JP4565812B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4565812B2
JP4565812B2 JP2003123608A JP2003123608A JP4565812B2 JP 4565812 B2 JP4565812 B2 JP 4565812B2 JP 2003123608 A JP2003123608 A JP 2003123608A JP 2003123608 A JP2003123608 A JP 2003123608A JP 4565812 B2 JP4565812 B2 JP 4565812B2
Authority
JP
Japan
Prior art keywords
electrode group
separator
battery
electrode
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003123608A
Other languages
Japanese (ja)
Other versions
JP2004327362A (en
Inventor
健太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003123608A priority Critical patent/JP4565812B2/en
Publication of JP2004327362A publication Critical patent/JP2004327362A/en
Application granted granted Critical
Publication of JP4565812B2 publication Critical patent/JP4565812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は正極合剤が正極集電体に塗布された帯状正極と、負極合剤が負極集電体に塗布された帯状負極が帯状セパレータを介して相対向して渦巻状に巻回された渦巻状電極群とゲル状非水電解質を外装体内に備えた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、携帯電話、ノートパソコン、小型ビデオカメラ等の携帯用電子・通信機器等に用いられる電池として、リチウムイオンの吸蔵・放出が可能な正極活物質(例えば、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物)と、リチウムイオンの吸蔵・放出が可能な負極活物質(例えば、黒鉛、炭素等)とを備えた非水電解質二次電池が、小型軽量でかつ高容量な電池として広く使用されるようになった。
【0003】
この種の非水電解質二次電池は以下のようにして作製されるのが一般的である。即ち、まず、正極集電体に正極活物質を含有する正極合剤を塗布して帯状正極を作製するとともに、負極集電体に負極活物質を含有する負極合剤を塗布して帯状負極を作製する。この後、得られた帯状正極と帯状負極を帯状セパレータを介して相対向させて積層した後、これらを渦巻状に巻回して横断面形状が真円形状の渦巻状電極群とする。ついで、これを円筒状外装缶に収容したり、あるいは真円形状の渦巻状電極群を加圧成形して横断面形状が扁平な楕円形状とし、これを角筒状外装缶あるいはフィルム状外装体に収容して、非水電解液を注液して非水電解質二次電池としている。
【0004】
ところで、正極と負極との間を隔離するセパレータの機能としては、基本的には、正極と負極の直接短絡を防止する短絡防止機能を有するとともに、その微多孔構造によりイオンを透過させて電池反応が可能となるようなイオン透過機能を有することが必要条件となる。しかしながら、この種の非水電解質二次電池に用いられるセパレータとしては、安全性向上の観点からシャットダウン機能(SD機能)を有するものが採用されるようになってきている。このSD機能とは、誤接続などにより異常電流が発生した場合に、電池内部温度の上昇に伴ってセパレータ材料の合成樹脂が溶融変形して微多孔を塞ぎ、電池反応を停止させる機能を有することを意味する。
【0005】
ところが、電池の異常発熱時においては、セパレータの収縮に起因する内部短絡が発生して安全性が低下する恐れを生じた。このため、セパレータの収縮を抑制するために、高分子量のポリエチレンを用いたり、あるいはポリプロピレンを混合する手段が講じられるようになった。しかしながら、シャットダウン温度が上昇して電流遮断機能が作動しにくくなるという問題を生じた。また、幅方向に一軸延伸したセパレータを用いると、幅方向の収縮を抑えることができるが、延伸方向に裂けやすいという問題を生じた。
【0006】
そこで、渦巻状電極群の最外周の上部に短絡防止テープを貼着することにより、セパレータが熱収縮しても電極と外装缶とが接触する内部短絡を防止するようにした電池が特許文献1(特開2000−251866号公報)にて提案されるようになった。しかしながら、この特許文献1にて提案された電池においては、渦巻状電極群の内周部に配置されたセパレータの収縮は防止することができないため、収縮したセパレータに対向する両電極が電極群の上部あるいは下部で短絡するという問題を生じた。
【0007】
このため、特許文献2(特開2003−22794号公報)にて、高温時のセパレータの収縮による内部短絡を防止するために、セパレータの上下端を溶着することが提案されるようになった。これによれば、リード部付近のセパレータを溶着したり、電池が高温に曝されたときにセパレータ同士を溶着させて電極を包み込むような構造としている。この結果、高温時のセパレータの収縮による内部短絡を防止することが可能となる。
【特許文献1】
特開2000−251866号公報
【特許文献2】
特開2003−22794号公報
【0008】
【発明が解決しようとする課題】
ところが、上述した特開2003−22794号公報にて提案された非水電解質二次電池においては、非水電解質として液状の電解質(電解液)を用いるようにしている。このため、電池温度が上昇してセパレータの熱収縮が起こり始めると、渦巻状電極群上下の溶着部間のテンションが大きくなり、電極群内部のセパレータに皺が発生するようになる。この結果、僅かな刺激で破膜したり、裂けが生じるようになって、破膜や裂けが生じた部分で短絡が発生するという問題を生じた。
【0009】
また、上述した特開2003−22794号公報で提案されるように、セパレータ同士を熱溶着させる方法においては、電極から発生するガスなどの影響により僅かでも電極群が変形すると、実質的な溶着効果が得られなくなるという問題を生じた。また、電極を包み込むような形で均一に溶着させることは不可能に近いことが明らかになった。
【0010】
さらに、この種の非水電解質二次電池の高エネルギー密度化の要求に対して、ラミネートフィルムを外装材に用いたラミネート型電池の開発が近年においては進められるようになった。ところが、このようなラミネート型電池においては、アルミニウムなどの金属製外装缶を用いた場合よりも押圧力が極めて小さくなるため、電極群の変形が起こりやすいという問題を生じた。特に、電池が高温に曝された場合においては、多量のガスが発生するため、電極群の変形・歪みは金属製外装缶を用いた場合よりも著しいこととなる。このため、上述のように電極群を構成しても内部短絡に対しては、殆ど効果が得られないという問題を生じた。
【0011】
そこで、本発明は上記問題点を解消するためになされたものであって、電池が異常に発熱してセパレータが収縮しても、電極群の上下端部での内部短絡の発生を抑制して、電池が破裂、発火に至らないように安全性が向上した非水電解質二次電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明の非水電解質二次電池は、帯状正極と帯状負極が帯状セパレータを介して相対向して渦巻状に巻回された扁平状電極群とゲル状非水電解質を外装体内に備えるとともに、帯状セパレータは扁平状電極群の各電極より上下方向に突出して配設されており、突出した部分の少なくとも一方の一部はセパレータ同士が溶着あるいは接着により一体的に接合されているとともに、接合部分の幅寸法は扁平状電極群の幅寸法の5%以上で、95%以下であることを特徴とする。
【0013】
このように、外装体内にゲル状非水電解質を備え、かつ扁平状電極群の各電極より上下方向に突出してセパレータが配設されているとともに、突出した部分の少なくとも一方の一部はセパレータ同士が溶着あるいは接着により一体的に接合されていると、高温放置してセパレータの熱収縮が起こり始めても、ゲル状電解質の接着力により、セパレータと各電極との密着性が向上することとなる。このため、セパレータの熱収縮が抑制され、内部短絡が発生するのを減少させることが可能となる。この場合、扁平状電極群の幅方向の中央部近傍は両端部近傍よりも構成圧が低いため、セパレータの収縮が起こりやすくなる。このため、接合部は扁平状電極群の幅方向の中央部近傍に形成するのが望ましい。
【0014】
なお、接合部の幅寸法が短かすぎると、内部短絡を防止する効果が不十分であり、接合部の幅寸法が長すぎると、発生したガスが電極群内に滞留するようになって、電極群の変形・歪みが大きくなって、逆に内部短絡が発生するようになる。このため、ゲル状電解質が充填された場合、セパレータの上部あるいは下部もしくは上下部の一部に形成する接合部の幅寸法は、扁平状電極群の幅寸法に対して5%以上で、95%以下にするのが望ましい。
【0015】
【発明の実施の形態】
ついで、本発明の実施の形態を以下の図1及び図2に基づいて説明するが、本発明はこの実施の形態に何ら限定されるものではなく、本発明の目的を変更しない範囲で適宜変更して実施することが可能である。なお、図1は本発明の非水電解液二次電池に用いられる電極群を模式的に示す図であり、図1(a)は上面図であり、図1(b)は正面図であり、図1(c)は下面図である。図2は本発明の非水電解液二次電池を模式的に示す図であり、図2(a)は斜視図であり、図2(b)は図2(a)のA−A断面を示す断面図である。
【0016】
1.正極の作製
正極活物質としてのコバルト酸リチウム(LiCoO2)粉末と、導電剤としてのアセチレンブラックあるいはグラファイトなどの炭素系粉末(例えば、5質量%)を混合して正極合剤を調製した。この正極合剤と、ポリフッ化ビニリデン(PVdF)からなる結着剤(例えば、3質量%)をN−メチル−2−ピロリドン(NMP)からなる有機溶剤に溶解した結着剤溶液とを混練して、正極活物質スラリーあるいは正極活物質ペーストを調製した。
【0017】
ついで、アルミニウム箔(例えば、厚みが15μmで、幅が54.0mmのもの)からなる正極集電体を用意し、上述のように作製した正極活物質スラリーあるいは正極活物質ペーストを正極集電体の両面に均一に塗布して、正極合剤層を形成した。ここで、スラリーの場合はダイコータあるいはドクターブレードを用いて塗布し、ペーストの場合はローラコーティング法により塗布した。この後、乾燥機中を通過させて、スラリーあるいはペースト作製時に必要であった有機溶剤(NMP)を除去して乾燥させた。乾燥後、ロールプレス機により厚みが0.17mmになるまで圧延し、所定の形状に切断して帯状正極11を作製した。なお、帯状正極11においては、巻回時に最外周に配置される部分には正極スラリーを塗布せず、アルミニウム製集電タブを超音波溶着して正極リード11aを形成している。
【0018】
なお、正極活物質としては上述したLiCoO2以外に、LixMO2(但し、MはCo,Ni,Mnの少なくとも1種で、0.45≦x≦1.20)で表されるリチウム遷移金属複合酸化物、例えば、LiNiO2,LiNiyCo1-y2(但し、0.01≦y≦0.99),Li0.5MnO2,LiMnO2などの1種単独、もしくは複数種を混合して用いるようにしてもよい。
【0019】
2.負極の作製
負極活物質としての天然黒鉛粉末と、ポリフッ化ビニリデン(PVdF)からなる結着剤(例えば、3質量%)をN−メチル−2−ピロリドン(NMP)からなる有機溶剤に溶解した結着剤溶液とを混練して、負極活物質スラリーあるいは負極活物質ペーストを調製した。ついで、銅箔(例えば、厚みが12μmで、幅が56.0mmのもの)からなる負極集電体を用意し、上述のように作製した負極活物質スラリーあるいは負極活物質ペーストを負極集電体の両面に均一に塗布して、負極合剤層を形成した。
【0020】
ここで、スラリーの場合はダイコータあるいはドクターブレードを用いて塗布し、ペーストの場合はローラコーティング法により塗布した。この後、乾燥機中を通過させて、スラリーあるいはペースト作製時に必要であった有機溶剤(NMP)を除去して乾燥させた。乾燥後、ロールプレス機により厚みが0.14mmになるまで圧延し、所定の形状に切断して帯状負極12を作製した。なお、帯状負極12においては、巻回時に最外周に配置される部分には負極スラリーを塗布せず、ニッケル製集電タブを超音波溶着して負極リード12aを形成している。
【0021】
なお、負極活物質としては上述した天然黒鉛以外に、リチウムイオンを吸蔵・脱離し得るカーボン系材料、例えば、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体等を用いてもよいし、金属リチウム、リチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金、SnO2、SnO、TiO2、Nb23等の電位が正極活物質に比べて卑な金属酸化物を用いてもよい。
【0022】
3.電極群の作製
ついで、上述のようにして作製した帯状正極11と帯状負極12とを用意し、これらの間にポリエチレン製微多孔膜(厚みが0.025mmで、幅が59.0mmのもの)からなる帯状セパレータ13を介在させ、かつ、これらの幅方向の中心線が一致するように重ね合わせた。この後、巻取機によりこれらを渦巻状に巻回した後、最外周をテープ止めして渦巻状電極群とした。ついで、これを横断面形状が扁平な楕円状になるように押しつぶして扁平状電極群10aを作製した。
【0023】
ここで、帯状セパレータ13の幅方向(図1(b)においては高さ方向となる)の端部は、負極12の上端部よりも1.5mmだけ上方に突出した上突出部13aが形成され、下端部よりも1.5mmだけ下方に突出した下突出部13bが形成されることとなる。ついで、この上突出部13aの幅方向中央部のx部分(扁平状電極群10aの幅Xに対して60%の部分)を互いに熱溶着して一体的に接合するとともに、下突出部13bの幅方向中央部のy部分(扁平状電極群10aの幅Xに対して60%の部分)を互いに熱溶着して一体的に接合して、電極群aとした。また、突出部13a,13bを熱溶着しなくてそのままのものを電極群xとした。なお、熱溶着により一体化する代わりに、電池反応に悪影響を及ぼさない接着剤(例えば、エポキシ系接着剤、アクリル系接着剤など)を用いて一体的に接合するようにしてよい。
【0024】
4.非水電解液二次電池の作製
まず、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を3:7の容積比で混合した混合溶媒に、電解質としてLiPF6を1モル/リットルの割合で溶解させて非水電解液を調製し、これを電解液e1とした。また、このように調製した電解液e1に、熱重合性モノマー材料としてのテトラエチレングリコールジアクリレート3.0質量%とトリメチロールプロパントリアクリレート1.0質量%を添加するとともに、重合開始剤としてのt−ヘキシルパーオキシピバレート0.3質量%を添加してゲル用非水電解液を調製し、これを電解液e2とした。
【0025】
ついで、扁平状電極群10a(a,x)をアルミニウムラミネートフィルムからなる外装体14内に収容し、これをドライボックス内に配置した後、上述のように調製した電解液e1,e2を外装体14内に注液した。ついで、ドライボックス内を真空ポンプで吸引して、減圧の雰囲気にした。これにより、外装体14内に注液された電解液は電極群内に含浸されることとなる。この後、外装体14の開口部を仮封止して、ドライボックスから取り出した。ついで、電解液e2を用いたものにおいては、加熱装置内に配置した後、加熱装置内を60℃の温度に保持して5時間加熱した。これにより、熱重合性のモノマー材料を重合させて、電解液をゲル化により硬化させた。
【0026】
ついで、初回の充電を行って発生したガスを飛散させた後、外装体14の開口部を本封止することにより、非水電解質電池A1,X1,Y1,Y2をそれぞれ作製した。このとき、正極11から延出した正極リード11aおよび負極12から延出した負極リード12aが外装体14の上部開口部に液密に封止されるように本封止した。ここで、電極群aを用いるとともにゲル用非水電解液e2を用いたものを電池A1とした。同様に、電極群xを用いるとともにゲル用非水電解液e2を用いたものを電池X1とし、電極群aを用いるとともに非水電解液e1を用いたものを電池Y1とし、電極群xを用いるとともに非水電解液e1を用いたものを電池Y2とした。
【0027】
5.高温放置試験
ついで、これらの各電池A1,X1,Y1,Y2をそれぞれ50個ずつ用いて、室温(約25℃)で、1ItmAの放電電流で電池電圧が2.75Vになるまで放電させた。この後、室温(約25℃)で、1ItmAの充電電流で電池電圧が4.2Vになるまで定電流で充電した後、4.2Vに到達した後は電流値が30mA以下になるまで定電圧で充電を行った。ついで、このような充電状態の各電池A1,X1,Y1,Y2を5℃/分の昇温速度で150℃まで昇温させた後、150℃の温度を3時間保持させるという高温放置試験を行った。その後、これらの各電池A1,X1,Y1,Y2の電圧を測定して、試験前後の電圧差が0.5V以上(試験後の電池電圧が3.7V以下)のものを内部短絡が発生した電池と判定すると、下記の表1に示すような結果が得られた。
【0028】
【表1】

Figure 0004565812
【0029】
上記表1の結果から明らかなように、セパレータの上下に溶着部を形成しなかった電極群x1を用い、かつ電解液e1を用いた電池Y2においては、全ての電池に内部短絡が発生していたことが分かる。また、セパレータの上下に溶着部13c,13dを形成した電極群a1を用いても、電解液e1を用いた電池Y1においては、内部短絡の発生個数が多いことが分かる。これは、溶着部が未形成の電極群x1に電解液e1が充填された電池Y2を充電状態で高温放置すると、高温によりセパレータの熱収縮が発生して、電極群x1の上下端部での短絡が発生したためと考えられる。
【0030】
一方、セパレータ13の上下に溶着部13c,13dが形成された電極群a1に電解液e1が充填された電池Y1を充電状態で高温放置して、セパレータ13の熱収縮が起こり始めると、電極群上下の溶着部間でのセパレータ13のテンションが大きくなって、電極群の内部のセパレータ13に皺が発生するようになる。この結果、僅かな刺激で破膜したり、裂けが生じるようになって、破膜や裂けが生じた部分で短絡が発生したと考えられる。
【0031】
これらに対して、セパレータ13の上下に溶着部を形成しなかった電極群x1を用いても、ゲル状電解質(e2)を用いてゲル化された電池X1においては、セパレータ13の上下に溶着部13c,13dを形成した電極群a1に電解液e1が充填された電池Y1よりも内部短絡の発生個数が減少していることが分かる。さらに、セパレータ13の上下に溶着部13c,13dを形成した電極群a1を用い、かつゲル状電解質(e2)を用いた電池A1においては、内部短絡が発生していないことが分かる。
【0032】
これは、溶着部が未形成の電極群x1にゲル状電解質(e2)が充填された電池X1においては、ゲル状電解質(e2)の接着力により、セパレータ13と各電極11,12との密着性が向上し、セパレータ13の熱収縮が抑制されたからであると考えられる。しかしながら、ゲル状電解質によるセパレータ13の熱収縮の抑制だけでは、液状電解液を使用した電池Y1,Y2よりは内部短絡の発生を減少できているが、それでも十分であるとは言えない。
【0033】
一方、セパレータ13の上下に溶着部13c,13dが形成された電極群a1にゲル状電解質(e2)が充填された電池A1においては、ゲル状電解質(e2)の接着力によるセパレータ13と各電極11,12とが密着することによってセパレータの熱収縮が抑制されると共に、セパレータ13の上部13aおよび下部13bにそれぞれ溶着部13c,13dが形成されているので、高温放置しても、電極群a1上下の溶着部間でのセパレータ13のテンションが大きくなり、電極群a1の内部のセパレータ13に皺が発生することがなく、内部短絡が発生しなかったと考えられる。
【0034】
6.セパレータの溶着幅の検討
ついで、セパレータ13の溶着部13c,13dの溶着幅x,yについて検討を行った。そこで、上突出部13aに溶着部を形成することなく、下突出部13bに溶着幅yが扁平状電極群10aの幅Xに対して5%となるように溶着部13dを形成した電極群を作製し、これを電極群a2とした。また、上突出部13aに溶着幅xが扁平状電極群10aの幅Xに対して5%となるように溶着部13cを形成し、下突出部13bに溶着部を形成することなく電極群を作製し、これを電極群a3とした。また、上突出部13aに溶着幅xが扁平状電極群10aの幅Xに対して40%となるように溶着部13cを形成し、下突出部13bに溶着部を形成することなく電極群を作製し、これを電極群a4とした。
【0035】
また、上突出部13aに溶着幅xが扁平状電極群10aの幅Xに対して60%となるように溶着部13cを形成し、下突出部13bに溶着部を形成することなく電極群を作製し、これを電極群a5とした。また、上突出部13aに溶着幅xが扁平状電極群10aの幅Xに対して95%となるように溶着部13cを形成し、下突出部13bに溶着部を形成することなく電極群を作製し、これを電極群a6とした。また、上突出部13aに溶着幅xが扁平状電極群10aの幅Xに対して95%となるように溶着部13cを形成し、かつ下突出部13bに溶着幅yが扁平状電極群10aの幅Xに対して60%となるように溶着部13dを形成して電極群を作製し、これを電極群a7とした。
【0036】
さらに、上突出部13aに溶着幅xが扁平状電極群10aの幅Xに対して100%となるように溶着部13cを形成し、下突出部13bに溶着部を形成することなく電極群を作製し、これを電極群x2とした。また、上突出部13aに溶着幅xが扁平状電極群10aの幅Xに対して100%となるように溶着部13cを形成し、かつ下突出部13bに溶着幅yが扁平状電極群10aの幅Xに対して100%となるように溶着部13dを形成して電極群を作製し、これを電極群x3とした。
【0037】
ついで、これらの電極群a2〜a7およびx2,x3を用いるとともに、上述のように調製したゲル用非水電解液e2を用いて、上述と同様にして非水電解質電池A2〜A7,X2,X3をそれぞれ作製した。なお、電極群a2を用いたものを電池A2とし、電極群a3を用いたものを電池A3とし、電極群a4を用いたものを電池A4とし、電極群a5を用いたものを電池A5とし、電極群a6を用いたものを電池A6とし、電極群a7を用いたものを電池A7とした。また、電極群x2を用いたものを電池X2とし、電極群x3を用いたものを電池X3とした。
【0038】
ついで、これらの各電池A2〜A7,X2,X3をそれぞれ50個ずつ用いて、上述と同様にして高温放置試験を行った後、これらの各電池A2〜A7,X2,X3の電圧を測定して、試験前後の電圧差が0.5V以上(試験後の電池電圧が3.7V以下)のものを内部短絡が発生した電池と判定すると、下記の表2に示すような結果が得られた。なお、表2には上述した電池A1と電池X1の結果も併せて示している。
【0039】
【表2】
Figure 0004565812
【0040】
上記表2の結果から明らかなように、電池X1,X2,X3は内部短絡の発生個数が多いことが分かる。これは、ゲル状電解質が充填された場合、セパレータ13の上下の全幅に亘って溶着部13c,13dが形成された電極群x3を用いた電池X3を充電状態で高温放置すると、正極11から発生したガスが電極群x3内から放散しにくくなって、電極群x3内に滞留するようになる。この結果、電極群x3に変形を生じたり、歪みが生じるようになって内部短絡が発生しやすくなったと考えられる。また、セパレータ13の上部の全幅に亘って溶着部13cが形成された電極群x2を用いた電池X2を充電状態で高温放置しても、同様の理由で内部短絡が発生しやすくなったと考えられる。
【0041】
一方、電池A1〜A7は内部短絡の発生個数が激減していることが分かる。これは、ゲル状電解質が充填された場合、セパレータ13の上部あるいは下部もしくは上下部の一部に溶着部13c(13d)が形成されていると、充電状態で高温放置してセパレータ13の熱収縮が起こり始めても、ゲル状電解質(e2)の接着力により、セパレータ13と各電極11,12との密着性が向上しているため、セパレータ13の熱収縮が抑制され、内部短絡の発生個数が減少することとなる。この場合、電極群の幅方向の中央部近傍は両端部近傍よりも構成圧が低いため、セパレータ13の収縮が起こりやすくなる。このため、溶着部13c(13d)は電極群の幅方向の中央部近傍に形成するのが望ましい。
【0042】
これらのことから、ゲル状電解質が充填された場合、セパレータ13の上部あるいは下部もしくは上下部の一部に形成する溶着部13c(13d)の幅寸法x,yは、電極群の幅寸法Xに対して5%以上で、95%以下にするのが望ましいということができる。
【0043】
【発明の効果】
上述したように、本発明の非水電解質二次電池10においては、外装体14内にゲル状非水電解質を備え、かつ渦巻状電極群の各電極11,12より上下方向に突出してセパレータ13が配設されているとともに、突出した部分13a(13b)の少なくとも一方の一部はセパレータ13a(13b)同士が溶着により一体的に接合されている。このため、高温放置してセパレータ13に熱収縮が発生しても、ゲル状電解質の接着力により、セパレータ13と各電極11,12との密着性が向上しているため、セパレータ13の熱収縮が抑制され、内部短絡の発生個数が減少することとなる。
【0044】
なお、上述した実施の形態においては、非水電解質の有機溶媒として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒を用いる例について説明したが、有機溶媒としては、カーボネート類、ラクトン類、エーテル類、ケトン類、ニトリル類、アミド類、スルホン系化合物、エステル類、芳香族炭化水素などを用いるようにしてもよいし、これら溶媒の2種類以上を混合して用いるようにしてもよい。これらの中でカーボネート類、ラクトン類、エーテル類、ケトン類、ニトリル類、エステル類などが好ましく、好適にはカーポネート類が望ましい。
【0045】
具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、γ−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、4−メチルー2−ペンタノン、シクロヘキサノン、アセトニトリル、プロピオニトリル、ジエチルカーボネート、ジメチルホルムアミド、スルホラン、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチルなどを挙げることができ、充放電効率を高める点からプロピレンカーボネート、エチレンカーボネートが好適である。
【0046】
また、上述した実施の形態においては、電解質として六フッ化リン酸リチウム(LiPF6)を用いる例について説明したが、これ以外の電解質としては、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)、六フッ化珪酸リチウム(LiAsF6)、トリフルオロメチルスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム(LiN(CF3SO22)などのリチウム塩を用いるのが望ましい。中でも、LiPF6、LiBF4を用いるのが好ましく、有機溶媒に対する溶解量としては、0.5〜2.0モル/リットルとするのが好ましい。
【0047】
また、電極界面の被膜安定化、低被膜抵抗化などの目的で、ビニレンカーボネート、ビニルエチレンカーボネート、トリフルオロメチルビニレンカーボネート、トリフルオロプロピレンカーボネート、無水マレイン酸、無水コハク酸、カテコール、レゾルシンなどを上記の如き電解液に添加するようにしてもよい。
【0048】
さらに、上述した実施の形態においては、ゲル用非水電解液を調製するに際して、熱重合性モノマー材料としてテトラエチレングリコールジアクリレートとトリメチロールプロパントリアクリレートを用い、重合開始剤としてt−ヘキシルパーオキシピバレートを用いる例について説明したが、これに限られることはない。例えば、機械的強度の高いPVdFなどの物理架橋ポリマーを用いても良く、PEO、PPO系のポリエーテル系、ポリエステル系、ポリカーボネート系などの高いイオン導電性を兼ね備える化学架橋ポリマーを用いても良い。
【0049】
また、モノマーを重合させる際には、重合開始剤を加えることなく電子線やγ線などの放射線を照射する方法、光増感剤などの紫外線重合開始剤を添加して紫外線を照射する方法、酸化還元系の開始剤を用いたレドックス系常温硬化法などが適用できるが、特別な装置を必要としない点で熱硬化法が好ましい。例えば、熱重合開始剤として有機過酸化物などを用いて恒温槽中で保持し、硬化することができる。電解液の質量に対するモノマーの量は1〜30質量%の範囲で添加することが好ましい。少なすぎる場合にはポリマーマトリックスの架橋密度が減少し、機械的強度が不足する結果、セパレータと電極との密着強度が得にくくなる。一方、多すぎる場合にはイオン伝導度が低下するため、急速充放電特性が低下してしまう。
【図面の簡単な説明】
【図1】 本発明の非水電解液二次電池に用いられる電極群を模式的に示す図であり、図1(a)は上面図であり、図1(b)は正面図であり、図1(c)は下面図である。
【図2】 本発明の非水電解液二次電池を模式的に示す図であり、図2(a)は斜視図であり、図2(b)は図2(a)のA−A断面を示す断面図である。
【符号の説明】
10…非水電解液二次電池、11…正極、11a…正極リード、12…負極、12a…負極リード、13…セパレータ、13a…上突出部、13b…下突出部、13c…上溶着部、13d…下溶着部、14…外装体[0001]
BACKGROUND OF THE INVENTION
In the present invention, a belt-like positive electrode in which a positive electrode mixture is applied to a positive electrode current collector and a belt-like negative electrode in which a negative electrode mixture is applied to a negative electrode current collector are wound in a spiral shape facing each other via a belt-like separator. The present invention relates to a non-aqueous electrolyte secondary battery including a spiral electrode group and a gel-like non-aqueous electrolyte in an outer package.
[0002]
[Prior art]
In recent years, a positive electrode active material capable of occluding and releasing lithium ions (for example, lithium cobalt oxide (LiCoO) as a battery used in portable electronic / communication equipment such as a mobile phone, a notebook computer, and a small video camera. 2 ), Lithium manganate (LiMn) 2 O Four Non-aqueous electrolyte secondary battery comprising a lithium-containing transition metal oxide)) and a negative electrode active material capable of occluding and releasing lithium ions (eg, graphite, carbon, etc.) It has come to be widely used as a battery.
[0003]
This type of non-aqueous electrolyte secondary battery is generally produced as follows. That is, first, a positive electrode mixture containing a positive electrode active material is applied to a positive electrode current collector to produce a strip-shaped positive electrode, and a negative electrode mixture containing a negative electrode active material is applied to a negative electrode current collector to form a strip-shaped negative electrode. Make it. Thereafter, the obtained belt-like positive electrode and the belt-like negative electrode are laminated so as to face each other via a belt-like separator, and then wound into a spiral shape to form a spiral electrode group having a perfectly circular cross section. Then, this is accommodated in a cylindrical outer can, or a circular spiral electrode group is pressure-molded into an elliptical shape with a flat cross-sectional shape, and this is formed into a rectangular tube outer can or a film-like outer body. The nonaqueous electrolyte secondary battery is made by injecting a nonaqueous electrolyte.
[0004]
By the way, as a function of the separator that separates the positive electrode and the negative electrode, the battery reaction basically has a function of preventing a short circuit to prevent a direct short circuit between the positive electrode and the negative electrode and allows ions to permeate through the microporous structure. It is a necessary condition to have an ion permeation function that enables the above. However, a separator having a shutdown function (SD function) has been adopted as a separator used in this type of non-aqueous electrolyte secondary battery from the viewpoint of improving safety. This SD function has a function to stop the battery reaction by synthesizing the plastic material of the separator material as the battery internal temperature rises to melt and deform to block the micropores when an abnormal current is generated due to incorrect connection or the like. Means.
[0005]
However, at the time of abnormal heat generation of the battery, an internal short circuit due to the contraction of the separator occurs, and there is a possibility that safety is lowered. For this reason, in order to suppress the shrinkage of the separator, a means of using high molecular weight polyethylene or mixing polypropylene has been taken. However, there is a problem that the shutdown temperature rises and the current interrupt function becomes difficult to operate. In addition, when a separator uniaxially stretched in the width direction is used, shrinkage in the width direction can be suppressed, but there is a problem that the film tends to tear in the stretch direction.
[0006]
Therefore, Patent Document 1 discloses a battery in which an internal short circuit in which the electrode and the outer can are in contact with each other even if the separator is thermally contracted by attaching a short circuit prevention tape to the uppermost part of the outermost periphery of the spiral electrode group. (Japanese Unexamined Patent Publication No. 2000-251866) has come to be proposed. However, in the battery proposed in Patent Document 1, since the shrinkage of the separator disposed on the inner peripheral portion of the spiral electrode group cannot be prevented, both electrodes facing the shrunk separator are the electrode group. There was a problem of short circuiting at the top or bottom.
[0007]
For this reason, Patent Document 2 (Japanese Patent Laid-Open No. 2003-22794) proposes welding the upper and lower ends of the separator in order to prevent an internal short circuit due to the shrinkage of the separator at a high temperature. According to this, the separator is welded in the vicinity of the lead portion, or when the battery is exposed to high temperature, the separator is welded together to wrap the electrode. As a result, it is possible to prevent an internal short circuit due to the shrinkage of the separator at a high temperature.
[Patent Document 1]
JP 2000-251866 A
[Patent Document 2]
JP 2003-22794 A
[0008]
[Problems to be solved by the invention]
However, in the non-aqueous electrolyte secondary battery proposed in the above-mentioned Japanese Patent Application Laid-Open No. 2003-22794, a liquid electrolyte (electrolytic solution) is used as the non-aqueous electrolyte. For this reason, when the battery temperature rises and thermal contraction of the separator begins to occur, the tension between the welded portions above and below the spiral electrode group increases, and wrinkles are generated in the separator inside the electrode group. As a result, the membrane breaks or tears with a slight stimulus, causing a problem that a short circuit occurs at the portion where the membrane is broken or torn.
[0009]
Further, as proposed in the above-mentioned Japanese Patent Application Laid-Open No. 2003-22794, in the method of thermally welding the separators, if the electrode group is slightly deformed due to the influence of gas generated from the electrodes, a substantial welding effect is obtained. Caused the problem of being unable to obtain. It has also been found that it is almost impossible to uniformly weld the electrodes so as to enclose them.
[0010]
Furthermore, in recent years, development of a laminate-type battery using a laminate film as an exterior material has been advanced in response to the demand for higher energy density of this type of non-aqueous electrolyte secondary battery. However, in such a laminate type battery, since the pressing force is extremely smaller than that in the case of using a metal outer can such as aluminum, there is a problem that the electrode group is likely to be deformed. In particular, when the battery is exposed to a high temperature, a large amount of gas is generated. Therefore, the deformation / distortion of the electrode group becomes more significant than when a metal outer can is used. For this reason, even if it comprised the electrode group as mentioned above, the problem that an effect was hardly acquired with respect to an internal short circuit arose.
[0011]
Therefore, the present invention has been made to solve the above problems, and even if the battery heats up abnormally and the separator contracts, the occurrence of internal short circuit at the upper and lower ends of the electrode group is suppressed. An object of the present invention is to provide a non-aqueous electrolyte secondary battery with improved safety so that the battery does not rupture or ignite.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, in the nonaqueous electrolyte secondary battery of the present invention, a strip-shaped positive electrode and a strip-shaped negative electrode are wound in a spiral shape facing each other via a strip-shaped separator. Flat An electrode group and a gel-like nonaqueous electrolyte are provided in the exterior body, and the strip separator Flat Protruding vertically from each electrode of the electrode group And At least one part of the protruding part is formed by joining the separators together by welding or bonding. In addition, the width dimension of the joint portion is not less than 5% and not more than 95% of the width dimension of the flat electrode group. It is characterized by that.
[0013]
Thus, a gel-like nonaqueous electrolyte is provided in the exterior body, and Flat When separators are disposed so as to protrude vertically from each electrode of the electrode group, and at least one part of the protruding portions is integrally bonded to each other by welding or adhesion, the separator is left at a high temperature. Even when the thermal contraction of the separator starts to occur, the adhesion between the separator and each electrode is improved by the adhesive force of the gel electrolyte. For this reason, it is possible to suppress the thermal contraction of the separator and reduce the occurrence of an internal short circuit. in this case, Flat Since the component pressure in the vicinity of the central portion in the width direction of the electrode group is lower than that in the vicinity of both end portions, the separator tends to contract. For this reason, the joint is Flat It is desirable to form near the center of the electrode group in the width direction.
[0014]
In addition If the width of the joint is too short, the effect of preventing internal short circuit is insufficient, and if the width of the joint is too long, the generated gas stays in the electrode group, and the electrode The deformation / distortion of the group increases, and conversely an internal short circuit occurs. For this reason, when the gel electrolyte is filled, the width dimension of the joint formed on the upper or lower part of the separator or part of the upper and lower parts is Flat It is desirable to set it to 5% or more and 95% or less with respect to the width dimension of the electrode group.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to FIGS. 1 and 2 below. However, the present invention is not limited to these embodiments, and may be appropriately changed within a range not changing the object of the present invention. Can be implemented. FIG. 1 is a diagram schematically showing an electrode group used in the non-aqueous electrolyte secondary battery of the present invention, FIG. 1 (a) is a top view, and FIG. 1 (b) is a front view. FIG. 1C is a bottom view. FIG. 2 is a diagram schematically showing a nonaqueous electrolyte secondary battery of the present invention, FIG. 2 (a) is a perspective view, and FIG. 2 (b) is a cross-sectional view taken along line AA of FIG. 2 (a). It is sectional drawing shown.
[0016]
1. Fabrication of positive electrode
Lithium cobaltate (LiCoO) as positive electrode active material 2 ) And a carbon-based powder (for example, 5% by mass) such as acetylene black or graphite as a conductive agent were mixed to prepare a positive electrode mixture. This positive electrode mixture is kneaded with a binder solution in which a binder (for example, 3% by mass) made of polyvinylidene fluoride (PVdF) is dissolved in an organic solvent made of N-methyl-2-pyrrolidone (NMP). Thus, a positive electrode active material slurry or a positive electrode active material paste was prepared.
[0017]
Next, a positive electrode current collector made of aluminum foil (for example, having a thickness of 15 μm and a width of 54.0 mm) was prepared, and the positive electrode active material slurry or the positive electrode active material paste prepared as described above was used as the positive electrode current collector. The positive electrode mixture layer was formed by uniformly applying to both sides of the film. Here, the slurry was applied using a die coater or a doctor blade, and the paste was applied by a roller coating method. Then, it was made to pass through a drier to remove the organic solvent (NMP) that was necessary when making the slurry or paste, and dried. After drying, it was rolled with a roll press until the thickness became 0.17 mm, and cut into a predetermined shape to produce a strip-like positive electrode 11. In the strip-like positive electrode 11, the positive electrode slurry is not applied to the portion arranged on the outermost periphery during winding, and the positive electrode lead 11 a is formed by ultrasonically welding an aluminum current collecting tab.
[0018]
Note that the above-described LiCoO is used as the positive electrode active material. 2 In addition to Li x MO 2 (Wherein M is at least one of Co, Ni, and Mn, and 0.45 ≦ x ≦ 1.20), for example, a lithium transition metal composite oxide such as LiNiO 2 , LiNi y Co 1-y O 2 (However, 0.01 ≦ y ≦ 0.99), Li 0.5 MnO 2 , LiMnO 2 These may be used alone or as a mixture of two or more.
[0019]
2. Production of negative electrode
A binder solution in which natural graphite powder as a negative electrode active material and a binder (for example, 3% by mass) made of polyvinylidene fluoride (PVdF) are dissolved in an organic solvent made of N-methyl-2-pyrrolidone (NMP). Were kneaded to prepare a negative electrode active material slurry or a negative electrode active material paste. Next, a negative electrode current collector made of copper foil (for example, having a thickness of 12 μm and a width of 56.0 mm) was prepared, and the negative electrode active material slurry or the negative electrode active material paste produced as described above was used as the negative electrode current collector. The negative electrode mixture layer was formed by uniformly coating both sides of the film.
[0020]
Here, the slurry was applied using a die coater or a doctor blade, and the paste was applied by a roller coating method. Then, it was made to pass through a drier to remove the organic solvent (NMP) necessary for making the slurry or paste and dry it. After drying, it was rolled with a roll press machine until the thickness became 0.14 mm, cut into a predetermined shape, and a strip-like negative electrode 12 was produced. In the strip-shaped negative electrode 12, the negative electrode slurry is not applied to the portion disposed on the outermost periphery during winding, and a nickel current collecting tab is ultrasonically welded to form the negative electrode lead 12a.
[0021]
As the negative electrode active material, in addition to the above-mentioned natural graphite, a carbon-based material capable of occluding and desorbing lithium ions, such as artificial graphite, carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof. Or lithium alloy such as metallic lithium, lithium-aluminum alloy, lithium-lead alloy, lithium-tin alloy, SnO 2 , SnO, TiO 2 , Nb 2 O Three A base metal oxide having a lower potential than the positive electrode active material may be used.
[0022]
3. Fabrication of electrode group
Next, a belt-like positive electrode 11 and a belt-like negative electrode 12 produced as described above are prepared, and a belt-like separator made of a polyethylene microporous film (thickness of 0.025 mm and width of 59.0 mm) is prepared between them. 13 and were overlapped so that the center lines in the width direction coincided with each other. Then, after winding these in a spiral shape with a winder, the outermost periphery was taped to form a spiral electrode group. Subsequently, this was crushed so that the cross-sectional shape became a flat ellipse, and the flat electrode group 10a was produced.
[0023]
Here, the width direction of the strip separator 13 (It becomes the height direction in FIG. 1 (b)) The upper end portion of the negative electrode 12 is formed with an upper protrusion portion 13a protruding upward by 1.5 mm from the upper end portion of the negative electrode 12, and the lower protrusion portion 13b is formed protruding downward by 1.5 mm from the lower end portion. Become. Next, the x portion (60% of the width X of the flat electrode group 10a) at the center in the width direction of the upper protruding portion 13a is welded to each other and joined together, and the lower protruding portion 13b The y portion (60% of the width X of the flat electrode group 10a) in the center in the width direction is heat-welded to each other and joined together to form an electrode group a 1 It was. Further, the projections 13a and 13b are not welded to each other as they are, but the electrodes x 1 It was. Instead of integrating by heat welding, an adhesive that does not adversely affect the battery reaction (for example, an epoxy adhesive, an acrylic adhesive, or the like) may be integrally bonded.
[0024]
4). Preparation of non-aqueous electrolyte secondary battery
First, LiPF is used as an electrolyte in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7. 6 Was dissolved at a rate of 1 mol / liter to prepare a non-aqueous electrolyte, which was defined as an electrolyte e1. Moreover, while adding 3.0 mass% of tetraethylene glycol diacrylate as a thermopolymerizable monomer material and 1.0 mass% of trimethylol propane triacrylate to the electrolyte solution e1 prepared in this way, A non-aqueous electrolyte for gel was prepared by adding 0.3% by mass of t-hexylperoxypivalate, and this was designated as electrolyte e2.
[0025]
Next, the flat electrode group 10a (a 1 , X 1 ) Was accommodated in an exterior body 14 made of an aluminum laminate film, and placed in a dry box, and then the electrolytes e1 and e2 prepared as described above were injected into the exterior body 14. Next, the inside of the dry box was sucked with a vacuum pump to create a reduced pressure atmosphere. As a result, the electrolyte injected into the exterior body 14 is impregnated in the electrode group. Then, the opening part of the exterior body 14 was temporarily sealed and taken out from the dry box. Next, in the case of using the electrolytic solution e2, after being placed in the heating device, the inside of the heating device was kept at a temperature of 60 ° C. and heated for 5 hours. Thereby, the thermopolymerizable monomer material was polymerized, and the electrolytic solution was cured by gelation.
[0026]
Next, after the first charge was performed to disperse the generated gas, the openings of the exterior body 14 were fully sealed to prepare nonaqueous electrolyte batteries A1, X1, Y1, and Y2, respectively. At this time, main sealing was performed so that the positive electrode lead 11 a extending from the positive electrode 11 and the negative electrode lead 12 a extending from the negative electrode 12 were liquid-tightly sealed in the upper opening of the outer package 14. Here, the electrode group a 1 A battery A1 was prepared using the nonaqueous electrolyte e2 for gel. Similarly, electrode group x 1 And a non-aqueous electrolyte for gel e2 is used as battery X1, and electrode group a 1 And a non-aqueous electrolyte e1 is used as a battery Y1, and an electrode group x 1 A battery Y2 was prepared using the nonaqueous electrolyte e1.
[0027]
5). High temperature storage test
Next, 50 batteries A1, X1, Y1, and Y2 were used and discharged at room temperature (about 25 ° C.) with a discharge current of 1 ItmA until the battery voltage reached 2.75V. After this, the battery is charged at a constant current until the battery voltage reaches 4.2 V at a room temperature (about 25 ° C.) with a charging current of 1 ItmA, and after reaching 4.2 V, the voltage is constant until the current value becomes 30 mA or less. Was charged. Then, after each battery A1, X1, Y1, Y2 in such a charged state was heated to 150 ° C. at a temperature rising rate of 5 ° C./min, a high temperature standing test was performed in which the temperature of 150 ° C. was maintained for 3 hours. went. Thereafter, the voltage of each of these batteries A1, X1, Y1, and Y2 was measured, and an internal short circuit occurred when the voltage difference before and after the test was 0.5 V or more (the battery voltage after the test was 3.7 V or less). When judged to be a battery, the results shown in Table 1 below were obtained.
[0028]
[Table 1]
Figure 0004565812
[0029]
As is clear from the results in Table 1 above, in the battery Y2 using the electrode group x1 in which the welded portions were not formed above and below the separator and using the electrolytic solution e1, an internal short circuit occurred in all the batteries. I understand that. Moreover, even if it uses the electrode group a1 which formed the welding parts 13c and 13d on the upper and lower sides of a separator, in the battery Y1 using the electrolyte solution e1, it turns out that there are many occurrence numbers of an internal short circuit. This is because when the battery Y2 filled with the electrolytic solution e1 in the electrode group x1 in which the welded portion is not formed is left in a charged state at a high temperature, thermal contraction of the separator occurs due to the high temperature, and the upper and lower ends of the electrode group x1 This is probably because a short circuit occurred.
[0030]
On the other hand, when the battery Y1 in which the electrolyte solution e1 is filled in the electrode group a1 in which the welded portions 13c and 13d are formed on the upper and lower sides of the separator 13 is left at a high temperature in a charged state, The tension of the separator 13 between the upper and lower welded portions is increased, and wrinkles are generated in the separator 13 inside the electrode group. As a result, it is considered that a film is broken or ruptured by a slight stimulus, and a short circuit occurs at a portion where the film is broken or ruptured.
[0031]
On the other hand, in the battery X1 gelled using the gel electrolyte (e2) even if the electrode group x1 in which the welded portions are not formed above and below the separator 13, the welded portions are formed above and below the separator 13 in the battery X1. It can be seen that the number of occurrences of internal short circuits is reduced as compared with the battery Y1 in which the electrode group a1 in which the electrodes 13c and 13d are formed is filled with the electrolytic solution e1. Furthermore, it can be seen that an internal short circuit does not occur in the battery A1 using the electrode group a1 in which the welds 13c and 13d are formed above and below the separator 13 and using the gel electrolyte (e2).
[0032]
This is because, in the battery X1 in which the electrode group x1 in which the weld portion is not formed is filled with the gel electrolyte (e2), the adhesion between the separator 13 and the electrodes 11 and 12 is caused by the adhesive force of the gel electrolyte (e2). This is considered to be because the heat shrinkage of the separator 13 was suppressed. However, the suppression of the thermal contraction of the separator 13 by the gel electrolyte alone can reduce the occurrence of internal short circuits as compared with the batteries Y1 and Y2 using the liquid electrolyte, but it cannot be said to be sufficient.
[0033]
On the other hand, in the battery A1 in which the electrode group a1 in which the welded portions 13c and 13d are formed above and below the separator 13 is filled with the gel electrolyte (e2), the separator 13 and each electrode due to the adhesive force of the gel electrolyte (e2) 11 and 12, the thermal contraction of the separator is suppressed, and the welded portions 13 c and 13 d are formed on the upper portion 13 a and the lower portion 13 b of the separator 13, respectively. It is considered that the tension of the separator 13 between the upper and lower welded portions was increased, no wrinkles were generated in the separator 13 inside the electrode group a1, and no internal short circuit occurred.
[0034]
6). Examination of welding width of separator
Next, the welding widths x and y of the welded portions 13c and 13d of the separator 13 were examined. Therefore, an electrode group in which the welded portion 13d is formed so that the weld width y is 5% of the width X of the flat electrode group 10a without forming the welded portion on the upper projecting portion 13a. The electrode group a2 was produced. Further, the welded portion 13c is formed on the upper protruding portion 13a so that the welding width x is 5% of the width X of the flat electrode group 10a, and the electrode group is formed without forming the welded portion on the lower protruding portion 13b. The electrode group a3 was produced. Further, the welded portion 13c is formed on the upper protruding portion 13a so that the welding width x is 40% of the width X of the flat electrode group 10a, and the electrode group is formed without forming the welded portion on the lower protruding portion 13b. The electrode group was formed as electrode group a4.
[0035]
Further, the welded portion 13c is formed on the upper protruding portion 13a so that the welding width x is 60% of the width X of the flat electrode group 10a, and the electrode group is formed without forming the welded portion on the lower protruding portion 13b. The electrode group a5 was produced. Further, the welded portion 13c is formed on the upper protruding portion 13a so that the welding width x is 95% of the width X of the flat electrode group 10a, and the electrode group is formed without forming the welded portion on the lower protruding portion 13b. The electrode group was formed as electrode group a6. Further, the welded portion 13c is formed on the upper protruding portion 13a so that the welding width x is 95% of the width X of the flat electrode group 10a, and the welding width y is formed on the lower protruding portion 13b with the flat electrode group 10a. The welded portion 13d was formed so as to be 60% with respect to the width X of the electrode group to produce an electrode group, which was designated as an electrode group a7.
[0036]
Further, the welded portion 13c is formed on the upper protruding portion 13a so that the welding width x is 100% of the width X of the flat electrode group 10a, and the electrode group is formed without forming the welded portion on the lower protruding portion 13b. The electrode group x2 was prepared. Further, the welded portion 13c is formed on the upper protruding portion 13a so that the welding width x is 100% of the width X of the flat electrode group 10a, and the welding width y is formed on the lower protruding portion 13b with the flat electrode group 10a. The welded portion 13d was formed so as to be 100% with respect to the width X of the electrode group to produce an electrode group, which was designated as an electrode group x3.
[0037]
Next, while using these electrode groups a2 to a7 and x2 and x3, the nonaqueous electrolyte batteries A2 to A7, X2 and X3 were prepared in the same manner as described above using the nonaqueous electrolyte e2 for gel prepared as described above. Were prepared. A battery using the electrode group a2 is referred to as a battery A2, a battery using the electrode group a3 as a battery A3, a battery using the electrode group a4 as a battery A4, a battery using the electrode group a5 as a battery A5, A battery using electrode group a6 was designated as battery A6, and a battery using electrode group a7 was designated as battery A7. A battery using the electrode group x2 is referred to as a battery X2, and a battery using the electrode group x3 is referred to as a battery X3.
[0038]
Then, using each of these batteries A2 to A7, X2, and X3, a high temperature storage test was performed in the same manner as described above, and then the voltages of these batteries A2 to A7, X2, and X3 were measured. When the voltage difference before and after the test was 0.5 V or more (the battery voltage after the test was 3.7 V or less) was determined to be a battery in which an internal short circuit occurred, the results shown in Table 2 below were obtained. . Table 2 also shows the results of the battery A1 and the battery X1 described above.
[0039]
[Table 2]
Figure 0004565812
[0040]
As is apparent from the results in Table 2, the batteries X1, X2, and X3 have a large number of internal short circuits. This is generated from the positive electrode 11 when the battery X3 using the electrode group x3 in which the welded portions 13c and 13d are formed over the entire upper and lower width of the separator 13 is left in a charged state when charged with a gel electrolyte. It becomes difficult for the gas thus discharged to diffuse from the electrode group x3, and the gas stays in the electrode group x3. As a result, it is considered that the electrode group x3 is deformed or distorted and an internal short circuit is likely to occur. Further, even when the battery X2 using the electrode group x2 in which the welded portion 13c is formed over the entire width of the upper portion of the separator 13 is left at a high temperature in a charged state, an internal short circuit is likely to occur for the same reason. .
[0041]
On the other hand, it can be seen that the number of internal short circuits in the batteries A1 to A7 is drastically reduced. This is because, when the gel electrolyte is filled, if the welded portion 13c (13d) is formed on the upper portion, the lower portion or a part of the upper and lower portions of the separator 13, it is left at a high temperature in a charged state and the heat shrinkage of the separator 13 However, since the adhesion between the separator 13 and the electrodes 11 and 12 is improved by the adhesive force of the gel electrolyte (e2), the thermal contraction of the separator 13 is suppressed, and the number of internal short-circuits is reduced. Will decrease. In this case, since the component pressure in the vicinity of the center portion in the width direction of the electrode group is lower than that in the vicinity of both end portions, the separator 13 is likely to contract. For this reason, it is desirable to form the welding part 13c (13d) in the vicinity of the center part in the width direction of the electrode group.
[0042]
From these facts, when the gel electrolyte is filled, the width dimensions x and y of the welded portion 13c (13d) formed on the upper portion or the lower portion of the separator 13 or part of the upper and lower portions are equal to the width dimension X of the electrode group. On the other hand, it can be said that it is desirable to set it to 5% or more and 95% or less.
[0043]
【The invention's effect】
As described above, in the non-aqueous electrolyte secondary battery 10 of the present invention, the outer body 14 includes the gel-like non-aqueous electrolyte, and protrudes in the vertical direction from the electrodes 11 and 12 of the spiral electrode group, thereby separating the separator 13. And at least one part of the protruding portion 13a (13b) is integrally joined to each other by welding the separators 13a (13b). For this reason, even if the separator 13 is left at a high temperature and heat shrinkage occurs, the adhesion between the separator 13 and the electrodes 11 and 12 is improved by the adhesive force of the gel electrolyte. Is suppressed, and the number of internal short-circuit occurrences is reduced.
[0044]
In the embodiment described above, an example in which a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) is used as the organic solvent for the nonaqueous electrolyte has been described. Examples of the organic solvent include carbonates and lactones. , Ethers, ketones, nitriles, amides, sulfone compounds, esters, aromatic hydrocarbons, etc., or a mixture of two or more of these solvents may be used. Good. Among these, carbonates, lactones, ethers, ketones, nitriles, esters and the like are preferable, and carbonates are preferable.
[0045]
Specific examples include propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, γ-dimethoxyethane, tetrahydrofuran, anisole, 1,4-dioxane, 4-methyl-2-pentanone, cyclohexanone, acetonitrile, pro Examples include pionitrile, diethyl carbonate, dimethylformamide, sulfolane, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, and ethyl propionate. Propylene carbonate and ethylene carbonate are preferred from the standpoint of increasing charge and discharge efficiency. It is.
[0046]
In the embodiment described above, lithium hexafluorophosphate (LiPF) is used as the electrolyte. 6 ) Is described, but other electrolytes include lithium perchlorate (LiClO). Four ), Lithium borofluoride (LiBF) Four ), Lithium hexafluorosilicate (LiAsF) 6 ), Lithium trifluoromethylsulfonate (LiCF) Three SO Three ), Bistrifluoromethylsulfonylimide lithium (LiN (CF Three SO 2 ) 2 It is desirable to use a lithium salt such as Among them, LiPF 6 , LiBF Four Is preferably used, and the amount dissolved in the organic solvent is preferably 0.5 to 2.0 mol / liter.
[0047]
In addition, vinylene carbonate, vinyl ethylene carbonate, trifluoromethyl vinylene carbonate, trifluoropropylene carbonate, maleic anhydride, succinic anhydride, catechol, resorcin, etc. are used for the purpose of stabilizing the film at the electrode interface and reducing film resistance. You may make it add to such electrolyte solution.
[0048]
Furthermore, in the above-described embodiment, when preparing the non-aqueous electrolyte for gel, tetraethylene glycol diacrylate and trimethylolpropane triacrylate are used as the thermopolymerizable monomer material, and t-hexylperoxy is used as the polymerization initiator. Although an example using pivalate has been described, the present invention is not limited to this. For example, a physical cross-linked polymer such as PVdF having a high mechanical strength may be used, and a chemical cross-linked polymer having high ionic conductivity such as PEO, PPO polyether, polyester, and polycarbonate may be used.
[0049]
In addition, when polymerizing the monomer, a method of irradiating radiation such as an electron beam or γ-ray without adding a polymerization initiator, a method of irradiating ultraviolet rays by adding an ultraviolet polymerization initiator such as a photosensitizer, Although a redox-type room temperature curing method using a redox-based initiator can be applied, a thermosetting method is preferable in that a special apparatus is not required. For example, it can be held and cured in a thermostatic bath using an organic peroxide as a thermal polymerization initiator. It is preferable to add in the range of 1-30 mass% of monomers with respect to the mass of the electrolytic solution. When the amount is too small, the crosslink density of the polymer matrix decreases, resulting in insufficient mechanical strength. As a result, it is difficult to obtain adhesion strength between the separator and the electrode. On the other hand, when the amount is too large, the ionic conductivity is lowered, so that the rapid charge / discharge characteristics are lowered.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an electrode group used in a non-aqueous electrolyte secondary battery of the present invention, FIG. 1 (a) is a top view, and FIG. 1 (b) is a front view; FIG. 1C is a bottom view.
2 is a diagram schematically showing a non-aqueous electrolyte secondary battery of the present invention, FIG. 2 (a) is a perspective view, and FIG. 2 (b) is a cross-sectional view taken along line AA in FIG. 2 (a). FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Non-aqueous electrolyte secondary battery, 11 ... Positive electrode, 11a ... Positive electrode lead, 12 ... Negative electrode, 12a ... Negative electrode lead, 13 ... Separator, 13a ... Upper protrusion part, 13b ... Lower protrusion part, 13c ... Upper welding part, 13d ... lower welding part, 14 ... exterior body

Claims (2)

帯状正極と帯状負極が帯状セパレータを介して相対向して渦巻状に巻回された扁平状電極群とゲル状非水電解質を外装体内に備えた非水電解質二次電池であって、
前記帯状セパレータは前記扁平状電極群の各電極より上下方向に突出して配設されており、
前記突出した部分の少なくとも一方の一部はセパレータ同士が溶着あるいは接着により一体的に接合されているとともに、接合部分の幅寸法は前記扁平状電極群の幅寸法の5%以上で、95%以下であることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a flat electrode group in which a belt-like positive electrode and a belt-like negative electrode are spirally wound with a belt-like separator facing each other and a gel-like non-aqueous electrolyte,
The strip separator is arranged to protrude in the vertical direction from each electrode of the flat electrode group ,
At least one part of the projecting part is integrally joined to each other by welding or adhesion, and the width dimension of the joined part is not less than 5% and not more than 95% of the width dimension of the flat electrode group. non-aqueous electrolyte secondary battery characterized in that it.
前記外装体はフィルム状外装体であることを特徴とする請求項1に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the outer package is a film-shaped outer package.
JP2003123608A 2003-04-28 2003-04-28 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4565812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123608A JP4565812B2 (en) 2003-04-28 2003-04-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123608A JP4565812B2 (en) 2003-04-28 2003-04-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004327362A JP2004327362A (en) 2004-11-18
JP4565812B2 true JP4565812B2 (en) 2010-10-20

Family

ID=33501445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123608A Expired - Fee Related JP4565812B2 (en) 2003-04-28 2003-04-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4565812B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293205B2 (en) 2005-09-09 2009-07-08 ソニー株式会社 battery
JP5318766B2 (en) 2006-09-25 2013-10-16 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device including the same
JP2008112722A (en) * 2006-10-02 2008-05-15 Nec Tokin Corp Lithium polymer battery
JP5462747B2 (en) * 2010-08-31 2014-04-02 積水化学工業株式会社 Lithium ion conductive material, lithium ion conductive electrolyte membrane, lithium ion conductive electrolyte membrane-electrode assembly, and lithium ion polymer battery
JP2012069290A (en) * 2010-09-21 2012-04-05 Toyota Motor Corp Secondary battery, vehicle, and device using battery
JP6344745B2 (en) * 2016-07-19 2018-06-20 セイコーインスツル株式会社 Electrochemical cell and method for producing electrochemical cell
JP6894973B2 (en) * 2017-06-08 2021-06-30 株式会社日立製作所 Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer, electrodes and secondary battery
JP6924264B2 (en) * 2017-07-26 2021-08-25 株式会社日立製作所 Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer and secondary battery
WO2019176422A1 (en) * 2018-03-13 2019-09-19 三洋電機株式会社 Secondary battery
WO2020203820A1 (en) * 2019-03-29 2020-10-08 株式会社Gsユアサ Power storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122574A (en) * 1987-11-06 1989-05-15 Matsushita Electric Ind Co Ltd Cylindrical lithium secondary cell
JP2002141042A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and separator and its manufacturing method
JP2003022794A (en) * 2001-07-10 2003-01-24 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and production process thereof
JP2003051339A (en) * 2001-08-06 2003-02-21 Sony Corp Nonaqueous electrolyte battery and manufacturing method therefor
JP2003092140A (en) * 2001-09-18 2003-03-28 Sharp Corp Lithium polymer secondary battery and its manufacturing method
JP2003109557A (en) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp Non-aqueous electrolyte battery and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122574A (en) * 1987-11-06 1989-05-15 Matsushita Electric Ind Co Ltd Cylindrical lithium secondary cell
JP2002141042A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and separator and its manufacturing method
JP2003022794A (en) * 2001-07-10 2003-01-24 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and production process thereof
JP2003051339A (en) * 2001-08-06 2003-02-21 Sony Corp Nonaqueous electrolyte battery and manufacturing method therefor
JP2003092140A (en) * 2001-09-18 2003-03-28 Sharp Corp Lithium polymer secondary battery and its manufacturing method
JP2003109557A (en) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp Non-aqueous electrolyte battery and its manufacturing method

Also Published As

Publication number Publication date
JP2004327362A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP2001167743A (en) Secondary battery and electronic device using the same
JP3728162B2 (en) Non-aqueous electrolyte secondary battery
JP4014816B2 (en) Lithium polymer secondary battery
JP4201459B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4439226B2 (en) Nonaqueous electrolyte secondary battery
JP4815845B2 (en) Polymer battery
JP4565812B2 (en) Nonaqueous electrolyte secondary battery
JP2011216408A (en) Lithium secondary battery, and manufacturing method thereof
JP2008282735A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP4887634B2 (en) Battery and its sealing method
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP2001084984A (en) Battery
JP6727621B2 (en) Curing die for producing gel polymer electrolyte and method for producing gel polymer battery cell using the same
JP5964102B2 (en) Manufacturing method of battery having flat electrode body
JP2001273930A (en) Manufacturing method of polymer battery
JP3806540B2 (en) Method for manufacturing thin battery using laminate outer package
JP4238099B2 (en) Nonaqueous electrolyte secondary battery
JP2002158034A (en) Non-aqueous secondary battery
JP2013235826A (en) Nonaqueous electrolyte secondary battery manufacturing method
JP2003229174A (en) Nonaqueous electrolyte secondary battery using film- like outer package
JP6888196B2 (en) Film exterior battery and its manufacturing method
JP4270835B2 (en) Non-aqueous electrolyte battery
JP3663087B2 (en) Thin battery
JP2004079310A (en) Manufacturing method for polymer lithium secondary battery
JP4141151B2 (en) Gel-like nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees