ball screw and linear motion drive device
US20220099526A1 (en) * 2018-10-29 2022-03-31 Nsk Ltd. Method for detecting decreased preload in ball screw and linear motion drive device
JP7000295B2 (en) 2018-10-31 2022-01-19 株式会社日研工作所 Feed shaft and worm gear abnormality judgment system
US11112767B2 (en) 2018-10-31 2021-09-07 Nikken Kosakusho Works, Ltd. Feed shaft and worm gear abnormality determination system
JP2020071633A (en) * 2018-10-31 2020-05-07 株式会社日研工作所 Feed shaft and warm gear abnormality determining system
JP2020078841A (en) * 2018-11-13 2020-05-28 ファナック株式会社 Machine tool and vibration diagnosis support method
CN112518421A (en) * 2019-09-18 2021-03-19 发那科株式会社 Diagnostic device and diagnostic method
US11754994B2 (en) 2019-09-18 2023-09-12 Fanuc Corporation Diagnostic apparatus and diagnostic method
JP7436169B2 (en) 2019-09-18 2024-02-21 ファナック株式会社 Diagnostic equipment and method
JP2021047617A (en) * 2019-09-18 2021-03-25 ファナック株式会社 Diagnostic device and diagnosis method
JP2021096707A (en) * 2019-12-18 2021-06-24 オークマ株式会社 Feed shaft diagnostic device and feed shaft diagnostic method for machine tool
JP7412158B2 (en) 2019-12-18 2024-01-12 オークマ株式会社 Machine tool feed axis diagnosis device and feed axis diagnosis method
CN114063565A (en) * 2020-08-03 2022-02-18 沈机(上海)智能系统研发设计有限公司 Fault detection method and system for feed shaft of numerical control machine tool, medium and numerical control machine tool
DE112021005064T5 (en) 2020-11-27 2023-07-06 Fanuc Corporation MACHINE TOOL AND DIAGNOSTIC PROCEDURES

Also Published As

Publication number Publication date
JP6837771B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP2018017689A (en) Abnormality determination method of feed shaft
US10197988B2 (en) Apparatus and method for automatically detecting and compensating for a backlash of a machine tool
US10024758B2 (en) Abnormality detecting device having function for detecting abnormality of machine tool, and abnormality detecting method
JP6657256B2 (en) Fault diagnosis method and fault diagnosis device for feed axis
JP7000135B2 (en) Feed shaft abnormality diagnosis method and abnormality diagnosis device
US9440306B2 (en) Spot welding system including spot welding gun
US20160299492A1 (en) Machine tool management system
US10571890B2 (en) Diagnostic data acquisition system, diagnostic system, and computer readable medium
US9298177B2 (en) Machine tool and control method therefor
JP5654199B2 (en) In particular, a method for determining the characteristic quantity of an inclined drive shaft of a machine tool, its appropriate usage, its corresponding device and its usage
JP2009068950A (en) Machine diagnostic system
JP5845321B1 (en) System for calculating screw pitch
CN110793792A (en) Abnormality monitoring device, abnormality monitoring method, and control device
JP2002079439A (en) Maintenance control device for machine tool
JP2018043317A (en) Machine tool
JP2020032510A (en) Processing environment measuring apparatus
JP6637844B2 (en) Method for determining warm-up operation time before bearing diagnosis in machine tool, machine tool
JP7361573B2 (en) Abnormality diagnosis method and abnormality diagnosis device for feed shaft device
JP2018028865A (en) Machine with rotation axis
JP6848845B2 (en) Servo motor load condition diagnostic device and load status diagnostic method
JP2020082270A (en) Machine tool
JP2020042347A (en) Machine tool and tool abnormality determination method
JP2010033934A (en) Fuel cell control system
JP6726645B2 (en) Diagnosis method of feed screw in feed screw device
JP2018024086A (en) Information measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6837771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150