JP4563555B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4563555B2
JP4563555B2 JP2000202541A JP2000202541A JP4563555B2 JP 4563555 B2 JP4563555 B2 JP 4563555B2 JP 2000202541 A JP2000202541 A JP 2000202541A JP 2000202541 A JP2000202541 A JP 2000202541A JP 4563555 B2 JP4563555 B2 JP 4563555B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
polymer
layer
electrolyte layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000202541A
Other languages
Japanese (ja)
Other versions
JP2002025619A (en
Inventor
直人 虎太
直人 西村
主明 西島
武仁 見立
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000202541A priority Critical patent/JP4563555B2/en
Publication of JP2002025619A publication Critical patent/JP2002025619A/en
Application granted granted Critical
Publication of JP4563555B2 publication Critical patent/JP4563555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ポリマー電解質を用いるリチウム二次電池に関し、さらに詳しくは、周囲温度下で可逆的に作動するポリマー電解質を用い、特に正極層と負極層の間に配置されたポリマー電解質層を構成するポリマー電解質のイオン伝導度が、正極層および/または負極層内部のポリマー電解質マトリックス層を構成するそれよりも低いことを特徴とするリチウム二次電池に関するものである。
【0002】
【従来の技術】
ポータブル機器用の電源として経済性などの点から二次電池が多く使われている。二次電池には様々な種類があり、現在最も一般的なのはニッケル−カドミウム電池で、最近になってニッケル水素電池も普及している。さらに、正極にコバルト酸リチウムLiCoO2、ニッケル酸リチウムLiNiO2、これらの固溶体Li(Co1-xNix)O2、あるいはスピネル型構造を有するLiMn24などを、また負極にはLi金属、Li合金あるいは黒鉛などの炭素材料を、また液体の有機化合物を溶媒とし、リチウム化合物を溶質とした電解液を用いたリチウム二次電池は、ニッケル−カドミウム電池やニッケル水素電池よりも出力電圧が高く、高エネルギー密度であるために、特にポータブル機器や携帯情報などの電源として主力になりつつある。
【0003】
このようなリチウム二次電池の電解質には、これまでリチウム塩を有機溶媒に溶かした電解液が用いられてきた。このような電解液は可燃性であるため、その安全性の確保が大きな問題となっている。こうした問題に対して、電解液をポリマー電解質に替えることにより、液漏れや有機溶媒の揮発性を抑えることが可能となり、安全性と信頼性が向上することが分かってきている。
しかしながら、このポリマー電解質を用いた電池は、ポリマー電解質中のイオン伝導度が低いために、リチウムイオンの移動が十分に得られない。そのために、放電容量、特に高負荷放電時の放電容量が低くなる問題があった。
【0004】
ポリマー電解質のイオン伝導度を向上させるために、ポリマーに電解液を添加して保持させたゲル状のポリマー電解質を用いる方法が活発に開発されている。
このゲル状のポリマー電解質は、室温で10-3S/cmのイオン伝導度を有し、電解液に匹敵する高いイオン伝導度を有している。そのために放電容量は高くなるものの、機械的強度が低くなる。このために電池を組み立てる際、電池内で微短絡を生じる確率が増大するという問題があった。
【0005】
負極にリチウム(Li)金属を用いた場合、充電時の短絡を低減するという目的で、以下のような技術がある。特開平8−306389号公報によれば、ポリマー電解質層を数層重ねることにより、短絡の発生を抑制し、特開平8−329983号公報では、負極側のポリマー電解質層のイオン伝導度を高くすることにより、デンドライトの析出を抑えている。しかしながら、これらの技術は電池を組み上げた後の充電時のリチウムデンドライト析出による短絡を抑えるための技術であり、ポリマー電解質を用いた電池を組み立てる際にも、電池内の短絡を防ぐ必要がある。
【0006】
この問題を解決すべく、例えば、特開平10−284125号公報によれば、ゲル状のポリマー電解質が保持された多孔質膜セパレータと、正極と負極とから構成されるポリマー電池において、その多孔質膜セパレータのバブルポイントが0.1〜100kg/cm2であり、かつ膜の空隙率が40〜90%であるものを用いることにより、電池内での短絡が発生するのを抑制しつつ、放電容量の増大が図られることが述べられている。この場合のバブルポイントとは、サンプルの孔内をエタノールで置換した後、ガス圧を徐々に高めていったときに、サンプルの表面から気泡が出始める圧力である。しかしながら、選択された多孔質膜を用いることで改善はされるものの、正極、負極それぞれとポリマー電解質とを複合化した電極を用いておらず、電極を構成する部材とポリマー電解質の界面の接触抵抗が、まだ十分に低減されていない。
【0007】
【発明が解決しようとする課題】
この発明は、電池組み立ての際の電池内での短絡の発生を防ぎつつ、高性能、高エネルギー密度かつ高負荷特性に優れたリチウム二次電池を提供することを課題としている。
【0008】
【課題を解決するための手段】
発明者らは、上記の問題を克服するために、種々検討した結果、ポリマー電解質層を構成するポリマー電解質のイオン伝導度を、電極内部のポリマー電解質マトリックス層を構成するポリマー電解質のそれよりも低くすることにより、電池組み立ての際の電池内での短絡の発生を防ぎつつ、高性能、高エネルギー密度かつ高負荷特性に優れたリチウム二次電池を提供できることを見い出した。
【0009】
この発明は、少なくともリチウム含有金属酸化物または金属酸化物を活物質とする正極層と、Li金属、Li合金または炭素材料を少なくとも活物質とする負極層と、その間に電解液とポリマーとを含むポリマー電解質層が配置されたリチウム二次電池において、正極層および/または負極層が、電解液とポリマーとを含むポリマー電解質マトリックス層を含み、前記ポリマー電解質層を構成するポリマー電解質のイオン伝導度が、前記ポリマー電解質マトリックス層を構成するポリマー電解質のイオン伝導度よりも低く、かつポリマー電解質マトリックス層とポリマー電解質層に含まれる両ポリマーが、ポリエチレンオキシドとポリプロピレンオキシドの共重合体を含有しているジアクリレート由来ポリマーからなることを特徴とする。
【0010】
すなわち、電解質層のポリマー電解質の組成について検討を行ったところ、正極層および/または負極層内部に含ませたポリマー電解質よりもイオン伝導度の低いポリマー電解質をポリマー電解質層に含ませることで、電池組み立ての際の電池内での短絡の発生を防ぎつつ、高性能、高エネルギー密度かつ負荷特性に優れたリチウム二次電池を提供することができることを見いだした。
【0011】
このようにポリマー電解質層に、正極層および/または負極層内部に含ませたポリマー電解質よりも低い伝導度を示すポリマー電解質を用いることで、電解質層の機械的強度が増加するために、電池作製時に電池内での短絡の発生率が低下する。
また、ポリマー電解質層を構成するポリマー電解質のイオン伝導度は、常温で0.1mS/cm以上が好ましい。0.1mS/cmより低い場合は、電池の性能が著しく低下するために好ましくない。より好ましくは、1〜1000mS/cmである。一方、正極層および/または負極層に含まれるポリマー電解質のイオン伝導度は、ポリマー電解質層を構成するポリマー電解質のそれの1.4倍以上であることが好ましく、1.4〜4.1倍であることがより好ましい。
【0012】
この発明は、ポリマー電解質層として、非水系電解液を保持したゲル状のポリマー電解質層を用い、電解質層がポリマー繊維または微多孔膜セパレータを含むことを特徴とする。
ポリマー電解質層の場合、イオン伝導度が電解液に比べて低いので、イオン伝導性を向上させるために、ポリマーマトリックス中に非水電解液の保持されたゲル状のポリマー電解質を用いることで、放電容量、特に高負荷放電時の放電容量の増大が可能になる。しかしながら、ゲル状のポリマー電解質では、機械的強度が低いために、電池組み立て時の短絡の発生率が高くなる。そこでポリマー繊維または微多孔膜セパレータにゲル状のポリマー電解質を保持させることにより、放電容量、特に高負荷放電時の放電容量の増大が可能になり、かつ電池組み立て時の短絡の発生も抑えることができるので好ましい。
【0013】
ポリマーマトリックス層を構成するイオン伝導性高分子(ポリマー電解質)とリチウム塩含有非水電解液の重量比は、2:98よりもイオン伝導性高分子が多いことが好ましい。すなわち、イオン伝導性高分子の重量比が2よりも小さくなると、非水電解液を十分に保持することができなくなり、ゲル状のポリマー電解質から非水電解液がしみ出すので好ましくない。
【0014】
また、ポリマー繊維として、ポリプロピレン繊維、ポリエチレン繊維、あるいはポリエステル繊維が使用可能であり、微多孔膜セパレータとして、ポリオレフィン系微多孔膜が使用可能である。これらは非水電解液に対して化学的に安定であるために好ましい。上記ポリマー繊維、微多孔膜セパレータ厚みとしては、上記と同じ理由から、150μm以下が好ましく、さらには20μm以下が好ましい。
【0015】
この発明は、リチウム二次電池の負極活物質が炭素材料であり、特に黒鉛粒子の表面に非昌質炭素を付着させたものであることを特徴とする。
負極活物質がリチウムイオンの吸蔵−放出過程を利用した炭素材料であるため、充電時にデンドライト状リチウムの析出などがなく、電池の短絡などが激減し、安全性が向上する。特に、負極活物質が表面に非晶質炭素を付着した黒鉛粒子であるため、イオン伝導性高分子からなる電解質層の分解を防ぐことが可能であるため、漏液がなくなり、ひいては長期信頼性が向上する。
【0016】
ポリマー電解質層または電極内部のポリマー電解質は、イオン伝導性高分子とLi塩とを含んでなり、任意にポリマー繊維または微多孔膜セパレータと含む場合もある。さらにポリマーを改質することにより優れたポリマー電解質が得られる。例えば、他のポリマーと共重合あるいはブレンド、あるいはポリマーの主骨格に他のポリマーをグラフト重合した櫛状構造のポリマーなどが挙げられるものの、特に限定されない。イオン伝導性高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンオキシドとポリプロピレンオキシドの混合物、エチレンオキシドとプロピレンオキシドの共重合体、アルキレンオキシドを構成成分に末端基にビニル基を含むPEO系ポリマーの重合体、アルキレンオキシド−アクリロニトリル共重合体、ジアクリレート、トリアクリレート系の多官能基を有する共重合体などが挙げられる。
【0017】
Li塩は、LiBF4、LiPF6、LiClO4、LiCF3SO3あるいはLiN(CF3SO22の少なくとも1種が好ましいがこれに限定されるものではない。
またイオン伝導性高分子は、有機溶媒とLi塩を含有させることで、ゲルとしても用いることができる。上記有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状炭酸エステル;γ−ブチロラクトン(GBL)などの環状エステル;プロピオン酸メチル、プロピオン酸エチルなどの鎖状エステル;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)などの鎖状炭酸エステル;テトラヒドロフランまたはその誘導体、1,3−ジオキサン、1,2−ジメトキシエタン、メチルジグライムなどのエーテル類;アセトニトリル、ベンゾニトリルなどのニトリル類;ジオキソランまたはその誘導体;スルホランまたはその誘導体などの単独またはそれら2種以上の混合物などが挙げられる。しかしこれらに限定されるものではない。また、その配合割合および配合方法は限定されるものではない。
【0018】
特に、ECからなる溶媒にPC、GBL、EMC、DMCあるいはDECから選ばれる1種以上の溶媒を混合した混合有機溶媒にLi塩を溶解した有機電解液を含むゲルであることが、表面に非晶質炭素が付着した黒鉛系の炭素材料を活物質とする負極での分解が少ないことから好ましい。
【0019】
電解質層に加えるポリマー繊維または微多孔膜セパレータは、透気度が1〜500sec/cm3の物性を有する不織布であることが好ましい。透気度が1sec/cm3より低いとイオン伝導度が十分に得られず、500sec/cm3よりも高いと機械的強度が十分ではなく、電池の短絡を引き起こしやすいので好ましくない。さらに、電解質層を構成するイオン伝導性高分子とポリマー繊維または微多孔膜セパレータの重量比率が91:9〜50:50の範囲が適当である。
イオン伝導性高分子の重量比率が91よりも高いと機械的に強度が十分に得られず、50よりも低いとイオン伝導度が十分に得られないので好ましくない。
【0020】
正極層および/または負極層内部のポリマー電解質マトリックス層、またその間に配するポリマー電解質層は、液体状態のこれら電解質前駆体をこれらの電極内、ポリマー繊維または微多孔膜セパレータ内に含浸させた後、活性光線あるいは熱で架橋させる、あるいは溶剤を除去することによって作製することができる。正極層と負極層の間に配する電解質層は単一層構造である必要はなく、この電解質層内で多層構造を持っていてもよい。また、正極層と電解質層あるいは負極層と電解質層間の溶媒の拡散防止や、各電解質層界面での密着性を上げるために、電解質層の表面に処理を施してもよい。
【0021】
また、架橋に際しては、必要であれば重合開始剤を用いることも重要である。
特に紫外線あるいは加熱による架橋方法においては、数%以下の重合開始剤を加えることが好ましい。重合開始剤としては、2,2−ジメトキシ−2−フェニルアセトフェノン(DMPA)、ベンゾイルパ−オキシド(BPO)などの市販品を用いることができる。また、紫外線の波長は250〜365nmが適当である。
【0022】
電解質溶媒中に水分が含まれていると、電池の充放電時に水分と溶媒との副反応が生じるために電池自身の効率低下やサイクル寿命の低下を招いたり、ガスが発生するなどの問題点が生ずる。このために、電解質溶媒の水分は極力少なくする必要がある。このため、場合によっては電解質溶媒を、モレキュラーシーブ、アルカリ金属、アルカリ土類金属、あるいは活性アルミニウムなどを用いて脱水してもよい。水分量は、1000ppm以下、好ましくは100ppm以下である。
【0023】
この発明のリチウム二次電池の電極を構成するためには、正極活物質として遷移金属酸化物あるいはリチウム含有金属酸化物の粉末と、これに導電剤、結着剤および場合によっては、固体電解質を混合して形成される。遷移金属酸化物としては酸化バナジウムV25、酸化クロムCr38などがあげられる。リチウム含有金属酸化物としては、リチウム酸コバルト(LixCoO2:0<x<2)、リチウム酸ニッケル(LixNiO2:0<x<2)、リチウム酸ニッケルコバルト複合酸化物(Lix(Ni1-yCoy)O2:0<x<2,0<y<1)、リチウム酸マンガン(LixMn24:0<x<2,LixMnO2:0<x<2)、リチウム酸バナジウムLiV25,LiVO2、リチウム酸タングステンLiWO3、リチウム酸モリブデンLiMoO3などが挙げられる。
【0024】
導電剤にはアセチレンブラック、グラファイト粉末などの炭素材料や、金属粉末、導電性セラミックスを用いることができる。結着剤にはポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマー、ポリエチレン、ポリプロピレンなどのポリオレフィン系ポリマーなどを用いることができる。これらの混合比は遷移金属酸化物またはリチウム含有金属酸化物100重量部に対して、導電剤を1〜50重量部、結着剤を1〜30重量部とすることができる。導電剤が1重量部より少ないと電極の抵抗あるいは分極が大きくなり、電極としての容量が小さくなるために実用的なリチウム二次電池が構成できない。また導電剤が50重量部より大きいと電極内の遷移金属酸化物またはリチウム含有金属酸化物の量が減少するために容量が小さくなり好ましくない。結着剤が1重量部より少ないと、結着能力がなくなっていまい、電極が構成できなくなる。また結着剤が30重量部より大きいと、電極の抵抗あるいは分極が大きくなり、かつ電極内の遷移金属酸化物またはリチウム含有金属酸化物の量が減少するために容量が小さくなり実用的ではない。
【0025】
これらの混合物を集電体に圧着または、N−メチル−2−ピロリドンなどの溶剤に溶かしスラリー状にし、これを集電体に塗布し乾燥させた後に、有機電解質、イオン伝導性高分子の前駆体と開始剤の混合物を含浸させ、光照射あるいは熱によって固体化することで正極を構成できる。あるいは、正極材料と導電材と有機電解液および開始剤を混合し、これらを光照射あるいは熱によって固体化させてもよい。集電体には金属箔、金属メッシュ、金属不織布などの導電性体が使用できる。
【0026】
また、この発明の非水系二次電池における負極は、金属リチウム、リチウムアルミニウムなどのリチウム合金や、リチウムイオンを挿入・脱離できる物質、例えばポリアセチレン、ポリチオフェン、ポリパラフェニレンなどの導電性高分子、熱分解炭素、触媒の存在下で気相分解された熱分解炭素、ピッチ、コークス、タールなどから焼成された炭素、セルロース、フェノール樹脂などの高分子を焼成して得られる炭素、天然黒鉛、人造黒鉛、膨張黒鉛などの黒鉛材料、リチウムイオンを挿入・脱離反応しうるWO2、MoO2など物質単独またはこれらの複合体を用いることができる。中でも黒鉛の粒子の表面に非晶質炭素を付着させた炭素材料が好ましい。
【0027】
これらの混合物を集電体に圧着または、N−メチル−2−ピロリドンなどの溶剤に溶かしスラリー状にし、これを集電体に塗布し乾燥させた後に、有機電解質、イオン伝導性高分子の前駆体と開始剤の混合物を含浸させ、光照射あるいは熱によって固体化することで負極を構成できる。あるいは、これらの混合物と有機電解液およびイオン伝導性高分子の前駆体などを混合し、これらを光照射あるいは熱によって固体化させてもよい。集電体には金属箔、金属メッシュ、金属不織布などの導電性体が使用できる。
【0028】
この発明における非水系二次電池は、上記正極層と集電体、および負極層と集電体をそれぞれ外部電極に接合し、さらにこれらの間に上記の電解質層を介在させて構成される。この発明の二次電池の形状は、特に限定されず、円筒型、ボタン型、角形、シート状などがあげられるがこれらに限定されない。また、外装材としては金属、Alラミネート樹脂フィルムなどが挙げられる。これらの、電池の製造工程は、水分の浸入を防止するために、アルゴンなどの不活性雰囲気中かまたは乾燥した空気中で行うことが好ましい。
【0029】
【実施例】
以下実施例により具体的にこの発明を説明するが、この発明はこれによりなんら制限されるものではない。
以下のすべての実施例および比較例で使用するイオン伝導性高分子の前駆体(ポリマー電解質の前駆体)には、ポリエチレンオキシドとポリプロピレンオキシドの共重合体を含有しているジアクリレートモノマーを用い、前駆体を最大出力波長365nmの紫外線の照射により架橋し、重合開始剤としてDMPAを前駆体の0.1重量%使用した。
【0030】
まず図1にこの発明で作製した電池の基本的な構造を示す。1は電極端子、2は正極層側と負極層側に含まれるポリマー電解質よりもイオン伝導性が低いポリマー電解質層、3は正極材料とポリマー電解質、4は正極集電体、5は負極集電体、6は負極材料とポリマー電解質、そして7は電池を外気から遮断するためのAlラミネート樹脂フィルム製外装材である。
【0031】
・ポリマー電解質層の作製
以下にポリマー電解質層の作製方法を示す。
ポリマー電解質層1
ポリマー電解質の前駆体であるポリエチレンオキシドとポリプロピレンオキシドの共重合体を含有しているジアクリレートモノマーに、LiPF6を4.5重量%になるように溶解したものを面積10cm2の石英ガラス基板にキャストし、厚さ50μmのスペーサーをかまし、その上に石英ガラス基板を載せて固定し、38mW/cm2の強度で紫外線を2分間照射した。得られたポリマー電解質層の厚さは50μmであった。
【0032】
ポリマー電解質層2
まずLiPF6をECとGBLの混合溶媒(EC含有率35重量%)に13重量%になるように溶解した電解液を調製し、その電解液と、ポリマー電解質の前駆体であるポリエチレンオキシドとポリプロピレンオキシドの共重合体を含有しているジアクリレートモノマーを重量比で90:10になるように調製した。その混合溶液を面積10cm2の石英ガラス基板にキャストし、厚さ50μmのスペーサーをかまし、その上に石英ガラス基板を載せて固定し、38mW/cm2の強度で紫外線を2分間照射した。得られたゲル状のポリマー電解質層の厚さは50μmであった。
【0033】
ポリマー電解質層3
まずLiPF4をECとPCの混合溶媒(PC含有率35重量%)に13重量%になるように溶解した電解液を調製し、その電解液と、ポリマー電解質の前駆体であるポリエチレンオキシドとポリプロピレンオキシドの共重合体を含有しているジアクリレートモノマーを重量比で90:10になるように調製した。その混合溶液を面積10cm2の石英ガラス基板にキャストし、厚さ50μmのスペーサーをかまし、その上に石英ガラス基板を載せて固定し、38mW/cm2の強度で紫外線を2分間照射した。得られたゲル状のポリマー電解質層の厚さは50μmであった。
【0034】
ポリマー電解質層4
まずLiPF4をECとPCの混合溶媒(PC含有率35重量%)に13重量%になるように溶解した電解液を調製し、その電解液と、ポリマー電解質の前駆体であるポリエチレンオキシドとポリプロピレンオキシドの共重合体を含有しているジアクリレートモノマーを重量比で95:5になるように調製した。その混合溶液を面積10cm2の石英ガラス基板にキャストし、厚さ50μmのスペーサーをかまし、その上に石英ガラス基板を載せて固定し、38mW/cm2の強度で紫外線を2分間照射した。得られたゲル状のポリマー電解質層の厚さは50μmであった。
【0035】
ポリマー電解質層5
まずLiPF4をECとPCの混合溶媒(PC含有率35重量%)に13重量%になるように溶解した電解液を調製し、ポリマー電解質の前駆体であるポリエチレンオキシドとポリプロピレンオキシドの共重合体を含有しているジアクリレートモノマーとポリエチレンオキシドとポリプロピレンオキシドの共重合体を含有しているアクリレートモノマーとを重量比で75:25になるように調製した。
その電解液とポリマー電解質の前駆体の混合物を重量比で95:5になるように調製した。その混合液を面積10cm2の石英ガラス基板にキャストし、厚さ50μmのスペーサーをかまし、その上に石英ガラス基板を載せて固定し、38mW/cm2の強度で紫外線を2分間照射した。得られたゲル状のポリマー電解質層の厚さは50μmであった。
【0036】
上記5種類の電解質層の20℃におけるイオン伝導度を表1に示す。
なお、イオン伝導度は次のようにして測定した。
インピーダンス測定は電極にLiを用いて測定した。インピーダンスアナライザーにより、20℃におけるcole−coleプロットから抵抗値を計測し、イオン伝導度を求めた。
【0037】
【表1】

Figure 0004563555
【0038】
以下の実施例、比較例には上記記載の組成の電解質を用いた。
(実施例1)
X線広角回折法による(d002)=0.337nm、(Lc)=100nm、(La)=100nmでBET法による比表面積が10m2/gである人造黒鉛粉末に、結着材としてポリフッ化ビニリデン(PVDF)を9重量%混合し、N−メチル−2−ピロリドン(NMP)を加えて混合溶解して得たペーストを厚さ20μmの圧延銅箔にコーティングし、乾燥およびプレス後、負極を得た。この電極面積は9cm2、厚さ85μmであった。
【0039】
平均粒径7μmのLiCoO2粉末に、結着材としてPVDFを7重量%と、導電材として平均粒径2μmのアセチレンブラック5重量%とを混合し、NMPを加えて混合溶解して得たペーストを厚さ20μmの圧延アルミ箔にコーティングし、乾燥およびプレス後、正極を得た。この電極面積は9cm2、厚さ80μmであった。
【0040】
ポリマー電解質層はポリマー電解質層1と同じ組成のものを用い、面積10cm2の石英ガラス基板に電解質前駆体溶液をキャストし、厚さ20μmのスペーサーをかまし、その上に石英ガラス基板を載せて固定し、38mW/cm2の強度で紫外線を2分間照射した。得られたポリマー電解質層の厚さは20μmであった。
正極層についてはポリマー電解質層2と同じ組成のものを用い、正極を減圧下で5分間放置し、ポリマー電解質前駆体溶液を注液し、さらに15分間放置した。その後、38mw/cm2の強度で紫外線を2分間照射した。得られた正極層はゲル状のポリマー電解質を含み、その厚さは80μmであった。
【0041】
負極層についてはポリマー電解質3と同じ組成のものを用い、負極を減圧下で5分間放置し、ポリマー電解質前駆体溶液を注液し、さらに15分間放置した。
その後、38mw/cm2の強度で紫外線を2分間照射した。得られた負極層はゲル状のポリマー電解質を含み、その厚さは85μmであった。
このようにして得られた正極層とポリマー電解質層と負極層とを逐次貼り合わせ電池を作製した。
【0042】
(比較例1)
ポリマー電解質層はポリマー電解質層4と同じ組成のものを用い、面積10cm2の石英ガラス基板に電解質前駆体溶液をキャストし、厚さ20μmのスペーサーをかまし、その上に石英ガラス基板を載せて固定し、38mW/cm2の強度で紫外線を2分間照射し、ゲル状のポリマー電解質層を作製した。このポリマー電解質層を用いること以外は、実施例1と同様に電池を作製した。
実施例1と比較例1の電池を各々100個ずつ組み立て、短絡チェックを行ったところ、実施例1の電池は短絡数0個、比較例1の電池は短絡数5個であった。以上のことから、電解質層のイオン伝導度が高くても、ポリマー電解質層の機械的強度が十分でないと組み立て時の短絡が発生することが判明した。
【0043】
(実施例2)
正極層および負極層にポリマー電解質層4と同じ組成のものを用いること以外は、実施例1と同様に正極層および負極層を作製した。なお、正極層および負極層は、それぞれゲル状のポリマー電解質を含む。
ポリマー電解質層はポリマー電解質層3と同じ組成のものを用い、そのポリマー電解質前駆体溶液を、透気度380sec/cm3、面積10cm2、厚さ20μmのポリエステル製の不織布に浸漬し、前駆体を不織布内部まで浸透させるため減圧下で15分間放置した。そして38mW/cm2の強度で紫外線を2分間照射することで、ゲル状のポリマー電解質層を得た。この時のポリマー電解質とポリマー繊維との重量比は90:10であった。
このようにして得られた正極層とポリマー電解質層と負極層とを逐次貼り合わせ電池を作製した。
【0044】
(実施例3)
ポリマー電解質層はポリマー電解質層3と同じ組成のものを用い、面積10cm2の石英ガラス基板に電解質前駆体溶液をキャストし、厚さ20μmのスペーサーをかまし、その上に石英ガラス基板を載せて固定し、38mW/cm2の強度で紫外線を2分間照射し、ゲル状のポリマー電解質層を作製した。このポリマー電解質層を用いること以外は、実施例2と同様に電池を作製した。
実施例2と3の電池を各々100個ずつ組み立て、短絡チェックを行ったところ、実施例2の電池は短絡数0個、実施例3の電池は短絡数3個であった。以上のことから、電解質層のイオン伝導度が高くても、ポリマー電解質層の機械的強度が十分でないと組み立て時の短絡が発生することが判明した。特に、ゲル状のポリマー電解質を用いる場合は、ポリマー繊維あるいは微多孔膜セパレータを電解質層中に加えることがより好ましいことが判明した。
【0045】
(実施例4)
正極層および負極層にポリマー電解質層4と同じ組成のものを用いること以外は、実施例1と同様に正極層および負極層を作製した。
ポリマー電解質層はポリマー電解質層3と同じ組成のものを用い、そのポリマー電解質前駆体溶液を、透気度380sec/cm3、面積10cm2、厚さ20μmのポリエステル製の不織布に浸漬し、前駆体を不織布内部まで浸透させるため減圧下で15分間放置した。そして38mW/cm2の強度で紫外線を2分間照射し、ゲル状のポリマー電解質層を作製した。この時のポリマー電解質とポリマー繊維との重量比は90:10であった。
このようにして得られた正極層とポリマー電解質層と負極層とを逐次貼り合わせ電池を作製した。
【0046】
(実施例5)
ポリマー電解質層に、透気度500sec/cm3、面積10cm2、厚150μmのポリエステル製の不織布を用い、ポリマー電解質とポリマー繊維との重量比が95:5であること以外は、実施例4と同様に電池を作製した。
【0047】
(実施例6)
負極活物質に、X線広角回折法による(d002)=0.336nm、(Lc)=100nm、(La)=97nmでBET法による比表面積が2m2/g、平均粒径10μmである表面非晶質黒鉛の粉末を用いること以外は実施例4と同様に電池を作製した。
【0048】
(実施例7(参考例)
正極層および負極層にポリマー電解質層5と同じ組成のものを用いること以外は実施例6と同様に電池を作製した。
【0049】
(実施例8)
ポリマー電解質層に、透気度500sec/cm3、面積10cm2、厚160μmのポリエステル製の不織布を用い、ポリマー電解質とポリマー繊維との重量比が95:5であること以外は、実施例8と同様に電池を作製した。
実施例4、5、8の電池を定電流2.3mAで電池電圧4.1Vになるまで充電し、4.1Vに到達後、定電圧で充電時間12時間充電した。放電は定電流それぞれ2.3mA、5mA、10mA、20mAで電池電圧2.75Vになるまで放電した。この条件での充放電試験の結果を図2に示す。
この試験の結果、電解質層中のポリマー繊維あるいは微多孔膜セパレータの厚みが150μmより薄いと、高負荷放電時の性能が向上し、好ましくは20μm以下であることが判明した。これらより、高エネルギー密度かつ負荷特性に優れたリチウム二次電池が得られることがわかる。
【0050】
また、実施例4、6、7の電池を各々定電流2.3mAで電池電圧4.1Vになるまで充電し、4.1Vに到達後、定電圧で充電時間12時間充電した。放電は定電流2.3mAで電池電圧2.75Vになるまで放電した。この充放電条件でサイクル特性を評価した。その結果を図3に示す。
この結果より、負極活物質に表面非晶質黒鉛の粉末を用いた方がポリマー電解質層との副反応が抑えられるために、サイクル特性が向上することが判明した。
また、正極層、負極層にポリマー電解質のイオン伝導性高分子の前駆体を混合することにより、UV照射時の反応率が向上するために、サイクル特性が向上することがわかる。
【0051】
(実施例9)
Li−Al合金箔を50μm厚のNiメッシュ上に圧着プレスし、シート負極を得た。この電極を31×31mmに切り出し、Ni集電タブを溶接して負極とした。厚みは100μmであった。
二酸化マンガン粉末100重量部、導電剤としてアセチレンブラック10重量部、バインダーとしてPVDF7重量部を乾式混合し、NMP中で撹拌混合し、スラリーを得た。このスラリーを20μm厚のAl箔にコーティングし、NMPを乾燥除去した後、プレスしてシート状正極を得た。この電極を30×30mmに切り出し、Al集電タブを溶接して正極とした。厚みは70μmであった。
ポリマー電解質層および正極層、さらに電池を実施例2と同様に作製した。
【0052】
(実施例10(参考例)
ポリマー電解質層にポリマー電解質層3と同じ組成のものを用い、面積10cm2の石英ガラス基板に電解質前駆体溶液をキャストし、厚さ20μmのスペーサーをかまし、その上に石英ガラス基板を載せて固定し、38mW/cm2の強度で紫外線を2分間照射し、ゲル状のポリマー電解質層を作製した。このポリマー電解質層を用いること以外は、実施例7と同様に電池を作製した。
実施例9と10の電池を各々100個ずつ組み立て、短絡チェックを行ったところ、実施例9の方の電池は短絡数0個、実施例10の方の電池は短絡数4個であった。以上のことから、Li金属を負極に用いた場合も同様に、ポリマー電解質層の強度が十分でないと組み立て時の短絡を抑えることができないことが判明した。
【0053】
【発明の効果】
少なくともリチウム含有金属酸化物を活物質とする正極層と、Li金属、Li合金または炭素材料を少なくとも活物質とする負極層と、その間にポリマー電解質層が配置されたリチウム二次電池において、前記ポリマー電解質層を構成するポリマー電解質のイオン伝導度が、正極層および/または負極層内部に含まれたそれぞれのポリマー電解質マトリックス層を構成するポリマー電解質のイオン伝導度よりも低いことにより、組み立て時の電池の内部短絡を抑えつつ、高負荷放電時に優れた放電容量を有するリチウム二次電池が提供できる。
【0054】
ポリマー電解質層が非水系電解液を保持したゲル状のポリマー電解質からなり、かつ前記ポリマー電解質層にポリマー繊維または微多孔膜セパレータを加えることにより、組み立て時の電池の内部短絡を抑えつつ、安全性および信頼性に優れたリチウム二次電池が提供できる。
ポリマー電解質層の厚さが150μm以下であることにより、ポリマー電解質層を構成するポリマー電解質のイオン伝導度が、正極層および/または負極層内部に含まれたそれぞれのポリマー電解質マトリックス層を構成するポリマー電解質のイオン伝導度よりも低い場合に、さらに高負荷放電性にすぐれ、かつ電極活物質をより多く電池内に仕込むことが可能となるため、高エネルギー密度を有するリチウム二次電池が提供できる。
負極活物質が炭素材料であり、黒鉛粒子の表面に非晶質炭素を付着させたものであることにより、ポリマー電解質との副反応を抑えることが可能となり、サイクル特性に優れたリチウム二次電池が提供できる。
【図面の簡単な説明】
【図1】この発明の電池の基本的な構造な図である。
【図2】実施例4、5、8の電池の充放電試験の結果を示すグラフである。
【図3】実施例4、6、7の電池のサイクル特性を示すグラフである。
【符号の説明】
1 電極端子
2 ポリマー電解質層
3 正極材料とポリマー電解質
4 正極集電体
5 負極集電体
6 負極材料とポリマー電解質
7 外装材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery using a polymer electrolyte, and more particularly, uses a polymer electrolyte that reversibly operates at ambient temperature, and particularly constitutes a polymer electrolyte layer disposed between a positive electrode layer and a negative electrode layer. The present invention relates to a lithium secondary battery characterized in that the ionic conductivity of the polymer electrolyte is lower than that constituting the polymer electrolyte matrix layer inside the positive electrode layer and / or the negative electrode layer.
[0002]
[Prior art]
Secondary batteries are often used as power sources for portable devices from the viewpoint of economy. There are various types of secondary batteries, and the most common at present is a nickel-cadmium battery. Recently, a nickel metal hydride battery has become widespread. Further, lithium cobaltate LiCoO 2 , lithium nickelate LiNiO 2 , a solid solution Li (Co 1-x Ni x ) O 2 , or LiMn 2 O 4 having a spinel structure is used for the positive electrode, and Li metal is used for the negative electrode. Lithium secondary batteries that use carbon materials such as Li alloys or graphite, and liquid organic compounds as solvents and lithium compounds as solutes have higher output voltages than nickel-cadmium batteries and nickel metal hydride batteries. Due to its high and high energy density, it is becoming a main power source especially for portable devices and portable information.
[0003]
As an electrolyte of such a lithium secondary battery, an electrolytic solution in which a lithium salt is dissolved in an organic solvent has been used so far. Since such an electrolyte is flammable, ensuring its safety is a major problem. In response to such problems, it has been found that by replacing the electrolytic solution with a polymer electrolyte, it is possible to suppress liquid leakage and the volatility of the organic solvent, thereby improving safety and reliability.
However, since the battery using this polymer electrolyte has low ionic conductivity in the polymer electrolyte, lithium ions cannot be sufficiently transferred. For this reason, there has been a problem that the discharge capacity, particularly the discharge capacity during high-load discharge, is lowered.
[0004]
In order to improve the ionic conductivity of the polymer electrolyte, a method of using a gel polymer electrolyte in which an electrolytic solution is added and held in a polymer has been actively developed.
This gel polymer electrolyte has an ionic conductivity of 10 −3 S / cm at room temperature, and has a high ionic conductivity comparable to the electrolytic solution. Therefore, although the discharge capacity is increased, the mechanical strength is decreased. For this reason, when assembling the battery, there is a problem that the probability of causing a short circuit in the battery increases.
[0005]
When lithium (Li) metal is used for the negative electrode, there are the following techniques for the purpose of reducing short circuit during charging. According to Japanese Patent Laid-Open No. 8-306389, the occurrence of a short circuit is suppressed by stacking several polymer electrolyte layers, and in Japanese Patent Laid-Open No. 8-329993, the ionic conductivity of the polymer electrolyte layer on the negative electrode side is increased. This suppresses the precipitation of dendrite. However, these techniques are techniques for suppressing a short circuit due to lithium dendrite deposition during charging after the battery is assembled, and it is necessary to prevent a short circuit in the battery when assembling a battery using a polymer electrolyte.
[0006]
In order to solve this problem, for example, according to Japanese Patent Application Laid-Open No. 10-284125, in a polymer battery composed of a porous membrane separator holding a gel polymer electrolyte, a positive electrode and a negative electrode, By using a membrane separator having a bubble point of 0.1 to 100 kg / cm 2 and a membrane porosity of 40 to 90%, it is possible to discharge while suppressing occurrence of a short circuit in the battery. It is stated that the capacity can be increased. The bubble point in this case is a pressure at which bubbles start to emerge from the surface of the sample when the gas pressure is gradually increased after replacing the inside of the sample with ethanol. However, although the improvement can be achieved by using the selected porous membrane, the contact resistance at the interface between the member constituting the electrode and the polymer electrolyte is not used, because the electrode that combines the positive electrode and the negative electrode with the polymer electrolyte is not used. However, it has not been reduced sufficiently.
[0007]
[Problems to be solved by the invention]
This invention makes it a subject to provide the lithium secondary battery excellent in the high performance, the high energy density, and the high load characteristic, preventing generation | occurrence | production of the short circuit in the battery at the time of battery assembly.
[0008]
[Means for Solving the Problems]
As a result of various investigations to overcome the above problems, the inventors have determined that the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte layer is lower than that of the polymer electrolyte constituting the polymer electrolyte matrix layer inside the electrode. As a result, it has been found that a lithium secondary battery having high performance, high energy density, and high load characteristics can be provided while preventing occurrence of a short circuit in the battery during battery assembly.
[0009]
The present invention includes at least a positive electrode layer using lithium-containing metal oxide or metal oxide as an active material, a negative electrode layer using at least Li metal, a Li alloy, or a carbon material as an active material, and an electrolyte and a polymer therebetween. In the lithium secondary battery in which the polymer electrolyte layer is disposed, the positive electrode layer and / or the negative electrode layer includes a polymer electrolyte matrix layer including an electrolytic solution and a polymer, and the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte layer is The dielectrolyte is lower than the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte matrix layer, and both polymers contained in the polymer electrolyte matrix layer and the polymer electrolyte layer contain a copolymer of polyethylene oxide and polypropylene oxide. It consists of an acrylate-derived polymer .
[0010]
That is, when the composition of the polymer electrolyte in the electrolyte layer was examined, the battery was made to contain a polymer electrolyte having a lower ionic conductivity than the polymer electrolyte contained in the positive electrode layer and / or the negative electrode layer. It has been found that a lithium secondary battery having high performance, high energy density and excellent load characteristics can be provided while preventing occurrence of a short circuit in the battery during assembly.
[0011]
In this way, by using a polymer electrolyte having lower conductivity than the polymer electrolyte contained in the positive electrode layer and / or the negative electrode layer in the polymer electrolyte layer, the mechanical strength of the electrolyte layer is increased. Sometimes the incidence of short circuits in the battery decreases.
Further, the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte layer is preferably 0.1 mS / cm or more at room temperature. When it is lower than 0.1 mS / cm, the battery performance is remarkably deteriorated, which is not preferable. More preferably, it is 1-1000 mS / cm. On the other hand, the ionic conductivity of the polymer electrolyte contained in the positive electrode layer and / or the negative electrode layer is preferably 1.4 times or more that of the polymer electrolyte constituting the polymer electrolyte layer, and is preferably 1.4 to 4.1 times It is more preferable that
[0012]
The present invention is characterized in that a gel-like polymer electrolyte layer holding a non-aqueous electrolyte is used as the polymer electrolyte layer, and the electrolyte layer includes polymer fibers or a microporous membrane separator.
In the case of the polymer electrolyte layer, the ionic conductivity is lower than that of the electrolytic solution. Therefore, in order to improve the ionic conductivity, a gel-like polymer electrolyte in which a nonaqueous electrolytic solution is held in the polymer matrix is used. The capacity, particularly the discharge capacity during high load discharge can be increased. However, since the gel polymer electrolyte has low mechanical strength, the occurrence rate of short circuit during battery assembly is high. Therefore, by holding the polymer electrolyte in the polymer fiber or microporous membrane separator, it is possible to increase the discharge capacity, especially during high-load discharge, and to suppress the occurrence of short circuits during battery assembly. It is preferable because it is possible.
[0013]
The weight ratio of the ion conductive polymer (polymer electrolyte) constituting the polymer matrix layer to the lithium salt-containing nonaqueous electrolytic solution is preferably more than 2:98. That is, when the weight ratio of the ion conductive polymer is smaller than 2, it is not preferable because the nonaqueous electrolyte cannot be sufficiently retained and the nonaqueous electrolyte exudes from the gel polymer electrolyte.
[0014]
Polypropylene fiber, polyethylene fiber, or polyester fiber can be used as the polymer fiber, and a polyolefin-based microporous membrane can be used as the microporous membrane separator. These are preferable because they are chemically stable with respect to the non-aqueous electrolyte. The thickness of the polymer fiber and the microporous membrane separator is preferably 150 μm or less, more preferably 20 μm or less, for the same reason as described above.
[0015]
The present invention is characterized in that the negative electrode active material of the lithium secondary battery is a carbon material, and in particular, non-stylish carbon is adhered to the surface of the graphite particles.
Since the negative electrode active material is a carbon material that utilizes a lithium ion storage-release process, there is no precipitation of dendritic lithium during charging, battery short-circuiting is drastically reduced, and safety is improved. In particular, since the negative electrode active material is graphite particles with amorphous carbon attached to the surface, it is possible to prevent decomposition of the electrolyte layer made of ion-conductive polymer, so there is no leakage, and long-term reliability. Will improve.
[0016]
The polymer electrolyte layer or the polymer electrolyte inside the electrode comprises an ion conductive polymer and a Li salt, optionally with polymer fibers or a microporous membrane separator. Furthermore, an excellent polymer electrolyte can be obtained by modifying the polymer. For example, a polymer having a comb-like structure obtained by copolymerization or blending with another polymer or graft polymerization of another polymer on the main skeleton of the polymer may be used, but is not particularly limited. Examples of the ion conductive polymer include polyethylene oxide, polypropylene oxide, a mixture of polyethylene oxide and polypropylene oxide, a copolymer of ethylene oxide and propylene oxide, and a polymer of a PEO-based polymer containing an alkylene oxide as a constituent component and a vinyl group at a terminal group. , An alkylene oxide-acrylonitrile copolymer, a diacrylate, a copolymer having a triacrylate-based polyfunctional group, and the like.
[0017]
The Li salt is preferably at least one of LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 or LiN (CF 3 SO 2 ) 2 , but is not limited thereto.
The ion conductive polymer can be used as a gel by containing an organic solvent and a Li salt. Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC); cyclic esters such as γ-butyrolactone (GBL); chain esters such as methyl propionate and ethyl propionate; diethyl carbonate ( DEC), chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (EMC); ethers such as tetrahydrofuran or derivatives thereof, 1,3-dioxane, 1,2-dimethoxyethane, methyl diglyme; acetonitrile, Nitriles such as benzonitrile; dioxolane or a derivative thereof; sulfolane or a derivative thereof alone or a mixture of two or more thereof. However, it is not limited to these. Further, the blending ratio and blending method are not limited.
[0018]
In particular, it is a gel containing an organic electrolytic solution in which a Li salt is dissolved in a mixed organic solvent in which one or more solvents selected from PC, GBL, EMC, DMC or DEC are mixed with a solvent composed of EC. This is preferable because there is little decomposition at the negative electrode using a graphite-based carbon material with attached crystalline carbon as an active material.
[0019]
The polymer fiber or microporous membrane separator to be added to the electrolyte layer is preferably a nonwoven fabric having physical properties with an air permeability of 1 to 500 sec / cm 3 . Air permeability is low, is not sufficiently obtained ionic conductivity than 1 sec / cm 3, high mechanical strength is not sufficient than 500 sec / cm 3, since likely to cause short-circuit of the battery is not preferable. Furthermore, the weight ratio of the ion conductive polymer and the polymer fiber or the microporous membrane separator constituting the electrolyte layer is suitably in the range of 91: 9 to 50:50.
If the weight ratio of the ion conductive polymer is higher than 91, sufficient mechanical strength cannot be obtained, and if it is lower than 50, the ion conductivity cannot be sufficiently obtained.
[0020]
The polymer electrolyte matrix layer in the positive electrode layer and / or the negative electrode layer, and the polymer electrolyte layer disposed between the positive electrode layer and the negative electrode layer are impregnated with these electrolyte precursors in a liquid state in these electrodes, polymer fibers or microporous membrane separators. It can be produced by crosslinking with actinic rays or heat, or by removing the solvent. The electrolyte layer disposed between the positive electrode layer and the negative electrode layer does not have to have a single layer structure, and may have a multilayer structure in the electrolyte layer. Further, the surface of the electrolyte layer may be treated in order to prevent diffusion of the solvent between the positive electrode layer and the electrolyte layer or between the negative electrode layer and the electrolyte layer and to improve the adhesion at each electrolyte layer interface.
[0021]
In addition, it is also important to use a polymerization initiator when crosslinking is necessary.
Particularly in the crosslinking method by ultraviolet rays or heating, it is preferable to add a polymerization initiator of several percent or less. As the polymerization initiator, commercially available products such as 2,2-dimethoxy-2-phenylacetophenone (DMPA) and benzoyl peroxide (BPO) can be used. The wavelength of ultraviolet light is suitably 250 to 365 nm.
[0022]
If water is contained in the electrolyte solvent, a side reaction between the water and the solvent will occur during charge / discharge of the battery, causing problems such as reduced efficiency and cycle life of the battery itself, and generation of gas. Will occur. For this reason, it is necessary to reduce the water content of the electrolyte solvent as much as possible. Therefore, in some cases, the electrolyte solvent may be dehydrated using molecular sieve, alkali metal, alkaline earth metal, or activated aluminum. The amount of water is 1000 ppm or less, preferably 100 ppm or less.
[0023]
In order to constitute the electrode of the lithium secondary battery of the present invention, a transition metal oxide or a lithium-containing metal oxide powder is used as a positive electrode active material, and a conductive agent, a binder, and in some cases, a solid electrolyte. It is formed by mixing. Examples of the transition metal oxide include vanadium oxide V 2 O 5 and chromium oxide Cr 3 O 8 . Examples of the lithium-containing metal oxide include cobalt lithium oxide (Li x CoO 2 : 0 <x <2), nickel lithium acid (Li x NiO 2 : 0 <x <2), and nickel oxide cobalt cobalt composite oxide (Li x (Ni 1-y Co y ) O 2 : 0 <x <2, 0 <y <1), manganese lithium acid (Li x Mn 2 O 4 : 0 <x <2, Li x MnO 2 : 0 <x < 2), lithium vanadium LiV 2 O 5 , LiVO 2 , tungsten lithium oxide LiWO 3 , molybdenum lithium oxide LiMoO 3 and the like.
[0024]
As the conductive agent, carbon materials such as acetylene black and graphite powder, metal powder, and conductive ceramics can be used. Fluorine polymers such as polytetrafluoroethylene and polyvinylidene fluoride, and polyolefin polymers such as polyethylene and polypropylene can be used as the binder. These mixing ratios can be 1 to 50 parts by weight of the conductive agent and 1 to 30 parts by weight of the binder with respect to 100 parts by weight of the transition metal oxide or lithium-containing metal oxide. When the amount of the conductive agent is less than 1 part by weight, the resistance or polarization of the electrode increases, and the capacity as the electrode decreases, so that a practical lithium secondary battery cannot be constructed. On the other hand, if the amount of the conductive agent is larger than 50 parts by weight, the amount of transition metal oxide or lithium-containing metal oxide in the electrode is decreased, so that the capacity becomes unfavorable. When the amount of the binder is less than 1 part by weight, the binding ability is lost and the electrode cannot be configured. On the other hand, if the binder is larger than 30 parts by weight, the resistance or polarization of the electrode increases, and the amount of transition metal oxide or lithium-containing metal oxide in the electrode decreases, so the capacity decreases and is not practical. .
[0025]
These mixtures are pressure-bonded to a current collector or dissolved in a solvent such as N-methyl-2-pyrrolidone to form a slurry, which is applied to the current collector and dried, followed by a precursor of an organic electrolyte and an ion conductive polymer. A positive electrode can be formed by impregnating a mixture of a body and an initiator and solidifying by light irradiation or heat. Alternatively, the positive electrode material, the conductive material, the organic electrolyte, and the initiator may be mixed and solidified by light irradiation or heat. As the current collector, a conductive material such as a metal foil, a metal mesh, or a metal nonwoven fabric can be used.
[0026]
The negative electrode in the non-aqueous secondary battery of the present invention is a lithium alloy such as metallic lithium or lithium aluminum, or a substance capable of inserting / extracting lithium ions, for example, a conductive polymer such as polyacetylene, polythiophene, or polyparaphenylene, Pyrolytic carbon, pyrolytic carbon obtained by gas phase decomposition in the presence of catalyst, carbon baked from pitch, coke, tar, etc., carbon obtained by calcination of polymers such as cellulose, phenol resin, natural graphite, artificial A graphite material such as graphite or expanded graphite, a substance such as WO 2 or MoO 2 capable of inserting / extracting lithium ions, or a composite thereof can be used. Among them, a carbon material in which amorphous carbon is attached to the surface of graphite particles is preferable.
[0027]
These mixtures are pressure-bonded to a current collector or dissolved in a solvent such as N-methyl-2-pyrrolidone to form a slurry, which is applied to the current collector and dried, followed by a precursor of an organic electrolyte and an ion conductive polymer. A negative electrode can be formed by impregnating a mixture of a body and an initiator and solidifying by light irradiation or heat. Alternatively, these mixtures may be mixed with an organic electrolyte solution and a precursor of an ion conductive polymer, and solidified by light irradiation or heat. As the current collector, a conductive material such as a metal foil, a metal mesh, or a metal nonwoven fabric can be used.
[0028]
The nonaqueous secondary battery according to the present invention is configured by joining the positive electrode layer and the current collector, and the negative electrode layer and the current collector to the external electrodes, respectively, and interposing the electrolyte layer therebetween. The shape of the secondary battery of the present invention is not particularly limited, and examples thereof include a cylindrical shape, a button shape, a square shape, and a sheet shape, but are not limited thereto. Examples of the exterior material include metals and Al laminated resin films. These battery manufacturing steps are preferably carried out in an inert atmosphere such as argon or in dry air in order to prevent moisture from entering.
[0029]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
The precursor of the ion conductive polymer (polymer electrolyte precursor) used in all of the following examples and comparative examples is a diacrylate monomer containing a copolymer of polyethylene oxide and polypropylene oxide. The precursor was crosslinked by irradiation with ultraviolet rays having a maximum output wavelength of 365 nm, and DMPA was used as a polymerization initiator at 0.1% by weight of the precursor.
[0030]
First, FIG. 1 shows a basic structure of a battery manufactured according to the present invention. DESCRIPTION OF SYMBOLS 1 is an electrode terminal, 2 is a polymer electrolyte layer whose ion conductivity is lower than the polymer electrolyte contained in the positive electrode layer side and the negative electrode layer side, 3 is positive electrode material and polymer electrolyte, 4 is positive electrode current collector, 5 is negative electrode current collector The body 6 is a negative electrode material and a polymer electrolyte, and 7 is an exterior material made of an Al laminate resin film for shielding the battery from the outside air.
[0031]
-Preparation of polymer electrolyte layer A method for preparing a polymer electrolyte layer is described below.
Polymer electrolyte layer 1
To a quartz glass substrate having an area of 10 cm 2 , LiPF 6 dissolved in a diacrylate monomer containing a copolymer of polyethylene oxide and polypropylene oxide, which is a precursor of a polymer electrolyte, so as to be 4.5% by weight. After casting, a spacer having a thickness of 50 μm was bitten, a quartz glass substrate was placed thereon and fixed, and irradiated with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. The thickness of the obtained polymer electrolyte layer was 50 μm.
[0032]
Polymer electrolyte layer 2
First, an electrolytic solution in which LiPF 6 was dissolved in a mixed solvent of EC and GBL (EC content 35% by weight) so as to be 13% by weight was prepared, and the electrolytic solution and a precursor of polymer electrolyte, polyethylene oxide and polypropylene A diacrylate monomer containing an oxide copolymer was prepared at a weight ratio of 90:10. The mixed solution was cast on a quartz glass substrate having an area of 10 cm 2 , a spacer having a thickness of 50 μm was cast, the quartz glass substrate was placed thereon and fixed, and irradiated with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. The resulting gel polymer electrolyte layer had a thickness of 50 μm.
[0033]
Polymer electrolyte layer 3
First, an electrolytic solution in which LiPF 4 is dissolved in a mixed solvent of EC and PC (PC content 35% by weight) so as to be 13% by weight is prepared, and the electrolytic solution and a polymer oxide precursor, polyethylene oxide and polypropylene are prepared. A diacrylate monomer containing an oxide copolymer was prepared at a weight ratio of 90:10. The mixed solution was cast on a quartz glass substrate having an area of 10 cm 2 , a spacer having a thickness of 50 μm was cast, the quartz glass substrate was placed thereon and fixed, and irradiated with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. The resulting gel polymer electrolyte layer had a thickness of 50 μm.
[0034]
Polymer electrolyte layer 4
First, an electrolytic solution in which LiPF 4 is dissolved in a mixed solvent of EC and PC (PC content 35% by weight) so as to be 13% by weight is prepared, and the electrolytic solution and a polymer oxide precursor, polyethylene oxide and polypropylene are prepared. A diacrylate monomer containing an oxide copolymer was prepared at a weight ratio of 95: 5. The mixed solution was cast on a quartz glass substrate having an area of 10 cm 2 , a spacer having a thickness of 50 μm was cast, the quartz glass substrate was placed thereon and fixed, and irradiated with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. The resulting gel polymer electrolyte layer had a thickness of 50 μm.
[0035]
Polymer electrolyte layer 5
First, an electrolytic solution in which LiPF 4 is dissolved in a mixed solvent of EC and PC (PC content 35% by weight) to 13% by weight is prepared, and a copolymer of polyethylene oxide and polypropylene oxide, which is a precursor of the polymer electrolyte. Was prepared so that the weight ratio of acrylate monomer containing a copolymer of polyethylene oxide and polypropylene oxide was 75:25.
A mixture of the electrolyte and polymer electrolyte precursor was prepared at a weight ratio of 95: 5. The mixed solution was cast on a quartz glass substrate having an area of 10 cm 2 , a spacer having a thickness of 50 μm was cast, the quartz glass substrate was placed thereon and fixed, and irradiated with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. The resulting gel polymer electrolyte layer had a thickness of 50 μm.
[0036]
Table 1 shows the ionic conductivity at 20 ° C. of the five types of electrolyte layers.
The ionic conductivity was measured as follows.
The impedance was measured using Li for the electrode. The resistance value was measured from the colle-coll plot at 20 ° C. with an impedance analyzer, and the ionic conductivity was determined.
[0037]
[Table 1]
Figure 0004563555
[0038]
In the following examples and comparative examples, electrolytes having the above-described compositions were used.
Example 1
An artificial graphite powder having (d 002 ) = 0.337 nm by X-ray wide angle diffraction method, (Lc) = 100 nm, (La) = 100 nm, and a specific surface area by BET method of 10 m 2 / g, is polyfluorinated as a binder. The paste obtained by mixing 9% by weight of vinylidene (PVDF), adding N-methyl-2-pyrrolidone (NMP), and mixing and dissolving the resultant was coated on a rolled copper foil having a thickness of 20 μm. Obtained. The electrode area was 9 cm 2 and the thickness was 85 μm.
[0039]
A paste obtained by mixing 7% by weight of PVDF as a binder and 5% by weight of acetylene black having an average particle diameter of 2 μm as a conductive material with LiCoO 2 powder having an average particle diameter of 7 μm, adding NMP, and mixing and dissolving. Was coated on a rolled aluminum foil having a thickness of 20 μm, and after drying and pressing, a positive electrode was obtained. The electrode area was 9 cm 2 and the thickness was 80 μm.
[0040]
The polymer electrolyte layer has the same composition as that of the polymer electrolyte layer 1, cast the electrolyte precursor solution on a quartz glass substrate having an area of 10 cm 2 , and a spacer having a thickness of 20 μm is placed on the quartz glass substrate. The sample was fixed and irradiated with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. The thickness of the obtained polymer electrolyte layer was 20 μm.
The positive electrode layer having the same composition as that of the polymer electrolyte layer 2 was used. The positive electrode was allowed to stand for 5 minutes under reduced pressure, the polymer electrolyte precursor solution was poured, and the mixture was further allowed to stand for 15 minutes. Thereafter, ultraviolet rays were irradiated for 2 minutes at an intensity of 38 mw / cm 2 . The obtained positive electrode layer contained a gel polymer electrolyte and had a thickness of 80 μm.
[0041]
The negative electrode layer having the same composition as that of the polymer electrolyte 3 was used. The negative electrode was allowed to stand for 5 minutes under reduced pressure, the polymer electrolyte precursor solution was poured, and the mixture was further allowed to stand for 15 minutes.
Thereafter, ultraviolet rays were irradiated for 2 minutes at an intensity of 38 mw / cm 2 . The obtained negative electrode layer contained a gel polymer electrolyte and had a thickness of 85 μm.
Thus obtained positive electrode layer, polymer electrolyte layer, and negative electrode layer were sequentially bonded to produce a battery.
[0042]
(Comparative Example 1)
The polymer electrolyte layer has the same composition as the polymer electrolyte layer 4, the electrolyte precursor solution is cast on a quartz glass substrate having an area of 10 cm 2 , a spacer having a thickness of 20 μm is cast, and the quartz glass substrate is placed thereon. The gel-like polymer electrolyte layer was prepared by irradiating with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. A battery was fabricated in the same manner as in Example 1 except that this polymer electrolyte layer was used.
When 100 batteries of Example 1 and Comparative Example 1 were assembled and short-circuit checked, the battery of Example 1 had 0 short circuits and the battery of Comparative Example 1 had 5 short circuits. From the above, it was found that even if the ionic conductivity of the electrolyte layer is high, a short circuit during assembly occurs if the mechanical strength of the polymer electrolyte layer is not sufficient.
[0043]
(Example 2)
A positive electrode layer and a negative electrode layer were prepared in the same manner as in Example 1 except that the positive electrode layer and the negative electrode layer had the same composition as the polymer electrolyte layer 4. The positive electrode layer and the negative electrode layer each contain a gel polymer electrolyte.
A polymer electrolyte layer having the same composition as the polymer electrolyte layer 3 is used, and the polymer electrolyte precursor solution is immersed in a non-woven fabric made of polyester having an air permeability of 380 sec / cm 3 , an area of 10 cm 2 , and a thickness of 20 μm. Was allowed to stand for 15 minutes under reduced pressure in order to penetrate into the nonwoven fabric. The gel polymer electrolyte layer was obtained by irradiating with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. At this time, the weight ratio of the polymer electrolyte to the polymer fiber was 90:10.
Thus obtained positive electrode layer, polymer electrolyte layer, and negative electrode layer were sequentially bonded to produce a battery.
[0044]
(Example 3)
The polymer electrolyte layer has the same composition as the polymer electrolyte layer 3, the electrolyte precursor solution is cast on a quartz glass substrate having an area of 10 cm 2 , a spacer having a thickness of 20 μm is placed, and the quartz glass substrate is placed thereon. The gel-like polymer electrolyte layer was prepared by irradiating with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. A battery was produced in the same manner as in Example 2 except that this polymer electrolyte layer was used.
When 100 of each of the batteries of Examples 2 and 3 were assembled and a short circuit check was performed, the battery of Example 2 had 0 short circuits and the battery of Example 3 had 3 short circuits. From the above, it was found that even if the ionic conductivity of the electrolyte layer is high, a short circuit during assembly occurs if the mechanical strength of the polymer electrolyte layer is not sufficient. In particular, it has been found that when a gel polymer electrolyte is used, it is more preferable to add polymer fibers or a microporous membrane separator to the electrolyte layer.
[0045]
Example 4
A positive electrode layer and a negative electrode layer were prepared in the same manner as in Example 1 except that the positive electrode layer and the negative electrode layer had the same composition as the polymer electrolyte layer 4.
A polymer electrolyte layer having the same composition as the polymer electrolyte layer 3 is used, and the polymer electrolyte precursor solution is immersed in a non-woven fabric made of polyester having an air permeability of 380 sec / cm 3 , an area of 10 cm 2 , and a thickness of 20 μm. Was allowed to stand for 15 minutes under reduced pressure in order to penetrate into the nonwoven fabric. Then, ultraviolet rays were irradiated for 2 minutes at an intensity of 38 mW / cm 2 to prepare a gel polymer electrolyte layer. At this time, the weight ratio of the polymer electrolyte to the polymer fiber was 90:10.
Thus obtained positive electrode layer, polymer electrolyte layer, and negative electrode layer were sequentially bonded to produce a battery.
[0046]
(Example 5)
Example 4 except that a polyester nonwoven fabric having an air permeability of 500 sec / cm 3 , an area of 10 cm 2 , and a thickness of 150 μm is used for the polymer electrolyte layer, and the weight ratio of the polymer electrolyte to the polymer fibers is 95: 5. A battery was similarly prepared.
[0047]
(Example 6)
Surface having negative electrode active material (d 002 ) = 0.336 nm by X-ray wide angle diffraction method, (Lc) = 100 nm, (La) = 97 nm, specific surface area by BET method of 2 m 2 / g, and average particle diameter of 10 μm A battery was fabricated in the same manner as in Example 4 except that amorphous graphite powder was used.
[0048]
(Example 7 (reference example) )
A battery was fabricated in the same manner as in Example 6 except that the positive electrode layer and the negative electrode layer had the same composition as the polymer electrolyte layer 5.
[0049]
(Example 8)
A polyester electrolyte non-woven fabric having an air permeability of 500 sec / cm 3 , an area of 10 cm 2 and a thickness of 160 μm is used as the polymer electrolyte layer, and the weight ratio of the polymer electrolyte to the polymer fibers is 95: 5. A battery was similarly prepared.
The batteries of Examples 4, 5, and 8 were charged at a constant current of 2.3 mA until the battery voltage reached 4.1 V, and after reaching 4.1 V, the batteries were charged at a constant voltage for a charging time of 12 hours. Discharge was performed at a constant current of 2.3 mA, 5 mA, 10 mA, and 20 mA until the battery voltage reached 2.75 V, respectively. The results of the charge / discharge test under these conditions are shown in FIG.
As a result of this test, it was found that when the thickness of the polymer fiber or the microporous membrane separator in the electrolyte layer was less than 150 μm, the performance during high-load discharge was improved, and preferably 20 μm or less. From these, it can be seen that a lithium secondary battery having a high energy density and excellent load characteristics can be obtained.
[0050]
In addition, the batteries of Examples 4, 6, and 7 were each charged at a constant current of 2.3 mA until the battery voltage reached 4.1 V, and after reaching 4.1 V, the batteries were charged at a constant voltage for 12 hours. The battery was discharged at a constant current of 2.3 mA until the battery voltage reached 2.75V. The cycle characteristics were evaluated under these charge / discharge conditions. The result is shown in FIG.
From this result, it was found that the use of surface amorphous graphite powder as the negative electrode active material can suppress the side reaction with the polymer electrolyte layer, and thus the cycle characteristics are improved.
It can also be seen that mixing the polymer electrolyte ion-conductive polymer precursor in the positive electrode layer and the negative electrode layer improves the reaction rate during UV irradiation, thereby improving the cycle characteristics.
[0051]
Example 9
The Li—Al alloy foil was press-bonded onto a 50 μm thick Ni mesh to obtain a sheet negative electrode. This electrode was cut out to 31 × 31 mm, and a Ni current collecting tab was welded to form a negative electrode. The thickness was 100 μm.
100 parts by weight of manganese dioxide powder, 10 parts by weight of acetylene black as a conductive agent, and 7 parts by weight of PVDF as a binder were dry-mixed and stirred and mixed in NMP to obtain a slurry. This slurry was coated on a 20 μm thick Al foil, NMP was removed by drying, and then pressed to obtain a sheet-like positive electrode. This electrode was cut out to 30 × 30 mm, and an Al current collecting tab was welded to obtain a positive electrode. The thickness was 70 μm.
A polymer electrolyte layer, a positive electrode layer, and a battery were produced in the same manner as in Example 2.
[0052]
(Example 10 (reference example) )
A polymer electrolyte layer having the same composition as the polymer electrolyte layer 3 is used, an electrolyte precursor solution is cast on a quartz glass substrate having an area of 10 cm 2 , a spacer having a thickness of 20 μm is placed, and a quartz glass substrate is placed thereon. The gel-like polymer electrolyte layer was prepared by irradiating with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. A battery was fabricated in the same manner as in Example 7 except that this polymer electrolyte layer was used.
When 100 batteries of each of Examples 9 and 10 were assembled and a short circuit check was performed, the battery of Example 9 had 0 short circuits and the battery of Example 10 had 4 short circuits. From the above, it has been found that when Li metal is used for the negative electrode, the short circuit during assembly cannot be suppressed unless the strength of the polymer electrolyte layer is sufficient.
[0053]
【The invention's effect】
In a lithium secondary battery in which a positive electrode layer using at least a lithium-containing metal oxide as an active material, a negative electrode layer using at least an Li metal, a Li alloy, or a carbon material as an active material, and a polymer electrolyte layer disposed therebetween, the polymer The battery at the time of assembly is obtained because the ionic conductivity of the polymer electrolyte constituting the electrolyte layer is lower than the ionic conductivity of the polymer electrolyte constituting each polymer electrolyte matrix layer included in the positive electrode layer and / or the negative electrode layer. Thus, it is possible to provide a lithium secondary battery having an excellent discharge capacity during high-load discharge while suppressing internal short circuit.
[0054]
The polymer electrolyte layer consists of a gel-like polymer electrolyte holding a non-aqueous electrolyte, and by adding polymer fibers or a microporous membrane separator to the polymer electrolyte layer, the internal short circuit of the battery during assembly is suppressed and safety is ensured. In addition, a lithium secondary battery excellent in reliability can be provided.
When the thickness of the polymer electrolyte layer is 150 μm or less, the polymer electrolyte constituting the polymer electrolyte layer has an ionic conductivity of the polymer electrolyte matrix layer included in the positive electrode layer and / or the negative electrode layer. When it is lower than the ionic conductivity of the electrolyte, it is possible to provide a lithium secondary battery having a high energy density because it is more excellent in high-load discharge and can be charged with more electrode active material in the battery.
Since the negative electrode active material is a carbon material and amorphous carbon is attached to the surface of the graphite particles, it is possible to suppress side reactions with the polymer electrolyte, and the lithium secondary battery has excellent cycle characteristics. Can be provided.
[Brief description of the drawings]
FIG. 1 is a basic structural view of a battery according to the present invention.
2 is a graph showing the results of a charge / discharge test of the batteries of Examples 4, 5, and 8. FIG.
3 is a graph showing the cycle characteristics of the batteries of Examples 4, 6, and 7. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode terminal 2 Polymer electrolyte layer 3 Positive electrode material and polymer electrolyte 4 Positive electrode collector 5 Negative electrode collector 6 Negative electrode material and polymer electrolyte 7 Exterior material

Claims (4)

少なくともリチウム含有金属酸化物または金属酸化物を活物質とする正極層と、Li金属、Li合金または炭素材料を少なくとも活物質とする負極層と、その間に電解液とポリマーとを含むポリマー電解質層が配置されたリチウム二次電池において、正極層および/または負極層が、電解液とポリマーとを含むポリマー電解質マトリックス層を含み、前記ポリマー電解質層を構成するポリマー電解質のイオン伝導度が、前記ポリマー電解質マトリックス層を構成するポリマー電解質のイオン伝導度よりも低く、かつポリマー電解質マトリックス層とポリマー電解質層に含まれる両ポリマーが、ポリエチレンオキシドとポリプロピレンオキシドの共重合体を含有しているジアクリレート由来ポリマーからなることを特徴とするリチウム二次電池。A polymer electrolyte layer including a positive electrode layer using at least a lithium-containing metal oxide or metal oxide as an active material, a negative electrode layer including at least an Li metal, a Li alloy, or a carbon material as an active material, and an electrolyte solution and a polymer therebetween. In the arranged lithium secondary battery, the positive electrode layer and / or the negative electrode layer includes a polymer electrolyte matrix layer containing an electrolytic solution and a polymer, and the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte layer is the polymer electrolyte. Both polymers contained in the polymer electrolyte matrix layer and the polymer electrolyte layer are lower than the ionic conductivity of the polymer electrolyte constituting the matrix layer, and the polymer is a diacrylate-derived polymer containing a copolymer of polyethylene oxide and polypropylene oxide. lithium secondary battery characterized by comprising ポリマー電解質層が非水系電解液を保持したゲル状のポリマー電解質からなり、かつポリマー電解質層がポリマー繊維または微多孔膜セパレータを含有していることを特徴とする請求項1に記載のリチウム二次電池。  2. The lithium secondary according to claim 1, wherein the polymer electrolyte layer is made of a gel polymer electrolyte holding a non-aqueous electrolyte, and the polymer electrolyte layer contains polymer fibers or a microporous membrane separator. battery. ポリマー電解質層の厚さが150μm以下であることを特徴とする請求項1または2に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the polymer electrolyte layer has a thickness of 150 μm or less. 負極活物質が炭素材料であり、炭素材料が黒鉛粒子の表面に非晶質炭素を付着させたものであることを特徴とする請求項1乃至3に記載のリチウム二次電池。  4. The lithium secondary battery according to claim 1, wherein the negative electrode active material is a carbon material, and the carbon material is obtained by attaching amorphous carbon to the surface of graphite particles.
JP2000202541A 2000-07-04 2000-07-04 Lithium secondary battery Expired - Fee Related JP4563555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202541A JP4563555B2 (en) 2000-07-04 2000-07-04 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202541A JP4563555B2 (en) 2000-07-04 2000-07-04 Lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010104179A Division JP2010199083A (en) 2010-04-28 2010-04-28 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002025619A JP2002025619A (en) 2002-01-25
JP4563555B2 true JP4563555B2 (en) 2010-10-13

Family

ID=18700054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202541A Expired - Fee Related JP4563555B2 (en) 2000-07-04 2000-07-04 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4563555B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454610C (en) * 2002-06-19 2009-01-21 夏普株式会社 Lithium polymer secondary battery and process for producing the same
EP2001073B1 (en) 2007-06-06 2012-02-22 Nissan Motor Co., Ltd. Secondary battery and method of producing the secondary battery
JP5526481B2 (en) * 2007-06-06 2014-06-18 日産自動車株式会社 Secondary battery and manufacturing method thereof
HUE036038T2 (en) * 2012-04-05 2018-06-28 Imerys Graphite & Carbon Switzerland Ltd Surface-oxidized low surface area graphite, processes for making it, and applications of the same
JPWO2017138361A1 (en) * 2016-02-09 2018-11-29 マクセルホールディングス株式会社 Non-aqueous electrolyte battery
CN111613771B (en) * 2020-06-29 2022-03-22 蜂巢能源科技有限公司 Battery cathode and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368778A (en) * 1991-06-17 1992-12-21 Sharp Corp Carbon negative electrode for secondary battery
JPH09185962A (en) * 1995-12-28 1997-07-15 Japan Energy Corp Lithium battery
JP2000149905A (en) * 1998-11-10 2000-05-30 Sony Corp Solid electrolyte battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124597A (en) * 1994-10-26 1996-05-17 Sanyo Electric Co Ltd Solid electrolytic secondary cell
JP3304267B2 (en) * 1996-05-23 2002-07-22 シャープ株式会社 Non-aqueous secondary battery and method for producing negative electrode active material
JPH10255842A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium-polymer secondary battery
JPH11297327A (en) * 1998-04-06 1999-10-29 Mitsubishi Chemical Corp Lithium secondary battery
JP2000113872A (en) * 1998-10-08 2000-04-21 Yuasa Corp Nonaqueous electrolyte secondary battery and its manufacture
JP4161437B2 (en) * 1998-12-18 2008-10-08 株式会社ジーエス・ユアサコーポレーション Lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368778A (en) * 1991-06-17 1992-12-21 Sharp Corp Carbon negative electrode for secondary battery
JPH09185962A (en) * 1995-12-28 1997-07-15 Japan Energy Corp Lithium battery
JP2000149905A (en) * 1998-11-10 2000-05-30 Sony Corp Solid electrolyte battery

Also Published As

Publication number Publication date
JP2002025619A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
JP3566891B2 (en) Lithium secondary battery
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
KR20030051673A (en) Lithium secondary battery
WO2002087004A1 (en) Lithium polymer secondary cell
JP4014816B2 (en) Lithium polymer secondary battery
JP4201308B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4945054B2 (en) Lithium polymer secondary battery and manufacturing method thereof
JP2010199083A (en) Lithium secondary battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
US20040029009A1 (en) Lithium secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP4563555B2 (en) Lithium secondary battery
JP4979049B2 (en) Non-aqueous secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2002042891A (en) Thin-type lithium secondary battery
US20040048159A1 (en) Lithium polymer secondary battery
JPH09199136A (en) Nonaqueous electrolyte secondary battery
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
JP2002100406A (en) Polymer lithium secondary battery and its manufacturing method
JP2000012097A (en) Nonaqueous electrolyte battery
JP2002134173A (en) Method for manufacturing nonaqueous secondary battery
JP3516133B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2000195522A (en) Nonaqueous electrolyte seconday battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees