JP4238099B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4238099B2
JP4238099B2 JP2003320427A JP2003320427A JP4238099B2 JP 4238099 B2 JP4238099 B2 JP 4238099B2 JP 2003320427 A JP2003320427 A JP 2003320427A JP 2003320427 A JP2003320427 A JP 2003320427A JP 4238099 B2 JP4238099 B2 JP 4238099B2
Authority
JP
Japan
Prior art keywords
separator
negative electrode
secondary battery
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003320427A
Other languages
Japanese (ja)
Other versions
JP2005093077A (en
Inventor
弘和 野村
政嗣 石澤
浩 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2003320427A priority Critical patent/JP4238099B2/en
Publication of JP2005093077A publication Critical patent/JP2005093077A/en
Application granted granted Critical
Publication of JP4238099B2 publication Critical patent/JP4238099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池に代表される非水電解質二次電池は、軽量で、かつ高電圧、高エネルギー密度、高出力であることから、その需要は年々増加しており、携帯電話やビデオカメラなどの最先端のポータブル電子機器に搭載されている。最近、これらの電子機器の高性能化も著しく、これに伴いそれらに搭載される非水二次電池に対してもより高性能化が求められており、特に高容量に対する要求が急速に高まっている。   Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are light weight, high voltage, high energy density, and high output, so the demand is increasing year by year, such as mobile phones and video cameras. Installed in the most advanced portable electronic devices. Recently, the performance of these electronic devices has been remarkably improved, and accordingly, the performance of the non-aqueous secondary batteries mounted on them has been demanded. Particularly, the demand for high capacity has rapidly increased. Yes.

現在、非水電解質二次電池の高容量化に向けた研究・開発が盛んに行われており、その一つの手段として、異種のセパレータを使用した積層タイプの正負極が袋状に収納された例が提案されている。(例えば、特許文献1参照)。また異種の融点の異なるセパレータを用いた多層構造のセパレータが提案されている。(例えば、特許文献2および3参照)。   Currently, research and development for increasing the capacity of non-aqueous electrolyte secondary batteries is actively conducted, and as one of the means, stacked type positive and negative electrodes using different types of separators are stored in a bag shape. An example is proposed. (For example, refer to Patent Document 1). A multilayer separator using different types of separators having different melting points has been proposed. (For example, see Patent Documents 2 and 3).

特許第3422284号(2−4頁 図1)Japanese Patent No. 3422284 (page 2-4, Fig. 1) 特開平5−13062号公報(2−4頁)Japanese Patent Laid-Open No. 5-13062 (page 2-4) 特開2002−25526号公報(2−6頁)JP 2002-25526 A (page 2-6)

電池が異常加熱された際に電池の熱暴走を防止できるセパレータが、電池が過充電された際に熱暴走を引き起こす場合がある。また、過充電された際に電池が熱暴走しないセパレータが、電池が異常加熱された際に電池の熱暴走を防止できない場合もある。本発明は異常加熱の際の熱暴走と、電池が過充電された際の熱暴走をともに防止でき、高容量で、安全性に優れた非水電解質二次電池を提供することである。   A separator that can prevent thermal runaway of a battery when the battery is abnormally heated may cause thermal runaway when the battery is overcharged. Also, a separator that does not cause thermal runaway when overcharged may not prevent thermal runaway of the battery when the battery is abnormally heated. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can prevent both thermal runaway during abnormal heating and thermal runaway when a battery is overcharged, and has a high capacity and excellent safety.

正極と、負極と、2種類のセパレータとが積層され、さらに巻回されて形成された電極巻回体と、非水電解液とを含む非水電解質二次電池において、該電極巻回体が負極の外周側には透気度が180sec/100cm3以上の第1のセパレータが、負極の内周側には透気度が120sec/100cm3以下の第2のセパレータが用いられていることを特徴とする非水電解質二次電池である。 In a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and two types of separators stacked and further wound to form a non-aqueous electrolyte, the non-aqueous electrolyte secondary battery includes: The first separator having an air permeability of 180 sec / 100 cm 3 or more is used on the outer peripheral side of the negative electrode, and the second separator having an air permeability of 120 sec / 100 cm 3 or less is used on the inner peripheral side of the negative electrode. This is a non-aqueous electrolyte secondary battery.

本発明は、充電時にリチウムイオンが集中する負極の外周側には透気度が180sec/100cm3以上の第1のセパレータを配置し、内周側には透気度が120sec/100cm3以下の第2のセパレータを配置することで、電池が過充電状態に陥った際に熱暴走が発生せず、異常加熱された際にも電池の熱暴走を防止できる、安全性に優れた非水電解質二次電池を提供することができる。 In the present invention, the first separator having an air permeability of 180 sec / 100 cm 3 or more is disposed on the outer peripheral side of the negative electrode where lithium ions concentrate during charging, and the air permeability is 120 sec / 100 cm 3 or less on the inner peripheral side. By disposing the second separator, no thermal runaway occurs when the battery falls into an overcharged state, and it can prevent thermal runaway of the battery even when heated abnormally. A secondary battery can be provided.

以下、本発明の実施の形態を説明する。
本発明の実施形態は、正極と、負極と、2種類のセパレータとが積層され、さらに巻回されて形成された電極巻回体と、非水電解液とを含む非水電解質二次電池において、該電極巻回体が負極の外周側には透気度が180sec/100cm3以上の第1のセパレータが、内周側には透気度が120sec/100cm3以下の第2のセパレータが用いられていることを特徴とする。
透気度の測定はJIS P8117の透気度試験方法に準拠して測定した。
Embodiments of the present invention will be described below.
An embodiment of the present invention is a nonaqueous electrolyte secondary battery including an electrode winding body formed by laminating a positive electrode, a negative electrode, and two types of separators, and further wound, and a nonaqueous electrolytic solution. The electrode winding body uses a first separator having an air permeability of 180 sec / 100 cm 3 or more on the outer peripheral side of the negative electrode, and a second separator having an air permeability of 120 sec / 100 cm 3 or less on the inner peripheral side. It is characterized by being.
The air permeability was measured according to the air permeability test method of JIS P8117.

また、第1のセパレータと第2のセパレータの平均厚さは厚いと電池容量が小さくなり、内部抵抗も大きくなるため、ともに25μm以下が好ましく、より好ましくは22μm以下、さらに好ましくは20μm以下である。また、電池の高容量化および負荷特性の向上のためにはセパレータの厚さは薄いほどよいが、機械的強度、電解液保持、短絡防止等を良好に維持するためには、平均厚さはともに8μm以上であることが好ましい。   Further, when the average thickness of the first separator and the second separator is large, the battery capacity is reduced and the internal resistance is also increased. Therefore, both are preferably 25 μm or less, more preferably 22 μm or less, and further preferably 20 μm or less. . In order to increase the battery capacity and improve the load characteristics, the thinner the separator, the better.However, in order to maintain good mechanical strength, electrolyte retention, short circuit prevention, etc., the average thickness is Both are preferably 8 μm or more.

また、第1のセパレータの透気度は180sec/100cm3以上が好ましい。また、400sec/100cm3以下が好ましく、300sec/100cm3以下がより好ましい。透気度が大きすぎるとリチウムイオン伝導性が低下するために電池用セパレータとしての機能が低下し、小さすぎると機械的強度が低下するので上記範囲とすることが好ましい。また、空孔率は小さすぎると電池用セパレータとしての機能が低下し、また大きすぎると機械的強度が低下するので、60%以下が好ましく、55%以下がより好ましい。一方、30%以上が好ましく、35%以上がより好ましい。この範囲であれば、内部短絡を抑制しつつ負荷特性を向上できる。 The air permeability of the first separator is preferably 180 sec / 100 cm 3 or more. And is preferably 400 sec / 100 cm 3 or less, 300 sec / 100 cm 3 or less is more preferable. When the air permeability is too high, the lithium ion conductivity is lowered, so that the function as a battery separator is lowered. When the air permeability is too small, the mechanical strength is lowered. Moreover, since the function as a battery separator will fall when a porosity is too small, and mechanical strength will fall when too large, 60% or less is preferable and 55% or less is more preferable. On the other hand, 30% or more is preferable, and 35% or more is more preferable. If it is this range, a load characteristic can be improved, suppressing an internal short circuit.

第2のセパレータの透気度は120sec/100cm3以下が好ましく、100sec/100cm3以下がより好ましい。また、50sec/100cm3以上が好ましく、80sec/100cm3以上がより好ましい。 Air permeability is preferably 120 sec / 100 cm 3 or less of the second separator, 100 sec / 100 cm 3 or less is more preferable. Moreover, 50 sec / 100 cm < 3 > or more is preferable and 80 sec / 100 cm < 3 > or more is more preferable.

その空孔率は60%以下が好ましく、55%以下がより好ましい。一方、30%以上が好ましく、40%以上がより好ましい。この範囲であれば、内部短絡を抑制しつつ負荷特性を向上できる。   The porosity is preferably 60% or less, and more preferably 55% or less. On the other hand, 30% or more is preferable and 40% or more is more preferable. If it is this range, a load characteristic can be improved, suppressing an internal short circuit.

上記第1と第2のセパレータとしては、例えば不織布や微孔性フィルムを用いることができる。不織布の材質としては、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどが使用できる。微孔性フィルムの材質としては、例えば、ポリプロピレン、ポリエチレン、エチレン−プロピレン共重合体などが使用できる。また、セパレータは、強度が十分でしかも電解液を多く保持できるものが好ましい。また、熱収縮を抑えるため、あらかじめ100℃程度の温度でセパレータを熱処理しておいてもよい。   As said 1st and 2nd separator, a nonwoven fabric and a microporous film can be used, for example. As a material of the nonwoven fabric, for example, polypropylene, polyethylene, polyethylene terephthalate, polybutylene terephthalate and the like can be used. As a material for the microporous film, for example, polypropylene, polyethylene, ethylene-propylene copolymer, and the like can be used. Further, the separator is preferably one having sufficient strength and capable of holding a large amount of electrolyte. In order to suppress thermal shrinkage, the separator may be heat-treated at a temperature of about 100 ° C. in advance.

また、この電極巻回体は円筒状または略長円筒形状に形成され、電極巻回体を金属缶からなる外装体に収納することができる。従って、電池の形状としては、円筒型電池または角型電池のいずれであってもよい。また、一部にR形状を有する角形電池や、一部に平坦部を有する円筒型電池でも問題はない。   Moreover, this electrode winding body is formed in a cylindrical shape or a substantially long cylindrical shape, and the electrode winding body can be accommodated in an exterior body made of a metal can. Therefore, the shape of the battery may be either a cylindrical battery or a square battery. Further, there is no problem even in a rectangular battery having a part of R shape and a cylindrical battery having a flat part in part.

本実施形態で使用する正極活物質としては、特にその種類は限定されないが、充電時の開路電圧がLi基準で4V以上を示すLiCoO2などのリチウムコバルト酸化物、LiMnO2などのリチウムマンガン酸化物、LiNiO2などのリチウムニッケル酸化物のようなリチウム含有複合酸化物や、これらを基本構造とする複合酸化物、例えば、異種金属元素との置換品などを単独でまたは2種以上の混合物、あるいはそれらの固溶体などを用いることができる。これにより電池の高エネルギー密度化を図ることができる。 As the positive electrode active material used in the present embodiment, in particular but the type is not limited, lithium cobalt oxides of the open circuit voltage during charging and LiCoO 2 showing a 4V or more based on Li, lithium-manganese oxides such as LiMnO 2 Lithium-containing composite oxides such as lithium nickel oxides such as LiNiO 2 , composite oxides having these as basic structures, for example, substitution products with different metal elements, or a mixture of two or more thereof, or Those solid solutions can be used. This can increase the energy density of the battery.

また、正極は、例えば、上記正極活物質を含み、必要に応じて鱗片状黒鉛、カーボンブラックなどの導電助剤を含み、さらにバインダーを含むペーストを正極集電体上に塗布して乾燥し、正極集電体上に少なくとも正極活物質とバインダーを含有する塗膜を形成する工程を経て作製される。正極活物質を含むペーストの調製にあたっては、バインダーはあらかじめ溶剤に溶解させた溶液として用い、その溶液と正極活物質などの固体粒子とを混合して調製することが好ましい。   Further, the positive electrode includes, for example, the positive electrode active material, and optionally includes a conductive auxiliary such as flaky graphite and carbon black, and further, a paste containing a binder is applied onto the positive electrode current collector and dried. It is produced through a step of forming a coating film containing at least a positive electrode active material and a binder on the positive electrode current collector. In preparing the paste containing the positive electrode active material, the binder is preferably used as a solution previously dissolved in a solvent, and the solution is mixed with solid particles such as the positive electrode active material.

負極に用いる材料としては、リチウムイオンをドープ(吸蔵)、脱ドープ(放出)することができるものであればよく、本発明ではそのようなリチウムイオンをドープ、脱ドープすることができる物質を負極活物質という。この負極活物質としては、特にその種類は限定されないが、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素質材料、アルミニウム、ケイ素、錫、インジウムなどとリチウムとの合金、またはリチウムに近い低電圧で充放電できるケイ素、錫、インジウムなどの酸化物などを用いることができる。   Any material can be used for the negative electrode as long as it can dope (occlude) and dedope (release) lithium ions. In the present invention, a material capable of doping and dedoping such lithium ions is used as the negative electrode. It is called an active material. The type of the negative electrode active material is not particularly limited. For example, graphite, pyrolytic carbons, cokes, glassy carbons, sintered organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, etc. Carbonaceous materials, aluminum, silicon, tin, indium, etc. and lithium alloys, or oxides such as silicon, tin, indium, etc. that can be charged and discharged at a low voltage close to lithium can be used.

負極は、上記負極活物質、バインダーなどからなるペーストを負極集電体上に塗布して乾燥し、負極集電体上に少なくとも負極活物質とバインダーを含有する塗膜を形成する工程を経て作製される。   The negative electrode is prepared by applying a paste made of the above negative electrode active material, binder, etc. on the negative electrode current collector and drying, and forming a coating film containing at least the negative electrode active material and the binder on the negative electrode current collector. Is done.

負極活物質として炭素質材料を用いる場合、下記の特性を持つものが好ましい。即ち、炭素質材料の結晶の(002)面の面間距離(d002)は0.350nm以下が好ましく、より好ましくは0.345nm以下、さらに好ましくは0.340nm以下である。また、そのc軸方向の結晶子の大きさ(Lc)は3nm以上が好ましく、より好ましくは8nm以上、さらに好ましくは25nm以上である。さらに、その炭素質材料の平均粒径は10μm〜30μmが好ましく、特に15μm〜25μmがより好ましく、また、炭素質材料全体に対する純炭素成分の割合は99.9質量%以上が好ましい。 When using a carbonaceous material as a negative electrode active material, what has the following characteristic is preferable. That is, the distance (d 002 ) between the (002) planes of the crystal of the carbonaceous material is preferably 0.350 nm or less, more preferably 0.345 nm or less, and further preferably 0.340 nm or less. The crystallite size (Lc) in the c-axis direction is preferably 3 nm or more, more preferably 8 nm or more, and further preferably 25 nm or more. Furthermore, the average particle diameter of the carbonaceous material is preferably 10 μm to 30 μm, more preferably 15 μm to 25 μm, and the ratio of the pure carbon component to the whole carbonaceous material is preferably 99.9% by mass or more.

上記正極および負極に使用されるバインダーとしては、熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類などを1種、または2種以上の混合物として用いることができる。具体的には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、エチレン−プロピレン−ジエン共重合体、スチレンブタジエンゴム、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリビニルピロリドン、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、ポリビニルピリジン、クロロスルホン化ポリエチレン、ラテックス、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ポリビニルアルコール、カルボキシメチルセルロースやヒドロキシプロピルセルロースなどのセルロース樹脂、などが挙げられる。   As the binder used for the positive electrode and the negative electrode, a thermoplastic resin, a polymer having rubber elasticity, a polysaccharide, or the like can be used as one kind or a mixture of two or more kinds. Specifically, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene propylene terpolymer, ethylene-propylene-diene copolymer, styrene butadiene rubber, polybutadiene, butyl rubber, fluoro rubber, polyethylene oxide, polyvinyl pyrrolidone, poly Epichlorohydrin, polyphosphazene, polyacrylonitrile, polystyrene, polyvinyl pyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, cellulose resin such as carboxymethyl cellulose and hydroxypropyl cellulose, etc. It is done.

近年、溶剤として水を用いるバインダーが有機溶剤系のバインダーに比べて少量でも結着効果が大きく、電極の活物質比率を高めることができて容量増加が可能となるため、負極の作製に多く用いられており、特に、スチレン−ブタジエンゴムとカルボキシメチルセルロースの組み合わせが好ましく用いられる。   In recent years, binders that use water as a solvent have a greater binding effect than organic solvent-based binders, and can be increased in capacity by increasing the active material ratio of the electrode. In particular, a combination of styrene-butadiene rubber and carboxymethyl cellulose is preferably used.

正極集電体および負極集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、チタンなどの金属の箔、エキスパンドメタル、網、フォームメタルなどを用いることができる。   As the positive electrode current collector and the negative electrode current collector, for example, a metal foil such as aluminum, copper, nickel, stainless steel, or titanium, an expanded metal, a net, or a foam metal can be used.

正極集電体としては特にアルミニウムを主成分とする箔が好ましく用いられ、そのアルミニウムの純度は98質量%以上99.9質量%以下が望ましい。正極集電体の厚さは5μm〜60μmの範囲が好ましく、特に8μm〜40μmの範囲がより好ましい。また、正極の塗膜(正極合剤層)の厚さとしては、片面あたり30μm〜300μmの範囲が好ましく、特に50μm〜150μmの範囲がより好ましい。   As the positive electrode current collector, a foil mainly composed of aluminum is preferably used, and the purity of the aluminum is desirably 98% by mass or more and 99.9% by mass or less. The thickness of the positive electrode current collector is preferably in the range of 5 μm to 60 μm, and more preferably in the range of 8 μm to 40 μm. The thickness of the positive electrode coating film (positive electrode mixture layer) is preferably in the range of 30 μm to 300 μm, more preferably in the range of 50 μm to 150 μm, per side.

また、負極集電体としては一般に銅箔が用いられ、中でも電解銅箔が好ましく用いられる。負極集電体の厚さは5μm〜60μmの範囲が好ましく、特に8μm〜40μmの範囲がより好ましい。また、負極の塗膜(負極合剤層)の厚さとしては片面あたり30μm〜300μmの範囲が好ましく、特に50μm〜150μmの範囲がより好ましい。   In addition, a copper foil is generally used as the negative electrode current collector, and an electrolytic copper foil is preferably used among them. The thickness of the negative electrode current collector is preferably in the range of 5 μm to 60 μm, and more preferably in the range of 8 μm to 40 μm. The thickness of the negative electrode coating film (negative electrode mixture layer) is preferably in the range of 30 μm to 300 μm, more preferably in the range of 50 μm to 150 μm, per side.

正極および負極の作製にあたって、正極活物質含有ペーストおよび負極活物質含有ペーストを集電体に塗布する際の塗布方法としては、例えば、押出しコーター、リバースローラー、ドクターブレードなどを用いる各種の塗布方法を採用することができる。   In the production of the positive electrode and the negative electrode, as the application method when applying the positive electrode active material-containing paste and the negative electrode active material-containing paste to the current collector, for example, various application methods using an extrusion coater, a reverse roller, a doctor blade, etc. Can be adopted.

本実施形態の非水電解質二次電池では、液状電解質(以下、これを「電解液」という。)を使用することができる。具体的には、有機溶媒に溶質を溶解させた有機溶媒系の非水電解液を用いる。有機溶媒の種類は特に限定されないが、鎖状エステルを主溶媒として用いることが特に好ましい。そのような鎖状エステルとしては、例えば、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、酢酸エチル(EA)、プロピオン酸メチル(MP)などのCOO−結合を有する有機溶媒が挙げられる。この鎖状エステルが電解液の主溶媒であるということは、これらの鎖状エステルが全電解液溶媒中の50体積%より多い体積を占めることを意味しており、鎖状エステルが全電解液溶媒中の65体積%以上を占めることが好ましく、より好ましくは70体積%以上、さらに好ましくは75体積%以上である。   In the non-aqueous electrolyte secondary battery of this embodiment, a liquid electrolyte (hereinafter referred to as “electrolytic solution”) can be used. Specifically, an organic solvent-based nonaqueous electrolytic solution in which a solute is dissolved in an organic solvent is used. The type of the organic solvent is not particularly limited, but it is particularly preferable to use a chain ester as the main solvent. Examples of such chain esters include organic compounds having a COO-bond such as diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), ethyl acetate (EA), and methyl propionate (MP). A solvent is mentioned. The fact that this chain ester is the main solvent of the electrolytic solution means that these chain esters occupy more than 50% by volume in the total electrolyte solution, and the chain ester is the total electrolyte solution. It is preferable to occupy 65% by volume or more in the solvent, more preferably 70% by volume or more, and still more preferably 75% by volume or more.

ただし、電解液の溶媒としては、上記鎖状エステルのみで構成するよりも、電池容量の向上を図るために誘電率の高いエステル、例えば誘電率30以上のエステルを混合して用いることが好ましい。そのような誘電率の高いエステルの全電解液溶媒中で占める量としては10体積%以上が好ましく、特に20体積%以上がより好ましい。   However, as the solvent of the electrolytic solution, it is preferable to mix and use an ester having a high dielectric constant, for example, an ester having a dielectric constant of 30 or more, in order to improve battery capacity, rather than using only the above-mentioned chain ester. The amount of such a high dielectric constant ester in the total electrolyte solvent is preferably 10% by volume or more, and more preferably 20% by volume or more.

誘電率の高いエステルとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(γ−BL)、エチレングリコールサルファイト(EGS)などが挙げられ、特にエチレンカーボネート、プロピレンカーボネートなどの環状構造のもの
が好ましく、特に環状のカーボネートが好ましく、具体的にはエチレンカーボネート(EC)が最も好ましい。
Examples of the ester having a high dielectric constant include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (γ-BL), ethylene glycol sulfite (EGS), and the like. Those having a cyclic structure such as ethylene carbonate and propylene carbonate are preferred, cyclic carbonates are particularly preferred, and ethylene carbonate (EC) is most preferred.

また、上記誘電率の高いエステル以外に併用可能な溶媒としては、例えば、1,2−ジメトキシエタン(1,2−DME)、1,3−ジオキソラン(1,3−DO)、テトラヒドロフラン(THF)、2−メチル−テトラヒドロフラン(2−Me−THF)、ジエチルエーテル(DEE)などが挙げられる。その他にアミン系またはイミド系の有機溶媒や、含イオウ系または含フッ素系の有機溶媒なども用いることができる。   Examples of the solvent that can be used in addition to the ester having a high dielectric constant include 1,2-dimethoxyethane (1,2-DME), 1,3-dioxolane (1,3-DO), and tetrahydrofuran (THF). , 2-methyl-tetrahydrofuran (2-Me-THF), diethyl ether (DEE) and the like. In addition, amine-based or imide-based organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can also be used.

電解液の溶質としては、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC49SO3、LiCF3Co2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCnF2n+1SO3(n≧2)などが単独または2種以上混合して用いられる。特に、LiPF6やLiC49SO3などが、充放電特性が良好なことから好ましい。電解液中における溶質の濃度は特に限定されるものではないが、0.3mol/dm3〜1.7mol/dm3、特に0.4mol/dm3〜1.5mol/dm3程度が好ましい。 The solute of the electrolyte solution, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 Co 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCnF 2n + 1 SO 3 (n ≧ 2) or the like may be used alone or in combination. In particular, LiPF 6 and LiC 4 F 9 SO 3 are preferable because of good charge / discharge characteristics. The concentration of the solute in the electrolytic solution is not particularly limited, 0.3mol / dm 3 ~1.7mol / dm 3, in particular 0.4mol / dm 3 ~1.5mol / dm about 3 are preferred.

また、本実施形態では上記電解液以外にも固体状またはゲル状の電解質を用いることができる。このような電解質としては、無機固体電解質のほか、ポリエチレンオキシド、ポリプロピレンオキシドまたはこれらの誘導体などを主材にした有機固体電解質などを挙げることができる。   In the present embodiment, a solid or gel electrolyte can be used in addition to the electrolytic solution. Examples of such an electrolyte include inorganic solid electrolytes and organic solid electrolytes mainly composed of polyethylene oxide, polypropylene oxide, or derivatives thereof.

本実施形態では、負極のリードは、抵抗溶接、超音波溶接などにより負極集電体の露出部分に溶接されるが、この負極のリードの断面積としては、大電流が流れた場合の抵抗を低減して発熱量を低減させるために0.1mm2以上1.0mm2以下が好ましく、0.30mm2以上0.70mm2以下がより好ましい。負極のリードの材質としてはニッケルが一般に用いられ、銅、チタン、ステンレス鋼なども用いることができるが、負極集電体である銅箔との接着強度を高めるために少なくとも銅または銅合金を構成要素として含む金属材料で構成したものを用いることが望ましい。具体的には、例えば、銅または銅−ニッケル合金などの銅合金、銅または銅合金とニッケルまたはチタンなど他の金属との複合材料などが挙げられ、例えば、銅とニッケルとの二層構造のクラッド材が安価で好適に用いることができる。 In this embodiment, the negative electrode lead is welded to the exposed portion of the negative electrode current collector by resistance welding, ultrasonic welding, or the like, and the cross-sectional area of this negative electrode lead is the resistance when a large current flows. In order to reduce the calorific value, it is preferably 0.1 mm 2 or more and 1.0 mm 2 or less, more preferably 0.30 mm 2 or more and 0.70 mm 2 or less. Nickel is generally used as the negative electrode lead material, and copper, titanium, stainless steel, etc. can be used, but at least copper or a copper alloy is used to increase the adhesive strength with the copper foil as the negative electrode current collector. It is desirable to use a metal material that is included as an element. Specifically, for example, a copper alloy such as copper or a copper-nickel alloy, a composite material of copper or a copper alloy and another metal such as nickel or titanium, and the like, for example, a two-layer structure of copper and nickel The clad material is inexpensive and can be suitably used.

また、正極のリードとしては、電気抵抗が低く高電位に耐えられる金属、例えばアルミニウムで構成したものが好適に用いられる。   Further, as the positive electrode lead, a metal made of a metal having low electric resistance and capable of withstanding a high potential, such as aluminum, is preferably used.

正極および負極のリードは、それぞれスポット溶接や超音波溶接などの方法により取り付けることが好ましい。特に、負極のリードの取り付けは超音波溶接で行うことが望ましい。スポット溶接では接着強度を上げるために印加電流を高くすると銅箔に穴があいたり、接着強度が低下したり、溶接部が酸化されるようなことが生じやすい傾向にあり、インピーダンスが増大する恐れがあるからである。   The positive and negative electrode leads are preferably attached by methods such as spot welding and ultrasonic welding. In particular, it is desirable to attach the negative electrode lead by ultrasonic welding. In spot welding, if the applied current is increased to increase the adhesive strength, the copper foil tends to have holes, the adhesive strength is reduced, or the weld is likely to be oxidized, which may increase the impedance. Because there is.

次に、本発明を角型電池に用いた場合の実施形態を図面に基づき説明する。図1は、本実施形態の非水電解質二次電池を模式的に示す断面図である。図2は、図1のA部の拡大図である。なお、図1は、正極リード1cおよび負極リード2cを配置する位置を説明するためのものであり、現実の電極巻回体4では正極1と負極2との間には、図2に示すように、第1、第2のセパレータ3a、3bが存在しているが、この図1では繁雑化を避けるため簡略化してセパレータの図示を省略している。   Next, an embodiment when the present invention is used for a square battery will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing the nonaqueous electrolyte secondary battery of the present embodiment. FIG. 2 is an enlarged view of a portion A in FIG. FIG. 1 is for explaining the positions where the positive electrode lead 1c and the negative electrode lead 2c are arranged. In the actual electrode winding body 4, as shown in FIG. In addition, the first and second separators 3a and 3b exist, but in FIG. 1, the separator is not shown and is simplified to avoid complication.

図1、図2において、本実施形態の非水電解質二次電池は、正極1と、負極2と、第1のセパレータ3aと、第2のセパレータ3bとを備えており、第1のセパレータ3aと第2のセパレータ3bには電解液が含浸されている。また、正極1と、第1のセパレータ3aと、負極2と、第2のセパレータ3bとがこの順番に積層されて巻回されて電極巻回体4を形成している。   1 and 2, the nonaqueous electrolyte secondary battery of the present embodiment includes a positive electrode 1, a negative electrode 2, a first separator 3a, and a second separator 3b, and the first separator 3a. The second separator 3b is impregnated with an electrolytic solution. The positive electrode 1, the first separator 3 a, the negative electrode 2, and the second separator 3 b are stacked and wound in this order to form the electrode winding body 4.

正極1は、正極集電体1aの両面に正極合剤層1bを塗布して形成されている。だだし、電極巻回体4の最外面に位置する正極1は、正極集電体1aの内面にのみ正極合剤層1bを形成して、正極集電体1aの外面は露出している。この露出した正極集電体1aは外装体5の内面に電気的に接触している。さらに、電極巻回体4の最外面に位置する正極1の端部近傍では、正極集電体1aの両面ともに正極合剤層1bが形成されておらず、その正極1の端部近傍に正極リード1cが取り付けられている。   The positive electrode 1 is formed by applying a positive electrode mixture layer 1b to both surfaces of a positive electrode current collector 1a. However, the positive electrode 1 located on the outermost surface of the electrode winding body 4 forms the positive electrode mixture layer 1b only on the inner surface of the positive electrode current collector 1a, and the outer surface of the positive electrode current collector 1a is exposed. The exposed positive electrode current collector 1 a is in electrical contact with the inner surface of the exterior body 5. Further, in the vicinity of the end portion of the positive electrode 1 located on the outermost surface of the electrode winding body 4, the positive electrode mixture layer 1 b is not formed on both surfaces of the positive electrode current collector 1 a, and the positive electrode 1 is formed in the vicinity of the end portion of the positive electrode 1. A lead 1c is attached.

負極2は、負極集電体2aの両面に負極合剤層2bを塗布して形成されている。だだし、電極巻回体4の最内面に位置する負極2は、負極集電体2aの内面にのみ負極合剤層2bを形成して、負極集電体2aの外面は露出している。さらに、電極巻回体4の最内面に位置する負極2の端部近傍では、負極集電体2aの両面ともに負極合剤層2bが形成されておらず、その負極2の端部近傍に負極リード2cが取り付けられている。   The negative electrode 2 is formed by applying a negative electrode mixture layer 2b on both surfaces of a negative electrode current collector 2a. However, the negative electrode 2 located on the innermost surface of the electrode winding body 4 forms the negative electrode mixture layer 2b only on the inner surface of the negative electrode current collector 2a, and the outer surface of the negative electrode current collector 2a is exposed. Further, in the vicinity of the end of the negative electrode 2 located on the innermost surface of the electrode winding body 4, the negative electrode mixture layer 2 b is not formed on both surfaces of the negative electrode current collector 2 a, and the negative electrode near the end of the negative electrode 2 A lead 2c is attached.

以下、実施例に基づき本発明をより具体的に説明する。ただし、本発明は以下の実施例のみに限定されるものではない。
以下のようにして、図1、図2に示した構造と同様の非水電解質二次電池を作製した。
Hereinafter, based on an Example, this invention is demonstrated more concretely. However, the present invention is not limited only to the following examples.
A non-aqueous electrolyte secondary battery having the same structure as that shown in FIGS. 1 and 2 was produced as follows.

コバルト酸リチウム92質量部、アセチレンブラック3質量部、ポリフッ化ビニリデン5質量部を、N−メチル−2−ピロリドンを溶剤としてプラネタリーミキサーで混合して正極合剤含有塗料を調製した。得られた正極合剤含有塗料をブレードコーターにて厚さ20μmのアルミニウム箔からなる集電体上に間欠塗布し、乾燥し、プレス工程を経た後、所定サイズに切断して、シート状の正極を得た。また、正極にはアルミニウム製のリードを超音波溶接により取り付けた。   92 parts by mass of lithium cobaltate, 3 parts by mass of acetylene black, and 5 parts by mass of polyvinylidene fluoride were mixed with a planetary mixer using N-methyl-2-pyrrolidone as a solvent to prepare a positive electrode mixture-containing paint. The obtained positive electrode mixture-containing paint is intermittently applied onto a current collector made of an aluminum foil having a thickness of 20 μm by a blade coater, dried, subjected to a pressing step, cut into a predetermined size, and a sheet-like positive electrode Got. In addition, an aluminum lead was attached to the positive electrode by ultrasonic welding.

次に、負極として、高密度人造黒鉛(d002:0.336nm、Lc:100nm)97.5質量部、カルボキシメチルセルロース水溶液(濃度1質量%、粘度1500mPa・s〜5000mPa・s)1.5質量部、スチレン−ブタジエンゴム1質量部を、比伝導度が2.0×105Ω/cm以上のイオン交換水を溶剤としてプラネタリーミキサーで混合して水系負極合剤含有塗料を調製した。得られた水系負極合剤含有塗料をブレードコーターにて厚さ15μmの銅箔上に間欠塗布し、乾燥し、プレス工程を経た後、所定サイズに切断して、シート状の負極を得た。また、負極には、銅とニッケルとのクラッド材製のリードを超音波溶接により取り付けた。 Next, as an anode, high-density artificial graphite (d 002 : 0.336 nm, Lc: 100 nm) 97.5 parts by mass, carboxymethylcellulose aqueous solution (concentration 1% by mass, viscosity 1500 mPa · s to 5000 mPa · s) 1.5 mass A 1 part by weight of styrene-butadiene rubber was mixed with a planetary mixer using ion-exchanged water having a specific conductivity of 2.0 × 10 5 Ω / cm or more as a solvent to prepare a water-based negative electrode mixture-containing paint. The obtained water-based negative electrode mixture-containing paint was intermittently applied onto a 15 μm thick copper foil with a blade coater, dried, subjected to a pressing step, and then cut into a predetermined size to obtain a sheet-like negative electrode. Further, a lead made of a clad material of copper and nickel was attached to the negative electrode by ultrasonic welding.

次に、第1のセパレータとして平均厚さ20μm、透気度180sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレーターと、第2のセパレータとして平均厚さ22μm、透気度80sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレータとを準備した。さらに、上記正極と、上記第1のセパレータと、上記負極と、上記第2のセパレータとをこの順番に積層し、負極の外周側に第1のセパレータが位置し、負極の内周側には第2のセパレータが位置するように巻回し、略長円筒形状の電極巻回体を作製した。 Next, a polyethylene microporous membrane separator having an average thickness of 20 μm, an air permeability of 180 sec / 100 cm 3 and a porosity of 40% as a first separator, and an average thickness of 22 μm and an air permeability of 80 sec / second as a second separator. A polyethylene microporous membrane separator having 100 cm 3 and a porosity of 50% was prepared. Further, the positive electrode, the first separator, the negative electrode, and the second separator are laminated in this order, the first separator is located on the outer peripheral side of the negative electrode, and the inner peripheral side of the negative electrode is It wound so that the 2nd separator might be located, and produced the substantially long cylindrical electrode winding object.

非水電解質としては、エチレンカーボネートとジエチルカーボネートとの体積比1:2の混合溶媒にLiPF6を1mol/dm3の濃度になるように溶解して液状の非水電解質を調製した。 As the non-aqueous electrolyte, a liquid non-aqueous electrolyte was prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 2 to a concentration of 1 mol / dm 3 .

そして、上記電極巻回体を角形のアルミニウム缶からなる外装体内に挿入し、正極リードの端部を蓋部分に溶接し、負極リードの端部を負極の出力端子に溶接し、非水電解質を注入した後、外装体の封止を行って、800mAhの非水電解質二次電池を作製した。この非水電解質二次電池においては、その外装体の内面と正極の最外面のアルミニウム箔からなる集電体とを直接接触させることにより導通させている。   Then, the electrode winding body is inserted into an exterior body made of a rectangular aluminum can, the end of the positive electrode lead is welded to the lid portion, the end of the negative electrode lead is welded to the output terminal of the negative electrode, and the nonaqueous electrolyte is removed. After the injection, the outer package was sealed to produce an 800 mAh non-aqueous electrolyte secondary battery. In this non-aqueous electrolyte secondary battery, the inner surface of the outer package and the current collector made of the aluminum foil on the outermost surface of the positive electrode are brought into electrical contact by direct contact.

第1のセパレータには平均厚さ20μm、透気度180sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレーターを用い、第2のセパレータには平均厚さ20μm、透気度120sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレータを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。 A polyethylene microporous membrane separator having an average thickness of 20 μm, an air permeability of 180 sec / 100 cm 3 and a porosity of 40% is used for the first separator, and an average thickness of 20 μm and an air permeability of 120 sec / A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a polyethylene microporous membrane separator having a porosity of 100 cm 3 and a porosity of 50% was used.

第1のセパレータには平均厚さ22μm、透気度300sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレーターを用い、第2のセパレータには平均厚さ22μm、透気度80sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレータを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。 A polyethylene microporous membrane separator having an average thickness of 22 μm, an air permeability of 300 sec / 100 cm 3 and a porosity of 40% is used for the first separator, and an average thickness of 22 μm and an air permeability of 80 sec / A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a polyethylene microporous membrane separator having a porosity of 100 cm 3 and a porosity of 50% was used.

第1のセパレータには平均厚さ22μm、透気度300sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレーターを用い、第2のセパレータには平均厚さ20μm、透気度120sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレータを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。 A polyethylene microporous membrane separator having an average thickness of 22 μm, an air permeability of 300 sec / 100 cm 3 and a porosity of 40% is used for the first separator, and an average thickness of 20 μm and an air permeability of 120 sec / A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a polyethylene microporous membrane separator having a porosity of 100 cm 3 and a porosity of 50% was used.

第1のセパレータには平均厚さ22μm、透気度400sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレーターを用い、第2のセパレータには平均厚さ22μm、透気度80sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレータを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。 A polyethylene microporous membrane separator having an average thickness of 22 μm, an air permeability of 400 sec / 100 cm 3 and a porosity of 40% is used for the first separator, and an average thickness of 22 μm and an air permeability of 80 sec / A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a polyethylene microporous membrane separator having a porosity of 100 cm 3 and a porosity of 50% was used.

第1のセパレータには平均厚さ22μm、透気度400sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレーターを用い、第2のセパレータには平均厚さ20μm、透気度120sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレータを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。
(比較例1)
A polyethylene microporous membrane separator having an average thickness of 22 μm, an air permeability of 400 sec / 100 cm 3 and a porosity of 40% is used for the first separator, and an average thickness of 20 μm and an air permeability of 120 sec / A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a polyethylene microporous membrane separator having a porosity of 100 cm 3 and a porosity of 50% was used.
(Comparative Example 1)

第1のセパレータと第2のセパレータとしてともに平均厚さ22μm、透気度80sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレータとを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。
(比較例2)
The same procedure as in Example 1 was used except that a polyethylene microporous membrane separator having an average thickness of 22 μm, an air permeability of 80 sec / 100 cm 3 , and a porosity of 50% was used as the first separator and the second separator. A non-aqueous electrolyte secondary battery was produced.
(Comparative Example 2)

第1のセパレータには平均厚さ22μm、透気度80sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレーターを用い、第2のセパレータには平均厚さ20μm、透気度120sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレータを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。
(比較例3)
A polyethylene microporous membrane separator having an average thickness of 22 μm, an air permeability of 80 sec / 100 cm 3 and a porosity of 50% is used for the first separator, and an average thickness of 20 μm and an air permeability of 120 sec / A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a polyethylene microporous membrane separator having a porosity of 100 cm 3 and a porosity of 50% was used.
(Comparative Example 3)

第1のセパレータには平均厚さ22μm、透気度80sec/100cm3、空孔率50%のポリエチレン製微多孔膜セパレーターを用い、第2のセパレータには平均厚さ20μm、透気度180sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレータを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。
(比較例4)
A polyethylene microporous membrane separator having an average thickness of 22 μm, an air permeability of 80 sec / 100 cm 3 and a porosity of 50% is used for the first separator, and an average thickness of 20 μm and an air permeability of 180 sec / A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that a polyethylene microporous membrane separator having a porosity of 100 cm 3 and a porosity of 40% was used.
(Comparative Example 4)

第1のセパレータと第2のセパレータとしてともに平均厚さ20μm、透気度180sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレータとを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。
(比較例5)
Example 1 was used except that a polyethylene microporous membrane separator having an average thickness of 20 μm, an air permeability of 180 sec / 100 cm 3 , and a porosity of 40% was used as the first separator and the second separator. A non-aqueous electrolyte secondary battery was produced.
(Comparative Example 5)

第1のセパレータには平均厚さ22μm、透気度400sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレーターを用い、第2のセパレータには平均厚さ20μm、透気度180sec/100cm3、空孔率40%のポリエチレン製微多孔膜セパレータを用いたこと以外は実施例1と同様にして非水電解質二次電池を作製した。 A polyethylene microporous membrane separator having an average thickness of 22 μm, an air permeability of 400 sec / 100 cm 3 and a porosity of 40% is used for the first separator, and an average thickness of 20 μm and an air permeability of 180 sec / A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that a polyethylene microporous membrane separator having a porosity of 100 cm 3 and a porosity of 40% was used.

上記実施例1〜6および比較例1〜5の電池を用いて、1C(800mA)で4.2Vまで充電し、その後4.2Vで定電圧充電を3時間行い、0.2Cで3Vまで放電して放電容量を測定した。また、実施例1〜6および比較例1〜5の電池それぞれ10個を1Cで12Vまで充電し、熱暴走して電池温度が135℃以上となった電池の個数を調べた。その結果を表1に示す。なお、表1では、135℃以上となった電池の個数nと供試電池の総数(10個)とをn/10の形式で示した。   Using the batteries of Examples 1 to 6 and Comparative Examples 1 to 5, the battery was charged to 4.2 V at 1 C (800 mA), then charged at 4.2 V for 3 hours, and discharged to 3 V at 0.2 C. The discharge capacity was measured. Further, 10 batteries of each of Examples 1 to 6 and Comparative Examples 1 to 5 were charged to 12 V at 1 C, and the number of batteries whose battery temperature became 135 ° C. or higher due to thermal runaway was examined. The results are shown in Table 1. In Table 1, the number n of batteries having a temperature of 135 ° C. or higher and the total number (10) of test batteries are shown in the form of n / 10.

同様に上記実施例1〜6および比較例1〜5の電池を用いて、1C(800mA)で4.2Vまで充電し、その後4.2Vで定電圧充電を3時間行い、0.2Cで3Vまで放電して放電容量を測定し、実施例1〜6および比較例1〜5の電池それぞれ10個を1Cで4.25Vまで充電し、その後4.25Vで定電圧充電を3時間行った後にオーブン中に設置し、室温から150℃まで5℃/minの昇温速度で昇温したあと、150℃で3時間の保持を行なった。その際に熱暴走し電池の表面温度が200℃以上に上昇した電池の個数を調べた。その結果を表1に示す。なお、表1では、200℃以上となった電池の個数nと供試電池の総数(10個)とをn/10の形式で示した。   Similarly, using the batteries of Examples 1 to 6 and Comparative Examples 1 to 5, the battery was charged to 4.2 V at 1 C (800 mA), then constant voltage charging was performed at 4.2 V for 3 hours, and 3 V at 0.2 C. The discharge capacity was measured and 10 batteries of Examples 1 to 6 and Comparative Examples 1 to 5 were charged to 4.25V at 1C and then charged at 4.25V for 3 hours. It was installed in an oven, heated from room temperature to 150 ° C. at a rate of 5 ° C./min, and then held at 150 ° C. for 3 hours. At that time, the number of batteries whose thermal runaway caused the battery surface temperature to rise to 200 ° C. or higher was examined. The results are shown in Table 1. In Table 1, the number n of batteries having reached 200 ° C. or higher and the total number (10) of test batteries are shown in the form of n / 10.

表1からわかるように、実施例1〜6の電池は、1C12V充電および、150℃オーブン中保存ともに熱暴走の発生が見られなかった。一方、比較例1、2の電池では150℃オーブン中保存では電池の表面温度が200℃以上となる熱暴走の発生は見られなかったが、1C、12V充電では電池が熱暴走し、135℃以上になるものがあった。比較例3の電池は、1C、12V充電および、150℃オーブン中保存でいずれも熱暴走が見られた。また、比較例4、5の電池は、1C12V充電では熱暴走せず電池温度は135℃以下であったが、150℃オーブン中保存で熱暴走により電池温度が200℃以上になるものがあった。   As can be seen from Table 1, the batteries of Examples 1 to 6 did not show thermal runaway during 1C12V charging and storage in a 150 ° C. oven. On the other hand, in the batteries of Comparative Examples 1 and 2, when the battery was stored in an oven at 150 ° C., the occurrence of thermal runaway with a battery surface temperature of 200 ° C. or higher was not observed. There was something more than that. The battery of Comparative Example 3 showed thermal runaway in both 1C, 12V charging and storage in an oven at 150 ° C. Further, the batteries of Comparative Examples 4 and 5 did not run out of heat in 1C12V charge, and the battery temperature was 135 ° C. or lower. However, the battery temperature was 200 ° C. or higher due to thermal runaway when stored in a 150 ° C. oven. .

なお、上記実施例では角型電池を用いて本発明を説明したが、円筒型電池を用いても同様の効果が発揮される。   In the above-described embodiment, the present invention has been described using a square battery, but the same effect can be achieved by using a cylindrical battery.

Figure 0004238099
Figure 0004238099

本発明の実施形態における非水電解質二次電池を模式的に示す断面図である。It is sectional drawing which shows typically the nonaqueous electrolyte secondary battery in embodiment of this invention. 図1のA部の拡大図である。It is an enlarged view of the A section of FIG.

符号の説明Explanation of symbols

1 正極
1a 正極集電体
1b 正極合剤層
1c 正極リード
2 負極
2a 負極集電体
2b 負極合剤層
2c 負極リード
3a 第1のセパレータ
3b 第2のセパレータ
4 電極巻回体
5 外装体
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 1b Positive electrode mixture layer 1c Positive electrode lead 2 Negative electrode 2a Negative electrode collector 2b Negative electrode mixture layer 2c Negative electrode lead 3a First separator 3b Second separator 4 Electrode winding body 5 Exterior body

Claims (4)

正極と、負極と、2種類のセパレータとが積層され、さらに巻回されて形成された電極巻回体と、非水電解液とを含む非水電解質二次電池において、前記電極巻回体が、負極の外周側には透気度180sec/100cm3以上の第1のセパレータが、内周側には透気度120sec/100cm3以下の第2のセパレータが用いられていることを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and two types of separators stacked and further wound to form a non-aqueous electrolyte secondary battery, the electrode roll includes: The first separator having an air permeability of 180 sec / 100 cm 3 or more is used on the outer peripheral side of the negative electrode, and the second separator having an air permeability of 120 sec / 100 cm 3 or less is used on the inner peripheral side. Non-aqueous electrolyte secondary battery. 第1のセパレータと第2のセパレータの平均厚みが、それぞれ25μm以下であることを特徴とする請求項1記載の非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the first separator and the second separator each have an average thickness of 25 μm or less. 前記第1のセパレータと、第2のセパレータの空孔率がそれぞれ60%以下であることを特徴とする請求項1または2記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the porosity of each of the first separator and the second separator is 60% or less. 電極巻回体が円筒状または略長円筒形状に形成され、前記電極巻回体が金属缶からなる外装体に収納されていることを特徴とする請求項1乃至3のいずれかに記載の非水電解質二次電池。   The electrode winding body is formed in a cylindrical shape or a substantially long cylindrical shape, and the electrode winding body is housed in an exterior body made of a metal can. Water electrolyte secondary battery.
JP2003320427A 2003-09-11 2003-09-11 Nonaqueous electrolyte secondary battery Expired - Lifetime JP4238099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320427A JP4238099B2 (en) 2003-09-11 2003-09-11 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320427A JP4238099B2 (en) 2003-09-11 2003-09-11 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005093077A JP2005093077A (en) 2005-04-07
JP4238099B2 true JP4238099B2 (en) 2009-03-11

Family

ID=34452380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320427A Expired - Lifetime JP4238099B2 (en) 2003-09-11 2003-09-11 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4238099B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404612B2 (en) * 2002-11-29 2010-01-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4737949B2 (en) * 2004-06-03 2011-08-03 株式会社東芝 Nonaqueous electrolyte secondary battery
KR100833796B1 (en) 2004-11-10 2008-05-30 주식회사 엘지화학 Secondary Battery Having An Improved Thermal Stability
JP5153101B2 (en) * 2005-08-31 2013-02-27 旭化成イーマテリアルズ株式会社 Separator and manufacturing method thereof
JP4284341B2 (en) 2006-07-25 2009-06-24 株式会社東芝 Non-aqueous electrolyte battery, automobile, assist bicycle, motorcycle, rechargeable vacuum cleaner and battery pack
KR102680157B1 (en) * 2017-02-09 2024-06-28 에스케이온 주식회사 Lithium secondary battery

Also Published As

Publication number Publication date
JP2005093077A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP5156406B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4927064B2 (en) Secondary battery
JP4439226B2 (en) Nonaqueous electrolyte secondary battery
JP4517440B2 (en) Lithium ion solid electrolyte secondary battery
JP4414165B2 (en) Electronic component separator and electronic component
JP4031635B2 (en) Electrochemical devices
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JP2015069957A (en) Separator for lithium ion secondary battery and method for manufacturing the same, and lithium ion secondary battery and method for manufacturing the same
JP2007299580A (en) Non-aqueous electrolyte square secondary battery
JP3786349B2 (en) Non-aqueous secondary battery
JP4815845B2 (en) Polymer battery
JP2007149507A (en) Nonaqueous secondary battery
JP4097443B2 (en) Lithium secondary battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP4238099B2 (en) Nonaqueous electrolyte secondary battery
JP2019075278A (en) Laminated structure, lithium secondary battery and method of manufacturing laminated structure
JP4979049B2 (en) Non-aqueous secondary battery
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
JP4563555B2 (en) Lithium secondary battery
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
JP2018067482A (en) Lithium ion secondary battery and method for manufacturing the same
JP2004030938A (en) Nonaqueous electrolyte solution secondary battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2004127599A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Ref document number: 4238099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term