JP2019045259A - Lubrication state diagnostic apparatus and lubrication state diagnostic method of bearing of rotation shaft device - Google Patents

Lubrication state diagnostic apparatus and lubrication state diagnostic method of bearing of rotation shaft device Download PDF

Info

Publication number
JP2019045259A
JP2019045259A JP2017167473A JP2017167473A JP2019045259A JP 2019045259 A JP2019045259 A JP 2019045259A JP 2017167473 A JP2017167473 A JP 2017167473A JP 2017167473 A JP2017167473 A JP 2017167473A JP 2019045259 A JP2019045259 A JP 2019045259A
Authority
JP
Japan
Prior art keywords
lubrication
bearing
lubricant
lubrication state
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017167473A
Other languages
Japanese (ja)
Other versions
JP6873870B2 (en
Inventor
拓 杉浦
Hiroshi Sugiura
拓 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2017167473A priority Critical patent/JP6873870B2/en
Publication of JP2019045259A publication Critical patent/JP2019045259A/en
Application granted granted Critical
Publication of JP6873870B2 publication Critical patent/JP6873870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

To appropriately and inexpensively determine the quality of a lubrication state of a bearing whose lubrication state periodically varies.SOLUTION: In a lubrication state diagnostic apparatus 100, a main shaft 1 is rotated at a diagnosis rotational speed, and, at an inertia operation start time, the rotational speed is controlled to an inertia operation start speed and an inertia operation is started. During the inertia operation, the rotational speed is recorded in the time sequence, and, when the speed becomes an inertia operation end speed, the rotational speed is controlled to a diagnosis rotational speed. Then, an operation unit 9 calculates a feature quantity representing the magnitude of the rotational resistance of the main shaft 1, calculates a feature-quantity-calculation-time lubrication phase indicating the timing to which the representative time for calculating the feature quantity corresponds in the discharge period of a lubricant, and determines the lubrication state of a bearing 2a on the basis of a plurality of feature quantities having different feature-quantity-calculation-time lubrication phases.SELECTED DRAWING: Figure 1

Description

本発明は、工作機械の主軸装置等、回転軸を軸受で軸支してなる回転軸装置において、軸受の潤滑状態を診断する診断装置及び診断方法に関する。   The present invention relates to a diagnostic device and a diagnostic method for diagnosing the lubricating state of a bearing in a rotary shaft device in which a rotary shaft is supported by a bearing such as a spindle device of a machine tool.

軸受は、工作機械の主軸装置等の多くの回転軸装置に使用されている。このような軸受においては、環境への配慮、コスト削減、摩擦発熱・動力損失抑制などの理由から軸受へ供給する油剤は可能な限り少なくすることが望ましい。このような極微量油潤滑法として潤滑油を圧縮空気によって搬送するオイルエア潤滑が知られており、工作機械の高速主軸軸受の潤滑に採用されている。オイルエア潤滑を採用した回転軸装置においては、潤滑不足による焼付きなどのトラブルを避けるために、潤滑剤の供給状態や潤滑状態を把握する技術が求められている。
この技術に関し、例えば特許文献1には、オイル粒子に応じて監視感度を設定可能なセンサにより、オイル粒子の流量を潤滑剤供給路で監視し所定の流量以上流れていると信号を発する潤滑剤供給装置が示されている。
特許文献2には、供給路を流れる潤滑剤の粒子量をセンサにより監視することで潤滑不良に起因する軸受損傷を回避する軸受潤滑機構が示されている。
特許文献3には、マイクロ波の定在波による空間フィルタにより通過油滴の体積と流量から流量を算出する流量計測装置が示されている。
特許文献4には、ミキシングバルブの後の管路で特定周波数の電磁波によって潤滑油の流れを検出する手法が示されている。
特許文献5には、機械動作が一定のサイクルである可動部材の潤滑状態を、物理量と測定時間を含む連続データから動作サイクル毎のサイクルデータを抽出して代表値を算出し、代表値の時系列推移に基づき潤滑不足の有無を診断する装置が示されている。
特許文献6には、工作機械主軸を慣性運転させたときの慣性回転時間や回転抵抗を予め設定されている閾値と比較して主軸の劣化状態を判断する手法が示されている。
特許文献7には、グリース潤滑の主軸について、グリース補給後の回転トルク上昇を検出して、グリース吐出がされたか否かを判断する手法が示されている。
Bearings are used in many rotating shaft devices such as spindle devices of machine tools. In such bearings, it is desirable to reduce the amount of oil supplied to the bearings as much as possible for reasons such as environmental considerations, cost reduction, friction heat generation and power loss suppression. As such an extremely small amount of oil lubrication method, oil air lubrication in which lubricating oil is transported by compressed air is known, and is adopted for lubricating high speed spindle bearings of machine tools. In a rotary shaft device adopting oil-air lubrication, in order to avoid problems such as seizure due to insufficient lubrication, a technique for grasping the supply state of the lubricant and the lubrication state is required.
With regard to this technology, for example, Patent Document 1 discloses a lubricant that monitors the flow rate of oil particles in a lubricant supply path by a sensor that can set the monitoring sensitivity according to oil particles and generates a signal when the flow exceeds a predetermined flow rate. A feeder is shown.
Patent Document 2 discloses a bearing lubrication mechanism that prevents damage to a bearing caused by a lubrication failure by monitoring the amount of lubricant particles flowing through the supply path with a sensor.
Patent Document 3 shows a flow rate measuring device for calculating the flow rate from the volume and the flow rate of a passing oil droplet by a space filter by a standing wave of microwaves.
Patent Document 4 discloses a method of detecting the flow of lubricating oil by an electromagnetic wave of a specific frequency in a pipe line after a mixing valve.
Patent Document 5 calculates the representative value by extracting the cycle data for each operation cycle from continuous data including physical quantity and measurement time in the lubrication state of the movable member in which the machine operation is a constant cycle. An apparatus for diagnosing the absence of lubrication based on the series transition is shown.
Patent Document 6 discloses a method of determining the deterioration state of a spindle by comparing the inertial rotation time and the rotational resistance when the spindle of the machine tool is operated by inertia.
Patent Document 7 discloses a method of detecting whether a grease discharge has been performed by detecting an increase in rotational torque after grease replenishment for a main shaft of grease lubrication.

特開2006−258263号公報Unexamined-Japanese-Patent No. 2006-258263 特開2008−304036号公報Japanese Patent Application Publication No. 2008-304036 特許第4106075号公報Patent No. 4106075 特許第4920518号公報Patent No. 4920518 gazette 特許第4956261号公報Patent No. 4956261 特開2016−200523号公報Unexamined-Japanese-Patent No. 2016-200523 特開2005−344784号公報JP, 2005-344784, A

特許文献1乃至4の発明では、いずれも潤滑剤が供給される流路において潤滑剤粒子の通過を検出することで、検出位置までの潤滑剤供給の異常を判断することが可能となるが、検出位置より先の軸受まで潤滑剤が供給されているかどうかを判断することはできないという課題がある。また、潤滑剤の供給状態を判断するために追加のセンサを必要とするため、製造コストが増加するという課題がある。さらに、軸受の組み込み予圧や加工時の主軸速度に応じて、最適な潤滑剤の供給量は異なるため、潤滑剤の流量を監視することで潤滑状態の良否を判断することは困難であるという課題がある。
特許文献5の発明では、射出成形機のような一定のサイクルで所定の動作を繰り返す回転軸装置に関しては、潤滑状態が初期状態から逸脱したことを判定できるが、相対的な判定となるため、初期状態から潤滑状態が適正でない場合は、異常として検出できないおそれがあるといった課題がある。
特許文献6の発明では、予め慣性回転時間や回転抵抗の閾値を設定することで工作機械主軸の劣化状態を判断することができるが、その閾値を決定するためには機台差によるばらつきや季節変動等を考慮するために多くの実験を必要とするという課題がある。また、回転速度が異なると潤滑剤の排出されやすさや発熱の大きさなどが異なるため、慣性運転中に大きく回転速度が変化する場合、慣性運転中の回転抵抗の値を算出したとしても、一定の回転速度で運転する通常使用時の状態を必ずしも反映しないため、適切に診断できない恐れがあるといった課題がある。
オイルエア潤滑では潤滑状態が周期的に変動するため、特許文献7の発明のように回転トルクが増大することを検出することでオイルエア潤滑が機能していることを検出することは可能である。しかしながら、潤滑剤の過不足に限らず潤滑状態が周期的に変動するため、回転トルクが増大することを検出しても潤滑不足か否かを判断できないという課題がある。
In the inventions of Patent Documents 1 to 4, it is possible to judge the abnormality of the lubricant supply up to the detection position by detecting the passage of the lubricant particles in the flow path to which the lubricant is supplied. There is a problem that it can not be determined whether or not the lubricant is supplied to the bearing ahead of the detection position. In addition, since an additional sensor is required to determine the supply state of the lubricant, there is a problem that the manufacturing cost is increased. Furthermore, since the optimum lubricant supply amount differs depending on the built-in preload of the bearing and the spindle speed at the time of processing, it is difficult to judge the quality of the lubrication condition by monitoring the lubricant flow rate. There is.
In the invention of Patent Document 5, although it is possible to determine that the lubrication state deviates from the initial state with respect to a rotary shaft device that repeats a predetermined operation in a fixed cycle such as an injection molding machine, it is a relative determination. If the lubrication state is not proper from the initial state, there is a problem that it may not be detected as an abnormality.
In the invention of Patent Document 6, the degradation state of the machine tool spindle can be determined by setting the inertia rotation time and the threshold value of rotation resistance in advance, but in order to determine the threshold value, variations due to machine differences or seasons There is a problem that a lot of experiments are required to take account of fluctuations and the like. In addition, when the rotational speed changes, the lubricant discharges easily and the amount of heat generation differs, so that if the rotational speed changes significantly during inertial operation, even if the value of rotational resistance during inertial operation is calculated, it is constant. There is a problem that there is a possibility that the diagnosis can not be properly performed because the condition at the time of normal use operated at the rotation speed of the vehicle is not necessarily reflected.
In oil-air lubrication, since the lubrication state periodically changes, it is possible to detect that the oil-air lubrication is functioning by detecting that the rotational torque is increased as in the invention of Patent Document 7. However, there is a problem that it is not possible to determine whether or not the lubrication is insufficient even if it is detected that the rotation torque is increased, since the lubrication state periodically fluctuates as well as the excess and deficiency of the lubricant.

そこで、本発明は、上記問題に鑑みなされたものであって、潤滑状態が周期的に変動する軸受の潤滑状態の良否を低コストで適切に判断することができる回転軸装置における軸受の潤滑状態診断装置及び診断方法を提供することを目的としたものである。   Therefore, the present invention has been made in view of the above problems, and it is possible to appropriately determine at a low cost whether or not the lubrication state of the bearing in which the lubrication state changes periodically can be appropriately determined. It aims at providing a diagnostic device and a diagnostic method.

上記目的を達成するために、請求項1に記載の発明は、周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、軸受の潤滑状態を診断する装置であって、
回転軸の回転抵抗の大きさを代表する特徴量を、異なるタイミングで複数算出する特徴量算出手段と、
特徴量を算出する際の代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相を算出する潤滑位相算出手段と、を備えたことを特徴とする。
請求項2に記載の発明は、請求項1の構成において、特徴量算出手段は、複数の特徴量を、軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中において算出することを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、特徴量算出時潤滑位相が異なる複数の特徴量により軸受の潤滑状態の判定を行う潤滑状態判定手段を備えたことを特徴とする。
請求項4に記載の発明は、請求項3の構成において、潤滑状態判定手段は、複数の特徴量から潤滑剤減少区間において回転抵抗が増加しているか否かを表わす指標を算出し、指標が基準値を超過した場合に潤滑不足と判断することを特徴とする。
請求項5に記載の発明は、請求項1乃至4の何れかの構成において、回転軸の慣性運転を実行する慣性運転手段と、回転軸の回転速度を検出する回転速度検出手段と、を備え、特徴量算出手段は、慣性運転時の回転速度の変化様態に基づいて特徴量を算出することを特徴とする。
請求項6に記載の発明は、請求項5の構成において、慣性運転における慣性運転開始から終了までの回転速度範囲は、慣性運転中の回転速度範囲における特徴量の変動が基準値以下となるように決定することを特徴とする。
請求項7に記載の発明は、請求項1乃至6の何れかの構成において、特徴量と特徴量算出時潤滑位相とのいずれかの一方を縦軸、他方を横軸に持つグラフを表示する表示部を備えたことを特徴とする。
上記目的を達成するために、請求項8に記載の発明は、周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、軸受の潤滑状態を診断する方法であって、
回転軸の回転抵抗の大きさを代表する特徴量を、異なるタイミングで複数算出する特徴量算出ステップと、
特徴量を算出する際の代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相を算出する潤滑位相算出ステップと、
特徴量算出時潤滑位相が異なる複数の特徴量により軸受の潤滑状態の判定を行う潤滑状態判定ステップと、を実行することを特徴とする。
In order to achieve the above object, the invention according to claim 1 relates to a rotary shaft apparatus having a rotary shaft supported by a bearing that is lubricated by the periodically discharged lubricant being conveyed by compressed air. A device for diagnosing the lubrication condition of the bearing,
Feature amount calculation means for calculating a plurality of feature amounts representative of the magnitude of the rotational resistance of the rotation axis at different timings;
Lubricating phase calculating means for calculating a lubricating phase at the time of feature amount calculation indicating which timing of the discharge cycle of the lubricant is at a representative time when calculating the feature amount.
The invention according to claim 2 is the configuration according to claim 1, wherein the feature quantity calculation means is a section in which the quantity of the lubricant present on the rolling surface of the bearing decreases in the plurality of feature quantities. In the above.
The invention according to claim 3 is characterized in that, in the configuration according to claim 1 or 2, lubrication state determination means for determining the lubrication state of the bearing based on a plurality of feature amounts having different lubrication phases when calculating the feature amount is provided. Do.
In the invention according to claim 4, in the configuration according to claim 3, the lubrication state determination means calculates an index indicating whether or not the rotation resistance is increased in the lubricant reduction section from the plurality of feature amounts, and the index It is characterized in that when the reference value is exceeded, it is determined that the lubrication is insufficient.
According to a fifth aspect of the present invention, in the configuration according to any one of the first to fourth aspects, an inertial operation means for performing an inertial operation of the rotary shaft, and a rotational speed detection means for detecting a rotational speed of the rotary shaft. The feature amount calculating means is characterized in that the feature amount is calculated based on the change mode of the rotational speed during the inertia operation.
In the invention according to claim 6, in the configuration according to claim 5, in the rotational speed range from the start to the end of the inertial operation in the inertial operation, the fluctuation of the feature value in the rotational speed range during the inertial operation is less than the reference value. It is characterized by deciding.
The invention according to claim 7 displays, in the configuration according to any one of claims 1 to 6, a graph having one of the feature amount and the lubrication phase at the time of feature amount calculation on the vertical axis and the other on the horizontal axis. A display unit is provided.
In order to achieve the above object, the invention according to claim 8 relates to a rotary shaft apparatus having a rotary shaft supported by a bearing which is lubricated by the periodically discharged lubricant being conveyed by compressed air. A method of diagnosing the lubrication condition of a bearing,
A feature amount calculation step of calculating a plurality of feature amounts representative of the magnitude of the rotational resistance of the rotation axis at different timings;
A lubricant phase calculating step of calculating a lubricant phase at the time of feature amount calculation indicating which timing of the discharge cycle of the lubricant is the representative time at which the feature amount is calculated;
At the time of feature amount calculation, a lubrication state determination step of determining the lubrication state of the bearing based on a plurality of feature amounts different in lubrication phase is performed.

本発明によれば、軸受に存在する潤滑剤の量が過剰な場合と過少な場合に増加し適量に近づくと減少する特性を持つ回転抵抗の大きさを代表する特徴量を、軸受転走面に存在する潤滑剤が減少するタイミングで複数回算出し、当該特徴量が増加しているか否かをみることで潤滑不足か否かを判定するため、閾値を設定するために実験をする必要がない。また、一般の回転軸装置に備え付けられた制御装置と速度検出器を用いれば、追加のセンサが不要であり、低コストで軸受の潤滑状態を適切に把握、診断することが可能となる。さらに、慣性運転中に回転抵抗が大きく変動しないように慣性運転開始から終了までの回転速度範囲を決定するため、回転速度の変化が大きすぎて通常使用時とは大きく異なる状態で診断してしまうことを防ぐことができる。
そして、回転抵抗の推移を表示すれば、潤滑状態の変動を視覚的に把握することが可能となる。
According to the present invention, the bearing rolling surface is characterized in that the amount of lubricant present in the bearing is increased when the amount is too large or too small, and decreases when approaching an appropriate amount. In order to determine whether or not the lubricant is insufficient by calculating multiple times at the timing when the lubricant present in the area decreases and determining whether the feature value is increasing, it is necessary to experiment to set the threshold value. Absent. In addition, if a control device and a speed detector provided in a general rotary shaft device are used, an additional sensor is not necessary, and it becomes possible to appropriately grasp and diagnose the lubrication state of the bearing at low cost. Furthermore, since the rotational speed range from the start to the end of the inertial operation is determined so that the rotational resistance does not significantly fluctuate during the inertial operation, the change in the rotational speed is too large and diagnosis is performed in a state significantly different from that in normal use. You can prevent that.
Then, by displaying the transition of the rotational resistance, it is possible to visually grasp the fluctuation of the lubrication state.

潤滑状態診断装置の概略図である。It is the schematic of a lubrication condition diagnostic apparatus. 潤滑状態診断方法のフローチャートである。It is a flowchart of a lubrication state diagnosis method. 回転抵抗の測定例を示すグラフである。It is a graph which shows the example of measurement of rotation resistance. 診断動作時の回転速度波形を示すグラフである。It is a graph which shows the rotational speed waveform at the time of diagnostic operation.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、回転軸装置としての工作機械の主軸装置に設けられる潤滑状態診断装置の構成を示したものであり、この図に基づいて具体的に説明する。
主軸1は、転がり軸受である軸受2a,2aを介して主軸ハウジング2に対して回転可能に取り付けられており、加工を行うための工具3が固定されている。モータ4は主軸1を駆動する。加工時は、制御装置6は、回転速度検出手段としての速度検出器5で測定されたモータ4の回転速度を指令回転速度に保つようにモータ4へ供給する電流の制御を行っている。潤滑装置7は、設定された時間間隔(以後、潤滑剤吐出周期と呼称)で潤滑剤を定量吐出し、圧縮空気と混合して図示しない配管を通過して軸受2a,2aに潤滑剤を供給する。
Hereinafter, embodiments of the present invention will be described based on the drawings.
FIG. 1 shows the configuration of a lubrication state diagnostic device provided in a spindle device of a machine tool as a rotary shaft device, and this will be specifically described based on this drawing.
The spindle 1 is rotatably attached to the spindle housing 2 via bearings 2a, 2a which are rolling bearings, and a tool 3 for processing is fixed. The motor 4 drives the spindle 1. At the time of processing, the control device 6 controls the current supplied to the motor 4 so as to maintain the rotational speed of the motor 4 measured by the speed detector 5 as the rotational speed detecting means at the commanded rotational speed. The lubricating device 7 discharges a fixed quantity of lubricant at a set time interval (hereinafter referred to as a lubricant discharge cycle), mixes it with compressed air, passes a pipe not shown, and supplies the lubricant to the bearings 2a, 2a Do.

軸受2aの潤滑状態は潤滑剤吐出周期で変動することになるため、最新の潤滑剤吐出からの経過時間が同一であれば異なる時刻においても軸受2aの潤滑状態は同じとみなすことができる。また、潤滑剤吐出周期によらず一般的に潤滑状態が同じタイミングを議論するために、最新の潤滑剤吐出からの経過時間を潤滑剤吐出周期で割った無次元の値を潤滑位相として定義する。潤滑位相は0以上1未満の値をとり、潤滑位相が0となるタイミングで潤滑剤が吐出される。   Since the lubrication state of the bearing 2a fluctuates in the lubricant discharge cycle, the lubrication state of the bearing 2a can be regarded as the same even at different times if the elapsed time from the latest lubricant discharge is the same. Also, in order to generally discuss the same lubrication state regardless of the lubricant discharge cycle, a non-dimensional value obtained by dividing the elapsed time from the latest lubricant discharge by the lubricant discharge cycle is defined as the lubricant phase. . The lubricant phase takes a value of 0 or more and less than 1, and the lubricant is discharged when the lubricant phase becomes 0.

100は、軸受2aの潤滑状態診断装置で、記憶部8と演算部9と表示部10とを備えている。この潤滑状態診断装置100による診断動作時に、制御装置6はモータ4の回転速度を指令回転速度に保つ制御の他に、モータ4への電力供給を停止し慣性運転状態とする制御を行う。すなわち、制御装置6は慣性運転手段としても機能する。
記憶部8は、回転体の慣性モーメント、潤滑剤吐出周期、最新の潤滑剤吐出時刻、慣性運転開始予定時刻、予め設定する診断回転速度、予め設定する慣性運転開始速度、予め設定する慣性運転終了速度、慣性運転中の回転速度の時系列データ、各慣性運転開始時の潤滑位相における慣性運転を実施済みか否か、後述する特徴量算出時潤滑位相、後述する診断回転速度到達時刻の回転抵抗、診断実施日、回転抵抗の増加率、潤滑状態の判定結果を記憶する。
Reference numeral 100 denotes a lubrication state diagnosis device for the bearing 2 a, which includes a storage unit 8, a calculation unit 9, and a display unit 10. At the time of a diagnosis operation by the lubrication state diagnosis device 100, the control device 6 performs control to stop the power supply to the motor 4 to be in an inertial operation state, in addition to the control to keep the rotational speed of the motor 4 at the command rotational speed. That is, the control device 6 also functions as an inertial operation means.
The storage unit 8 includes the moment of inertia of the rotating body, the lubricant discharge cycle, the latest lubricant discharge time, the estimated time to start the inertia operation, the diagnostic rotation speed set in advance, the inertia operation start speed set in advance, the inertia operation end set in advance Speed, time-series data of rotational speed during inertial operation, whether or not inertial operation at the lubrication phase at the start of each inertial operation has been performed, lubrication phase at feature value calculation described later, rotational resistance at diagnostic rotational speed arrival time described later , Date of diagnosis, increase rate of rotational resistance, and determination result of lubrication state are stored.

演算部9は、潤滑剤吐出周期、最新の潤滑剤吐出時刻、各慣性運転開始時の潤滑位相における慣性運転を実施済みか否か、現在時刻より慣性運転開始予定時刻を算出する。また、慣性運転中の回転速度の時系列データ、診断回転速度と慣性運転中の回転速度の時系列データより診断回転速度到達時刻を算出する。さらに、潤滑剤吐出周期、最新の潤滑剤吐出時刻、診断回転速度到達時刻より特徴量算出時潤滑位相を算出する。加えて、回転体の慣性モーメント、慣性運転中の回転速度の時系列データ、診断回転速度より診断回転速度到達時刻の回転抵抗を算出する。そして、特徴量算出時潤滑位相、診断回転速度到達時刻の回転抵抗より回転抵抗の増加率を算出し、回転抵抗の増加率より潤滑状態の判定結果を算出する。すなわち、本発明の特徴量算出手段、潤滑位相算出手段、潤滑状態判定手段として機能する。
表示部10は、潤滑状態の判定結果と、潤滑位相を横軸に回転抵抗を縦軸にとった2次元グラフとを表示する。
The calculation unit 9 calculates an inertial operation start scheduled time from the current time whether the lubricant ejection period, the latest lubricant ejection time, and the inertial operation at the lubrication phase at the start of each inertial operation have been performed. Further, the diagnostic rotational speed arrival time is calculated from the time-series data of the rotational speed during the inertial operation, and the time-series data of the diagnostic rotational speed and the rotational speed during the inertial operation. Furthermore, the lubricant phase at the time of feature amount calculation is calculated from the lubricant discharge period, the latest lubricant discharge time, and the diagnostic rotational speed arrival time. In addition, the rotational resistance at the diagnosis rotational speed arrival time is calculated from the moment of inertia of the rotating body, time-series data of the rotational speed during inertial operation, and the diagnostic rotational speed. Then, the increase rate of the rotational resistance is calculated from the lubricating phase at the time of feature amount calculation and the rotational resistance at the diagnosis rotational speed arrival time, and the determination result of the lubricating state is calculated from the increase rate of the rotational resistance. That is, it functions as the feature amount calculating means, the lubricating phase calculating means, and the lubricating state determining means of the present invention.
The display unit 10 displays the determination result of the lubrication state and a two-dimensional graph in which the lubrication phase is on the horizontal axis and the rotational resistance is on the vertical axis.

軸受2aに供給される潤滑剤の量は、潤滑剤が定量吐出される(潤滑位相が0の)タイミングから潤滑剤が圧縮空気により搬送されて軸受2aまで到達する時間だけ遅れたタイミングに最大となり、時間経過とともに減少する。このため、軸受転走面に存在する潤滑剤の量は、潤滑位相0のタイミングから次の0のタイミングまでに、減少→増加→減少と変化する。
一方で、回転抵抗の値は、軸受転走面に存在する潤滑剤の量が過剰な状態から適切な状態に近づくと減少し、軸受転走面に存在する潤滑剤の量が適切な状態から不足した状態に近づくと増加する特性を持つ。
以上より、回転抵抗を潤滑位相の関数としてみなすと、図3に示すように、潤滑剤吐出直前に回転抵抗の傾きが異符号となるタイミング(同図の位相1/4付近)から潤滑剤吐出直後に回転抵抗の傾きが異符号になるタイミング(同図の位相3/8付近)においては、軸受転走面に存在する潤滑剤の量が減少していることになるため、この区間もしくはこれより狭い区間(図3に示す「潤滑剤減少区間」)において回転抵抗の値が増加していれば潤滑不足状態であると判断することが可能となる。
The amount of lubricant supplied to the bearing 2a becomes maximum at a timing delayed by the time when the lubricant is conveyed by compressed air and reaches the bearing 2a from the timing when the lubricant is quantitatively discharged (the lubricant phase is 0). Decrease with time. Therefore, the amount of lubricant present on the bearing rolling surface changes from decrease to increase to decrease from the timing of the lubricant phase 0 to the timing of the next 0.
On the other hand, the value of rotational resistance decreases when the amount of lubricant present on the bearing rolling surface approaches an appropriate state from an excessive state, and the amount of lubricant present on the bearing rolling surface is appropriate It has characteristics that increase as it approaches a shortage.
From the above, when the rotational resistance is regarded as a function of the lubricant phase, as shown in FIG. 3, the lubricant is discharged from the timing (in the vicinity of the phase 1⁄4 of FIG. Since the amount of the lubricant present on the bearing rolling surface is reduced at the timing (in the vicinity of the phase 3/8 in the same figure) at which the inclination of the rotational resistance becomes opposite sign immediately after that, this section or this If the value of rotational resistance increases in a narrower section ("lubricant decreasing section" shown in FIG. 3), it can be determined that the lubrication is in an insufficient state.

図2は、潤滑状態診断装置100において軸受2aの潤滑状態の診断を行うためのフローチャートを示したものであり、図4は、診断動作時の回転速度の変化と、慣性運転開始速度、診断回転速度、慣性運転終了速度、慣性運転開始時刻、診断回転速度到達時刻の関係を示している。このフローチャート及び図4に基づいて具体的に説明する。
まず、S1で、制御装置6を介して診断回転速度(ここでは4000min−1)で主軸1を回転させ、慣性運転開始時刻を待つ(S2)。S2の判別で慣性運転開始時刻となると(S2でY:YES)、S3で、回転速度を慣性運転開始速度(ここでは4100min−1)に制御して慣性運転を開始する。慣性運転中は、回転速度を時系列で記録し(S4)、慣性運転終了速度(ここでは3900min−1)に到達するのを待つ(S5)。
FIG. 2 shows a flowchart for diagnosing the lubrication state of the bearing 2a in the lubrication state diagnostic device 100. FIG. 4 shows changes in rotational speed at the time of diagnostic operation, inertial operation start speed, diagnostic rotation The relationship between the speed, the inertial operation end speed, the inertial operation start time, and the diagnostic rotational speed arrival time is shown. A concrete description will be given based on this flowchart and FIG.
First, at S1, the main shaft 1 is rotated at a diagnosis rotational speed (here, 4000 min −1 ) via the control device 6, and the inertial operation start time is waited (S2). When it is determined in S2 that the inertial operation start time comes (Y in S2: YES), in S3, the rotational speed is controlled to the inertial operation start speed (here, 4100 min −1 ) to start the inertial operation. During the inertial operation, the rotational speed is recorded in time series (S4), and it is waited to reach the inertial operation end speed (here, 3900 min- 1 ) (S5).

S5の判別で慣性運転終了速度以下に到達したら(S5でY:YES)、S6で、回転速度を診断回転速度に制御する。そして、S7では、記録した回転速度の時系列データと回転体の慣性モーメントの値より、本診断装置で特徴量として用いる慣性運転中に診断回転速度となった時刻(以後、診断回転速度到達時刻と呼称する)における回転抵抗の値を、以下の式(1)に従い算出するとともに、代表時刻における潤滑位相(特徴量算出時潤滑位相)を、以下の式(2)に従い算出する(特徴量算出ステップ及び潤滑位相算出ステップ)。なお、本診断装置では代表時刻として診断回転速度到達時刻を用いる。角加速度は回転速度の微分である。   If it is determined in S5 that the velocity has reached the end of the inertia operation (Y in S5: YES), the rotational speed is controlled to the diagnostic rotational speed in S6. Then, in S7, from the time series data of the recorded rotational speed and the value of the moment of inertia of the rotating body, the time when the diagnostic rotational speed is reached during the inertial operation used as the feature amount in the present diagnostic device (hereinafter While calculating the value of the rotational resistance according to equation (1) according to the following equation (1), and the lubricant phase at Step and Lubrication phase calculation step). In this diagnosis apparatus, the diagnosis rotational speed arrival time is used as a representative time. The angular acceleration is a derivative of the rotational speed.

回転抵抗=−1×慣性モーメント×角加速度 ・・式(1)
特徴量算出時潤滑位相=(診断回転速度到達時刻−診断回転速度到達時刻における最新の潤滑剤吐出時刻)÷潤滑剤吐出周期 ・・式(2)
Rotational resistance = -1 × moment of inertia × angular acceleration · · · · (1)
Feature calculation time lubrication phase = (diagnosis rotation speed arrival time-latest lubricant discharge time at diagnosis rotation speed arrival time) 時刻 lubricant discharge cycle · · · (2)

但し、S7において、1回の慣性運転の慣性運転開始速度から慣性運転終了速度の間の回転抵抗の最大値と最小値の差の回転抵抗の平均に対する比が基準値(例えば15%)を超えた場合には、回転速度の変化が大きすぎるため、一定回転数で運転する通常使用時の回転抵抗の推定ができていないと判断して、慣性運転開始速度と慣性運転終了速度の差を小さくして再度最初から診断を行う。   However, in S7, the ratio of the difference between the maximum value and the minimum value of the rotational resistance between the inertial operation start speed of one inertial operation and the inertial operation end speed to the average of the rotational resistance exceeds the reference value (for example 15%) In this case, since the change in rotational speed is too large, it is determined that the rotational resistance can not be estimated during normal use operating at a constant rotational speed, and the difference between the inertial operation start speed and the inertial operation end speed is reduced. Make a diagnosis from the beginning again.

次に、S8で、診断回転速度到達時刻における回転抵抗、特徴量算出時潤滑位相を記録し、今回の慣性運転開始時の潤滑位相における慣性運転を実施済みと記録する。
S9で、全ての慣性運転開始時の潤滑位相における慣性運転が実施済みとなったか否か、すなわち診断が可能か否かを判断し、実施済みでない潤滑位相が残っていれば(S9でN:NO)、慣性運転開始時刻を算出し、S2に戻る。実施済みであれば(S9でY:YES)、S10で、特徴量算出時潤滑位相と診断回転速度到達時刻の回転抵抗から、本診断装置で診断指標として用いる回転抵抗の増加率を、以下の式(3)に従い算出する。
Next, in S8, the rotational resistance at the diagnosis rotational speed arrival time, and the lubrication phase at the time of feature amount calculation are recorded, and the inertial operation at the lubrication phase at the start of the current inertial operation is recorded as implemented.
In S9, it is determined whether or not the inertia operation in all the lubrication phases at the start of the inertia operation has been performed, that is, whether or not the diagnosis is possible, and if there is a lubrication phase that has not been performed (N in S9: (NO), calculate the inertial operation start time, and return to S2. If it has already been implemented (Y in S9: YES), in S10, from the rotational phase resistance at the feature amount calculation time and the diagnostic rotational speed arrival time, the increase rate of the rotational resistance used as a diagnostic index in this diagnostic device is Calculated according to equation (3).

回転抵抗の増加率=潤滑剤減少区間における回転抵抗の傾きの平均÷潤滑剤減少区間における回転抵抗の平均 ・・式(3)   Rate of increase of rotational resistance = average of inclination of rotational resistance in lubricant reduction section 平均 average of rotational resistance in lubricant reduction section · · · (3)

そして、S11で潤滑状態の判定を行う(潤滑状態判定ステップ)。ここで、回転抵抗の増加率が基準値0%より大きい場合は潤滑剤減少区間において回転抵抗が増加していると判断できるため潤滑不足と判定する。
S12で、潤滑状態の推移を示す潤滑位相を横軸に回転抵抗を縦軸にとった2次元グラフと潤滑状態の診断結果とを表示部10に表示する。
Then, in step S11, the lubrication state is determined (lubrication state determination step). Here, when the rate of increase in rotational resistance is greater than the reference value 0%, it can be determined that the rotational resistance is increasing in the lubricant decreasing section, so it is determined that the lubrication is insufficient.
At S12, a two-dimensional graph in which the lubrication phase indicating the transition of the lubrication state is taken along the abscissa and the rotational resistance is taken along the ordinate, and the diagnosis result of the lubrication state is displayed on the display unit 10.

このように、上記形態の潤滑状態診断装置100によれば、演算部9が、主軸1の回転抵抗の大きさを代表する特徴量を、異なるタイミングで複数算出すると共に、当該特徴量を算出する際の代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相を算出し、特徴量算出時潤滑位相が異なる複数の特徴量により軸受2aの潤滑状態の判定を行う。すなわち、軸受2aに存在する潤滑剤の量が過剰な場合と過少な場合に増加し適量に近づくと減少する特性を持つ回転抵抗の値を、軸受転走面に存在する潤滑剤が減少するタイミングで複数回算出し、回転抵抗が増加しているか否かをみることで潤滑不足か否かを判定するため、閾値を設定するために実験をする必要がない。また、主軸装置に備え付けられた制御装置6と速度検出器5を用いるため、追加のセンサが不要であり、低コストで軸受2aの潤滑状態を適切に把握、診断することが可能となる。さらに、慣性運転中に回転抵抗が大きく変動しないように慣性運転開始から終了までの回転速度範囲を決定するため、回転速度の変化が大きすぎて通常使用時とは大きく異なる状態で診断してしまうことを防ぐことができる。
特にここでは、回転抵抗の推移を表示部10に表示するので、潤滑状態の変動を視覚的に把握することが可能となる。
As described above, according to the lubrication state diagnosis device 100 of the above embodiment, the calculation unit 9 calculates a plurality of feature quantities representative of the magnitude of the rotational resistance of the main spindle 1 at different timings and calculates the feature quantities. Lubrication phase is calculated at the time of feature quantity calculation which indicates which timing of representative cycle of lubricant is at the discharge cycle of lubricant, and at the time of feature quantity calculation, the lubrication state of the bearing 2a is judged by a plurality of feature quantities different in lubrication phase. . That is, the timing at which the amount of lubricant present on the bearing rolling surface decreases when the amount of lubricant present in the bearing 2a is increased when the amount is too large or too small, and decreases when approaching an appropriate amount. In order to determine whether or not the lubrication is insufficient by calculating a plurality of times and checking whether or not the rotational resistance is increasing, it is not necessary to perform an experiment to set the threshold value. Further, since the control device 6 and the speed detector 5 provided in the spindle device are used, an additional sensor is not necessary, and it becomes possible to appropriately grasp and diagnose the lubrication state of the bearing 2a at low cost. Furthermore, since the rotational speed range from the start to the end of the inertial operation is determined so that the rotational resistance does not significantly fluctuate during the inertial operation, the change in the rotational speed is too large and diagnosis is performed in a state significantly different from that in normal use. You can prevent that.
In particular, here, since the transition of the rotational resistance is displayed on the display unit 10, it is possible to visually grasp the fluctuation of the lubrication state.

なお、上記形態では、回転抵抗の大きさを代表する特徴量として、軸受の潤滑状態と直接的な関係のある慣性運転時の回転抵抗の値を用いたが、診断時の慣性モーメントの変化が無視できるのであれば、慣性運転時の角加速度の絶対値などを用いてもよい。
また、特徴量算出手段として、慣性運転時の角加速度と慣性モーメントの値から回転抵抗を算出する例を示したが、回転抵抗の変動を捉えるために十分な測定精度が得られるのであれば、回転速度を一定の指令回転速度に保つためにモータに供給する電力の大きさと回転速度の値から回転抵抗を算出しても良いし、回転速度を一定の指令回転速度に保つためにモータに流す電流の大きさを特徴量としても良い。この場合、特徴量は潤滑位相に対して離散的ではなく連続的に測定することも可能となる。特徴量を算出する際の代表時刻は、モータに供給する電力や電流の大きさを測定もしくは指令した時刻とすればよい。
In the above embodiment, the value of the rotational resistance during inertia operation, which is directly related to the lubrication state of the bearing, is used as the feature amount representing the magnitude of the rotational resistance, but the change in moment of inertia at diagnosis If it can be ignored, the absolute value of the angular acceleration at the time of inertial operation or the like may be used.
In addition, although an example of calculating the rotational resistance from the values of angular acceleration and moment of inertia during inertial operation has been shown as feature quantity calculation means, as long as sufficient measurement accuracy can be obtained to capture fluctuations in the rotational resistance, The rotational resistance may be calculated from the value of the power supplied to the motor and the value of the rotational speed in order to keep the rotational speed at a constant command rotational speed, or flowed to the motor to maintain the rotational speed at a constant command rotational speed The magnitude of the current may be used as the feature quantity. In this case, the feature quantities can also be measured not continuously but discretely with respect to the lubrication phase. The representative time for calculating the feature amount may be a time at which the magnitude of the power or current supplied to the motor is measured or commanded.

さらに、回転抵抗の増加率の基準値として0%の例を示したが、測定ばらつきによる誤判定を避けるために0%よりも大きな値としてもよいし、潤滑不足を確実に避けるために0%よりも小さな値としてもよい。
一方、潤滑状態分類を行うための指標として回転抵抗の増加率を用いる例を示したが、潤滑剤減少区間における回転抵抗の増減を表現した指標であればよく、潤滑剤減少区間おいて回転抵抗が増加した位相の割合などに置き換えてもよい。
慣性運転開始時刻と診断回転速度到達時刻との差の潤滑剤吐出周期に対する比が、慣性運転を開始する潤滑位相の間隔に比べて小さければ、診断回転速度到達時刻ではなく慣性運転開始時刻を代表時刻としてもよい。
またさらに、回転抵抗の増加率より潤滑状態の判定結果を算出し、判定結果を表示する例を示したが、回転抵抗の増加率や二次元グラフの表示にとどめ、表示内容から作業者が判定するようにしてもよい。
Furthermore, although an example of 0% was shown as a reference value for the rate of increase in rotational resistance, it may be a value larger than 0% to avoid misjudgment due to measurement variation, or 0% to reliably avoid insufficient lubrication. It may be a smaller value.
On the other hand, although an example was shown using the increase rate of rotational resistance as an index for performing the lubrication state classification, any index that expresses increase or decrease of rotational resistance in the lubricant reduction section may be used. May be replaced with the ratio of the phase which increased, etc.
If the ratio of the difference between the inertial operation start time and the diagnostic rotational speed arrival time to the lubricant discharge cycle is smaller than the interval of the lubrication phase to start the inertial operation, the inertial operation start time is represented instead of the diagnostic rotational speed arrival time It may be time.
Furthermore, although the determination result of the lubrication state is calculated from the increase rate of the rotational resistance and the determination result is displayed, the increase rate of the rotational resistance and the display of the two-dimensional graph are limited and the operator determines from the display content You may do it.

その他、本発明の軸受の診断装置及び方法は、工作機械の主軸装置に限らず、自動車や鉄道車両、船舶等の他の機械設備の回転軸装置においても適用可能である。   In addition, the bearing diagnosis apparatus and method of the present invention are applicable not only to the spindle device of the machine tool, but also to the rotary shaft device of other mechanical equipment such as an automobile, a railway vehicle, and a ship.

1・・主軸、2・・主軸ハウジング、2a・・軸受、3・・工具、4・・モータ、5・・速度検出器、6・・制御装置、7・・潤滑装置、8・・記憶部、9・・演算部、100・潤滑状態診断装置。   1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · storage unit , 9 · · · operation unit, 100 · lubrication state diagnosis device.

Claims (8)

周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、前記軸受の潤滑状態を診断する装置であって、
前記回転軸の回転抵抗の大きさを代表する特徴量を、異なるタイミングで複数算出する特徴量算出手段と、
前記特徴量を算出する際の代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相を算出する潤滑位相算出手段と、
を備えたことを特徴とする回転軸装置における軸受の潤滑状態診断装置。
A rotary shaft device having a rotary shaft supported by a bearing that is lubricated by being conveyed by compressed air, a lubricant that is periodically discharged, and a device that diagnoses the lubricating state of the bearing,
Feature amount calculation means for calculating a plurality of feature amounts representative of the magnitude of the rotation resistance of the rotation axis at different timings;
Lubricating phase calculating means for calculating a lubricating phase at the time of feature amount calculation indicating which timing of the discharge cycle of the lubricant is the representative time at which the feature amount is calculated;
An apparatus for diagnosing a lubrication state of a bearing in a rotary shaft apparatus, comprising:
前記特徴量算出手段は、前記複数の特徴量を、前記軸受の転走面に存在する潤滑剤の量が減少する区間である潤滑剤減少区間の中において算出することを特徴とする請求項1に記載の回転軸装置における軸受の潤滑状態診断装置。   The feature quantity calculation means calculates the plurality of feature quantities in a lubricant reduction section, which is a section in which the amount of lubricant present on the rolling contact surface of the bearing decreases. Lubrication state diagnostic device of the bearing in a rotating shaft apparatus of a statement. 前記特徴量算出時潤滑位相が異なる複数の前記特徴量により前記軸受の潤滑状態の判定を行う潤滑状態判定手段を備えたことを特徴とする請求項1又は2に記載の回転軸装置における軸受の潤滑状態診断装置。   The bearing according to claim 1 or 2, further comprising: a lubrication state determination unit that determines the lubrication state of the bearing based on a plurality of the feature amounts different in lubrication phase when calculating the feature amount. Lubrication status diagnosis device. 前記潤滑状態判定手段は、前記複数の特徴量から前記潤滑剤減少区間において回転抵抗が増加しているか否かを表わす指標を算出し、前記指標が基準値を超過した場合に潤滑不足と判断することを特徴とする請求項3に記載の回転軸装置における軸受の潤滑状態診断装置。   The lubrication state determination means calculates an index indicating whether the rotational resistance is increasing in the lubricant reduction section from the plurality of feature amounts, and determines that the lubrication is insufficient when the index exceeds a reference value. The lubricating state diagnostic device of the bearing in the rotating shaft apparatus of Claim 3 characterized by the above-mentioned. 前記回転軸の慣性運転を実行する慣性運転手段と、
前記回転軸の回転速度を検出する回転速度検出手段と、を備え、
前記特徴量算出手段は、前記慣性運転時の前記回転速度の変化様態に基づいて特徴量を算出することを特徴とする請求項1乃至4のいずれかに記載の回転軸装置における軸受の潤滑状態診断装置。
Inertial operation means for performing an inertial operation of the rotary shaft;
And rotational speed detection means for detecting the rotational speed of the rotation shaft,
The lubrication state of the bearing in the rotary shaft device according to any one of claims 1 to 4, wherein the feature amount calculation means calculates the feature amount based on a change mode of the rotational speed during the inertial operation. Diagnostic device.
前記慣性運転における慣性運転開始から終了までの回転速度範囲は、慣性運転中の前記回転速度範囲における前記特徴量の変動が基準値以下となるように決定することを特徴とする請求項5に記載の回転軸装置における軸受の潤滑状態診断装置。   The rotational speed range from the start to the end of the inertial operation in the inertial operation is determined such that the fluctuation of the feature value in the rotational speed range during the inertial operation is less than or equal to a reference value. Lubrication status diagnosis device for bearings in the rotary shaft device of 前記特徴量と前記特徴量算出時潤滑位相とのいずれかの一方を縦軸、他方を横軸に持つグラフを表示する表示部を備えたことを特徴とする請求項1乃至6のいずれかに記載の回転軸装置における軸受の潤滑状態診断装置。   The display device according to any one of claims 1 to 6, further comprising a display unit for displaying a graph having one of the feature amount and the lubricant phase at the time of the feature amount calculation on the vertical axis and the other on the horizontal axis. Lubrication state diagnostic device of the bearing in the rotating shaft apparatus of description. 周期的に吐出される潤滑剤が圧縮空気により搬送されることで潤滑される軸受に支持された回転軸を有する回転軸装置において、前記軸受の潤滑状態を診断する方法であって、
前記回転軸の回転抵抗の大きさを代表する特徴量を、異なるタイミングで複数算出する特徴量算出ステップと、
前記特徴量を算出する際の代表時刻が潤滑剤の吐出周期のどのタイミングであるかを示す特徴量算出時潤滑位相を算出する潤滑位相算出ステップと、
前記特徴量算出時潤滑位相が異なる複数の前記特徴量により前記軸受の潤滑状態の判定を行う潤滑状態判定ステップと、
を実行することを特徴とする回転軸装置における軸受の潤滑状態診断方法。
A rotary shaft device having a rotary shaft supported by a bearing that is lubricated by being conveyed by compressed air, a lubricant that is periodically discharged, and a method of diagnosing the lubrication state of the bearing,
A feature amount calculation step of calculating a plurality of feature amounts representative of the magnitude of the rotational resistance of the rotation axis at different timings;
A lubricant phase calculating step of calculating a lubricant phase at the time of feature amount calculation indicating which timing of the discharge cycle of the lubricant is the representative time at which the feature amount is calculated;
A lubrication state determination step of determining the lubrication state of the bearing based on a plurality of the feature amounts different in lubrication phase when calculating the feature amount;
A method of diagnosing the lubrication state of a bearing in a rotary shaft device, characterized in that:
JP2017167473A 2017-08-31 2017-08-31 Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices Active JP6873870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017167473A JP6873870B2 (en) 2017-08-31 2017-08-31 Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167473A JP6873870B2 (en) 2017-08-31 2017-08-31 Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices

Publications (2)

Publication Number Publication Date
JP2019045259A true JP2019045259A (en) 2019-03-22
JP6873870B2 JP6873870B2 (en) 2021-05-19

Family

ID=65814696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167473A Active JP6873870B2 (en) 2017-08-31 2017-08-31 Lubrication state diagnosis device and lubrication state diagnosis method for bearings in rotary shaft devices

Country Status (1)

Country Link
JP (1) JP6873870B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158071A1 (en) * 2021-01-25 2022-07-28 株式会社日本製鋼所 Abnormality detection system, molding machine system, abnormality detection device, abnormality detection method, and computer program
WO2024057461A1 (en) * 2022-09-14 2024-03-21 ファナック株式会社 Determination device and determination method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259397A (en) * 1986-05-02 1987-11-11 Hitachi Medical Corp X-ray tube with bearing life judging device
JP2016217726A (en) * 2015-05-14 2016-12-22 株式会社ジェイテクト Apparatus and method for diagnosing lubrication condition of rolling bearing
JP2017053649A (en) * 2015-09-07 2017-03-16 オークマ株式会社 Bearing diagnostic device of machine tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259397A (en) * 1986-05-02 1987-11-11 Hitachi Medical Corp X-ray tube with bearing life judging device
JP2016217726A (en) * 2015-05-14 2016-12-22 株式会社ジェイテクト Apparatus and method for diagnosing lubrication condition of rolling bearing
JP2017053649A (en) * 2015-09-07 2017-03-16 オークマ株式会社 Bearing diagnostic device of machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158071A1 (en) * 2021-01-25 2022-07-28 株式会社日本製鋼所 Abnormality detection system, molding machine system, abnormality detection device, abnormality detection method, and computer program
WO2024057461A1 (en) * 2022-09-14 2024-03-21 ファナック株式会社 Determination device and determination method

Also Published As

Publication number Publication date
JP6873870B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
US9933333B2 (en) Bearing diagnostic device for machine tool
US10513001B2 (en) Bearing diagnostic device
JP4956261B2 (en) Lubrication state detection device, lubricant supply device, injection molding machine, and lubrication state detection method
JP6294262B2 (en) Abnormality detection device having abnormality detection function of machine tool and abnormality detection method
EP2208571B1 (en) Spindle device with a temperature sensor
TWI533589B (en) Electric motor control device
US9512851B2 (en) Electronic apparatus with fan motor
US10081088B2 (en) Main spindle failure detection device for machine tool and method of detecting main spindle failure
CN111512078B (en) Control device for valve device
US20200282563A1 (en) Deterioration diagnosis apparatus for mechanical apparatus, deterioration diagnosis method for mechanical apparatus performed in deterioration diagnosis apparatus, and deterioration diagnosis method for mechanical apparatus
JP2019045259A (en) Lubrication state diagnostic apparatus and lubrication state diagnostic method of bearing of rotation shaft device
CN102401225A (en) Lubrication monitoring system of linear transmission device
CN111771113A (en) Abnormal type determination device and abnormal type determination method
JP2005074545A (en) Condition monitoring device for machine tool
US20170131694A1 (en) Apparatus for checking a state of a machine part
JP2021085694A (en) Ball screw condition monitoring device and condition monitoring method
JP5516839B2 (en) Spindle device abnormality detection device, spindle device abnormality detection method, spindle device, and machine tool
JP6799977B2 (en) Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device
JP2018028865A (en) Machine with rotation axis
EP3031725B1 (en) Air cycle machine speed diagnostic
EP4040134A1 (en) Remaining life prediction system, remaining life prediction device, and remaining life prediction program
JP6987280B2 (en) Diagnostic system and refrigeration cycle equipment
US10379099B2 (en) Lubrication detection method for linear motion system
JP2006017122A (en) Method and system for monitoring state of engine or the like
JP2014031730A (en) Abrasion monitor system and abrasion state estimation method by abrasion monitor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210421

R150 Certificate of patent or registration of utility model

Ref document number: 6873870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150