JP4572547B2 - 超音波流体計測装置 - Google Patents

超音波流体計測装置 Download PDF

Info

Publication number
JP4572547B2
JP4572547B2 JP2004066868A JP2004066868A JP4572547B2 JP 4572547 B2 JP4572547 B2 JP 4572547B2 JP 2004066868 A JP2004066868 A JP 2004066868A JP 2004066868 A JP2004066868 A JP 2004066868A JP 4572547 B2 JP4572547 B2 JP 4572547B2
Authority
JP
Japan
Prior art keywords
ultrasonic
upstream
downstream
received
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004066868A
Other languages
English (en)
Other versions
JP2005257360A (ja
Inventor
謙三 黄地
大介 別荘
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004066868A priority Critical patent/JP4572547B2/ja
Publication of JP2005257360A publication Critical patent/JP2005257360A/ja
Application granted granted Critical
Publication of JP4572547B2 publication Critical patent/JP4572547B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流体の流速や流量を計測する超音波流体計測装置に関するものである。
従来、この種の流体計測装置の一例としての流量計は、図14に示すような流量計101が知られている(例えば、特許文献1参照)。図14は、断面図を示し、流体の流れる流路102の上流側と下流側とに一対の超音波変換器103,104を流体を介し、対向して設置し、一対の超音波変換器間を伝搬する超音波の伝搬時間から流体の流速を計測し、流量を演算し、流量計としていた。なお、図中の片矢印105(実線)は流体の流れる方向を示し、両矢印106(破線)は超音波の伝搬する方向を示している。なお、流体の流れる方向と、超音波の伝搬する方向とは角θで交叉している。
特開2001−4419号公報
しかしながら、前記従来の流量計101の構成では、上流側の超音波変換器103から下流側の超音波変換器104へ超音波を伝播させ、超音波の伝搬時間Tudを、また下流側の超音波変換器104から上流側の超音波変換器103へ超音波を伝播させ、超音波の伝搬時間Tduを、シングアラウンド法などを用い交互に計測し、計測した超音波の伝播時間Tud、Tduなどを用いて流量を演算していた。このため、超音波の伝播時間を計測する時刻が異なることになり、その間に流体の状態が変動し、それが誤差を生じる要因となるという課題を有していた。
本発明は、前記従来の課題を解決するもので、超音波伝播時間を同時に計測するもので、高精度な超音波流体計測装置を提供することを目的としている。
前記従来の課題を解決するために、本発明の流体計測装置は、上流側および下流側の超音波変換器から超音波を同時に他方の超音波変換器に向かって放出し、それぞれ他方の超音波変換器で放出された超音波を受信し、受信した超音波を比較し、超音波の受信時間差を判定し、この判定した受信時間差から流速及びまたは流量を演算する構成とした。
この構成により、上流側の超音波変換器と下流側の超音波変換器間を伝播する超音波の伝播時間、即ち、上流側から下流側および下流側から上流側への伝播時間を同時に計測することができ、高精度な超音波流体計測装置を実現できる。
本発明の超音波流量計は、上流側の超音波変換器から下流側の超音波変換器への超音波伝播時間および下流側の超音波変換器から上流側の超音波変換器への超音波伝播時間を、ほぼ同時に計測することができる。このため、計測中に流体の状態が変化することが無くなり、高精度な超音波流量計を実現することができる。
第1の発明は、一対の超音波変換器を流体が流れる流路の上流側と下流側とに、流体を介して対向配置し、前記上流側および下流側の超音波変換器から超音波を同時に他方の超音波変換器に向かって放出し、それぞれ他方の超音波変換器で放出された超音波を受信し、受信した超音波を比較し、超音波の受信時間差を判定し、この判定した受信時間差から流量を演算する構成とすることにより、上流側から下流側、あるいは下流側から上流側への超音波の伝播時間を同時に計測することができ、高精度な超音波流体計測装置を実現することができる。
第2の発明は、特に、第1の発明の受信時間差の判定を、同時に受信した超音波の受信波形のゼロクロス点から判定する構成とした。これにより高精度な超音波流体計測装置を実現することができる。
第3の発明は、特に、第1に発明の受信時間差の判定を、同時に受信した超音波の受信電圧を加算し、その電圧から判定する構成とした。この構成により、簡単な構成で判定することができ、高精度な超音波流体計測装置を実現することができる。
第4の発明は、第1の発明の受信時間差の判定を、同時に受信した超音波の受信電圧を減算し、その電圧から判定する構成とした。この構成により、簡単な構成で、より正確に超音波伝播時間の差を計測できるので、高精度な超音波流体計測装置を実現することができる。
第5の発明は、特に、第1の発明の受信時間差の判定を、同時に受信した超音波の受信電圧をFFT変換し、その位相差から判定する構成とした。これにより高精度な超音波流体計測装置を実現することができる。
第6の発明は、下流側の超音波変換器から超音波を上流側の超音波変換器に向かって超音波を放出後、順次遅延時間を変化させながら上流側の超音波変換器から下流側の超音波変換器に向かって超音波を放出し、それぞれ他方の超音波変換器で放出された超音波を受信し、受信した超音波を比較し、上記遅延時間を判定し、この判定した遅延時間から流量を演算する構成とすることにより、上流側から下流側、あるいは下流側から上流側への超音波の伝播時間を、ほぼ同時に計測することができ、高精度な超音波流体計測装置を実現することができる。
第7の発明は、特に、第6の発明の遅延時間の判定を、同時に受信した超音波の受信電圧を加算し、その電圧から判定する構成とした。これにより高精度な超音波流体計測装置を実現することができる。
第8の発明は、特に、第7の発明の上流側および下流側の超音波変換器から放出する超音波の位相を反転させる構成とした。この構成により、遅延時間の判定がより簡単となり、高精度な超音波計測装置を実現することができる。
第9の発明は、特に、第6の発明の受信時間差の判定を、同時に受信した超音波の受信電圧を減算し、その電圧から判定する構成とした。これにより高精度な超音波流体計測装置を実現することができる。
第10の発明は、特に、第6の発明の遅延時間の判定を、同時に受信した超音波の受信電圧をFFT変換し、その位相差から判定する構成とした。これにより、高分解能で判定することができ、高精度な超音波流体計測装置を実現できる。
第11の発明は、特に、第1および第6の発明の超音波変換器の駆動回路と、受信回路とをインピーダンスを等しくした対称型回路とする構成とした。この構成により、超音波の受信波形の形状が相似となり、より正確に遅延時間あるいは超音波伝播の時間差を計測できるようになるので、高精度な超音波流体計測装置を実現できる。
第12の発明は、特に、第11の発明のインピーダンスを超音波変換器のインピーダンスに合致させた対称型回路とする構成とした。この構成により、より高感度に超音波を受信することができ、受信波のS/Nが向上し、高精度な超音波流体計測装置を実現できる。
以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態における超音波流体計測装置の一例である超音波流量計1の断面図を示すものである。図1において、上流側の超音波変換器3と下流側の超音波変換器4とは、流路2内において流体を介して対向するよう設置されている。なお、図中の片矢印5(実線)は流体の流れる方向を示し、両矢印6(破線)は超音波の伝搬する方向を示している。なお、流体の流れる方向と、超音波の伝搬する方向とは角θで交叉している。
この構成において、上流側および下流側の超音波変換器3および4を同時に動作させ、上流側の超音波変換器3から下流側の超音波変換器4へ、および下流側の超音波変換器4から上流側の超音波変換器3へ超音波を伝播させた。図2にそのときの超音波波形を示す。図2の横軸は時間を示し、縦軸は電圧を示す。上流側の超音波変換器3に印加した駆動波形7は、3波からなる矩形波を用い、その拡大図は図3の符号8として示す。下流側の超音波変換器の受信波形9は前半部分が下流側から上流側への超音波を放出したことに伴う大振幅波形を示し、時間とともに徐々に減衰していく様子を示している。充分に減衰したあとに上流側から伝播して来た超音波による受信波形を円10内に示す。
また、その拡大図を図3の符号11として示す。図3において、予め決められた電圧13を超えた受信波形11の次に来るゼロクロス点を超音波伝播時間14(Tud)として定義した。なお、伝播時間Tudの起点は、駆動波形8の立上がり時点として定義した。このようにして上流側の超音波変換器3から下流側の超音波変換器への超音波の伝播時間Tudを計測した。同様にして下流側の超音波変換器4から上流側の超音波変換器3への超音波伝播時間Tduを計測した。
このようにして得られた超音波伝搬時間TudおよびTduを用いて、流体の流量を以下のようにして演算した。
上流側の超音波変換器3から下流側の超音波変換器4への超音波の伝播時間をTud、下流側の超音波変換器4から上流側の超音波変換器3への超音波の伝播時間をTduとし、超音波が流体中を伝搬する伝搬速度をVs、流体の流速をVfとすると、
Tud=Ld/[Vs+Vf・cos(θ)]
Tdu=Ld/[Vs−Vf・cos(θ)]
となる。なお、Ldは超音波変換器間の距離を示す。
これらより、
Vs+Vf・cos(θ)=Ld/Tud
Vs−Vf・cos(θ)=Ld/Tdu
となり、これらの両辺を引き算すると、
2*Vf・cos(θ)=(Ld/Tud)−(Ld/Tdu)
=Ld*[(1/Tud)−(1/Tdu)]
となる。よって、
Vf={Ld/[2・cos(θ)]}*[(1/Tud)−(1/Tdu)]
となり、流体の流速Vfが得られる。
さらに、流路2の断面積Srを乗じ、流量Qmとなる。即ち、Qm=Sr*Vfが、計測した流量値となる。
以上のように、本実施の形態によれば、上流から下流あるいは下流から上流への超音波伝播時間を同時に計測するので、従来のように計測時間中に流体の状態が変化することもないので、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態2)
図4は、本発明の実施の形態2における受信波形の伝播時間の判定法を示すための受信波形を加算した図を示す。図4の実線15は上流側および下流側の超音波変換器3および4を同時に駆動し、下流側および上流側の超音波変換器4および3により受信した超音波信号を加算した結果を示す。図4の横軸は流量を、縦軸に受信電圧を示す。横軸の流量において、ゼロより右側は正流量を、左側は負流量、即ち、逆流流量を示している。破線16および17は、加算された受信電圧の最大値および最小値をそれぞれ示している。
このように、例えば、流量ゼロの場合には、上流から下流、下流から上流の伝播時間は同じであるので、超音波の受信電圧は、加算した場合、最大値となる。また、流量がある値になると、伝播時間が異なるので、加算した場合に、その受信電圧は最大値から減少することになる。従って、この加算された受信電圧から伝播時間のずれ、即ち流体の流速を推定することが出来る。このようにして流体の流速を推定し、流量を演算することが出来る。
以上のように、本実施の形態によれば、上流から下流あるいは下流から上流への超音波伝播時間を同時に計測するので、従来のように計測時間中に流体の状態が変化することもないので、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態3)
図5は、本発明の実施の形態3における受信波形の伝播時間の判定法を示すための受信波形を減算した図を示す。図5の実線18は上流側および下流側の超音波変換器3および4を同時に駆動し、下流側および上流側の超音波変換器4および3により受信した超音波信号を減算した結果を示す。図5の横軸は流量を、縦軸に受信電圧を示す。横軸の流量において、ゼロより右側は正流量を、左側は負流量、即ち、逆流流量を示している。破線19および20は、減算された受信電圧の最大値および最小値をそれぞれ示している。
このように、例えば、流量ゼロの場合には、上流から下流、下流から上流の伝播時間は同じであるので、超音波の受信電圧は、減算した場合、最小値となる。また、流量がある値になると、伝播時間が異なるので、減算した場合に、その受信電圧は最小値から増加することになる。従って、この減算された受信電圧から伝播時間のずれ、即ち流体の流速を推定することが出来る。このようにして流体の流速を推定し、流量を演算することが出来る。
以上のように、本実施の形態によれば、上流から下流あるいは下流から上流への超音波伝播時間を同時に計測するので、従来のように計測時間中に流体の状態が変化することもないので、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態4)
図6は、本発明の実施の形態4における受信波形の伝播時間の判定法を示すための受信波形のFFT結果を示す。図6は、横軸に周波数を、縦軸に振幅と位相を示す。受信波形の振幅の周波数特性を実線21で示し、位相の周波数特性を破線22で示す。なお、超音波の伝播時間は基準周波数、一点鎖線23、と位相の周波数特性との交点における位相の値から計測した。即ち、上流側から下流側への位相値と、下流側から上流側への位相値との関係から演算し、求めた。なお、受信波形をFFT変換することにより、S/Nが大きく改善され、計測の安定性が大幅に向上した。
以上のように、本実施の形態によれば、上流から下流あるいは下流から上流への超音波伝播時間を同時に計測するので、従来のように計測時間中に流体の状態が変化することもないので、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態5)
図7は、本発明の実施の形態5における受信波形の伝播時間の判定法を示すための遅延時間と受信波形の一致度との関係を示す。図7は、下流側の超音波変換器4から超音波を上流側の超音波変換器3へ向けて超音波を放出したあと、予め決められた遅延時間経過後、上流側の超音波変換器3から下流側の超音波変換器4へ向けて超音波を放出し、それぞれの超音波変換器で受信した超音波の波形一致度を演算した。このように遅延時間を順次変化させて図7を得た。なお、遅延時間は通常の場合、数nsecから数千nsecで変化させた。また、遅延時間が正の場合は、下流側から上流側への超音波の伝播時間が、上流側から下流側への伝播時間よりも大きいことを示している。
また、遅延時間が負の場合は、その逆に、下流側から上流側への超音波の伝播時間が、上流側から下流側への伝播時間よりも小さいことを示している。図7は、横軸に遅延時間を、縦軸に受信波形の一致度を示す。波形の一致度は、受信した波形を加算したり、減算したり、あるいは相関係数などで評価した。波形の一致度のもっとも大きいところ、一点鎖線25で示す遅延時間を求め、超音波伝播時間の時間差とした。このようにして伝播時間差を計測し、流量を演算し流量計とした。
以上のように、本実施の形態によれば、上流から下流あるいは下流から上流への超音波伝播時間をほぼ同時に計測するので、従来のように計測時間中に流体の状態が変化することもないので、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態6)
図8は、本発明の実施の形態6における受信波形の伝播時間の判定法を示すための遅延時間と上流側および下流側の超音波変換器で受信した受信波形を加算した結果を示す。図8は、横軸に遅延時間を、縦軸にほぼ同時に受信した超音波の受信電圧を加算した結果の電圧26を示す。加算された電圧26は、流量ゼロの場合を示し、縦線で示す流量ゼロにおいて最大値を示す。正の流量が流れた場合を破線27で示す。この場合、ある正の流量値(縦破線28)において最大値となる。
このように電圧曲線26あるいは27が最大となるところから遅延時間を判定することができる。なお、正の遅延時間の領域は流量が正常に、即ち、流体が上流側から下流側へと流れていることを示している。また、負の遅延時間の領域は、それとは逆に、下流側から上流側へと流体が流れていることを示している。
以上のように、本実施の形態によれば、上流から下流あるいは下流から上流への超音波伝播時間をほぼ同時に計測するので、従来のように計測時間中に流体の状態が変化することもないので、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態7)
図9は、本発明の実施の形態7における受信波形の伝播時間の判定法を示すための遅延時間と上流側および下流側の超音波変換器で受信した受信波形を減算した結果を示す。図9は、横軸に遅延時間を、縦軸にほぼ同時に受信した超音波の受信電圧を減算した結果の電圧29を示す。
減算された電圧29は、最大値(破線30)と最小値(破線31)との間を上下していることが解る。減算された受信電圧が最小値となる遅延時間が超音波の伝播時間差を示している。即ち、流量ゼロでは、遅延時間がゼロである場合に同じ波形が得られるので、受信電圧を減算した場合に最小値となる。このようにして、超音波の伝播時間差を遅延時間として計測することができる。
以上のように、本実施の形態によれば、上流から下流あるいは下流から上流への超音波伝播時間をほぼ同時に計測するので、従来のように計測時間中に流体の状態が変化することもないので、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態8)
図10は、本発明の実施の形態8における受信波形の伝播時間の判定法を示すための遅延時間と上流側および上流側および下流側の超音波変換器で受信した受信波形を加算した結果を示す。図10は、横軸に遅延時間を、縦軸にほぼ同時に受信した超音波の受信電圧を加算した結果の電圧32を示す。なお、この場合、上流側から放出される超音波と、下流側から放出される超音波とを位相が反転するように設定した。
この結果、加算された電圧32は、最大値(破線33)と最小値(破線34)との間を上下し、最小値となるところの遅延時間が超音波の伝播時間差を示していることになる。即ち、ある流量が流れている場合、遅延時間が超音波伝播時間差に合致した場合に、位相が反転した波形が同時に伝播してくるので、受信電圧を加算した場合に最小値となる。このようにして、超音波の伝播時間差を遅延時間として簡単に計測することができる。即ち、急峻な最小値を示すので、判定が非常に簡単になる。
以上のように、本実施の形態によれば、上流から下流あるいは下流から上流への超音波伝播時間をほぼ同時に計測するので、従来のように計測時間中に流体の状態が変化することもないので、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態9)
図11は、本発明の実施の形態9における受信波形の伝播時間の判定法を示すための遅延時間と上流側および下流側の超音波変換器で受信した受信波形のFFT結果を示す。図11は、横軸に遅延時間を、縦軸に位相特性を示す。下流側の超音波変換器4から放出された超音波が上流側の超音波変換器3で受信され、基準周波数での位相値を破線35で示す。
下流側の超音波変換器4から超音波が放出されてから、所定の遅延時間経過後、上流側の超音波変換器4から放出された超音波が下流側の超音波変換器4で受信され、基準周波数での位相値を実線36で示す。所定の遅延時間を変化させると、基準周波数での位相値が変化していることが解る。破線35と実線36との交点にあたる遅延時間が、超音波伝播時間差に相当する。このようにして、超音波伝播の時間差をS/Nよく計測することができる。
以上のように、本実施の形態によれば、上流から下流あるいは下流から上流への超音波伝播時間をほぼ同時に計測するので、従来のように計測時間中に流体の状態が変化することもないので、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態10)
図12は、本発明の実施の形態10における超音波変換器駆動回路と受信回路とを示す。
送信側の超音波変換器37は、信号源38に出力抵抗39を介して接続されている。また、受信側の超音波変換器40は、入力抵抗41を介して受信回路42に接続されている。矢印43は、超音波が送信側超音波変換器37から受信側超音波変換器40へ伝播していることを示している。
このような送信、受信系において、出力抵抗39と入力抵抗41とを種々変化させて、例えば数オームから数百キロオームにわたって実験したところ、同じ抵抗値である場合には、受信波形が非常に似通うことが解った。また、出力抵抗39と入力抵抗41の値の比が異なるにつれ、波形の一致度が大きく低下することもわかった。従って、波形の相似性が要求される本発明においては、出力抵抗39と入力抵抗41の値を一致させることが、高精度に遅延時間あるいは超音波伝播時間差を計測するのに必要である。
以上のように、本実施の形態によれば、超音波送信側の出力抵抗39と受信側の入力抵抗41とを一致させて、超音波伝播時間差をほぼ同時に計測するので、より正確な時間差が得られ、高精度な超音波流体計測装置としての超音波流量計を実現できる。
(実施の形態11)
図13は、本発明の実施の形態11における超音波変換器駆動回路と受信回路との出力抵抗値、入力抵抗値と超音波を受信したときの受信電圧との関係を示す。図11は、横軸に抵抗値を、縦軸に受信電圧を示す。
抵抗値を小さい値から順次大きくしていくと、抵抗値とともに受信電圧44は大きくなり、最大値を経過すると抵抗値とともに受信電圧44は小さくなる。この最大値(破線45で示す)の抵抗値は用いた超音波変換器の内部インピーダンスと一致していた。即ち、本発明の超音波の送信回路および受信回路のおける出力抵抗および入力抵抗を、用いる超音波変換器の内部インピーダンスに一致させると、比較的大きな受信電圧が得られる。このため、S/Nよく遅延時間および超音波伝播時間差を計測することができる。
以上のように、本実施の形態によれば、超音波送信側の出力抵抗39と受信側の入力抵抗41とを一致させて、なおかつ超音波変換器の内部抵抗と一致させることにより、受信電圧を比較的大きくすることができ、超音波伝播時間差をS/Nよく計測できるので、より正確な時間差が得られ、高精度な超音波流体計測装置としての超音波流量計を実現できる。
本発明に係る流体計測装置は、流体の流速,流量等を高精度に計測できるので、ガスメータ、水道メータ等の用途に適用できる。
本発明の実施の形態1における流量計の断面図 本発明の実施の形態1における超音波波形図 本発明の実施の形態1における超音波波形図の拡大図 本発明の実施の形態2における受信電圧の特性図 本発明の実施の形態3における受信電圧の特性図 本発明の実施の形態4における位相特性図 本発明の実施の形態5における波形一致度を示す特性図 本発明の実施の形態6における流量特性図 本発明の実施の形態7における遅延時間特性図 本発明の実施の形態8における遅延時間特性図 本発明の実施の形態9における遅延時間位相特性図 本発明の実施の形態10における回路図 本発明の実施の形態11における抵抗と電圧との関係図 従来の流量計の断面図
符号の説明
1 超音波流量計
2 流路
3 上流側の超音波送変換器
4 下流側の超音波送変換器

Claims (1)

  1. 流体が流れる流路と、
    前記流路の上流側と下流側とに対向配置した一対の超音波変換器とを有し、
    前記上流側および下流側の前記超音波変換器から超音波をそれぞれ同時に他方の前記超音波変換器に向かって放出し、
    それぞれ他方の前記超音波変換器で放出された超音波を受信し、
    受信した超音波を比較し、
    超音波の受信時間差を判定し、
    この判定した受信時間差から流速及びまたは流量を演算し、
    前記受信時間差の判定は、前記上流側および下流側の前記超音波変換器で受信した超音波の受信電圧を加算または減算し、その電圧から判定する
    超音波流体計測装置。
JP2004066868A 2004-03-10 2004-03-10 超音波流体計測装置 Expired - Fee Related JP4572547B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066868A JP4572547B2 (ja) 2004-03-10 2004-03-10 超音波流体計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066868A JP4572547B2 (ja) 2004-03-10 2004-03-10 超音波流体計測装置

Publications (2)

Publication Number Publication Date
JP2005257360A JP2005257360A (ja) 2005-09-22
JP4572547B2 true JP4572547B2 (ja) 2010-11-04

Family

ID=35083236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066868A Expired - Fee Related JP4572547B2 (ja) 2004-03-10 2004-03-10 超音波流体計測装置

Country Status (1)

Country Link
JP (1) JP4572547B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789182B2 (ja) * 2005-11-02 2011-10-12 リコーエレメックス株式会社 超音波流量計

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173920A (ja) * 1987-01-13 1988-07-18 Tokyo Keiki Co Ltd 超音波気体流速計
JP2000046854A (ja) * 1998-07-24 2000-02-18 Inst Fr Petrole 流体流の流れの速度を測定する方法と装置
JP2004028994A (ja) * 2002-04-30 2004-01-29 Matsushita Electric Ind Co Ltd 超音波流量計および流量の計測方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173920A (ja) * 1987-01-13 1988-07-18 Tokyo Keiki Co Ltd 超音波気体流速計
JP2000046854A (ja) * 1998-07-24 2000-02-18 Inst Fr Petrole 流体流の流れの速度を測定する方法と装置
JP2004028994A (ja) * 2002-04-30 2004-01-29 Matsushita Electric Ind Co Ltd 超音波流量計および流量の計測方法

Also Published As

Publication number Publication date
JP2005257360A (ja) 2005-09-22

Similar Documents

Publication Publication Date Title
US11333676B2 (en) Beam shaping acoustic signal travel time flow meter
RU2446393C2 (ru) Способ диагностики шероховатости трубопровода и ультразвуковой расходомер
JP2008134267A (ja) 超音波流量測定方法
US9279707B2 (en) Ultrasonic multipath flow measuring device ascertaining weighing factors for measuring paths
US9140594B2 (en) Ultrasonic, flow measuring device
CA2619063C (en) Driver configuration for an ultrasonic flow meter
JP2007529009A (ja) 超音波パルスの走行時間を計算するための方法及びシステム
US11137276B1 (en) All digital travel time flow meter using time reversed acoustics
JP4572547B2 (ja) 超音波流体計測装置
JP5141613B2 (ja) 超音波流量計
US20230243682A1 (en) Ultrasonic flow measurement
JP3624743B2 (ja) 超音波流量計
JP7151344B2 (ja) 圧力計測装置
JP2003329502A (ja) 超音波流量計および超音波流量計の自己診断方法
JP2007322194A (ja) 流体の流れ計測装置
JP2001317975A (ja) 超音波流速測定方法および同装置
JP2000329597A5 (ja)
JP4827008B2 (ja) 超音波流量計、超音波トランスジューサ、超音波送受信ユニットおよび超音波流量計を用いた流量測定方法
JP2007232659A (ja) 超音波流量計
JP4836176B2 (ja) 超音波流量計
JP4059733B2 (ja) 超音波式メータ装置
JP7203352B2 (ja) 超音波流量計
JP2007064988A (ja) 流量計測装置
JP2022109346A (ja) 超音波流量計
JP2005274387A (ja) 流体の流れ計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees