JP4571053B2 - 荷電粒子ビーム装置 - Google Patents

荷電粒子ビーム装置 Download PDF

Info

Publication number
JP4571053B2
JP4571053B2 JP2005284733A JP2005284733A JP4571053B2 JP 4571053 B2 JP4571053 B2 JP 4571053B2 JP 2005284733 A JP2005284733 A JP 2005284733A JP 2005284733 A JP2005284733 A JP 2005284733A JP 4571053 B2 JP4571053 B2 JP 4571053B2
Authority
JP
Japan
Prior art keywords
sample
charged particle
particle beam
image
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005284733A
Other languages
English (en)
Other versions
JP2007093458A (ja
Inventor
毅 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005284733A priority Critical patent/JP4571053B2/ja
Priority to US11/527,522 priority patent/US7442928B2/en
Publication of JP2007093458A publication Critical patent/JP2007093458A/ja
Priority to US12/245,044 priority patent/US7902505B2/en
Application granted granted Critical
Publication of JP4571053B2 publication Critical patent/JP4571053B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/30438Registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31732Depositing thin layers on selected microareas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は繰り返しパターンを有する試料の所定の位置を特定する荷電粒子ビーム装置に関する。
半導体メモリーの欠陥又は不良の分析では、欠陥又は不良を有するセルを特定する必要がある。従来、欠陥又は不良を有するセルを特定するために、走査電子顕微鏡(Scanning Electron Microscope:SEM)が用いられていた。試料のSEM画像を目視しながら、試料ステージをセルのピッチに対応したピッチにて移動させ、セルを試料端から数えていた。
近年、半導体素子の微細化に伴い、メモリーセルの寸法が非常に小さくなっている。セルを正確に特定するにはサブミクロンレベルのステージ移動精度が要求される。しかしながら、従来の走査型電子顕微鏡は、セルを特定することができるほど精度が高い試料ステージ機構を有していなかった。
本発明の目的は、高精度の試料ステージ機構を用いることなく、メモリーセルをカウントし、特定のセルの位置を検出することができる装置を提供することにある。
本発明の荷電粒子ビーム装置では、試料が繰り返しセルを有するとき、セルに対応したスケールパターンを生成し、それを試料の繰り返しセルの画像に重畳させることにより、目的セルを特定する。
更に、本発明の荷電粒子ビーム装置では、試料が繰り返しセルを有するとき、試料の繰り返しセルの配列から目的セルの位置を特定する。
本発明の荷電粒子ビーム装置では、ビーム偏向機能によるズームとソフトウエアによるズームを組み合わせてズーム画像を生成し、試料ステージを移動させることなく、ソフトウエアによって画像シフトを行う。
本発明によると、高精度の試料ステージ機構を用いることなく、メモリーセルをカウントし、特定のセルの位置を検出することができる。
図1は本発明の荷電粒子ビーム装置の構成の概略を示す図である。本例の荷電粒子ビーム装置は、集束イオンビーム装置である。集束イオンビーム装置は、集束イオンビーム120を生成しそれを試料111に照射するFIBカラム10と、試料111からの二次電子121を検出する検出器112と、制御装置20と、画像生成及び加工部30と、入力装置41及び表示装置42を有する。画像生成及び加工部30は、検出器112からの二次電子線信号を入力して走査イオン顕微鏡(Scanning Ion Microscope:SIM)像を生成し、試料上にマーカを加工する。画像生成及び加工部30は、ハードウエア的なズームを行うハードウエア的ズーム部31、ソフトウエア的ズーム及びシフトを行うソフトウエア的ズーム及びシフト部32、スケールパターン及びマークパターンの生成及び表示を行うスケールパターン及びマークパターン部33、試料上にマーカを加工するマーカ加工部34を有する。ハードウエア的ズームとは、ビーム偏向機能によりズームを行うことである。ソフトウエア的ズームとは、画像処理によってデジタル的に画像を拡大することである。ソフトウエア的シフトとは、画像処理によってデジタル的に画像を移動させることである。即ち、試料ステージを移動させること無しに画像を移動させる。
ソフトウエア的ズーム及びシフトを実現するためには、少なくともビーム偏向点分解能は画像表示分解能より大きい必要がある。本例では、ビーム偏向点分解能は4096×4096点であり、表示分解能は512×512画素である。従って、最大8倍のソフトウエア的ズームが可能である。
画像生成及び加工部30はコンピュータ201又はコンピュータによって実行されるプログラムであってよい。
図2は本発明の荷電粒子ビーム装置のFIBカラム10の詳細図である。FIBカラム10は、液体金属イオン源エミッタ100、引出し電極101、コンデンサーレンズ102、可変アパーチャ103、アライナ・スティグマ104、ブランカ105、ブランキングアパーチャ106、ファラデーカップ107、デフレクタ108及び対物レンズ109を有する。集束イオンビーム装置は、更に、試料111から放出される二次電子を検出する検出器112、試料表面近傍にガスを供給するガス源113、微細試料をピックアップするマニピュレータ115を有する。
液体金属イオン源エミッタ100からのイオンは引出し電極101によって引き出され、コンデンサーレンズ102と対物レンズ109により試料111上に集束される。ブランカ105によるブランキング動作では、イオンビームはファラデーカップ107に入射する。
本例の集束イオンビーム装置にはデポジション用ガス源113とマニピュレータ115が装着されており、マイクロサンプリング法によって試料の局所領域から微細試料片を摘出することができる。
図3を参照して本発明の荷電粒子ビーム装置の制御装置20の例を説明する。制御装置20は、高圧電源203、絞り制御電源204、アライナ・スティグマ制御電源205、ビーム電流計測アンプ206、ブランキング制御電源207、偏向アンプ208、プリアンプ209、ステージ制御電源210、スキャナ211、画像メモリー212、排気制御電源213、ガス制御電源214、及び、マニピュレータ制御電源215を有する。各制御電源は制御バス202を介してコンピュータ201によって統括的に制御される。
高圧電源203はイオン源エミッタ100、引出し電極101、コンデンサーレンズ102、及び、対物レンズ109に高電圧を印加する。絞り制御電源204は可変アパーチャ103を制御し、所望のアパーチャ径を選択する。像観察時には小径アパーチャを選択し、大面積加工を行う場合は大口径アパーチャを選択する。アライナ・スティグマ制御電源205はアライナ・スティグマ104の8極の電極電圧を制御し、電気的な軸合わせと非点補正を行う。ビーム電流計測アンプ206はブランキング時にファラデーカップ107に流入するビーム電流を計測する。ブランキング制御電源207はブランカ105のブランキング電極を駆動し、ビームブランキングを行う。
偏向アンプ208は、スキャナ211から走査信号を入力し、8極2段の静電偏向器であるデフレクタ108を駆動する。プリアンプ209は検出器112からの信号を輝度電圧信号に変換し、それをディジタル値に変換し、画像メモリー212に書き込む。画像メモリー212に格納された像は表示装置42に表示される。
ガス制御電源214はガス源113の温度制御とバルブ開閉制御を行う。マニピュレータ制御電源はマニピュレータ115の微動制御及び試料との接触検出を行う。
図4は本発明の荷電粒子ビーム装置の制御装置20の偏向制御系及び画像生成系の一部を説明する図である。スキャナ211は、X方向及びY方向の9ビットのビーム走査用のカウンタ61、62とDA変換器69、70を有する。カウンタ61、62からのディジタル走査信号xd、ydは、DA変換器69、70によってアナログ走査信号xa、yaに変換され、偏向アンプ208に出力される。
プリアンプ209は検出器112からのアナログ二次電子信号をAD変換するAD変換器71を有する。AD変換器71からのディジタル二次電子信号は、カウンタ61、62からのディジタル走査信号xd、ydと共に、画像メモリー212に格納される。画像の書き込みとスキャンの同期をとることにより、試料の顕微鏡像が画像メモリー212に形成される。こうして、512×512画素の像が画像メモリー212に格納される。
図5は本発明の荷電粒子ビーム装置の第1の例の表示装置の画面500の例を示す。この画面の上側には、方向選択フィールド501、セル寸法入力フィールド502、スケール長指定フィールド503、開始セル指定フィールド504、設定ボタン505、が設けられている。方向選択フィールド501は、生成するスケールの方向を選択するために設けられ、水平方向(Horizontal)と垂直方向(Vertical)のいずれかを選択することができる。セル寸法入力フィールド502は、セルの寸法を指定するために設けられ、セルのX方向の寸法とY方向の寸法を入力することができる。単位はμmである。スケール長指定フィールド503は、一度に生成するスケールのセル数を指定するために設けられている。開始番号指定フィールド504は、スケールに併記するセル数値の開始番号を指定するために設けられている。設定ボタン505は、選択又は入力したデータに対応するスケールを作成し、それを繰り返りセルの画像に重畳して表示するために設けられている。
この画面の下側には、移動アレーボタン506、サイズ変更ボタン507、ズーム選択フィールド508、画像シフトボタン509、画像取得ボタン510、クリアボタン511、オールクリアボタン512、クローズボタン513が設けられている。移動アレーボタン506は、生成したスケールの位置調整を行うために設けられている。サイズ変更ボタン507は、生成したスケールのサイズ変更を行うために設けられている。
ズーム選択フィールド508は、ビーム偏向機能によるズーム率を指定するために設けられている。画像シフトボタン509は、画像をソフトウエア的に移動させるために設けられている。即ち、試料ステージを移動させることなく、デジタル的に画像をシフトさせる。画像シフトボタン509を押すと、生成されたスケールの先端が表示画像の端に表示されるように画像がシフトされ、次に生成されるスケールは表示画像内に収まることができる。画像取得ボタン510は、現在のズーム率とシフト位置でビームをスキャンして、新たに試料画像を取得するために設けられている。即ち、ハードウエア的ズームによる試料画像を取得するために設けられている。クリアボタン511は、生成したスケールを消去するために設けられている。オールクリアボタン512は、全てのスケールを消去するために設けられている。クローズボタン513は、この画面を終了するために設けられている。
本例では、表示装置の画面の表示分解能は512×512画素であるが、ズーム偏向点分解能は4096×4096点である。従って、最大8倍のハードウエア的なズームが可能である。ズーム率が1の場合、4096×4096個のビーム偏向点を512×512個の画素に縮小するために、4096×4096個のビーム偏向点をビーム偏向機能によって1/8に間引く必要がある。ズーム率が8の場合、4096×4096個のビーム偏向点を縮小する必要はない。その代わり、その1/8の部分を使用して512×512個の画素とする。
ズーム率が8の場合、表示装置の画面には、拡大した画像の一部しか表示されないから、画像の他の部分を表示するためには、画像をシフトさせればよい。本例では、画像処理によって、即ち、ソフトウエア的に画像をシフトさせる。従って、画像のシフトには試料ステージの移動は不要である。
図6及び図7を参照してセルを特定する方法を説明する。ここでは、繰り返しセルの左上を起点セルとして、水平方向且つ右方向に20番目、垂直方向且つ下方向に20番目のセルを特定する場合を説明する。
図6及び図7は表示装置の画面の例を示す。この画面600は、画像表示領域601、縦スライドバー602、横スライドバー603を有する。画像表示領域600は試料の像を512×512画素の画像として表示する。縦スライドバー602、及び、横スライドバー603は、画像表示領域601に表示された像をソフトウエア的に移動させるために用いる。縦スライドバー602と横スライドバー603に含まれる黒色のインジケータの長さは、ズーム率を表わす。また、インジケータの位置は、画像表示領域601に表示されている領域が全体の画像のどの位置にあるかを示す。ズーム率が1のとき、黒色のインジケータは、各スライドバーの全領域に延びている。従って、ズーム率が1のとき、画像表示領域601には、試料の像の全体が表示され、この像を縦スライドバー602と横スライドバー603によって移動させることはできない。
図6(a)の画像表示領域601には、ズーム率が1の繰り返しセルの像が表示されている。これは、ズーム選択フィールド508にてズーム率を1に選択し、画像取得ボタン510を押した場合である。黒色のインジケータは、各スライドバーの全領域に延びている。図6(b)の画像表示領域601には、ズーム率が2の繰り返しセルの像が表示されている。これは、ズーム選択フィールドにてズーム率を2に選択した場合である。ソフトウエア的にズーム率が2の画像が得られる。黒色のインジケータは、各スライドバーの半分の領域に延びている。黒色のインジケータを移動させることによって、画像を上下左右にシフトさせることができる。図6(c)の画像表示領域601には、ズーム率が4の繰り返しセルの像が表示されている。これは、ズーム選択フィールド508にてズーム率を4に選択した場合である。ソフトウエア的にズーム率が4の画像が得られる。黒色のインジケータは、各スライドバーの1/4の領域に延びている。黒色のインジケータを移動させることによって、画像を上下左右にシフトさせることができる。ソフトウエア的に4倍の拡大された像では、セルの輪郭が鮮明でない。次に、画像取得ボタン510を押すと、図6(d)に示す像が得られる。画像取得ボタン510を押すことによって、ハードウエア的なズーム、即ち、ビーム偏向機能によるズームが行われる。従って、図6(d)に示すセルの像は、図6(c)に示すセルの像より鮮明である。
図6(d)の画像表示領域601には、ズーム率が4の繰り返しセルの像の上に最初のスケール610が重畳されている状態が表示されている。ここでは、方向選択フィールド501にて水平方向を選択し、セル寸法入力フィールド502にて、1μmx1μmのセルサイズを入力し、スケール長指定フィールド503にて、スケール長としてセルの個数10を入力し、開始セル指定フィールド504にて、1セル目である1を入力し、設定ボタン505を押した場合を示す。
スケール610は、縦1μm×横1μmの正方形が10個並んだ形状を有し、各正方形は、繰り返しセルと同一形状である。最初、このスケール610は、繰り返しセルの輪郭とは整合していない。即ち、スケール610の寸法及び位置は、繰り返しセルの寸法及び位置とは異なって表示される。移動アレーボタン506を操作することにより、位置合わせを行い、サイズ変更ボタン507を操作することにより、寸法合わせを行う。こうして位置合わせと寸法合わせを行うことにより、図6(d)に示すように、スケール610を繰り返しセルに整合させることができる。スケール610の開始端は、繰り返しセルの左上端のセルに整合するように配置されている。スケール610の右上にはセルのカウント値「10」が表示されている。
図7(a)は、スケール610の10番目の正方形に次のスケール611が延長して表示された状態を示す。スケール610の10番目の正方形が画像表示領域601の左上端に配置されるように、走査イオン顕微鏡像が横方向にシフトされている。画像のシフトは、画像シフトボタン509を押すことによって実現されるが、横スライドバー603を操作して実現してもよい。スケール611の右上にはセルのカウント値「20」が表示されている。水平方向に20個のセルをカウントしたことがわかる。
図7(b)は、スケール611の20番目の正方形に縦方向のスケール612が延長して表示された状態を示す。ここでは、方向選択フィールド501にて垂直方向を選択し、セル寸法入力フィールド502にて、1μmx1μmのセルサイズを入力し、スケール長指定フィールド503にて、スケール長としてセルの個数10を入力し、開始番号指定フィールド504にて、10セル目である10を入力し、設定ボタン505を押した場合を示す。スケール612の下端には、開始番号指定フィールド504にて指定されたセルのカウント値「10」が表示されている。
図7(c)は、スケール612の10番目の正方形に次のスケール613が延長して表示された状態を示す。スケール612の10番目の正方形が画像表示領域601の右上端に配置されるように、走査イオン顕微鏡像が縦方向にシフトされている。画像のシフトは、画像シフトボタン509を押すことによって実現されるが、縦スライドバー602を操作して実現してもよい。スケール613の下端にはセルのカウント値「20」が表示されている。垂直方向に20個のセルをカウントしたことがわかる。こうして目的とする位置(20,20)のセルに到達した。
図7(d)は、目的とする位置(20,20)のセルが画像表示領域601の中心に配置されるように、走査イオン顕微鏡像をシフトした状態を示す。画像のシフトはソフトウエア的に即ち試料ステージを移動させることなく実行される。目的とする位置(20,20)の正方形に丸印のマークパターン614が表示される。こうして、マークパターン614から、目的のセルの位置が視覚的に理解することができる。
スケール610、611、613、及びマークパターン614は、画面上に形成された図形であり、走査イオンビームによって試料の表面に形成されたものではないから、試料表面がダメージを受けることはない。こうして本例では、試料表面がダメージを与えることなく、目的とするセルを特定することができる。
図8は、目的のセルの周囲に、十字のマーカ615を形成した状態を示す。こうしてマーカ615を形成することにより、他の観察装置によってこの試料を観察するとき、容易に目的とするセルを特定することができる。マーカ615の加工は、集束イオンビームの局所照射によるスパッタリング現象を利用した除去加工であってよい。ガス雰囲気中での集束イオンビームアシストデポジションや集束イオンビームアシストエッチングを利用した加工であってもよい。また、マーカ615が形成されたセルは、サンプリングされて解析されることが想定されるため、このセルの上部に保護膜として集束イオンビームアシストデポジション膜を形成してもよい。また、この保護膜自体をマークとして流用することも可能である。
図9は本発明の荷電粒子ビーム装置の第2の例を示す図である。本例の荷電粒子ビーム装置は、集束イオンビーム装置である。図1の第1の例と比較して、本例の集束イオンビーム装置は、画像生成及び加工部30が異なる、本例の画像生成及び加工部部30は、ハードウエア的なズームを行うハードウエア的ズーム部31、ソフトウエア的ズーム及びシフトを行うソフトウエア的ズーム及びシフト部32、仮想的に設定したセルの配置情報と走査イオン顕微鏡像をアライメントするアライメント部35、マークパターンの生成及び表示を行うマークパターン部36、試料上にマーカを加工するマーカ加工部34を有する。ソフトウエア的ズーム及びシフトを実現するために、ビーム偏向点分解能は画像表示分解能より大きい。本例では、ビーム偏向点分解能は4096×4096点であり表示分解能は512×512画素である。従って、最大8倍のソフトウエア的ズームが可能である。
図10は、本発明の荷電粒子ビーム装置の第2の例の表示装置の画面1000の例を示す。この画面の上側には、セル配列入力フィールド1001、第1〜第3アライメント位置入力フィールド1002a〜1002c、3つのロックボタン1003a〜1003c、クリアボタン1004、が設けられている。
セル配列入力フィールド1001は、試料であるセルの配列数を入力するために設けられている。第1〜第3アライメント位置入力フィールド1002a〜1002cは、3つのアライメント用の位置を入力するために設けられている。3つのロックボタン1003a〜1003cは、第1〜第3アライメント位置入力フィールド1002a〜1002cの入力値を登録するために設けられている。クリアボタン1004は入力値をクリアするために設けられている。セル配列入力フィールド1001に、セルの配列数を入力し、第1〜第3アライメント位置入力フィールド1002a〜1002cに、アライメント用の位置を入力し、ロックボタン1003a〜1003cを押すことにより、3点にてアライメントが行われる。
この画面の下側には、目的セル座標入力フィールド1005、クリアボタン1006、マークボタン1007、クローズボタン1008が設けられている。目的セル座標入力フィールド1005は、目的とするセルの座標を入力するために設けられている。クリアボタン1006は入力値をクリアするために設けられている。マークボタン1007は、目的とするセルの周囲にマークパターンを生成するために設けられている。3点によるアライメントが終了してから、目的セル座標入力フィールド1005に目的セルの座標を入力し、マークボタン1007を押すと、目的セルの周囲にマークパターンが表示される。
図11を参照してセルを特定する方法を説明する。ここでは、繰り返しセルの左上を起点セルとして、水平方向且つ右方向に30番目、垂直方向且つ下方向に30番目のセルを特定する場合を説明する。繰り返しセルの数が既知であり、全てのセルがビーム偏向領域内にあるものとする。即ち、試料ステージを移動せずに全てのセルにビームを照射できるものとする。近年、メモリー等の記憶容量は増大しているが、メモリーセルはマットと呼ばれる最小単位で区画化されている。半導体の微細化により、このマットは容易にビーム偏向領域内に入るサイズとなってきた。
図11は表示装置の画面の例を示す。この画面1100は、画像表示領域1101、縦スライドバー1102、横スライドバー1103を有する。画像表示領域1101は試料の像を512×512画素の画像として表示する。画像表示領域1101には、図6(c)と同様に、ズーム率が4の繰り返しセルの像が表示されている。黒色のインジケータは、各スライドバーの1/4の領域に延びている。黒色のインジケータを移動させることによって、画像を上下左右にシフトさせることができる。
図11(a)は、セル配列入力フィールド1001にて、セル数100×100を入力し、第1アライメント位置入力フィールド1002aにて、セルの第1の位置(1,1)を入力した場合を示す。セルの第1の位置(1,1)が画像表示領域1101の左上に配置され、そこにカーソル1111が表示されている。図11(b)は、第2アライメント位置入力フィールド1002bにて、セルの第2の位置(1,30)を入力した場合を示す。セルの第2の位置(1,30)が画像表示領域1101の右上に配置され、そこにカーソル1111が配置されている。図11(c)は、第3アライメント位置入力フィールド1002cにて、セルの第3の位置(30,30)を入力した場合を示す。セルの第3の位置(30,30)は目的セルの位置である。目的セルが画像表示領域1101の右下に配置され、そこにカーソル1111が配置されている。
こうして、本例では、セルの左上端を第1の位置、それより右側に目的セルのX座標だけ移動した位置を第2の位置、それより下方に目的セルのY座標だけ移動した位置を第3の位置とすることにより、第3の位置が目的セルの位置となる。画像生成及び加工部30は仮想的なセル配列上にて、目的のセルを特定する。
図11(d)は、目的のセルの位置(30,30)に、丸印のマークパターン1112が表示された状態を示す。これは、目的セル座標入力フィールド1005に目的セルの位置(30,30)を入力した場合である。仮想的なセル配列上にて、目的セルの位置(30,30)にマークパターン1112を表示する。
マークボタン1007を押すと、目的セルの周囲にマーカ1113が生成される。マーカ1113の加工は、上述のように集束イオンビームの局所照射によるスパッタリング現象を利用した除去加工であってよい。
本例では、図10の画面1000にて、目的セルの座標を指定したが、欠陥検査装置からファイルビットマップ等の情報を取得し、その中から目的セルの座標を抽出して運用することも可能である。
図12は本発明の荷電粒子ビーム装置の第3の例を示す図である。本例の荷電粒子ビーム装置は、集束電子ビーム120を生成しそれを試料111に照射するSEMカラム11を有する。図1及び図9に示した第1および第2の例と比較して、本例では、荷電粒子ビームとして電子ビームを用いる点が異なる。電子ビームの場合、長時間照射しても、試料の表面にダメージを与えることはない。電子ビームによって試料表面にマーク加工を行う場合には、真空度が比較的低い雰囲気中にて、局所領域に長時間電子ビーム照射を行い、コンタミネーションを付着させてもよい。しかしながら、本例では、デポジションガス源113からタングステンヘキサカルボニルガスを供給して試料表面に保護膜を形成し、この保護膜に集束電子ビームを照射させてマークを形成した。ガス源の制御は制御装置内のデポ制御手段から行った。
図13は本発明の荷電粒子ビーム装置の第4の例を示す図である。本例の荷電粒子ビーム装置は、集束イオンビームを生成しそれを試料111に照射するFIBカラム10と電子ビームを生成しそれを試料111に照射するSEMカラム11を有する。本例では、集束イオンビームと電子ビームの一方又は双方を用いる。
図14を参照して、本発明の荷電粒子ビーム装置の第4の例を用いて、所定の位置のセルを特定し、そのセルのサンプリングを行う方法を説明する。ステップS101にて、走査電子顕微鏡(SEM画像)を用いてセルカウントを行い、目的セルの特定を行う。ステップS101の処理は、図1及び図9に示した第1および第2の例と同様である。ステップS102にて、デポジションガス源からガスを供給しながら試料111上に電子ビームを照射し、目的セル上に保護膜を形成する。本例では、この保護膜が目的セルを特定するマーカの機能を有する。ステップS103にて、集束イオンビームを用いて、マイクロサンプリング法によって目的セルを含む微小試料片を摘出する。試料111を試料室から取り出し、キャリア116を試料室に導入し、ビーム光軸上に配置する。このキャリア116上にデポジション膜で試料片を固定する。ステップS104にて、キャリア116に接着された微小試料片を集束イオンビームによって薄膜加工する。この薄膜断片を垂直に電子ビームが透過するように、キャリア116を傾斜させる。ステップS105にて、薄膜断片に電子ビームを走査させ、透過した電子ビームをSTEM検出器117によって検出する。STEM検出器117の出力より、試料片の透過走査電子顕微鏡(Scanning Transmission Electron Microscope:STEM)像を取得する。このSTEM画像から、メモリーセル内の欠陥情報が得られる。
本例の荷電粒子ビーム装置には、通常SEMで用いられる大型試料対応ステージと、通常TEMで用いられるサイドエントリーステージが併設されている。また、STEM検出器は大型試料対応ステージ内に設けた。本例によれば、電子ビームを利用することにより試料へのダメージが少ないセルカウントが可能であり、目的セルの上部に保護膜が形成できる。これは、欠陥が試料表面近傍にある場合に有効である。また、FIBカラム10、デポジションガス源113、マニピュレータ115、STEM検出器117を併設しているため、マイクロサンプリングを同一試料室内で実施することができる。それにより、薄膜化後に高い空間分解能でSTEM観察が可能となる。従って、欠陥の場所探しから高分解能観察までを試料を大気に曝すことなく迅速に行うことが可能である。
本例では、FIBカラム10、デポジションガス源113、マニピュレータ115を用いることで、マイクロサンプリングが可能である。しかしながら、上述の荷電粒子ビーム装置の第1および第2の例の場合も、マニピュレータ115を用いて、特定したセルを含む微小領域をサンプリングできることは自明である。この場合、欠陥の場所探しからサンプリングまでを一台の装置で迅速に行える利点がある。
図15は本発明の荷電粒子ビーム装置の第5の例を示す。本例は、図13の第4の例の荷電粒子ビーム装置にCADナビゲーションを行うCADナビゲーションシステム700を接続したものである。CADナビゲーションシステム700はCAD情報を格納したCAD情報データベース701及びデバイス欠陥座標情報を格納したデバイス欠陥座標情報データベース702に接続されている。デバイス欠陥座標情報はフェイルビットマップ等の欠陥座標情報である。CADナビゲーションの一般的な活用手法は下記のようなものである。
(1)荷電粒子ビーム装置に試料を導入する。
(2)試料ステージを移動させて、試料の特徴点(通常離れたところにある3点)とCADレイアウト情報をアライメントする。
(3)CADレイアウト上で目的個所(例えば特定セル)を指定する。
(4)指定した場所に試料ステージを移動させ、目的個所を特定する。
この手法によると、試料ステージを移動させる必要がある。従って、試料ステージの機械的な位置決め精度によって目的個所の指定精度が決まる。試料パターンに特徴があり、CADレイアウトパターンを重畳させる時に微調整が行える場合はステージの移動誤差分はある程度目視で補正が可能であるが、メモリーセル等の繰り返しパターンではこの種の補正が困難である。従って、メモリーセルの特定を行うには非常に高い位置精度を有する試料ステージの採用が必須と考えられてきた。
本例では、図9に示した本発明の第2の例のアライメント法をCADナビゲーションシステムに適用した。即ち、CADレイアウト情報とビーム偏向領域内の試料画像とを、ディジタルズームアップ及びシフト機能を用いてアライメントする。こうして、試料ステージを移動すること無しにビーム偏向領域内の詳細なCADナビゲーションを可能とした。
図16を参照して本例の方法を説明する。図16は表示装置の画面の例を示す。この画面1500は、画像表示領域1501、縦スライドバー1502、横スライドバー1503を有する。画像表示領域1501は試料の像を512×512画素の画像として表示する。図16(a)の画像表示領域1501には、アライメント前のCADレイアウトパターンと試料画像が表示されている。アライメント前では、実線のCADレイアウトパターンと破線の試料画像はずれている。図16(b)の画像表示領域1501には、アライメント後のCADレイアウトパターンと試料画像が表示されている。アライメント後では、CADレイアウトパターンと試料画像は整合して配置されている。即ち、CADレイアウトパターンは試料画像の上に整合して重畳されている。アライメント後は、CADレイアウトパターンと試料画像は互いに重なった状態で移動する。CADナビゲーションシステムはデバイス欠陥座標データベース703から欠陥のメモリーセル座標を抽出し、欠陥のマークパターン5111をCADレイアウトパターン上に表示する。従って、目的セル(この場合欠陥セル)の特定を、高精度にて実施することができる。本例ではセルの特定について説明したが、CADナビゲーションシステムを利用する手法はセルのみならず、一般的な目的個所の探索が可能であることは自明である。
本発明によれば、特に半導体の不良解析に有効であるセルカウントが高精度で迅速に行える。カウント中にステージ移動という機械的な動きが不要であり、高い位置精度が確保でき、高いカウント精度が確保できる。高いステージ移動精度が必要無いため、機能が安価に実現できる利点がある。
以上、本発明の例を説明したが、本発明は上述の例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者に理解されよう。
本発明の荷電粒子ビーム装置の第1の例を示す図である。 本発明の集束イオンビーム装置のFIBカラムの詳細図である。 本発明の集束イオンビーム装置の制御装置の構成図である。 本発明の集束イオンビーム装置の第1の例における制御装置の偏向制御系及び画像生成系の一部を説明する図である。 本発明の集束イオンビーム装置の第1の例における表示装置の入力画面の例を示す図である。 本発明の集束イオンビーム装置の第1の例におけるセルの特定及びマーカ加工の方法を説明するための図である。 本発明の集束イオンビーム装置の第1の例におけるセルの特定及びマーカ加工の方法を説明するための図である。 本発明の集束イオンビーム装置の第1の例におけるセルの特定及びマーカ加工の方法を説明するための図である。 本発明の荷電粒子ビーム装置の第2の例を示す図である。 本発明の集束イオンビーム装置の第1の例における表示装置の入力画面の例を示す図である。 本発明の集束イオンビーム装置の第2の例におけるセルの特定及びマーカ加工の方法を説明するための図である。 本発明の荷電粒子ビーム装置の第3の例を示す図である。 本発明の荷電粒子ビーム装置の第4の例を示す図である。 本発明の荷電粒子ビーム装置の第4の例における処理の流れを示す図である。 本発明の荷電粒子ビーム装置の第5の例を示す図である。 本発明の荷電粒子ビーム装置の第5の例におけるCADナビゲーション処理の流れを示す図である。
符号の説明
10…FIBカラム、11…SEMカラム、20…制御装置、30…画像生成及び加工部、41…入力装置、42…表示装置、100…エミッタ、101…引出し電極、102…コンデンサレンズ、103…可変アパーチャ、104…アライナ・スティブマ、105…ブランカ、106…ブランキングアパーチャ、107…ファラデーカップ、108…デフレクタ、109…対物レンズ、110…試料ステージ、111…試料、112…検出器、113…ガス源、115…マニピュレータ、116…キャリア、117…STEM検出器、120…イオンビーム、200…FIBカラム、201…コンピュータ、202…制御バス、203…高圧電源、204…絞り制御電源、205…アライナ・スティブマ制御電源、206…ビーム電流計測アンプ、207…ブランキング制御電源、208…偏向アンプ、209…プリアンプ、210…ステージ制御電源、211…スキャナ、212…画像メモリー、213…排気制御電源、214…ガス制御電源、215…マニピュレータ制御電源、600…SEMカラム、700…CADナビゲーションシステム、701…CAD情報データベース、702…デバイス欠陥座標情報データベース

Claims (20)

  1. 試料に荷電粒子ビームを照射する照射系と、上記荷電粒子ビームを偏向する偏向制御系と、上記試料からの二次粒子信号を検出する検出器と、該検出器からの信号より上記試料の走査イオン顕微鏡画像を生成する画像生成部と、該画像生成部によって生成された画像を表示する表示装置と、ユーザからの指示を入力する入力装置とを有し、
    上記偏向制御系は上記表示装置による表示分解能より大きいビーム偏向点分解能を有し、上記画像生成部は、上記試料が繰り返しセルを有するとき、上記入力装置を介して入力された、スケールの方向、該スケールのセルの寸法、及び、一度に生成する該スケールのセルの数の指定に基づいて、該繰り返しセルに対応したスケールパターンを生成し、該スケールパターンを上記試料の繰り返しセルの画像に重畳させ、上記試料の繰り返しセルの画像が、前記入力装置を介して入力されたズーム率の指定に基づいて拡大表示されたとき、上記スケールパターンの先端が表示画面の端に表示されるように表示画面をシフトさせることにより、上記入力装置より入力された目的セルを特定することを特徴とする荷電粒子ビーム装置。
  2. 請求項1記載の荷電粒子ビーム装置において、上記画像生成部は、上記入力装置より入力された目的セルに到達するまで、上記スケールパターンを上記試料の繰り返しセルの開始点から横方向と縦方向に延長させることを特徴とする荷電粒子ビーム装置。
  3. 請求項1記載の荷電粒子ビーム装置において、上記画像生成部は、上記入力装置より入力された目的セルの位置が特定されたとき、該特定された位置にマークパターンを重畳して表示することを特徴とする荷電粒子ビーム装置。
  4. 請求項1記載の荷電粒子ビーム装置において、上記画像生成部によって、上記入力装置より入力された目的セルの位置が特定されたとき、該特定された位置にて試料上にマーカを加工することを特徴とする荷電粒子ビーム装置。
  5. 請求項1記載の荷電粒子ビーム装置において、上記画像生成部は、上記偏向制御系のビーム偏向機能によるズームとソフトウエアによるズームを組み合わせてズーム画像を生成することを特徴とする荷電粒子ビーム装置。
  6. 請求項1記載の荷電粒子ビーム装置において、上記画像生成部は、試料ステージを移動させることなく、ソフトウエアによって画像シフトを行うことを特徴とする荷電粒子ビーム装置。
  7. 請求項4記載の荷電粒子ビーム装置において、上記照射系は試料に集束イオンビームを照射する集束イオンビーム照射系であり、マーカの加工は、集束イオンビームを用いたスパッタエッチング、ガスアシストアシストエッチング、ガスアシストデポジションのいずれかによって行われることを特徴とする荷電粒子ビーム装置。
  8. 試料に荷電粒子ビームを照射する照射系と、上記荷電粒子ビームを偏向する偏向制御系と、上記試料からの二次粒子信号を検出する検出器と、該検出器からの信号より上記試料の画像を生成する画像生成部と、該画像生成部によって生成された画像を表示する表示装置と、ユーザからの指示を入力する入力装置とを有し、
    上記偏向制御系は上記表示装置による表示分解能より大きいビーム偏向点分解能を有し、上記画像生成部は、上記試料が繰り返しセルを有するとき、上記試料の繰り返しセルの画像が、前記入力装置を介して入力されたズーム率の指定に基づいて拡大表示されたとき、上記入力装置より入力された上記試料の繰り返しセルの縦と横の配列数と目的セルの座標から、目的セルを特定し、該目的セルを上記表示装置の画像表示領域の右下に配置させ、該目的セルにカーソルまたはマークパターンを配置することを特徴とする荷電粒子ビーム装置。
  9. 請求項8記載の荷電粒子ビーム装置において、上記画像生成部によって、上記入力装置より入力された目的セルが特定されたとき、該特定された目的セル上にマーカを加工することを特徴とする荷電粒子ビーム装置。
  10. 請求項8記載の荷電粒子ビーム装置において、上記照射系は試料に集束イオンビームを照射する集束イオンビーム照射系であることを特徴とする荷電粒子ビーム装置。
  11. 請求項9記載の荷電粒子ビーム装置において、マーカの加工は、集束イオンビームを用いたスパッタエッチング、ガスアシストッチング、ガスアシストデポジションのいずれかによって行われることを特徴とする荷電粒子ビーム装置。
  12. 請求項8記載の荷電粒子ビーム装置において、上記照射系は試料に集束電子ビームを照射する集束電子ビーム照射系であることを特徴とする荷電粒子ビーム装置。
  13. 請求項9記載の荷電粒子ビーム装置において、マーカの加工は、集束電子ビームを用いたガスアシストデポジションによって行われることを特徴とする荷電粒子ビーム装置。
  14. 請求項8記載の荷電粒子ビーム装置において、上記照射系は試料に集束イオンビームを照射する集束イオンビーム照射系と試料に走査電子ビームを照射する走査電子ビーム照射系を有することを特徴とする荷電粒子ビーム装置。
  15. 請求項8記載の荷電粒子ビーム装置において、更にCADナビゲーションを行うCADナビゲーションシステム、CAD情報を格納したCAD情報データベース及びデバイス欠陥座標情報を格納したデバイス欠陥座標情報データベースを有し、CADレイアウトパターンを試料画像に整合して表示し、欠陥を表わすマークパターンをCADレイアウトパターンの欠陥の位置に重畳して表示することを特徴とする荷電粒子ビーム装置。
  16. 請求項8記載の荷電粒子ビーム装置において、上記画像生成部は、上記偏向制御系のビーム偏向機能によるズームとソフトウエアによるズームを組み合わせてズーム画像を生成することを特徴とする荷電粒子ビーム装置。
  17. 請求項8記載の荷電粒子ビーム装置において、上記画像生成部は、試料ステージを移動させることなく、ソフトウエアによって画像シフトを行うことを特徴とする荷電粒子ビーム装置。
  18. 試料に荷電粒子ビームを照射することと、上記荷電粒子ビームを偏向させることと、上記試料からの二次粒子信号を検出することと、該二次粒子信号より上記試料の走査イオン顕微鏡画像を生成することと、上記試料が繰り返しセルを有するとき、スケールの方向、該スケールのセルの寸法、及び、一度に生成する該スケールのセルの数の指定を入力することと、該指示に基づいて、該繰り返しセルに対応したスケールパターンを生成することと、該スケールパターンを上記試料の繰り返しセルの走査イオン顕微鏡画像に重畳させることと、上記試料の繰り返しセルの走査イオン顕微鏡画像が拡大表示されたとき、上記スケールパターンの先端が表示画面の端に表示されるように表示画面をシフトさせることにより、目的セルを特定すること、を含む荷電粒子ビーム装置を用いて特定のセルを検出する方法。
  19. 試料に荷電粒子ビームを照射することと、上記荷電粒子ビームを偏向させることと、上記試料からの二次粒子信号を検出することと、該二次粒子信号より上記試料の走査イオン顕微鏡画像を生成することと、上記試料が繰り返しセルを有するとき、上記試料の繰り返しセルの画像が、前記入力装置を介して入力されたズーム率の指定に基づいて拡大表示されたとき、該試料の繰り返しセルの少なくとも3つの端の位置に基づいて上記試料の繰り返しセルの配列を求めることと、該セルの配列から目的セルの位置を特定することと、を含む荷電粒子ビーム装置を用いて特定のセルを検出する方法。
  20. 請求項18〜19のいずれか1項記載の特定のセルを検出する方法をコンピュータに実行させるためにコンピュータによって読み取り可能なプログラム。
JP2005284733A 2005-09-29 2005-09-29 荷電粒子ビーム装置 Active JP4571053B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005284733A JP4571053B2 (ja) 2005-09-29 2005-09-29 荷電粒子ビーム装置
US11/527,522 US7442928B2 (en) 2005-09-29 2006-09-27 Charged particle beam apparatus
US12/245,044 US7902505B2 (en) 2005-09-29 2008-10-03 Charged particle beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005284733A JP4571053B2 (ja) 2005-09-29 2005-09-29 荷電粒子ビーム装置

Publications (2)

Publication Number Publication Date
JP2007093458A JP2007093458A (ja) 2007-04-12
JP4571053B2 true JP4571053B2 (ja) 2010-10-27

Family

ID=37892731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284733A Active JP4571053B2 (ja) 2005-09-29 2005-09-29 荷電粒子ビーム装置

Country Status (2)

Country Link
US (2) US7442928B2 (ja)
JP (1) JP4571053B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040121069A1 (en) * 2002-08-08 2004-06-24 Ferranti David C. Repairing defects on photomasks using a charged particle beam and topographical data from a scanning probe microscope
JP4993849B2 (ja) * 2004-05-31 2012-08-08 株式会社日立ハイテクノロジーズ 不良検査装置及び荷電粒子線装置
DE102006034996A1 (de) * 2006-07-28 2008-01-31 Carl Zeiss Imaging Solutions Gmbh Mikroskopbildverarbeitungsverfahren, Computer, Computerprogramm und Datenträger
JP4871788B2 (ja) * 2007-05-18 2012-02-08 株式会社日立ハイテクノロジーズ 微細試料の加工方法,観察方法及び装置
JP5063320B2 (ja) * 2007-12-11 2012-10-31 株式会社ニューフレアテクノロジー 描画装置及び描画データの変換方法
JP5202136B2 (ja) * 2008-07-02 2013-06-05 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US8059918B2 (en) * 2008-10-12 2011-11-15 Fei Company High accuracy beam placement for local area navigation
US8781219B2 (en) 2008-10-12 2014-07-15 Fei Company High accuracy beam placement for local area navigation
US8537181B2 (en) * 2009-03-09 2013-09-17 Ventana Medical Systems, Inc. Modes and interfaces for observation, and manipulation of digital images on computer screen in support of pathologist's workflow
EP2492950B1 (en) 2011-02-25 2018-04-11 FEI Company Method for rapid switching between a high current mode and a low current mode in a charged particle beam system
JP6108684B2 (ja) * 2011-06-08 2017-04-05 エフ・イ−・アイ・カンパニー 局所領域ナビゲーション用の高精度ビーム配置
DE102014220122B9 (de) * 2014-10-03 2019-11-21 Carl Zeiss Microscopy Gmbh Verfahren zum Messen eines Abstands eines Bauteils zu einem Objekt sowie zum Einstellen einer Position eines Bauteils in einem Teilchenstrahlgerät, Computerprogrammprodukt, Teilchenstrahlgerät sowie Gaszuführungseinrichtung
CN104409308B (zh) * 2014-11-26 2016-09-28 中国科学技术大学 一种微调刻蚀深度空间分布的方法和系统
KR102357634B1 (ko) * 2015-05-28 2022-01-28 케이엘에이 코포레이션 생산 라인 모니터링 시스템 및 방법
US10056224B2 (en) * 2015-08-10 2018-08-21 Kla-Tencor Corporation Method and system for edge-of-wafer inspection and review
US9576772B1 (en) * 2015-08-31 2017-02-21 Fei Company CAD-assisted TEM prep recipe creation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214427A (ja) * 1985-07-11 1987-01-23 Nec Corp Lsi設計用図形入力編集装置
JP2000031233A (ja) * 1998-07-15 2000-01-28 Hitachi Ltd 欠陥位置を呼び出す方法およびそれを適用した装置
JP2004170395A (ja) * 2002-11-06 2004-06-17 Hitachi High-Technologies Corp 荷電粒子線装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536128A (ja) * 1990-12-20 1993-02-12 Hitachi Ltd 高密度情報記録媒体及びそれを用いた記録装置
US5401972A (en) * 1993-09-02 1995-03-28 Schlumberger Technologies, Inc. Layout overlay for FIB operations
US7081625B2 (en) 2002-11-06 2006-07-25 Hitachi High-Technologies Corporation Charged particle beam apparatus
US20060171593A1 (en) * 2005-02-01 2006-08-03 Hitachi High-Technologies Corporation Inspection apparatus for inspecting patterns of a substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214427A (ja) * 1985-07-11 1987-01-23 Nec Corp Lsi設計用図形入力編集装置
JP2000031233A (ja) * 1998-07-15 2000-01-28 Hitachi Ltd 欠陥位置を呼び出す方法およびそれを適用した装置
JP2004170395A (ja) * 2002-11-06 2004-06-17 Hitachi High-Technologies Corp 荷電粒子線装置

Also Published As

Publication number Publication date
US7442928B2 (en) 2008-10-28
US20090039260A1 (en) 2009-02-12
JP2007093458A (ja) 2007-04-12
US20070069158A1 (en) 2007-03-29
US7902505B2 (en) 2011-03-08

Similar Documents

Publication Publication Date Title
JP4571053B2 (ja) 荷電粒子ビーム装置
JP4895569B2 (ja) 帯電制御装置及び帯電制御装置を備えた計測装置
JP3996774B2 (ja) パターン欠陥検査方法及びパターン欠陥検査装置
KR102579329B1 (ko) Cad 지원 tem 샘플 제작 레시피 생성
US7935925B2 (en) Charged particle beam scanning method and charged particle beam apparatus
US9087366B2 (en) High accuracy beam placement for local area navigation
JPH07201300A (ja) Fib操作用レイアウトオーバーレイ
US9046344B2 (en) Multiple image metrology
US10732512B2 (en) Image processor, method for generating pattern using self-organizing lithographic techniques and computer program
JPH09304023A (ja) 試料の寸法測定装置
US20060249692A1 (en) Composite charged particle beam apparatus and an irradiation alignment method in it
US7595488B2 (en) Method and apparatus for specifying working position on a sample and method of working the sample
CN102820238B (zh) 用于局部区域导航的高精确度射束放置
US11728127B2 (en) Charged particle beam device
CN108573844A (zh) 聚焦离子束装置的控制方法以及控制程序
US20110291009A1 (en) Semiconductor inspection method and device that consider the effects of electron beams
JP2006125909A (ja) 不良検査装置
JP2003229462A (ja) 回路パターンの検査装置
JP4695959B2 (ja) 集束イオンビーム装置及び集束イオンビーム装置の加工位置設定方法
JP3950891B2 (ja) パターン欠陥検査方法及びパターン欠陥検査装置
JP6207893B2 (ja) 試料観察装置用のテンプレート作成装置
JP2007179929A (ja) 荷電粒子線装置及び試料像表示方法
JP2000251824A (ja) 電子ビーム装置及びそのステージ移動位置合せ方法
JP2005129546A (ja) パターン欠陥検査方法及びパターン欠陥検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350