WO2014118907A1 - Diagnostic system and diagnostic method for wind power generation device - Google Patents

Diagnostic system and diagnostic method for wind power generation device Download PDF

Info

Publication number
WO2014118907A1
WO2014118907A1 PCT/JP2013/051997 JP2013051997W WO2014118907A1 WO 2014118907 A1 WO2014118907 A1 WO 2014118907A1 JP 2013051997 W JP2013051997 W JP 2013051997W WO 2014118907 A1 WO2014118907 A1 WO 2014118907A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical quantity
determination
measured
frequency component
abnormality
Prior art date
Application number
PCT/JP2013/051997
Other languages
French (fr)
Japanese (ja)
Inventor
友樹 久保
林 健太郎
林 利和
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2013/051997 priority Critical patent/WO2014118907A1/en
Publication of WO2014118907A1 publication Critical patent/WO2014118907A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/845Redundancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds

Definitions

  • the present disclosure relates to a wind turbine generator diagnosis system and a control method thereof, and more particularly, to a wind turbine generator diagnosis system having a variable speed main shaft and a control method thereof.
  • a wind turbine generator generally includes a nacelle supported by a tower, a main shaft rotatably supported by the nacelle, and wings attached to the main shaft.
  • the wind force received by the blades is converted into the rotational force of the main shaft, and this rotational force is input to the generator via the speed increasing mechanism installed in the nacelle and converted into electric power.
  • the hydraulic transmission is configured by combining a hydraulic pump and a hydraulic motor.
  • a wind power generator is a rotating machine in which a main shaft rotates, and various types of diagnostic apparatuses for rotating machines are known.
  • a rotating machine diagnostic device disclosed in Patent Document 1 is applied to a steam turbine generator, and extracts a cause of vibration using a vibration detector and a vibration causal matrix.
  • the vibration causal matrix the vibration cause items are arranged vertically, the dominant frequency items are arranged horizontally, and a score is assigned to each cell corresponding to the vertical and horizontal items (see Patent Document 1). (See FIG. 7).
  • the vibration signal detected by the vibration detector the presence / absence of abnormal vibration at the dominant frequency is determined.
  • the points corresponding to the dominant frequency determined to have abnormal vibration are accumulated, and the item of vibration cause with the highest accumulated point is extracted as the cause of vibration.
  • the rotational speed of the turbine is substantially constant, and it is relatively easy to determine the presence or absence of abnormal vibration at the dominant frequency from the vibration signal measured by the vibration detector.
  • the rotation speed of the main shaft changes greatly according to the wind force.
  • the rotational speed of the hydraulic machine also changes according to the wind force.
  • the vibration state of the rotating machine or peripheral device changes even if there is no abnormality in the rotating machine or peripheral device. For this reason, when the rotational speed of the rotating machine changes, even if the amplitude at a certain dominant frequency increases, it is difficult to determine whether it is due to the occurrence of an abnormality, and the rotational speed is constant. Compared to the case, it is difficult to accurately determine the presence or absence of abnormal vibration at the dominant frequency. If the presence or absence of abnormal vibration at the dominant frequency cannot be accurately determined, the cause of vibration cannot be accurately extracted.
  • An object of at least one embodiment of the present invention is to provide a wind turbine generator diagnosis system and diagnostic method capable of accurately diagnosing the presence or absence of abnormality in a wind turbine generator having a variable speed main shaft.
  • a diagnostic system for a wind turbine generator comprising a spindle that can rotate at a variable speed together with a blade, At least one physical quantity sensor for measuring a physical quantity; A rotational speed sensor for measuring the rotational speed of the spindle; A diagnostic device configured to determine the presence or absence of an abnormality in the physical quantity,
  • the diagnostic device comprises: A determination criterion setting unit configured to set a determination criterion for performing the determination based on the relationship between the rotation speed of the spindle and the physical quantity; Based on the measured value of the physical quantity measured by the physical quantity sensor, the measured value of the rotational speed of the spindle measured by the rotational speed sensor, and the determination criterion set by the determination criterion setting unit, And a determination unit configured to determine whether there is an abnormality in the measurement value.
  • the determination reference setting unit sets the determination reference based on the relationship between the rotation speed of the spindle and the physical quantity, so that the measured value of the physical quantity due to the change in the rotation speed of the spindle. Even if changes, the presence or absence of abnormality in the measured value of the physical quantity can be accurately determined. As a result, it is possible to accurately diagnose whether there is an abnormality in the wind turbine generator.
  • the physical quantity sensor includes a vibration sensor;
  • the diagnostic device further includes a filter unit for extracting a plurality of frequency components from the vibration measurement value measured by the vibration sensor,
  • the determination criterion setting unit is configured to set the determination criterion for at least one frequency component of the plurality of frequency components;
  • the determination unit is configured to determine whether there is an abnormality in the at least one frequency component based on an amplitude of the at least one frequency component as a measured value of the physical quantity.
  • the determination criterion setting unit is configured to set, in the determination criterion, a threshold value that increases stepwise as the rotational speed of the spindle increases.
  • Some frequency components of vibration increase in amplitude as the rotational speed of the spindle increases even when the wind turbine generator is in a normal state.
  • this configuration by setting a threshold value that increases stepwise as the rotation speed of the main spindle increases, it is possible to avoid a normal increase in amplitude accompanying an increase in rotation speed from being determined as abnormal. It is possible to accurately determine whether there is an abnormality in the frequency component.
  • the determination criterion setting unit indicates the dependency of the amplitude of the at least one frequency component on the rotation speed of the main shaft when the wind turbine generator is in a normal state.
  • the determination unit includes an abnormality in the at least one frequency component based on a plurality of measured values of the rotational speed of the spindle, a plurality of amplitudes of the at least one frequency component as measured values of the physical quantity, and the reference data. It is comprised so that the presence or absence of may be determined.
  • Some vibration frequency components change in amplitude with changes in the rotational speed of the spindle even when the wind turbine generator is in a normal state.
  • reference data indicating the dependency of the amplitude on the rotation speed when the wind turbine generator is in a normal state is set as a determination criterion, and the frequency component is determined by determining the correlation with the reference data. It is possible to accurately determine whether or not there is an abnormality.
  • the determination unit determines whether there is an abnormality in the at least one frequency component based on a trend of the at least one frequency component extracted from a measurement value of vibration repeatedly measured by the vibration sensor. Is further determined.
  • the wind turbine generator further comprises a hydraulic machine
  • the hydraulic machine is A rotating shaft rotatable with the main shaft;
  • a cylinder A piston that forms a working chamber with the cylinder;
  • a conversion mechanism for performing conversion between the rotational movement of the rotary shaft and the reciprocating movement of the piston;
  • the physical quantity sensor includes a pressure sensor for measuring the pressure of the working chamber,
  • the diagnostic device comprises: An integration unit for calculating an integral value by integrating a measured value of the pressure of the working chamber measured by the pressure sensor in correspondence with a cycle of the reciprocating motion of the piston;
  • the determination unit is configured to determine whether there is an abnormality in the integral value based on the integral value calculated by the integral unit as the measured value of the physical quantity.
  • the cycle in which the pressure in the working chamber changes corresponds to the rotational speed of the main shaft, and the period during which the pressure in the working chamber increases (high pressure period) changes in accordance with the rotational speed of the main shaft.
  • the length of the high pressure period is obtained as an integral value obtained by integrating the measured value of the pressure in the working chamber corresponding to the cycle of the reciprocating motion of the piston. Then, by comparing the obtained integral value with the criterion set based on the rotational speed, it is possible to accurately determine whether there is an abnormality in the length of the high-pressure period without being affected by changes in the rotational speed of the spindle. Can be determined.
  • a diagnostic method for a wind turbine generator includes: A method for diagnosing a wind turbine generator having a spindle that can rotate at a variable speed together with a blade, A physical quantity measurement process for measuring physical quantities; A rotational speed measuring step for measuring the rotational speed of the spindle; A diagnostic step of determining the presence or absence of an abnormality in the physical quantity, The diagnostic step includes A determination criterion setting step for setting a determination criterion for performing the determination based on the relationship between the rotation speed of the spindle and the physical quantity; Based on the measured value of the physical quantity measured in the physical quantity measuring step, the measured value of the rotational speed of the spindle measured in the rotational speed measuring step, and the criterion set in the criterion setting step And a determination step of determining whether there is an abnormality in the measured value of the physical quantity.
  • the determination value is set based on the relationship between the rotation speed of the spindle and the physical quantity, so that the measured value of the physical quantity changes due to the change in the rotation speed of the spindle.
  • the presence or absence of an abnormality in the measured value of the physical quantity can be accurately determined. As a result, it is possible to accurately diagnose whether there is an abnormality in the wind turbine generator.
  • vibration is measured in the physical quantity measurement step
  • the diagnostic step further includes a filtering step for extracting a plurality of frequency components from the vibration measurement values measured in the physical quantity measurement step
  • the determination criterion setting step the determination criterion is set for at least one frequency component of the plurality of frequency components
  • the presence / absence of an abnormality in the at least one frequency component is determined based on an amplitude of the at least one frequency component as a measured value of the physical quantity.
  • a threshold value that increases stepwise as the rotational speed of the spindle increases is set in the determination criterion.
  • the determination criterion includes a dependency of an amplitude of the at least one frequency component on a rotation speed of the main shaft when the wind turbine generator is in a normal state.
  • Set the reference data In the determination step, a plurality of measured values of the rotation speed of the spindle, a plurality of amplitudes of the at least one frequency component as measured values of the physical quantity, and the at least one frequency component based on the reference data Determine if there is an abnormality.
  • an abnormality in the at least one frequency component is determined based on a trend of the at least one frequency component extracted from a vibration measurement value repeatedly measured by the vibration sensor. The presence or absence is further determined.
  • the wind turbine generator further comprises a hydraulic machine
  • the hydraulic machine is A rotating shaft rotatable with the main shaft; A cylinder, A piston that forms a working chamber with the cylinder; A conversion mechanism for converting between the rotational movement of the rotating shaft and the reciprocating movement of the piston, and measuring the pressure of the working chamber in the physical quantity measurement step
  • the diagnosis step further includes an integration step for calculating an integral value by integrating the measured value of the pressure in the working chamber measured in the physical quantity measurement step in correspondence with the reciprocating motion cycle of the piston.
  • the determination step the presence / absence of abnormality in the integration value is determined according to a comparison result between the integration value calculated in the integration step and the determination criterion set in the determination criterion setting step.
  • the length of the period in which the pressure in the working chamber is high (high pressure period) is obtained as an integral value obtained by integrating the measured value of the pressure in the working chamber corresponding to the cycle of the reciprocating motion of the piston. Then, by comparing the obtained integral value with the criterion set based on the rotational speed, it is possible to accurately determine whether there is an abnormality in the length of the high-pressure period without being affected by changes in the rotational speed of the spindle. Can be judged
  • a wind turbine generator diagnosis system and diagnosis method capable of accurately diagnosing the presence or absence of abnormality in a wind turbine generator having a variable speed spindle are provided.
  • FIG. 5 It is a side view which shows roughly the structure of the wind power generator to which the diagnosis system of the air flow generator according to some embodiments of the present invention is applied. It is a figure for demonstrating the structure of the diagnostic system in FIG. It is a schematic flowchart for demonstrating the procedure of the diagnostic method which the diagnostic system of FIG. 2 performs. It is a schematic flowchart for demonstrating the procedure of the diagnostic process in FIG. It is a figure for demonstrating the structure of the diagnostic system which concerns on some embodiment. It is a figure which shows roughly the power spectrum obtained by the filter part in FIG. It is a schematic flowchart for demonstrating the procedure of the diagnostic process which the diagnostic system of FIG. 5 performs.
  • FIG. 6 is a diagram schematically showing reference data as a criterion set by a criterion setting unit in FIG. 5 together with normal diagnosis target data.
  • FIG. 6 is a diagram schematically showing reference data as a determination criterion set by a determination criterion setting unit in FIG. 5 together with abnormal diagnosis target data. It is a figure which shows roughly the time change of the vibration speed of one vibration component. It is a figure which shows roughly the time change of the vibration speed of another vibration component. Furthermore, it is a figure which shows roughly the time change of the vibration speed of another vibration component.
  • FIG. 2 is a transverse sectional view schematically showing the configuration of the hydraulic pump in FIG. 1. It is a figure for demonstrating the structure of the diagnostic system which concerns on some embodiment. It is a schematic flowchart for demonstrating the procedure of the diagnostic process which the diagnostic system of FIG. 15 performs. It is a figure which shows roughly the time change and integral value of the pressure of a working chamber. It is a figure for demonstrating the structure of the diagnostic system which concerns on some embodiment. It is a figure which shows a part of example of a vibration causal matrix as a causal matrix in FIG.
  • FIG. 1 is a side view schematically showing a configuration of a wind turbine generator to which a wind turbine generator diagnosis system (hereinafter also simply referred to as a diagnostic system) according to some embodiments of the present invention is applied.
  • the wind turbine generator may be installed on the ground or installed on the ocean.
  • the wind power generator has a variable speed main shaft 10.
  • the diagnostic system includes at least one physical quantity sensor 12 for measuring a physical quantity, a rotational speed sensor 14 for measuring the rotational speed of the spindle 10, and a diagnostic device 16 configured to determine whether there is an abnormality in the physical quantity. With.
  • FIG. 2 is a diagram for explaining a schematic configuration of the diagnostic system.
  • the diagnostic device 16 sets a determination criterion for performing a determination based on the relationship between the rotation speed of the spindle 10 and a physical quantity. And the measurement value of the physical quantity measured by the physical quantity sensor 12, the measurement value of the rotational speed of the spindle 10 measured by the rotational speed sensor 14, and the determination standard setting part 18. And a determination unit 20 configured to determine whether there is an abnormality in the measured value of the physical quantity based on the determination criterion.
  • the diagnostic method executed by the diagnostic system includes a physical quantity measuring step S10 for measuring the physical quantity, a rotational speed measuring step S20 for measuring the rotational speed of the spindle 10, and whether there is an abnormality in the physical quantity. And a diagnostic step S30 for determining the above.
  • the diagnosis step S30 includes a determination criterion setting step S300 for setting a determination criterion for performing determination based on the relationship between the rotation speed of the spindle 10 and the physical quantity, and a physical quantity measurement step S10.
  • Measurement of the physical quantity based on the measured value of the physical quantity measured in Step 1, the measured value of the rotational speed of the spindle 10 measured in the rotational speed measurement process S20, and the determination criterion set in the determination criterion setting process S300. Determination step S310 for determining whether there is an abnormality in the value.
  • the determination criterion setting unit 18 sets the determination criterion based on the relationship between the rotational speed of the main shaft 10 and the physical quantity, so that the physical quantity is changed by the change in the rotational speed of the main spindle 10. Even if the measurement value changes, it is possible to accurately determine whether there is an abnormality in the measurement value of the physical quantity.
  • setting the criterion includes selecting the criterion based on the relationship between the rotational speed of the spindle 10 and the physical quantity from one or more previously registered criterion.
  • FIG. 5 is a diagram for explaining a schematic configuration of a diagnostic system according to some embodiments.
  • the physical quantity sensor 12 includes a vibration sensor 12 ⁇ / b> A
  • the diagnostic device 16 further includes a filter unit 22.
  • the filter unit 22 can extract a plurality of frequency components from the vibration measurement values measured by the vibration sensor 12A. For example, the filter unit 22 performs a Fourier transform on the measurement value of vibration, and obtains a power spectrum indicating the relationship between frequency and amplitude as shown in FIG. Then, the filter unit 22 extracts the amplitudes of frequency components (bands) ⁇ 0, ⁇ 1, and ⁇ 2 to be diagnosed in the power spectrum.
  • the determination criterion setting unit 18 sets a determination criterion for at least one frequency component among the plurality of frequency components ⁇ 0, ⁇ 1, and ⁇ 2. And the determination part 20 is comprised so that the presence or absence of abnormality in at least 1 frequency component may be determined based on the amplitude of at least 1 frequency component as a measured value of physical quantity.
  • the amplitude of the frequency component is the effective value or maximum value of the vibration velocity. In some embodiments, the amplitude of the frequency component is the effective value or maximum value of the displacement or acceleration.
  • the vibration is measured in the physical quantity measurement step S10, and the diagnostic step S30 is based on the vibration measurement values measured in the physical quantity measurement step S10 as shown in FIG. And a filtering step S320 for extracting a plurality of frequency components.
  • a determination criterion is set for at least one frequency component among the plurality of frequency components, and a determination step S310. Then, based on the amplitude of at least one frequency component as a measured value of the physical quantity, it is determined whether there is an abnormality in at least one frequency component.
  • the wind turbine generator includes a tower 30, a nacelle 32 supported by the tower 30, and a main bearing 34 that is disposed by the nacelle 32 and rotatably supports the main shaft 10. And at least one blade 36 connected to the main shaft 10 and rotatable together with the main shaft 10, a speed increasing mechanism 39 for transmitting the rotational force of the main shaft 10 to the generator 38, and a pitch drive for adjusting the pitch angle of the blade 36.
  • a mechanism 40 and a yaw drive mechanism 42 that adjusts the yaw angle of the nacelle 32 are provided.
  • the vibration sensor 12A is attached to one or more diagnosis targets among the main shaft 10, the main bearing 34, the tower 30, the nacelle 32, the generator 38, the speed increasing mechanism 39, the pitch driving mechanism 40, and the yaw driving mechanism 42.
  • the diagnostic device 16 is constituted by, for example, a computer including a central processing unit (CPU), a memory, an external storage device, and an input / output device, and implements a predetermined function by executing a program stored in the external storage device. Is possible.
  • the diagnostic device 16 can be arranged in the nacelle 32 as illustrated in FIG. 1, or can be arranged in the tower 30.
  • the diagnostic device 16 is installed outside the wind turbine generator.
  • the diagnostic device 16 is installed in a central control room that monitors or controls the operation of the wind turbine generator.
  • the diagnostic system includes a communication device, and the measurement results of the physical quantity sensor 12 and the rotation speed sensor 14 are transmitted to the diagnostic device 16 by the communication device.
  • the determination criterion setting unit 18 is configured to set a threshold value that increases stepwise as the rotational speed of the main shaft 10 increases, as illustrated in FIG. 8. .
  • Some frequency components of vibration increase in amplitude as the rotational speed of the main shaft 10 increases even when the wind turbine generator is in a normal state.
  • this configuration by setting a threshold value that increases stepwise as the rotational speed of the main spindle 10 increases, it is possible to avoid a normal increase in amplitude accompanying an increase in the rotational speed from being determined as abnormal. It is possible to accurately determine whether there is an abnormality in the frequency component.
  • the determination criterion setting unit 18 uses at least one frequency relative to the rotational speed of the main shaft 10 when the wind turbine generator is in a normal state as the determination criterion.
  • Reference data indicating the dependency of the component amplitude is set. Then, the determination unit 20 determines whether there is an abnormality in at least one frequency component based on the measured values of the rotational speeds of the plurality of spindles 10, the plurality of amplitudes of at least one frequency component as the measured value of the physical quantity, and the reference data. Is configured to determine.
  • the diagnosis target data includes a plurality of rotational speed measurement values and a plurality of frequency component amplitudes corresponding to the plurality of rotational speed measurement values.
  • FIG. 9 shows diagnosis target data indicating reference values and effective values of a plurality of vibration speeds at a plurality of rotation speeds in the frequency component ⁇ 0.
  • the correlation between the diagnosis target data and the reference data is strong, and it is determined that the diagnosis target data is normal.
  • FIG. 10 shows diagnosis target data composed of effective values of a plurality of vibration speeds at a plurality of rotation speeds and reference data in the frequency component ⁇ 2.
  • the correlation between the diagnosis target data and the reference data is weak, and it is determined that the diagnosis target data is abnormal.
  • the determination unit 20 detects an abnormality in at least one frequency component based on a trend of at least one frequency component extracted from a vibration measurement value (time history) repeatedly measured by the vibration sensor 12A. It is comprised so that the presence or absence of may be further determined.
  • vibration is periodically measured by the vibration sensor 12A
  • the determination unit 20 is vibration that is periodically and repeatedly measured by the vibration sensor 12A.
  • it is configured to further determine whether or not there is an abnormality in at least one frequency component.
  • the rotation speed of the main shaft 10 varies depending on the time, but may be substantially the same at the same time. For example, in a location where winds are weak throughout the year and winds are strong in the evening, if the wind turbine generator is in a normal state, the rotational speed of the spindle 10 is slow during the day and the rotational speed of the spindle 10 in the evening. Will be faster. For this reason, by measuring vibration periodically and setting a determination standard corresponding to the trend of the frequency component, the influence of the change in the rotational speed of the spindle 10 is avoided as much as possible, and an abnormality in the frequency component is detected. Presence / absence can be determined accurately.
  • FIG. 11 shows the time dependence of the periodically obtained vibration speed in the frequency component ⁇ 0
  • FIG. 12 shows the time dependence of the periodically obtained vibration speed in the frequency component ⁇ 1.
  • FIG. 13 shows the time dependence of the periodically calculated vibration velocity in the frequency component ⁇ 2. As shown in FIG. 13, in the frequency component ⁇ ⁇ b> 2, the trend of the vibration speed changes at a certain date and time, and it can be seen that an abnormality has occurred in the frequency component ⁇ ⁇ b> 2.
  • a plurality of amplitudes (time series) of frequency components can be extracted at regular intervals from the time history of the amplitudes of the frequency components repeatedly acquired, and the trend of the amplitudes of the frequency components can be obtained.
  • the amplitude trend is an average value of a plurality of amplitudes, for example, determining that an abnormality has occurred when the amplitude has changed by more than three times the standard deviation of the amplitude. it can.
  • the wind turbine generator comprises a hydraulic machine.
  • the hydraulic machine is, for example, a hydraulic pump 44 or a hydraulic motor 46 constituting the speed increasing mechanism 39 as shown in FIG.
  • the hydraulic pump 44 is driven by the main shaft 10, sucks and compresses low-pressure hydraulic oil, and discharges high-pressure hydraulic oil.
  • the hydraulic motor 46 is driven by the high-pressure hydraulic oil discharged from the hydraulic pump 44 and drives the generator 38.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of the hydraulic pump 44.
  • the hydraulic pump 44 is connected to the main shaft 10 and is rotatable with the main shaft 10, a cylinder 48, a piston 50 that forms an operation chamber 52 together with the cylinder 48, a rotational movement of the rotary shaft 60, and a reciprocation of the piston 50.
  • the volume of the working chamber 52 changes with the rotational movement of the main shaft 10.
  • the physical quantity sensor 12 includes a pressure sensor 12B for measuring the pressure in the working chamber 52, and the diagnostic device 16 further includes an integrating unit 54 as shown in FIG.
  • the integrating unit 54 integrates the measured value of the pressure in the working chamber 52 measured by the pressure sensor 12 ⁇ / b> B in accordance with the cycle of the reciprocating motion of the piston 50 to calculate an integrated value.
  • the determination unit 20 is configured to determine whether there is an abnormality in the integral value based on the integral value calculated by the integral unit 54 as a measured value of the physical quantity.
  • the integrating unit 54 is formed by an integrating circuit including an RC circuit having a resistor and a capacitor.
  • the integrating unit 54 is formed by an integrating circuit including an operational amplifier.
  • the pressure in the working chamber 52 is measured in the physical quantity measuring step S10, and the diagnostic step S30 is the operation measured in the physical quantity measuring step S10 as shown in FIG. It further has an integration step S330 for calculating the integral value by integrating the measured value of the pressure in the chamber 52 corresponding to the cycle of the reciprocating motion of the piston 50.
  • the integration value is calculated by the integration step S330. The presence / absence of abnormality in the integrated value is determined according to the comparison result between the integrated value and the determination criterion set in the determination criterion setting step.
  • the cycle in which the pressure in the working chamber 52 changes corresponds to the rotational speed of the main shaft 10, and the period during which the pressure in the working chamber 52 is high (high pressure period) is It changes according to the rotation speed.
  • the length of the high pressure period is obtained as an integral value obtained by integrating the measured value of the pressure in the working chamber 52 corresponding to the cycle of the reciprocating motion of the piston 50. Then, by comparing the obtained integrated value with a criterion set based on the rotational speed, it is possible to determine whether there is an abnormality in the length of the high-pressure period without being affected by a change in the rotational speed of the main shaft 10. It can be judged accurately.
  • FIG. 17 schematically shows the temporal change and integral value of the pressure in the working chamber 52 for one normal case (upper stage) and two abnormal cases (middle stage and lower stage).
  • the lengths of the high pressure period and the low pressure period are equal.
  • the high-pressure period becomes longer than the low-pressure period as shown in the middle part of FIG. 17, or the high-pressure period becomes shorter than the low-pressure period as shown in the lower part of FIG.
  • the hydraulic pump 44 includes an oil supply valve 56 that controls supply of hydraulic oil to the working chamber 52 and an oil discharge valve 58 that controls discharge of hydraulic oil from the working chamber 52.
  • an oil supply valve 56 that controls supply of hydraulic oil to the working chamber 52
  • an oil discharge valve 58 that controls discharge of hydraulic oil from the working chamber 52.
  • the oil supply valve and the oil discharge valve of the hydraulic motor 46 are solenoid solenoid valves.
  • the oil supply valve of the hydraulic pump 44 is a solenoid solenoid valve, while the oil discharge valve 58 is a check valve or a solenoid solenoid valve.
  • the plurality of working chambers 52 of the hydraulic pump 44 are annularly arranged around the rotation axis 60.
  • the conversion mechanism includes a ring cam 62 that is coaxially fixed to the rotation shaft 60, and a roller 64 that is attached to the end of the piston 50 and that is in sliding contact with the ring cam 62.
  • the conversion mechanism includes a crankpin and a connecting rod.
  • the conversion mechanism includes an eccentric cam and a connecting rod.
  • the diagnosis system includes a warning unit including a speaker, a lamp, and the like, and when an abnormality is detected in the measured value of the physical quantity, an alarm such as a warning sound or a warning display corresponding to the abnormality may be issued. it can.
  • failure diagnosis of the wind turbine generator is started using the causal matrix.
  • the diagnostic system stores a preset causal matrix 66 as shown in FIG. FIG. 19 shows a part of an example of the vibration causal matrix 66 ⁇ / b> A as the causal matrix 66.
  • the vibration causal matrix 66A the vibration cause items are arranged vertically, the frequency component items are arranged horizontally, and a score is assigned to each cell corresponding to the vertical and horizontal items.
  • the points corresponding to the frequency components determined to have abnormal vibration are integrated for each item of the cause of vibration in the vibration causal matrix 66A, and the integrated score is the highest.
  • the item of the cause of vibration is extracted as the cause of vibration.
  • the diagnostic system can issue a warning such as a warning sound or a warning display corresponding to the determination result.
  • FT fault
  • the diagnostic system detects an anomaly in the physical quantity measurement
  • FT fault Tree
  • Fault diagnosis of the wind turbine generator is started using the diagram. Also in the case of using the FT diagram, the presence / absence of abnormality of the amplitude of each frequency component is accurately determined, so that the cause of vibration can be accurately determined.

Abstract

A diagnostic system for a wind power generation device equipped with a main shaft capable of rotating at variable speeds together with the blades, said system being equipped with: one or more physical amount sensors for measuring a physical amount; a rotational speed sensor for measuring the rotational speed of the main shaft; and a diagnostic device configured so as to determine whether an error exists in the physical amount. The diagnostic device has: a determination standard setting unit configured so as to set a determination standard for performing the determination on the basis of the relationship between the rotational speed of the main shaft and the physical amount; and a determination unit configured so as to determine whether an error exists in the measured value of the physical amount, on the basis of a measured value for the physical amount as measured by the physical amount sensor, a measured value for the rotational speed of the main shaft as measured by the rotational speed sensor, and the determination standard set by the determination standard setting unit.

Description

風力発電装置の診断システム及び診断方法Diagnostic system and diagnostic method for wind turbine generator
 本開示は、風力発電装置の診断システム及びその制御方法に関し、より詳しくは、可変速の主軸を有する風力発電装置の診断システム及びその制御方法に関する。 The present disclosure relates to a wind turbine generator diagnosis system and a control method thereof, and more particularly, to a wind turbine generator diagnosis system having a variable speed main shaft and a control method thereof.
 地球環境の保全の観点から、再生エネルギーとしての風を利用して発電を行う風力発電装置の普及が進んでいる。風力発電装置は、一般的に、タワーによって支持されたナセルと、ナセルによって回転可能に支持されたメインシャフトと、メインシャフトに取り付けられた翼とを有する。風力発電装置では、翼が受けた風力がメインシャフトの回転力に変換され、この回転力が、ナセルに設置された増速機構を介して発電機に入力され、電力に変換される。 From the viewpoint of conservation of the global environment, wind power generators that generate power using wind as a renewable energy are spreading. A wind turbine generator generally includes a nacelle supported by a tower, a main shaft rotatably supported by the nacelle, and wings attached to the main shaft. In the wind turbine generator, the wind force received by the blades is converted into the rotational force of the main shaft, and this rotational force is input to the generator via the speed increasing mechanism installed in the nacelle and converted into electric power.
 そして近年、風力発電装置の大型化が進行しており、増速機構として、機械式の遊星歯車等に比べて軽量化が可能な油圧トランスミッションを用いた風力発電装置が開発されている。油圧トランスミッションは、油圧ポンプ及び油圧モータを組み合わせて構成されている。 In recent years, wind turbine generators have been increased in size, and a wind generator using a hydraulic transmission that can be reduced in weight compared to a mechanical planetary gear or the like has been developed as a speed increasing mechanism. The hydraulic transmission is configured by combining a hydraulic pump and a hydraulic motor.
 風力発電装置の普及とともに、風力発電装置の診断システム及び診断方法の開発も進められている。風力発電装置は、メインシャフトが回転する回転機械であり、回転機械の診断装置としては種々のものが知られている。 Along with the widespread use of wind turbine generators, development of wind turbine generator diagnostic systems and diagnostic methods is also underway. A wind power generator is a rotating machine in which a main shaft rotates, and various types of diagnostic apparatuses for rotating machines are known.
 例えば、特許文献1が開示する回転機械の診断装置は、蒸気タービン発電機に適用されており、振動検出器及び振動因果マトリクスを用いて振動原因を抽出する。具体的には、振動因果マトリクスでは、振動原因の項目が縦に配列され、卓越周波数の項目が横に配列され、縦横の項目に対応する各セルに点数が割り当てられている(特許文献1の図7参照)。そして、振動検出器によって検出された振動信号に基づいて、卓越周波数における異常な振動の有無を判定する。それから、振動因果マトリクスにおける振動原因の項目毎に、異常な振動が有ると判定された卓越周波数に対応する点数が積算され、積算した点数が最も高くなった振動原因の項目が振動原因として抽出される。 For example, a rotating machine diagnostic device disclosed in Patent Document 1 is applied to a steam turbine generator, and extracts a cause of vibration using a vibration detector and a vibration causal matrix. Specifically, in the vibration causal matrix, the vibration cause items are arranged vertically, the dominant frequency items are arranged horizontally, and a score is assigned to each cell corresponding to the vertical and horizontal items (see Patent Document 1). (See FIG. 7). Based on the vibration signal detected by the vibration detector, the presence / absence of abnormal vibration at the dominant frequency is determined. Then, for each item of vibration cause in the vibration causal matrix, the points corresponding to the dominant frequency determined to have abnormal vibration are accumulated, and the item of vibration cause with the highest accumulated point is extracted as the cause of vibration. The
特開2003-149043号公報Japanese Patent Laid-Open No. 2003-190443
 蒸気タービン発電機においては、タービンの回転速度は略一定であり、振動検出器によって測定された振動信号において、卓越周波数での異常振動の有無を判定することは比較的容易である。
 これに対し、風力発電装置においては、風力に応じてメインシャフトの回転速度が大きく変化する。風力発電装置が油圧機械からなる増速機構を有する場合には、風力に応じて油圧機械の回転速度も変化する。
In a steam turbine generator, the rotational speed of the turbine is substantially constant, and it is relatively easy to determine the presence or absence of abnormal vibration at the dominant frequency from the vibration signal measured by the vibration detector.
On the other hand, in the wind turbine generator, the rotation speed of the main shaft changes greatly according to the wind force. When the wind power generator has a speed increasing mechanism composed of a hydraulic machine, the rotational speed of the hydraulic machine also changes according to the wind force.
 回転機械の回転速度が変化する場合、回転機械や周辺機器に異常がなくても、回転機械や周辺機器の振動状態が変化する。このため、回転機械の回転速度が変化する場合、ある卓越周波数での振幅が大きくなっても、それが異常の発生によるものであるか否かの判断が困難であり、回転速度が定速の場合に比べて、卓越周波数での異常振動の有無を的確に判定することは困難である。そして、卓越周波数での異常振動の有無を的確に判定することができなかった場合、振動原因を的確に抽出することができない。 When the rotational speed of the rotating machine changes, the vibration state of the rotating machine or peripheral device changes even if there is no abnormality in the rotating machine or peripheral device. For this reason, when the rotational speed of the rotating machine changes, even if the amplitude at a certain dominant frequency increases, it is difficult to determine whether it is due to the occurrence of an abnormality, and the rotational speed is constant. Compared to the case, it is difficult to accurately determine the presence or absence of abnormal vibration at the dominant frequency. If the presence or absence of abnormal vibration at the dominant frequency cannot be accurately determined, the cause of vibration cannot be accurately extracted.
 本発明の少なくとも一実施形態は、可変速の主軸を有する風力発電装置における異常の有無を的確に診断可能な風力発電装置の診断システム及び診断方法を提供することを目的とする。 An object of at least one embodiment of the present invention is to provide a wind turbine generator diagnosis system and diagnostic method capable of accurately diagnosing the presence or absence of abnormality in a wind turbine generator having a variable speed main shaft.
 本発明の少なくとも一実施形態に係る風力発電装置の診断システムは、
 翼と共に可変速にて回転可能な主軸を備える風力発電装置の診断システムであって、
 物理量を測定するための少なくとも1つの物理量センサと、
 前記主軸の回転速度を測定するための回転速度センサと、
 前記物理量における異常の有無を判定するように構成された診断装置とを備え、
 前記診断装置は、
 前記主軸の回転速度と前記物理量との関係に基づいて、前記判定を行うための判定基準を設定するように構成された判定基準設定部と、
 前記物理量センサによって測定された前記物理量の測定値、前記回転速度センサによって測定された前記主軸の回転速度の測定値、及び、前記判定基準設定部によって設定された判定基準に基づいて、前記物理量の測定値における異常の有無を判定するように構成された判定部と、を有する。
A diagnostic system for a wind turbine generator according to at least one embodiment of the present invention,
A wind turbine generator diagnostic system comprising a spindle that can rotate at a variable speed together with a blade,
At least one physical quantity sensor for measuring a physical quantity;
A rotational speed sensor for measuring the rotational speed of the spindle;
A diagnostic device configured to determine the presence or absence of an abnormality in the physical quantity,
The diagnostic device comprises:
A determination criterion setting unit configured to set a determination criterion for performing the determination based on the relationship between the rotation speed of the spindle and the physical quantity;
Based on the measured value of the physical quantity measured by the physical quantity sensor, the measured value of the rotational speed of the spindle measured by the rotational speed sensor, and the determination criterion set by the determination criterion setting unit, And a determination unit configured to determine whether there is an abnormality in the measurement value.
 主軸の回転速度が変化した場合、風力発電装置が正常な状態であっても、幾つかの物理量の測定値は主軸の回転速度に応じて変化する。このため、幾つかの物理量の測定値については、回転速度の変化前と変化後とで、異常の有無を判定するための判定基準を変更する必要が生じる。
 この点につき、上記風力発電装置の診断システムでは、判定基準設定部が、主軸の回転速度と前記物理量との関係に基づいて判定基準を設定することにより、主軸の回転速度変化により物理量の測定値が変化しても、物理量の測定値における異常の有無を的確に判定することができる。この結果として、風力発電装置における異常の有無を的確に診断することができる。
When the rotation speed of the main shaft changes, some measured values of physical quantities change according to the rotation speed of the main shaft even if the wind turbine generator is in a normal state. For this reason, it is necessary to change the determination criteria for determining the presence / absence of abnormality between the measured values of some physical quantities before and after the change in rotational speed.
With regard to this point, in the wind turbine generator diagnostic system, the determination reference setting unit sets the determination reference based on the relationship between the rotation speed of the spindle and the physical quantity, so that the measured value of the physical quantity due to the change in the rotation speed of the spindle. Even if changes, the presence or absence of abnormality in the measured value of the physical quantity can be accurately determined. As a result, it is possible to accurately diagnose whether there is an abnormality in the wind turbine generator.
 幾つかの実施形態では、前記物理量センサは振動センサを含み、
 前記診断装置は、前記振動センサによって測定された振動の測定値から、複数の周波数成分を抽出するためのフィルタ部を更に有し、
 前記判定基準設定部は、前記複数の周波数成分のうち少なくとも1つの周波数成分のために前記判定基準を設定するように構成され、
 前記判定部は、前記物理量の測定値として前記少なくとも1つの周波数成分の振幅に基づいて、前記少なくとも1つの周波数成分における異常の有無を判定するように構成されている。
In some embodiments, the physical quantity sensor includes a vibration sensor;
The diagnostic device further includes a filter unit for extracting a plurality of frequency components from the vibration measurement value measured by the vibration sensor,
The determination criterion setting unit is configured to set the determination criterion for at least one frequency component of the plurality of frequency components;
The determination unit is configured to determine whether there is an abnormality in the at least one frequency component based on an amplitude of the at least one frequency component as a measured value of the physical quantity.
 この構成では、複数の周波数成分を抽出することにより、周波数成分毎に異常の有無を的確に判定することができる。この結果として、風力発電装置における異常の有無をより的確に診断することができる。 In this configuration, by extracting a plurality of frequency components, it is possible to accurately determine the presence or absence of abnormality for each frequency component. As a result, the presence or absence of abnormality in the wind turbine generator can be diagnosed more accurately.
 幾つかの実施形態では、前記判定基準設定部は、前記判断基準に、前記主軸の回転速度の増加に伴い階段状に増加する閾値を設定するように構成されている。 In some embodiments, the determination criterion setting unit is configured to set, in the determination criterion, a threshold value that increases stepwise as the rotational speed of the spindle increases.
 振動の周波数成分には、風力発電装置が正常な状態である場合でも、主軸の回転速度の増加に伴い、振幅が大きくなるものがある。この点につき、この構成では、主軸の回転速度の増加に伴い階段状に増加する閾値を設定することで、回転速度の増加に伴う振幅の正常な増加を異常と判定することを回避することができ、周波数成分の異常の有無を的確に判定することができる。 Some frequency components of vibration increase in amplitude as the rotational speed of the spindle increases even when the wind turbine generator is in a normal state. In this configuration, in this configuration, by setting a threshold value that increases stepwise as the rotation speed of the main spindle increases, it is possible to avoid a normal increase in amplitude accompanying an increase in rotation speed from being determined as abnormal. It is possible to accurately determine whether there is an abnormality in the frequency component.
 幾つかの実施形態では、前記判定基準設定部は、前記判断基準に、前記風力発電装置が正常な状態である場合における前記主軸の回転速度に対する前記少なくとも1つの周波数成分の振幅の依存性を示す基準データを設定し、
 前記判定部は、複数の前記主軸の回転速度の測定値、前記物理量の測定値として前記少なくとも1つの周波数成分の複数の振幅、及び、前記基準データに基づいて、前記少なくとも1つの周波数成分における異常の有無を判定するように構成されている。
In some embodiments, the determination criterion setting unit indicates the dependency of the amplitude of the at least one frequency component on the rotation speed of the main shaft when the wind turbine generator is in a normal state. Set the reference data,
The determination unit includes an abnormality in the at least one frequency component based on a plurality of measured values of the rotational speed of the spindle, a plurality of amplitudes of the at least one frequency component as measured values of the physical quantity, and the reference data. It is comprised so that the presence or absence of may be determined.
 振動の周波数成分には、風力発電装置が正常な状態である場合でも、主軸の回転速度の変化に伴い、振幅が変化するものがある。この点につき、この構成では、風力発電装置が正常な状態である場合の回転速度に対する振幅の依存性を示す基準データを判断基準に設定し、基準データとの相関を判定することにより、周波数成分における異常の有無を的確に判定することができる。 Some vibration frequency components change in amplitude with changes in the rotational speed of the spindle even when the wind turbine generator is in a normal state. In this configuration, in this configuration, reference data indicating the dependency of the amplitude on the rotation speed when the wind turbine generator is in a normal state is set as a determination criterion, and the frequency component is determined by determining the correlation with the reference data. It is possible to accurately determine whether or not there is an abnormality.
 幾つかの実施形態では、前記判定部は、前記振動センサによって繰り返し測定された振動の測定値から抽出された前記少なくとも1つの周波数成分の動向に基づいて、前記少なくとも1つの周波数成分における異常の有無を更に判定するように構成されている。 In some embodiments, the determination unit determines whether there is an abnormality in the at least one frequency component based on a trend of the at least one frequency component extracted from a measurement value of vibration repeatedly measured by the vibration sensor. Is further determined.
 振動の周波数成分には、回転速度に応じて振幅が変化するものであっても、長期に亘り測定することにより動向を確認できるものがある。この構成では、周波数成分の動向に基づいて異常の有無を更に判定することにより、漏れなく異常を発見することができる。 There are some frequency components of vibration that can be confirmed by measuring over a long period of time, even if the amplitude changes according to the rotational speed. In this configuration, it is possible to discover an abnormality without omission by further determining the presence or absence of an abnormality based on the trend of frequency components.
 幾つかの実施形態では、前記風力発電装置は油圧機械を更に備え、
 前記油圧機械は、
 前記主軸と共に回転可能な回転軸と、
 シリンダと、
 前記シリンダと共に作動室を形成するピストンと、
 前記回転軸の回転運動と前記ピストンの往復運動との間の変換を行うための変換機構とを有し、
 前記物理量センサは、前記作動室の圧力を測定するための圧力センサを含み、
 前記診断装置は、
 前記圧力センサによって測定された前記作動室の圧力の測定値を前記ピストンの往復運動のサイクルに対応して積分して積分値を演算するための積分部を更に有し、
 前記判定部は、前記物理量の測定値として前記積分部によって演算された積分値に基づいて、前記積分値における異常の有無を判定するように構成されている。
In some embodiments, the wind turbine generator further comprises a hydraulic machine,
The hydraulic machine is
A rotating shaft rotatable with the main shaft;
A cylinder,
A piston that forms a working chamber with the cylinder;
A conversion mechanism for performing conversion between the rotational movement of the rotary shaft and the reciprocating movement of the piston;
The physical quantity sensor includes a pressure sensor for measuring the pressure of the working chamber,
The diagnostic device comprises:
An integration unit for calculating an integral value by integrating a measured value of the pressure of the working chamber measured by the pressure sensor in correspondence with a cycle of the reciprocating motion of the piston;
The determination unit is configured to determine whether there is an abnormality in the integral value based on the integral value calculated by the integral unit as the measured value of the physical quantity.
 油圧機械においては、作動室の圧力が変化する周期は、主軸の回転速度に対応しており、作動室の圧力が高くなる期間(高圧期間)は、主軸の回転速度に対応して変化する。この構成では、高圧期間の長さが、作動室の圧力の測定値をピストンの往復運動のサイクルに対応して積分した積分値として求められる。そして、求められた積分値と、回転速度に基づいて設定された判定基準とを比較することで、主軸の回転速度の変化の影響を受けずに、高圧期間の長さにおける異常の有無を的確に判定することができる。 In a hydraulic machine, the cycle in which the pressure in the working chamber changes corresponds to the rotational speed of the main shaft, and the period during which the pressure in the working chamber increases (high pressure period) changes in accordance with the rotational speed of the main shaft. In this configuration, the length of the high pressure period is obtained as an integral value obtained by integrating the measured value of the pressure in the working chamber corresponding to the cycle of the reciprocating motion of the piston. Then, by comparing the obtained integral value with the criterion set based on the rotational speed, it is possible to accurately determine whether there is an abnormality in the length of the high-pressure period without being affected by changes in the rotational speed of the spindle. Can be determined.
 本発明の少なくとも一実施形態に係る風力発電装置の診断方法は、
 翼と共に可変速にて回転可能な主軸を備える風力発電装置の診断方法であって、
 物理量を測定する物理量測定工程と、
 前記主軸の回転速度を測定する回転速度測定工程と、
 前記物理量における異常の有無を判定する診断工程と、を備え、
 前記診断工程は、
 前記主軸の回転速度と前記物理量との関係に基づいて、前記判定を行うための判定基準を設定する判定基準設定工程と、
 前記物理量測定工程にて測定された前記物理量の測定値、前記回転速度測定工程にて測定された前記主軸の回転速度の測定値、及び、前記判定基準設定工程にて設定された判定基準に基づいて、前記物理量の測定値における異常の有無を判定する判定工程と、を有する。
A diagnostic method for a wind turbine generator according to at least one embodiment of the present invention includes:
A method for diagnosing a wind turbine generator having a spindle that can rotate at a variable speed together with a blade,
A physical quantity measurement process for measuring physical quantities;
A rotational speed measuring step for measuring the rotational speed of the spindle;
A diagnostic step of determining the presence or absence of an abnormality in the physical quantity,
The diagnostic step includes
A determination criterion setting step for setting a determination criterion for performing the determination based on the relationship between the rotation speed of the spindle and the physical quantity;
Based on the measured value of the physical quantity measured in the physical quantity measuring step, the measured value of the rotational speed of the spindle measured in the rotational speed measuring step, and the criterion set in the criterion setting step And a determination step of determining whether there is an abnormality in the measured value of the physical quantity.
 上記風力発電装置の診断方法では、判定基準設定工程にて、主軸の回転速度と前記物理量との関係に基づいて判定基準を設定することにより、主軸の回転速度変化により物理量の測定値が変化しても、物理量の測定値における異常の有無を的確に判定することができる。この結果として、風力発電装置における異常の有無を的確に診断することができる。 In the wind turbine generator diagnosis method, in the determination reference setting step, the determination value is set based on the relationship between the rotation speed of the spindle and the physical quantity, so that the measured value of the physical quantity changes due to the change in the rotation speed of the spindle. However, the presence or absence of an abnormality in the measured value of the physical quantity can be accurately determined. As a result, it is possible to accurately diagnose whether there is an abnormality in the wind turbine generator.
 幾つかの実施形態では、前記物理量測定工程にて振動を測定し、
 前記診断工程は、前記物理量測定工程にて測定された振動の測定値から、複数の周波数成分を抽出するためのフィルタリング工程を更に有し、
 前記判定基準設定工程にて、前記複数の周波数成分のうち少なくとも1つの周波数成分のために前記判定基準を設定し、
 前記判定工程にて、前記物理量の測定値として前記少なくとも1つの周波数成分の振幅に基づいて、前記少なくとも1つの周波数成分における異常の有無を判定する。
In some embodiments, vibration is measured in the physical quantity measurement step,
The diagnostic step further includes a filtering step for extracting a plurality of frequency components from the vibration measurement values measured in the physical quantity measurement step,
In the determination criterion setting step, the determination criterion is set for at least one frequency component of the plurality of frequency components,
In the determination step, the presence / absence of an abnormality in the at least one frequency component is determined based on an amplitude of the at least one frequency component as a measured value of the physical quantity.
 この構成では、複数の周波数成分を抽出することにより、周波数成分毎に異常の有無を的確に判定することができる。この結果として、風力発電装置における異常の有無をより的確に診断することができる。 In this configuration, by extracting a plurality of frequency components, it is possible to accurately determine the presence or absence of abnormality for each frequency component. As a result, the presence or absence of abnormality in the wind turbine generator can be diagnosed more accurately.
 幾つかの実施形態では、前記判定基準設定工程にて、前記判断基準に、前記主軸の回転速度の増加に伴い階段状に増加する閾値を設定する。 In some embodiments, in the determination criterion setting step, a threshold value that increases stepwise as the rotational speed of the spindle increases is set in the determination criterion.
 この構成では、主軸の回転速度の増加に伴い階段状に増加する閾値を設定することで、回転速度の増加に伴う振幅の正常な増加を異常と判定することを回避することができ、周波数成分の異常の有無を的確に判定することができる。 In this configuration, by setting a threshold value that increases stepwise as the rotational speed of the spindle increases, it is possible to avoid a normal increase in amplitude accompanying an increase in rotational speed from being determined as abnormal, and a frequency component It is possible to accurately determine whether there is any abnormality.
 幾つかの実施形態では、前記判定基準設定工程にて、前記判断基準に、前記風力発電装置が正常な状態である場合における前記主軸の回転速度に対する前記少なくとも1つの周波数成分の振幅の依存性を示す基準データを設定し、
 前記判定工程にて、複数の前記主軸の回転速度の測定値、前記物理量の測定値として前記少なくとも1つの周波数成分の複数の振幅、及び、前記基準データに基づいて、前記少なくとも1つの周波数成分における異常の有無を判定する。
In some embodiments, in the determination criterion setting step, the determination criterion includes a dependency of an amplitude of the at least one frequency component on a rotation speed of the main shaft when the wind turbine generator is in a normal state. Set the reference data
In the determination step, a plurality of measured values of the rotation speed of the spindle, a plurality of amplitudes of the at least one frequency component as measured values of the physical quantity, and the at least one frequency component based on the reference data Determine if there is an abnormality.
 この構成では、風力発電装置が正常な状態である場合の回転速度に対する振幅の依存性を示す基準データを判断基準に設定し、基準データとの相関を判定することにより、周波数成分における異常の有無を的確に判定することができる。 In this configuration, whether or not there is an abnormality in the frequency component is determined by setting reference data indicating the dependency of the amplitude on the rotation speed when the wind turbine generator is in a normal state as a determination reference and determining a correlation with the reference data. Can be accurately determined.
 幾つかの実施形態では、前記判定工程にて、前記振動センサによって繰り返し測定された振動の測定値から抽出された前記少なくとも1つの周波数成分の動向に基づいて、前記少なくとも1つの周波数成分における異常の有無を更に判定する。 In some embodiments, in the determination step, an abnormality in the at least one frequency component is determined based on a trend of the at least one frequency component extracted from a vibration measurement value repeatedly measured by the vibration sensor. The presence or absence is further determined.
 この構成では、周波数成分の動向に基づいて異常の有無を更に判定することにより、漏れなく異常を発見することができる。 In this configuration, it is possible to detect an abnormality without omission by further determining the presence or absence of an abnormality based on the trend of frequency components.
 幾つかの実施形態では、前記風力発電装置は油圧機械を更に備え、
 前記油圧機械は、
 前記主軸と共に回転可能な回転軸と、
 シリンダと、
 前記シリンダと共に作動室を形成するピストンと、
 前記回転軸の回転運動と前記ピストンの往復運動との間の変換を行うための変換機構とを有し
 前記物理量測定工程にて前記作動室の圧力を測定し、
 前記診断工程は、前記物理量測定工程にて測定された前記作動室の圧力の測定値を前記ピストンの往復運動のサイクルに対応して積分して積分値を演算するための積分工程を更に有し、
 前記判定工程にて、前記積分工程によって演算された積分値と前記判定基準設定工程によって設定された判定基準との比較結果に応じて、前記積分値における異常の有無を判定する。
In some embodiments, the wind turbine generator further comprises a hydraulic machine,
The hydraulic machine is
A rotating shaft rotatable with the main shaft;
A cylinder,
A piston that forms a working chamber with the cylinder;
A conversion mechanism for converting between the rotational movement of the rotating shaft and the reciprocating movement of the piston, and measuring the pressure of the working chamber in the physical quantity measurement step,
The diagnosis step further includes an integration step for calculating an integral value by integrating the measured value of the pressure in the working chamber measured in the physical quantity measurement step in correspondence with the reciprocating motion cycle of the piston. ,
In the determination step, the presence / absence of abnormality in the integration value is determined according to a comparison result between the integration value calculated in the integration step and the determination criterion set in the determination criterion setting step.
 この構成では、作動室の圧力が高くなる期間(高圧期間)の長さが、作動室の圧力の測定値をピストンの往復運動のサイクルに対応して積分した積分値として求められる。そして、求められた積分値と、回転速度に基づいて設定された判定基準とを比較することで、主軸の回転速度の変化の影響を受けずに、高圧期間の長さにおける異常の有無を的確に判定することができる In this configuration, the length of the period in which the pressure in the working chamber is high (high pressure period) is obtained as an integral value obtained by integrating the measured value of the pressure in the working chamber corresponding to the cycle of the reciprocating motion of the piston. Then, by comparing the obtained integral value with the criterion set based on the rotational speed, it is possible to accurately determine whether there is an abnormality in the length of the high-pressure period without being affected by changes in the rotational speed of the spindle. Can be judged
 本発明の少なくとも一実施形態によれば、可変速の主軸を有する風力発電装置における異常の有無を的確に診断可能な風力発電装置の診断システム及び診断方法が提供される。 According to at least one embodiment of the present invention, a wind turbine generator diagnosis system and diagnosis method capable of accurately diagnosing the presence or absence of abnormality in a wind turbine generator having a variable speed spindle are provided.
本発明の幾つかの実施形態に係る風量発電装置の診断システムが適用された風力発電装置の構成を概略的に示す側面図である。It is a side view which shows roughly the structure of the wind power generator to which the diagnosis system of the air flow generator according to some embodiments of the present invention is applied. 図1中の診断システムの構成を説明するための図である。It is a figure for demonstrating the structure of the diagnostic system in FIG. 図2の診断システムが実行する診断方法の手順を説明するための概略的なフローチャートである。It is a schematic flowchart for demonstrating the procedure of the diagnostic method which the diagnostic system of FIG. 2 performs. 図3中の診断工程の手順を説明するための概略的なフローチャートである。It is a schematic flowchart for demonstrating the procedure of the diagnostic process in FIG. 幾つかの実施形態に係る診断システムの構成を説明するための図である。It is a figure for demonstrating the structure of the diagnostic system which concerns on some embodiment. 図5中のフィルタ部によって得られるパワースペクトルを概略的に示す図である。It is a figure which shows roughly the power spectrum obtained by the filter part in FIG. 図5の診断システムが実行する診断工程の手順を説明するための概略的なフローチャートである。It is a schematic flowchart for demonstrating the procedure of the diagnostic process which the diagnostic system of FIG. 5 performs. 図5中の判定基準設定部によって設定された判定基準としての閾値を、異常データ及び正常データとともに概略的に示す図である。It is a figure which shows roughly the threshold value as a criterion set by the criterion setting unit in FIG. 5 together with abnormal data and normal data. 図5中の判定基準設定部によって設定された判定基準としての基準データを、正常な診断対象データとともに概略的に示す図である。FIG. 6 is a diagram schematically showing reference data as a criterion set by a criterion setting unit in FIG. 5 together with normal diagnosis target data. 図5中の判定基準設定部によって設定された判定基準としての基準データを、異常な診断対象データとともに概略的に示す図である。FIG. 6 is a diagram schematically showing reference data as a determination criterion set by a determination criterion setting unit in FIG. 5 together with abnormal diagnosis target data. 一の振動成分の振動速度の時間変化を概略的に示す図である。It is a figure which shows roughly the time change of the vibration speed of one vibration component. 他の振動成分の振動速度の時間変化を概略的に示す図である。It is a figure which shows roughly the time change of the vibration speed of another vibration component. 更に他の振動成分の振動速度の時間変化を概略的に示す図である。Furthermore, it is a figure which shows roughly the time change of the vibration speed of another vibration component. 図1中の油圧ポンプの構成を概略的に示す横断面図である。FIG. 2 is a transverse sectional view schematically showing the configuration of the hydraulic pump in FIG. 1. 幾つかの実施形態に係る診断システムの構成を説明するための図である。It is a figure for demonstrating the structure of the diagnostic system which concerns on some embodiment. 図15の診断システムが実行する診断工程の手順を説明するための概略的なフローチャートである。It is a schematic flowchart for demonstrating the procedure of the diagnostic process which the diagnostic system of FIG. 15 performs. 作動室の圧力の時間変化と積分値を概略的に示す図である。It is a figure which shows roughly the time change and integral value of the pressure of a working chamber. 幾つかの実施形態に係る診断システムの構成を説明するための図である。It is a figure for demonstrating the structure of the diagnostic system which concerns on some embodiment. 図18中の因果マトリクスとして、振動因果マトリクスの一例の一部を示す図である。It is a figure which shows a part of example of a vibration causal matrix as a causal matrix in FIG.
 以下、添付図面に従って本発明の実施形態について説明する。ただし、実施形態に記載されている構成部品の寸法、材質、形状、及び、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention, but are merely illustrative examples.
 図1は、本発明の幾つかの実施形態に係る風力発電装置の診断システム(以下、単に診断システムともいう)が適用された風力発電装置の構成を概略的に示す側面図である。
 風力発電装置は、地上に設置されるものであってもよく、洋上に設置されるものであってもよい。風力発電装置は、可変速の主軸10を有する。
 診断システムは、物理量を測定するための少なくとも1つの物理量センサ12と、主軸10の回転速度を測定するための回転速度センサ14と、物理量における異常の有無を判定するように構成された診断装置16とを備える。
FIG. 1 is a side view schematically showing a configuration of a wind turbine generator to which a wind turbine generator diagnosis system (hereinafter also simply referred to as a diagnostic system) according to some embodiments of the present invention is applied.
The wind turbine generator may be installed on the ground or installed on the ocean. The wind power generator has a variable speed main shaft 10.
The diagnostic system includes at least one physical quantity sensor 12 for measuring a physical quantity, a rotational speed sensor 14 for measuring the rotational speed of the spindle 10, and a diagnostic device 16 configured to determine whether there is an abnormality in the physical quantity. With.
 図2は、診断システムの概略的な構成を説明するための図であり、診断装置16は、主軸10の回転速度と物理量との関係に基づいて、判定を行うための判定基準を設定するように構成された判定基準設定部18と、物理量センサ12によって測定された物理量の測定値、回転速度センサ14によって測定された主軸10の回転速度の測定値、及び、判定基準設定部18によって設定された判定基準に基づいて、物理量の測定値における異常の有無を判定するように構成された判定部20と、を有する。 FIG. 2 is a diagram for explaining a schematic configuration of the diagnostic system. The diagnostic device 16 sets a determination criterion for performing a determination based on the relationship between the rotation speed of the spindle 10 and a physical quantity. And the measurement value of the physical quantity measured by the physical quantity sensor 12, the measurement value of the rotational speed of the spindle 10 measured by the rotational speed sensor 14, and the determination standard setting part 18. And a determination unit 20 configured to determine whether there is an abnormality in the measured value of the physical quantity based on the determination criterion.
 従って、上記診断システムが実行する診断方法は、図3に示したように、物理量を測定する物理量測定工程S10と、主軸10の回転速度を測定する回転速度測定工程S20と、物理量における異常の有無を判定する診断工程S30と、を備える。
 そして、診断工程S30は、図4に示したように、主軸10の回転速度と物理量との関係に基づいて、判定を行うための判定基準を設定する判定基準設定工程S300と、物理量測定工程S10にて測定された物理量の測定値、回転速度測定工程S20にて測定された主軸10の回転速度の測定値、及び、判定基準設定工程S300にて設定された判定基準に基づいて、物理量の測定値における異常の有無を判定する判定工程S310と、を有する。
Therefore, as shown in FIG. 3, the diagnostic method executed by the diagnostic system includes a physical quantity measuring step S10 for measuring the physical quantity, a rotational speed measuring step S20 for measuring the rotational speed of the spindle 10, and whether there is an abnormality in the physical quantity. And a diagnostic step S30 for determining the above.
Then, as shown in FIG. 4, the diagnosis step S30 includes a determination criterion setting step S300 for setting a determination criterion for performing determination based on the relationship between the rotation speed of the spindle 10 and the physical quantity, and a physical quantity measurement step S10. Measurement of the physical quantity based on the measured value of the physical quantity measured in Step 1, the measured value of the rotational speed of the spindle 10 measured in the rotational speed measurement process S20, and the determination criterion set in the determination criterion setting process S300. Determination step S310 for determining whether there is an abnormality in the value.
 主軸10の回転速度が変化した場合、風力発電装置が正常な状態であっても、幾つかの物理量の測定値は主軸10の回転速度に応じて変化する。このため、幾つかの物理量の測定値については、回転速度の変化前と変化後とで、異常の有無を判定するための判定基準を変更する必要が生じる。
 この点につき、上記風力発電装置の診断システムでは、判定基準設定部18が、主軸10の回転速度と物理量との関係に基づいて判定基準を設定することにより、主軸10の回転速度変化により物理量の測定値が変化しても、物理量の測定値における異常の有無を的確に判定することができる。この結果として、風力発電装置における異常の有無を的確に診断することができる。
 なお、判定基準を設定することには、予め登録された1つ以上の判定基準の中から、主軸10の回転速度と物理量との関係に基づいて判定基準を選択することも含む。
When the rotational speed of the main shaft 10 changes, some measured values of physical quantities change according to the rotational speed of the main shaft 10 even if the wind turbine generator is in a normal state. For this reason, it is necessary to change the determination criteria for determining the presence / absence of abnormality between the measured values of some physical quantities before and after the change in rotational speed.
In this regard, in the wind turbine generator diagnosis system, the determination criterion setting unit 18 sets the determination criterion based on the relationship between the rotational speed of the main shaft 10 and the physical quantity, so that the physical quantity is changed by the change in the rotational speed of the main spindle 10. Even if the measurement value changes, it is possible to accurately determine whether there is an abnormality in the measurement value of the physical quantity. As a result, it is possible to accurately diagnose whether there is an abnormality in the wind turbine generator.
Note that setting the criterion includes selecting the criterion based on the relationship between the rotational speed of the spindle 10 and the physical quantity from one or more previously registered criterion.
 図5は、幾つかの実施形態に係る診断システムの概略的な構成を説明するための図である。物理量センサ12は、振動センサ12Aを含み、診断装置16は、フィルタ部22を更に有する。
 フィルタ部22は、振動センサ12Aによって測定された振動の測定値から、複数の周波数成分を抽出することができる。例えば、フィルタ部22は、振動の測定値をフーリエ変換し、図6に示したような周波数と振幅の関係を示すパワースペクトルを得る。そして、フィルタ部22は、パワースペクトルにおける、診断対象の周波数成分(帯域)ω0,ω1,ω2の振幅を取り出す。
FIG. 5 is a diagram for explaining a schematic configuration of a diagnostic system according to some embodiments. The physical quantity sensor 12 includes a vibration sensor 12 </ b> A, and the diagnostic device 16 further includes a filter unit 22.
The filter unit 22 can extract a plurality of frequency components from the vibration measurement values measured by the vibration sensor 12A. For example, the filter unit 22 performs a Fourier transform on the measurement value of vibration, and obtains a power spectrum indicating the relationship between frequency and amplitude as shown in FIG. Then, the filter unit 22 extracts the amplitudes of frequency components (bands) ω0, ω1, and ω2 to be diagnosed in the power spectrum.
 判定基準設定部18は、複数の周波数成分ω0,ω1,ω2のうち少なくとも1つの周波数成分のために判定基準を設定する。
 そして、判定部20は、物理量の測定値として少なくとも1つの周波数成分の振幅に基づいて、少なくとも1つの周波数成分における異常の有無を判定するように構成されている。
 幾つかの実施形態では、周波数成分の振幅は、振動速度の実効値又は最大値である。
 幾つかの実施形態では、周波数成分の振幅は、変位量又は加速度の実効値又は最大値である。
The determination criterion setting unit 18 sets a determination criterion for at least one frequency component among the plurality of frequency components ω0, ω1, and ω2.
And the determination part 20 is comprised so that the presence or absence of abnormality in at least 1 frequency component may be determined based on the amplitude of at least 1 frequency component as a measured value of physical quantity.
In some embodiments, the amplitude of the frequency component is the effective value or maximum value of the vibration velocity.
In some embodiments, the amplitude of the frequency component is the effective value or maximum value of the displacement or acceleration.
 この構成の診断システムが実行する診断方法では、物理量測定工程S10にて振動を測定し、診断工程S30は、図7に示したように、物理量測定工程S10にて測定された振動の測定値から、複数の周波数成分を抽出するためのフィルタリング工程S320を更に有し、判定基準設定工S300程にて、複数の周波数成分のうち少なくとも1つの周波数成分のために判定基準を設定し、判定工程S310にて、物理量の測定値として少なくとも1つの周波数成分の振幅に基づいて、少なくとも1つの周波数成分における異常の有無を判定する。 In the diagnostic method executed by the diagnostic system having this configuration, the vibration is measured in the physical quantity measurement step S10, and the diagnostic step S30 is based on the vibration measurement values measured in the physical quantity measurement step S10 as shown in FIG. And a filtering step S320 for extracting a plurality of frequency components. In the determination criterion setting step S300, a determination criterion is set for at least one frequency component among the plurality of frequency components, and a determination step S310. Then, based on the amplitude of at least one frequency component as a measured value of the physical quantity, it is determined whether there is an abnormality in at least one frequency component.
 この構成では、複数の周波数成分を抽出することにより、周波数成分毎に異常の有無を的確に判定することができる。この結果として、風力発電装置における異常の有無をより的確に診断することができる。 In this configuration, by extracting a plurality of frequency components, it is possible to accurately determine the presence or absence of abnormality for each frequency component. As a result, the presence or absence of abnormality in the wind turbine generator can be diagnosed more accurately.
 幾つかの実施形態では、図1に示すように、風力発電装置は、タワー30と、タワー30によって支持されるナセル32と、ナセル32によって配置され、主軸10を回転可能に支持する主軸受34と、主軸10に連結され、主軸10と共に回転可能な少なくとも一本の翼36と、主軸10の回転力を発電機38に伝達する増速機構39と、翼36のピッチ角を調整するピッチ駆動機構40と、ナセル32のヨー角を調整するヨー駆動機構42とを備える。 In some embodiments, as shown in FIG. 1, the wind turbine generator includes a tower 30, a nacelle 32 supported by the tower 30, and a main bearing 34 that is disposed by the nacelle 32 and rotatably supports the main shaft 10. And at least one blade 36 connected to the main shaft 10 and rotatable together with the main shaft 10, a speed increasing mechanism 39 for transmitting the rotational force of the main shaft 10 to the generator 38, and a pitch drive for adjusting the pitch angle of the blade 36. A mechanism 40 and a yaw drive mechanism 42 that adjusts the yaw angle of the nacelle 32 are provided.
 そして、振動センサ12Aは、主軸10、主軸受34、タワー30、ナセル32、発電機38、増速機構39、ピッチ駆動機構40及びヨー駆動機構42のうち1つ以上の診断対象に取り付けられる。 The vibration sensor 12A is attached to one or more diagnosis targets among the main shaft 10, the main bearing 34, the tower 30, the nacelle 32, the generator 38, the speed increasing mechanism 39, the pitch driving mechanism 40, and the yaw driving mechanism 42.
 診断装置16は、例えば、中央演算処理装置(CPU)、メモリ、外部記憶装置及び入出力装置からなるコンピュータによって構成され、外部記憶装置に記憶されたプログラムを実行することで、所定の機能を実現可能である。診断装置16は、図1に例示したようにナセル32内に配置することができ、或いは、タワー30内に配置することもできる。 The diagnostic device 16 is constituted by, for example, a computer including a central processing unit (CPU), a memory, an external storage device, and an input / output device, and implements a predetermined function by executing a program stored in the external storage device. Is possible. The diagnostic device 16 can be arranged in the nacelle 32 as illustrated in FIG. 1, or can be arranged in the tower 30.
 幾つかの実施形態では、診断装置16は、風力発電装置の外部に設置される。例えば、診断装置16は、風力発電装置の運転を監視又は制御する中央制御室に設置される。この場合、診断システムは、通信装置を有し、物理量センサ12や回転速度センサ14の測定結果が、通信装置によって診断装置16に送信される。 In some embodiments, the diagnostic device 16 is installed outside the wind turbine generator. For example, the diagnostic device 16 is installed in a central control room that monitors or controls the operation of the wind turbine generator. In this case, the diagnostic system includes a communication device, and the measurement results of the physical quantity sensor 12 and the rotation speed sensor 14 are transmitted to the diagnostic device 16 by the communication device.
 幾つかの実施形態では、判定基準設定部18は、図8に示したように、判断基準に、主軸10の回転速度の増加に伴い階段状に増加する閾値を設定するように構成されている。 In some embodiments, as illustrated in FIG. 8, the determination criterion setting unit 18 is configured to set a threshold value that increases stepwise as the rotational speed of the main shaft 10 increases, as illustrated in FIG. 8. .
 振動の周波数成分には、風力発電装置が正常な状態である場合でも、主軸10の回転速度の増加に伴い、振幅が大きくなるものがある。この点につき、この構成では、主軸10の回転速度の増加に伴い階段状に増加する閾値を設定することで、回転速度の増加に伴う振幅の正常な増加を異常と判定することを回避することができ、周波数成分の異常の有無を的確に判定することができる。 Some frequency components of vibration increase in amplitude as the rotational speed of the main shaft 10 increases even when the wind turbine generator is in a normal state. In this configuration, in this configuration, by setting a threshold value that increases stepwise as the rotational speed of the main spindle 10 increases, it is possible to avoid a normal increase in amplitude accompanying an increase in the rotational speed from being determined as abnormal. It is possible to accurately determine whether there is an abnormality in the frequency component.
 幾つかの実施形態では、判定基準設定部18は、図9或いは図10に示したように、判断基準に、風力発電装置が正常な状態である場合における主軸10の回転速度に対する少なくとも1つの周波数成分の振幅の依存性を示す基準データを設定する。そして、判定部20は、複数の主軸10の回転速度の測定値、物理量の測定値として少なくとも1つの周波数成分の複数の振幅、及び、基準データに基づいて、少なくとも1つの周波数成分における異常の有無を判定するように構成されている。 In some embodiments, as shown in FIG. 9 or FIG. 10, the determination criterion setting unit 18 uses at least one frequency relative to the rotational speed of the main shaft 10 when the wind turbine generator is in a normal state as the determination criterion. Reference data indicating the dependency of the component amplitude is set. Then, the determination unit 20 determines whether there is an abnormality in at least one frequency component based on the measured values of the rotational speeds of the plurality of spindles 10, the plurality of amplitudes of at least one frequency component as the measured value of the physical quantity, and the reference data. Is configured to determine.
 振動の周波数成分には、風力発電装置が正常な状態である場合でも、主軸10の回転速度の変化に伴い、振幅が変化するものがある。この点につき、この構成では、風力発電装置が正常な状態である場合の回転速度に対する振幅の依存性を示す基準データを判断基準に設定し、基準データと診断対象データとの相関を判定することにより、周波数成分における異常の有無を的確に判定することができる。なお診断対象データは、複数の回転速度の測定値と、これら複数の回転速度の測定値に対応する複数の周波数成分の振幅とからなる。 Some vibration frequency components change in amplitude as the rotational speed of the spindle 10 changes even when the wind turbine generator is in a normal state. In this configuration, in this configuration, the reference data indicating the dependency of the amplitude on the rotation speed when the wind turbine generator is in a normal state is set as a determination criterion, and the correlation between the reference data and the diagnosis target data is determined. Thus, it is possible to accurately determine whether there is an abnormality in the frequency component. The diagnosis target data includes a plurality of rotational speed measurement values and a plurality of frequency component amplitudes corresponding to the plurality of rotational speed measurement values.
 例えば、図9は、周波数成分ω0における、複数の回転速度での複数の振動速度の実効値を示す診断対象データと、基準データとを示している。図9の場合、診断対象データと基準データとの相関は強く、診断対象データは正常であると判定される。
 一方、図10は、周波数成分ω2における、複数の回転速度での複数の振動速度の実効値からなる診断対象データと、基準データとを示している。図10の場合、診断対象データと基準データとの相関は弱く、診断対象データは異常であると判定される。
For example, FIG. 9 shows diagnosis target data indicating reference values and effective values of a plurality of vibration speeds at a plurality of rotation speeds in the frequency component ω0. In the case of FIG. 9, the correlation between the diagnosis target data and the reference data is strong, and it is determined that the diagnosis target data is normal.
On the other hand, FIG. 10 shows diagnosis target data composed of effective values of a plurality of vibration speeds at a plurality of rotation speeds and reference data in the frequency component ω2. In the case of FIG. 10, the correlation between the diagnosis target data and the reference data is weak, and it is determined that the diagnosis target data is abnormal.
 幾つかの実施形態では、判定部20は、振動センサ12Aによって繰り返し測定された振動の測定値(時刻歴)から抽出された少なくとも1つの周波数成分の動向に基づいて、少なくとも1つの周波数成分における異常の有無を更に判定するように構成されている。 In some embodiments, the determination unit 20 detects an abnormality in at least one frequency component based on a trend of at least one frequency component extracted from a vibration measurement value (time history) repeatedly measured by the vibration sensor 12A. It is comprised so that the presence or absence of may be further determined.
 振動の周波数成分には、回転速度に応じて振幅が変化するものであっても、長期に亘り測定することにより動向を確認できるものがある。この構成では、周波数成分の動向に基づいて異常の有無を更に判定することにより、漏れなく異常を発見することができる。 There are some frequency components of vibration that can be confirmed by measuring over a long period of time, even if the amplitude changes according to the rotational speed. In this configuration, it is possible to discover an abnormality without omission by further determining the presence or absence of an abnormality based on the trend of frequency components.
 幾つかの実施形態では、図11、図12及び図13に示したように、振動センサ12Aによって定期的に振動が測定され、判定部20は、振動センサ12Aによって定期的に繰り返し測定された振動の測定値から抽出された少なくとも1つの周波数成分の動向に基づいて、少なくとも1つの周波数成分における異常の有無を更に判定するように構成されている。 In some embodiments, as shown in FIGS. 11, 12, and 13, vibration is periodically measured by the vibration sensor 12A, and the determination unit 20 is vibration that is periodically and repeatedly measured by the vibration sensor 12A. On the basis of the trend of at least one frequency component extracted from the measured value, it is configured to further determine whether or not there is an abnormality in at least one frequency component.
 風力発電装置において、主軸10の回転速度は、時期によって変化する一方、同じ時期であれば、略同じになることがある。例えば、年間を通じて昼間は風が弱く、夕方は風が強くなるような立地条件では、風力発電装置が正常な状態であれば、昼間は主軸10の回転速度が遅く、夕方は主軸10の回転速度が速くなる。このため、定期的に振動を測定し、周波数成分の動向に対応して判定基準を設定することにより、主軸10の回転速度の変化の影響を可及的に回避して、周波数成分における異常の有無を的確に判定することができる。 In the wind power generator, the rotation speed of the main shaft 10 varies depending on the time, but may be substantially the same at the same time. For example, in a location where winds are weak throughout the year and winds are strong in the evening, if the wind turbine generator is in a normal state, the rotational speed of the spindle 10 is slow during the day and the rotational speed of the spindle 10 in the evening. Will be faster. For this reason, by measuring vibration periodically and setting a determination standard corresponding to the trend of the frequency component, the influence of the change in the rotational speed of the spindle 10 is avoided as much as possible, and an abnormality in the frequency component is detected. Presence / absence can be determined accurately.
 例えば、図11は、周波数成分ω0における、定期的に求められた振動速度の時間依存性を示しており、図12は、周波数成分ω1における、定期的に求められた振動速度の時間依存性を示しており、図13は、周波数成分ω2における、定期的に求められた振動速度の時間依存性を示している。図13に示したように、周波数成分ω2では、ある日時を境として、振動速度の動向が変化しており、周波数成分ω2において異常が発生したことがわかる。 For example, FIG. 11 shows the time dependence of the periodically obtained vibration speed in the frequency component ω0, and FIG. 12 shows the time dependence of the periodically obtained vibration speed in the frequency component ω1. FIG. 13 shows the time dependence of the periodically calculated vibration velocity in the frequency component ω2. As shown in FIG. 13, in the frequency component ω <b> 2, the trend of the vibration speed changes at a certain date and time, and it can be seen that an abnormality has occurred in the frequency component ω <b> 2.
 幾つかの実施形態では、繰り返し取得された周波数成分の振幅の時刻歴から、一定間隔にて周波数成分の複数の振幅(時系列)を取り出し、周波数成分の振幅の動向を求めることができる。
 幾つかの実施形態では、振幅の動向は、複数の振幅の平均値であり、例えば、振幅が、振幅の標準偏差の3倍を超えて変化したときに、異常が発生したと判定することができる。
In some embodiments, a plurality of amplitudes (time series) of frequency components can be extracted at regular intervals from the time history of the amplitudes of the frequency components repeatedly acquired, and the trend of the amplitudes of the frequency components can be obtained.
In some embodiments, the amplitude trend is an average value of a plurality of amplitudes, for example, determining that an abnormality has occurred when the amplitude has changed by more than three times the standard deviation of the amplitude. it can.
 幾つかの実施形態では、風力発電装置は油圧機械を備えている。油圧機械は、例えば、図1に示したように、増速機構39を構成する油圧ポンプ44や油圧モータ46である。油圧ポンプ44は、主軸10によって駆動され、低圧の作動油を吸入圧縮して高圧の作動油を吐出する。油圧モータ46は、油圧ポンプ44が吐出した高圧の作動油によって駆動され、発電機38を駆動する。 In some embodiments, the wind turbine generator comprises a hydraulic machine. The hydraulic machine is, for example, a hydraulic pump 44 or a hydraulic motor 46 constituting the speed increasing mechanism 39 as shown in FIG. The hydraulic pump 44 is driven by the main shaft 10, sucks and compresses low-pressure hydraulic oil, and discharges high-pressure hydraulic oil. The hydraulic motor 46 is driven by the high-pressure hydraulic oil discharged from the hydraulic pump 44 and drives the generator 38.
 図14は、油圧ポンプ44の構成を概略的に示す横断面図である。油圧ポンプ44は、主軸10に連結されて主軸10と共に回転可能な回転軸60と、シリンダ48と、シリンダ48と共に作動室52を形成するピストン50と、回転軸60の回転運動とピストン50の往復運動との間の変換を行うための変換機構とを有する。作動室52の容積は、主軸10の回転運動とともに変化する。
 そして、物理量センサ12は、作動室52の圧力を測定するための圧力センサ12Bを含み、診断装置16は、図12に示したように積分部54を更に有する。
FIG. 14 is a cross-sectional view schematically showing the configuration of the hydraulic pump 44. The hydraulic pump 44 is connected to the main shaft 10 and is rotatable with the main shaft 10, a cylinder 48, a piston 50 that forms an operation chamber 52 together with the cylinder 48, a rotational movement of the rotary shaft 60, and a reciprocation of the piston 50. A conversion mechanism for performing conversion between movements. The volume of the working chamber 52 changes with the rotational movement of the main shaft 10.
The physical quantity sensor 12 includes a pressure sensor 12B for measuring the pressure in the working chamber 52, and the diagnostic device 16 further includes an integrating unit 54 as shown in FIG.
 積分部54は圧力センサ12Bによって測定された作動室52の圧力の測定値をピストン50の往復運動のサイクルに対応して積分して積分値を演算する。判定部20は、物理量の測定値として積分部54によって演算された積分値に基づいて、積分値における異常の有無を判定するように構成されている。
 幾つかの実施形態では、積分部54は、抵抗とコンデンサを有するRC回路からなる積分回路によって形成される。
 幾つかの実施形態では、積分部54は、オペアンプを含む積分回路によって形成される。
The integrating unit 54 integrates the measured value of the pressure in the working chamber 52 measured by the pressure sensor 12 </ b> B in accordance with the cycle of the reciprocating motion of the piston 50 to calculate an integrated value. The determination unit 20 is configured to determine whether there is an abnormality in the integral value based on the integral value calculated by the integral unit 54 as a measured value of the physical quantity.
In some embodiments, the integrating unit 54 is formed by an integrating circuit including an RC circuit having a resistor and a capacitor.
In some embodiments, the integrating unit 54 is formed by an integrating circuit including an operational amplifier.
 上記構成の診断システムが実行する診断方法では、物理量測定工程S10にて作動室52の圧力を測定し、診断工程S30は、図16に示したように、物理量測定工程S10にて測定された作動室52の圧力の測定値をピストン50の往復運動のサイクルに対応して積分して積分値を演算するための積分工程S330を更に有し、判定工程S310にて、積分工程S330によって演算された積分値と判定基準設定工程によって設定された判定基準との比較結果に応じて、積分値における異常の有無を判定する。 In the diagnostic method executed by the diagnostic system having the above configuration, the pressure in the working chamber 52 is measured in the physical quantity measuring step S10, and the diagnostic step S30 is the operation measured in the physical quantity measuring step S10 as shown in FIG. It further has an integration step S330 for calculating the integral value by integrating the measured value of the pressure in the chamber 52 corresponding to the cycle of the reciprocating motion of the piston 50. In the determination step S310, the integration value is calculated by the integration step S330. The presence / absence of abnormality in the integrated value is determined according to the comparison result between the integrated value and the determination criterion set in the determination criterion setting step.
 油圧機械である油圧ポンプ44においては、作動室52の圧力が変化する周期は、主軸10の回転速度に対応しており、作動室52の圧力が高くなる期間(高圧期間)は、主軸10の回転速度に対応して変化する。この構成では、高圧期間の長さが、作動室52の圧力の測定値をピストン50の往復運動のサイクルに対応して積分した積分値として求められる。そして、求められた積分値と、回転速度に基づいて設定された判定基準とを比較することで、主軸10の回転速度の変化の影響を受けずに、高圧期間の長さにおける異常の有無を的確に判定することができる。 In the hydraulic pump 44 which is a hydraulic machine, the cycle in which the pressure in the working chamber 52 changes corresponds to the rotational speed of the main shaft 10, and the period during which the pressure in the working chamber 52 is high (high pressure period) is It changes according to the rotation speed. In this configuration, the length of the high pressure period is obtained as an integral value obtained by integrating the measured value of the pressure in the working chamber 52 corresponding to the cycle of the reciprocating motion of the piston 50. Then, by comparing the obtained integrated value with a criterion set based on the rotational speed, it is possible to determine whether there is an abnormality in the length of the high-pressure period without being affected by a change in the rotational speed of the main shaft 10. It can be judged accurately.
 例えば、図17は、作動室52の圧力の時間変化と積分値を、1つの正常な場合(上段)と2つの異常な場合(中段、下段)について概略的に示している。
 正常な場合、図17の上段に示したように、高圧期間と低圧期間の長さは等しくなる。異常が生じると、図17の中段に示したように、高圧期間が低圧期間に対して長くなったり、図17の下段に示したように、高圧期間が低圧期間に対して短くなる。
For example, FIG. 17 schematically shows the temporal change and integral value of the pressure in the working chamber 52 for one normal case (upper stage) and two abnormal cases (middle stage and lower stage).
In the normal case, as shown in the upper part of FIG. 17, the lengths of the high pressure period and the low pressure period are equal. When an abnormality occurs, the high-pressure period becomes longer than the low-pressure period as shown in the middle part of FIG. 17, or the high-pressure period becomes shorter than the low-pressure period as shown in the lower part of FIG.
 幾つかの実施形態では、油圧ポンプ44は、作動室52に対する作動油の供給を制御する給油弁56と、作動室52からの作動油の排出を制御する排油弁58とを有する。高圧期間が、低圧期間に対し長くなったり、短くなったりした場合、給油弁56や排油弁58の動作不良が原因の一つとして考えられる。 In some embodiments, the hydraulic pump 44 includes an oil supply valve 56 that controls supply of hydraulic oil to the working chamber 52 and an oil discharge valve 58 that controls discharge of hydraulic oil from the working chamber 52. When the high pressure period becomes longer or shorter than the low pressure period, it is considered that one of the causes is malfunction of the oil supply valve 56 and the oil discharge valve 58.
 幾つかの実施形態では、油圧モータ46の給油弁及び排油弁はソレノイド電磁弁である。油圧ポンプ44の給油弁はソレノイド電磁弁である一方、排油弁58は、逆止弁又はソレノイド電磁弁である。 In some embodiments, the oil supply valve and the oil discharge valve of the hydraulic motor 46 are solenoid solenoid valves. The oil supply valve of the hydraulic pump 44 is a solenoid solenoid valve, while the oil discharge valve 58 is a check valve or a solenoid solenoid valve.
 幾つかの実施形態では、油圧ポンプ44の複数の作動室52が回転軸60の周りに環状に配列される。変換機構は、図14に示したように、回転軸60に同軸的に固定されたリングカム62と、ピストン50の端部に取り付けられ、リングカム62と摺接するローラ64とを含む。
 幾つかの実施形態では、変換機構は、クランクピンと連接棒を含む。
 幾つかの実施形態では、変換機構は、偏心カムと連接棒を含む。
 高圧期間が、低圧期間に対し長くなったり、短くなったりした場合、変換機構の動作不良が原因の一つとして考えられる。
In some embodiments, the plurality of working chambers 52 of the hydraulic pump 44 are annularly arranged around the rotation axis 60. As shown in FIG. 14, the conversion mechanism includes a ring cam 62 that is coaxially fixed to the rotation shaft 60, and a roller 64 that is attached to the end of the piston 50 and that is in sliding contact with the ring cam 62.
In some embodiments, the conversion mechanism includes a crankpin and a connecting rod.
In some embodiments, the conversion mechanism includes an eccentric cam and a connecting rod.
When the high pressure period becomes longer or shorter than the low pressure period, it is considered that one of the causes is a malfunction of the conversion mechanism.
 幾つかの実施形態では、診断システムは、スピーカやランプ等からなる警告手段を有し、物理量の測定値における異常を検出した場合、異常に対応する警告音或いは警告表示等の警報を発することができる。
 幾つかの実施形態では、物理量の測定値における異常を検出した場合、因果マトリクスを用いて、風力発電装置の故障診断を開始する。
 そのために、診断システムは、図18に示したように、予め設定された因果マトリクス66を記憶している。
 図19は、因果マトリクス66として、振動因果マトリクス66Aの一例の一部を示している。振動因果マトリクス66Aでは、振動原因の項目が縦に配列され、周波数成分の項目が横に配列され、縦横の項目に対応する各セルに点数が割り当てられている。
In some embodiments, the diagnosis system includes a warning unit including a speaker, a lamp, and the like, and when an abnormality is detected in the measured value of the physical quantity, an alarm such as a warning sound or a warning display corresponding to the abnormality may be issued. it can.
In some embodiments, when an abnormality in the measured value of the physical quantity is detected, failure diagnosis of the wind turbine generator is started using the causal matrix.
For this purpose, the diagnostic system stores a preset causal matrix 66 as shown in FIG.
FIG. 19 shows a part of an example of the vibration causal matrix 66 </ b> A as the causal matrix 66. In the vibration causal matrix 66A, the vibration cause items are arranged vertically, the frequency component items are arranged horizontally, and a score is assigned to each cell corresponding to the vertical and horizontal items.
 振動因果マトリクス66Aを用いた故障診断では、振動因果マトリクス66Aにおける振動原因の項目毎に、異常な振動が有ると判定された周波数成分に対応する点数が積算され、積算した点数が最も高くなった振動原因の項目が振動原因として抽出される。
 この構成では、各周波数成分の振幅の異常の有無が的確に判定されるので、振動因果マトリクス66Aによって、振動原因(故障原因)を的確に判定することができる。そして診断システムは、判定結果に対応する警告音や警告表示等の警報を発することができる。
In the failure diagnosis using the vibration causal matrix 66A, the points corresponding to the frequency components determined to have abnormal vibration are integrated for each item of the cause of vibration in the vibration causal matrix 66A, and the integrated score is the highest. The item of the cause of vibration is extracted as the cause of vibration.
In this configuration, since the presence / absence of abnormality of the amplitude of each frequency component is accurately determined, the cause of vibration (cause of failure) can be accurately determined by the vibration causal matrix 66A. The diagnostic system can issue a warning such as a warning sound or a warning display corresponding to the determination result.
 幾つかの実施形態では、診断システムは、物理量の測定値における異常を検出した場合、FT(Fault
Tree)図を用いて、風力発電装置の故障診断を開始する。FT図を用いた場合も、各周波数成分の振幅の異常の有無が的確に判定されるので、振動原因を的確に判定することができる。
In some embodiments, if the diagnostic system detects an anomaly in the physical quantity measurement, FT (Fault)
Tree) Fault diagnosis of the wind turbine generator is started using the diagram. Also in the case of using the FT diagram, the presence / absence of abnormality of the amplitude of each frequency component is accurately determined, so that the cause of vibration can be accurately determined.
 以上、本発明の実施形態について詳細に説明したが、本発明はこれら実施形態に限定されず、実施形態を適宜組み合わせてもよく、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。 As mentioned above, although embodiment of this invention was described in detail, this invention is not limited to these embodiment, You may combine embodiment suitably, In the range which does not deviate from the summary of this invention, various improvement and deformation | transformation are carried out. It goes without saying that you can go.
 10     回転軸
 12     物理量センサ
 12A    振動センサ
 12B    圧力センサ
 14     回転速度センサ
 16     診断装置
 18     判定基準設定部
 20     判定部
 22     フィルタ部
 38     発電機
 39     増速機構
 44     油圧ポンプ
 46     油圧モータ
 48     シリンダ
 50     ピストン
 52     作動室
 54     積分部
 60     回転軸
DESCRIPTION OF SYMBOLS 10 Rotating shaft 12 Physical quantity sensor 12A Vibration sensor 12B Pressure sensor 14 Rotational speed sensor 16 Diagnosis apparatus 18 Judgment reference setting part 20 Judgment part 22 Filter part 38 Generator 39 Speed increasing mechanism 44 Hydraulic pump 46 Hydraulic motor 48 Cylinder 50 Piston 52 Working chamber 54 Integration part 60 Rotating shaft

Claims (12)

  1.  翼と共に可変速にて回転可能な主軸を備える風力発電装置の診断システムであって、
     物理量を測定するための少なくとも1つの物理量センサと、
     前記主軸の回転速度を測定するための回転速度センサと、
     前記物理量における異常の有無を判定するように構成された診断装置とを備え、
     前記診断装置は、
     前記主軸の回転速度と前記物理量との関係に基づいて、前記判定を行うための判定基準を設定するように構成された判定基準設定部と、
     前記物理量センサによって測定された前記物理量の測定値、前記回転速度センサによって測定された前記主軸の回転速度の測定値、及び、前記判定基準設定部によって設定された判定基準に基づいて、前記物理量の測定値における異常の有無を判定するように構成された判定部と、を有する
    ことを特徴とする風力発電装置の診断システム。
    A wind turbine generator diagnostic system comprising a spindle that can rotate at a variable speed together with a blade,
    At least one physical quantity sensor for measuring a physical quantity;
    A rotational speed sensor for measuring the rotational speed of the spindle;
    A diagnostic device configured to determine the presence or absence of an abnormality in the physical quantity,
    The diagnostic device comprises:
    A determination criterion setting unit configured to set a determination criterion for performing the determination based on the relationship between the rotation speed of the spindle and the physical quantity;
    Based on the measured value of the physical quantity measured by the physical quantity sensor, the measured value of the rotational speed of the spindle measured by the rotational speed sensor, and the determination criterion set by the determination criterion setting unit, And a determination unit configured to determine whether or not there is an abnormality in the measurement value.
  2.  前記物理量センサは振動センサを含み、
     前記診断装置は、前記振動センサによって測定された振動の測定値から、複数の周波数成分を抽出するためのフィルタ部を更に有し、
     前記判定基準設定部は、前記複数の周波数成分のうち少なくとも1つの周波数成分のために前記判定基準を設定するように構成され、
     前記判定部は、前記物理量の測定値として前記少なくとも1つの周波数成分の振幅に基づいて、前記少なくとも1つの周波数成分における異常の有無を判定するように構成されている
    ことを特徴とする請求項1に記載の風力発電装置の診断システム。
    The physical quantity sensor includes a vibration sensor,
    The diagnostic device further includes a filter unit for extracting a plurality of frequency components from the vibration measurement value measured by the vibration sensor,
    The determination criterion setting unit is configured to set the determination criterion for at least one frequency component of the plurality of frequency components;
    The determination unit is configured to determine whether or not there is an abnormality in the at least one frequency component based on an amplitude of the at least one frequency component as a measurement value of the physical quantity. The wind turbine generator diagnostic system described in 1.
  3.  前記判定基準設定部は、前記判断基準に、前記主軸の回転速度の増加に伴い階段状に増加する閾値を設定するように構成されている
    ことを特徴とする請求項2に記載の風力発電装置の診断システム。
    3. The wind turbine generator according to claim 2, wherein the determination reference setting unit is configured to set, in the determination reference, a threshold value that increases stepwise as the rotational speed of the main shaft increases. 4. Diagnostic system.
  4.  前記判定基準設定部は、前記判断基準に、前記風力発電装置が正常な状態である場合における前記主軸の回転速度に対する前記少なくとも1つの周波数成分の振幅の依存性を示す基準データを設定し、
     前記判定部は、複数の前記主軸の回転速度の測定値、前記物理量の測定値として前記少なくとも1つの周波数成分の複数の振幅、及び、前記基準データに基づいて、前記少なくとも1つの周波数成分における異常の有無を判定するように構成されている
    ことを特徴とする請求項2に記載の風力発電装置の診断システム。
    The determination criterion setting unit sets, in the determination criterion, reference data indicating the dependency of the amplitude of the at least one frequency component on the rotational speed of the main shaft when the wind turbine generator is in a normal state,
    The determination unit includes an abnormality in the at least one frequency component based on a plurality of measured values of the rotational speed of the spindle, a plurality of amplitudes of the at least one frequency component as measured values of the physical quantity, and the reference data. The wind turbine generator diagnosis system according to claim 2, wherein the wind power generator diagnosis system is configured to determine the presence or absence of a wind turbine.
  5.  前記判定部は、前記振動センサによって繰り返し測定された振動の測定値から抽出された前記少なくとも1つの周波数成分の動向に基づいて、前記少なくとも1つの周波数成分における異常の有無を更に判定するように構成されている
    ことを特徴とする請求項2乃至4の何れか一項に記載の風力発電装置の診断システム。
    The determination unit is configured to further determine presence / absence of an abnormality in the at least one frequency component based on a trend of the at least one frequency component extracted from a vibration measurement value repeatedly measured by the vibration sensor. The wind turbine generator diagnosis system according to any one of claims 2 to 4, wherein the wind turbine generator diagnosis system is provided.
  6.  前記風力発電装置は油圧機械を更に備え、
     前記油圧機械は、
     前記主軸と共に回転可能な回転軸と、
     シリンダと、
     前記シリンダと共に作動室を形成するピストンと、
     前記回転軸の回転運動と前記ピストンの往復運動との間の変換を行うための変換機構とを有し、
     前記物理量センサは、前記作動室の圧力を測定するための圧力センサを含み、
     前記診断装置は、
     前記圧力センサによって測定された前記作動室の圧力の測定値を前記ピストンの往復運動のサイクルに対応して積分して積分値を演算するための積分部を更に有し、
     前記判定部は、前記物理量の測定値として前記積分部によって演算された積分値に基づいて、前記積分値における異常の有無を判定するように構成されている
    ことを特徴とする請求項1に記載の風力発電装置の診断システム。
    The wind power generator further comprises a hydraulic machine,
    The hydraulic machine is
    A rotating shaft rotatable with the main shaft;
    A cylinder,
    A piston that forms a working chamber with the cylinder;
    A conversion mechanism for performing conversion between the rotational movement of the rotary shaft and the reciprocating movement of the piston;
    The physical quantity sensor includes a pressure sensor for measuring the pressure of the working chamber,
    The diagnostic device comprises:
    An integration unit for calculating an integral value by integrating a measured value of the pressure of the working chamber measured by the pressure sensor in correspondence with a cycle of the reciprocating motion of the piston;
    The said determination part is comprised so that the presence or absence of abnormality in the said integral value may be determined based on the integral value calculated by the said integral part as a measured value of the said physical quantity. Wind turbine generator diagnostic system.
  7.  翼と共に可変速にて回転可能な主軸を備える風力発電装置の診断方法であって、
     物理量を測定する物理量測定工程と、
     前記主軸の回転速度を測定する回転速度測定工程と、
     前記物理量における異常の有無を判定する診断工程と、を備え、
     前記診断工程は、
     前記主軸の回転速度と前記物理量との関係に基づいて、前記判定を行うための判定基準を設定する判定基準設定工程と、
     前記物理量測定工程にて測定された前記物理量の測定値、前記回転速度測定工程にて測定された前記主軸の回転速度の測定値、及び、前記判定基準設定工程にて設定された判定基準に基づいて、前記物理量の測定値における異常の有無を判定する判定工程と、を有する
    ことを特徴とする風力発電装置の診断方法。
    A method for diagnosing a wind turbine generator having a spindle that can rotate at a variable speed together with a blade,
    A physical quantity measurement process for measuring physical quantities;
    A rotational speed measuring step for measuring the rotational speed of the spindle;
    A diagnostic step of determining the presence or absence of an abnormality in the physical quantity,
    The diagnostic step includes
    A determination criterion setting step for setting a determination criterion for performing the determination based on the relationship between the rotation speed of the spindle and the physical quantity;
    Based on the measured value of the physical quantity measured in the physical quantity measuring step, the measured value of the rotational speed of the spindle measured in the rotational speed measuring step, and the criterion set in the criterion setting step And a determination step of determining whether there is an abnormality in the measured value of the physical quantity.
  8.  前記物理量測定工程にて振動を測定し、
     前記診断工程は、前記物理量測定工程にて測定された振動の測定値から、複数の周波数成分を抽出するためのフィルタリング工程を更に有し、
     前記判定基準設定工程にて、前記複数の周波数成分のうち少なくとも1つの周波数成分のために前記判定基準を設定し、
     前記判定工程にて、前記物理量の測定値として前記少なくとも1つの周波数成分の振幅に基づいて、前記少なくとも1つの周波数成分における異常の有無を判定する
    ことを特徴とする請求項7に記載の風力発電装置の診断方法。
    Measure vibration in the physical quantity measurement step,
    The diagnostic step further includes a filtering step for extracting a plurality of frequency components from the vibration measurement values measured in the physical quantity measurement step,
    In the determination criterion setting step, the determination criterion is set for at least one frequency component of the plurality of frequency components,
    8. The wind power generation according to claim 7, wherein in the determination step, it is determined whether there is an abnormality in the at least one frequency component based on an amplitude of the at least one frequency component as a measurement value of the physical quantity. Device diagnostic method.
  9.  前記判定基準設定工程にて、前記判断基準に、前記主軸の回転速度の増加に伴い階段状に増加する閾値を設定する
    ことを特徴とする請求項8に記載の風力発電装置の診断システム。
    9. The wind turbine generator diagnosis system according to claim 8, wherein, in the determination criterion setting step, a threshold value that increases stepwise as the rotational speed of the main shaft increases is set in the determination criterion.
  10.  前記判定基準設定工程にて、前記判断基準に、前記風力発電装置が正常な状態である場合における前記主軸の回転速度に対する前記少なくとも1つの周波数成分の振幅の依存性を示す基準データを設定し、
     前記判定工程にて、複数の前記主軸の回転速度の測定値、前記物理量の測定値として前記少なくとも1つの周波数成分の複数の振幅、及び、前記基準データに基づいて、前記少なくとも1つの周波数成分における異常の有無を判定する
    ことを特徴とする請求項8に記載の風力発電装置の診断方法。
    In the determination criterion setting step, the reference data indicating the dependency of the amplitude of the at least one frequency component on the rotation speed of the main shaft when the wind turbine generator is in a normal state is set in the determination criterion;
    In the determination step, a plurality of measured values of the rotation speed of the spindle, a plurality of amplitudes of the at least one frequency component as measured values of the physical quantity, and the at least one frequency component based on the reference data The method for diagnosing a wind turbine generator according to claim 8, wherein presence / absence of abnormality is determined.
  11.  前記判定工程にて、前記振動センサによって繰り返し測定された振動の測定値から抽出された前記少なくとも1つの周波数成分の動向に基づいて、前記少なくとも1つの周波数成分における異常の有無を更に判定する
    ことを特徴とする請求項8乃至10の何れか一項に記載の風力発電装置の診断方法。
    In the determination step, further determining whether or not there is an abnormality in the at least one frequency component based on a trend of the at least one frequency component extracted from a vibration measurement value repeatedly measured by the vibration sensor. The method for diagnosing a wind turbine generator according to any one of claims 8 to 10, wherein the method is a diagnostic method.
  12.  前記風力発電装置は油圧機械を更に備え、
     前記油圧機械は、
     前記主軸と共に回転可能な回転軸と、
     シリンダと、
     前記シリンダと共に作動室を形成するピストンと、
     前記回転軸の回転運動と前記ピストンの往復運動との間の変換を行うための変換機構とを有し、
     前記物理量測定工程にて前記作動室の圧力を測定し、
     前記診断工程は、前記物理量測定工程にて測定された前記作動室の圧力の測定値を前記ピストンの往復運動のサイクルに対応して積分して積分値を演算するための積分工程を更に有し、
     前記判定工程にて、前記積分工程によって演算された積分値と前記判定基準設定工程によって設定された判定基準との比較結果に応じて、前記積分値における異常の有無を判定する
    ことを特徴とする請求項7に記載の風力発電装置の診断方法。
    The wind power generator further comprises a hydraulic machine,
    The hydraulic machine is
    A rotating shaft rotatable with the main shaft;
    A cylinder,
    A piston that forms a working chamber with the cylinder;
    A conversion mechanism for performing conversion between the rotational movement of the rotary shaft and the reciprocating movement of the piston;
    Measuring the pressure in the working chamber in the physical quantity measurement step;
    The diagnosis step further includes an integration step for calculating an integral value by integrating the measured value of the pressure in the working chamber measured in the physical quantity measurement step in correspondence with the reciprocating motion cycle of the piston. ,
    In the determination step, it is determined whether there is an abnormality in the integration value according to a comparison result between the integration value calculated in the integration step and the determination criterion set in the determination criterion setting step. The diagnostic method of the wind power generator of Claim 7.
PCT/JP2013/051997 2013-01-30 2013-01-30 Diagnostic system and diagnostic method for wind power generation device WO2014118907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051997 WO2014118907A1 (en) 2013-01-30 2013-01-30 Diagnostic system and diagnostic method for wind power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051997 WO2014118907A1 (en) 2013-01-30 2013-01-30 Diagnostic system and diagnostic method for wind power generation device

Publications (1)

Publication Number Publication Date
WO2014118907A1 true WO2014118907A1 (en) 2014-08-07

Family

ID=51261655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051997 WO2014118907A1 (en) 2013-01-30 2013-01-30 Diagnostic system and diagnostic method for wind power generation device

Country Status (1)

Country Link
WO (1) WO2014118907A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003465A (en) * 2015-06-11 2017-01-05 三菱重工業株式会社 Diagnostic system for hydraulic machine, hydraulic machine, wind power generator, and diagnostic method for hydraulic machine
US10794362B2 (en) 2017-08-29 2020-10-06 Mitsubishi Heavy Industries, Ltd. Method and system for diagnosing wind turbine power generating apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105956A (en) * 2004-09-13 2006-04-20 Nsk Ltd Abnormality diagnostic apparatus
WO2012073502A1 (en) * 2010-11-30 2012-06-07 Mitsubishi Heavy Industries, Ltd. Renewable energy extraction device such as a wind turbine with hydraulic transmission
JP2012140905A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Device and method construction time selection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105956A (en) * 2004-09-13 2006-04-20 Nsk Ltd Abnormality diagnostic apparatus
WO2012073502A1 (en) * 2010-11-30 2012-06-07 Mitsubishi Heavy Industries, Ltd. Renewable energy extraction device such as a wind turbine with hydraulic transmission
JP2012140905A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Device and method construction time selection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003465A (en) * 2015-06-11 2017-01-05 三菱重工業株式会社 Diagnostic system for hydraulic machine, hydraulic machine, wind power generator, and diagnostic method for hydraulic machine
US10794362B2 (en) 2017-08-29 2020-10-06 Mitsubishi Heavy Industries, Ltd. Method and system for diagnosing wind turbine power generating apparatus

Similar Documents

Publication Publication Date Title
US10570887B2 (en) Vibration monitoring and diagnosing system for wind power generator
US9459179B2 (en) Method and device for monitoring a drive train of a wind power plant
JP6698715B2 (en) Facility condition monitoring device and facility condition monitoring method
US9915585B2 (en) Wear-monitoring of a gearbox in a power station
CN204099126U (en) For the system of load reducing to act on wind turbine in response to instantaneous wind condition
WO2015012124A1 (en) Fault diagnosis device and fault diagnosis method for wind power generation device
Biswal et al. Design and development of a wind turbine test rig for condition monitoring studies
KR20170042728A (en) A Method for Early Error Detection in a Drive System, a System for Early Error Detection, Wind Generator Comprising the System and Use of the System
US20120025526A1 (en) System and method for monitoring wind turbine gearbox health and performance
US20100082276A1 (en) Process for monitoring a drive train component of a wind power plant
JP6250345B2 (en) Monitoring system and monitoring method
CN103140672A (en) A method for performing condition monitoring in a wind farm
CN103712792B (en) A kind of method for diagnosing faults for wind turbine gearbox
WO2021035638A1 (en) Fault diagnosis method and system for rotary mechanical device, and storage medium
EP3020962A1 (en) Wind turbine power generation facility
JP2015230097A (en) System and method for monitoring preload
JP2011185632A (en) Device and method for detecting faulure of bearing
JP2017122635A (en) Abnormality diagnosis device of wind power generation facility
WO2014118907A1 (en) Diagnostic system and diagnostic method for wind power generation device
US9810203B2 (en) Method and calculator unit for determining total damage to at least one rotating component of a drive train
JP6686625B2 (en) Rolling bearing diagnostic device
EP2889593B1 (en) Diagnosis method and diagnosis apparatus for hydraulic machine
JP6449102B2 (en) Diagnosis method and apparatus for hydraulic machine, renewable energy type power generation apparatus and diagnosis method therefor
JP6644610B2 (en) Single pinion type planetary gear device tooth number specifying device and tooth number specifying method
CN104484827A (en) Wind power generator set failure frequency component extraction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP