JP5153101B2 - Separator and manufacturing method thereof - Google Patents

Separator and manufacturing method thereof Download PDF

Info

Publication number
JP5153101B2
JP5153101B2 JP2006228370A JP2006228370A JP5153101B2 JP 5153101 B2 JP5153101 B2 JP 5153101B2 JP 2006228370 A JP2006228370 A JP 2006228370A JP 2006228370 A JP2006228370 A JP 2006228370A JP 5153101 B2 JP5153101 B2 JP 5153101B2
Authority
JP
Japan
Prior art keywords
separator
fabric
fiber
inorganic powder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006228370A
Other languages
Japanese (ja)
Other versions
JP2007095668A (en
Inventor
正彦 福田
博 十河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2006228370A priority Critical patent/JP5153101B2/en
Publication of JP2007095668A publication Critical patent/JP2007095668A/en
Application granted granted Critical
Publication of JP5153101B2 publication Critical patent/JP5153101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、無機粉体を多量に含有する熱可塑性繊維からなる布帛状セパレータ及びその製造方法に関するものであり、電池またはキャパシタ等蓄電器類のセパレータの分野で好適に使用される。   The present invention relates to a fabric separator made of thermoplastic fibers containing a large amount of inorganic powder and a method for producing the same, and is suitably used in the field of separators for capacitors such as batteries or capacitors.

電池またはキャパシタ等の蓄電器類は、正極・負極間に電気絶縁体であるセパレータを置くことにより両極間の短絡を防いでいる。従来、蓄電器類のセパレータとしては紙、不織布、ガラス繊維、多孔膜等を用いたものが知られている。セパレータには、イオン透過性と電子絶縁性が長期間の蓄電器類使用中に問題なく機能することが要求され、それに加えて蓄電器の能力やコストを満足させるものが選定されてきている。
例えば、リチウムイオン電池は正極にコバルト酸リチウムが、負極にグラファイト系カーボン電極が用いられ、セパレータとしてポリエチレン製多孔膜が両極間に配置された基本構造からなり、この基本構造を捲回またはスタックする事によって積層体となし、金属製缶体やフィルム包装体に挿入して有機電解液を注入し、密閉して電池を形成させるものが知られている。
In capacitors such as batteries or capacitors, short-circuiting between both electrodes is prevented by placing a separator as an electrical insulator between the positive electrode and the negative electrode. Conventionally, separators using capacitors such as paper, non-woven fabric, glass fiber, and porous membrane are known. As separators, ion permeability and electronic insulation are required to function without problems during the use of capacitors for a long period of time, and in addition, those that satisfy the capacity and cost of the capacitors have been selected.
For example, a lithium ion battery has a basic structure in which lithium cobaltate is used for a positive electrode, a graphite-based carbon electrode is used for a negative electrode, and a polyethylene porous film is disposed between both electrodes as a separator, and this basic structure is wound or stacked. It is known that a laminated body is formed, inserted into a metal can body or a film packaging body, injected with an organic electrolyte, and sealed to form a battery.

セパレータの必要条件である絶縁性をもたらす電子不導体としては一般に絶縁性有機物や絶縁性無機物等が使用される。鉛蓄電池の場合希硫酸電解液中で、ガラス製織物またはポリエチレンと無機粉体を混合してなる多孔シート等がセパレータとして使用されている。
またニッケルカドミウム電池においては、苛性カリ水溶液を電解質としたアルカリ性電解液中で絶縁性とイオン透過性に優れるポリアミド不織布がセパレータとして一般に使用されている。この様に、セパレータは電極の種類や電解液の種類により使用される素材や形状が異なり電気化学的にも安定なものが必要とされている。
In general, an insulating organic substance, an insulating inorganic substance, or the like is used as an electronic nonconductor that provides insulation, which is a necessary condition of the separator. In the case of a lead storage battery, a glass fabric or a porous sheet obtained by mixing polyethylene and inorganic powder is used as a separator in dilute sulfuric acid electrolyte.
In a nickel cadmium battery, a polyamide nonwoven fabric that is excellent in insulation and ion permeability is generally used as a separator in an alkaline electrolyte using a caustic potash aqueous solution as an electrolyte. As described above, the separator is required to be electrochemically stable because the material and shape used depend on the type of electrode and the type of electrolyte.

モバイル用通信機器用途で世界を席捲して小型軽量の利便性が実証されたリチウムイオン電池は、その実績から自動車用駆動電源等の大型化が検討されており、エネルギーの大容量化と一台当りの電池使用個数が多くなる事から安全対策もより重要となる。
リチウムイオン電池は、電極活物質としてリチウム化合物、電解液として可燃性有機溶媒を使用しており、何らかの要因により発熱する事が心配されており、高い安全機能を持たせることが要求されている。可燃性有機溶媒を電解液として使用する電池の安全性の問題としては、短絡等による電池発熱が挙げられる。電池発熱としては、例えば電池を使用した回路が短絡した状態、すなわち電池外部短絡と呼ばれる状態となり大電流が流れ電池の内部抵抗により電池自体が発熱する場合や、電池の内部に何らかの原因により正極と負極が短絡する所謂、電池内部短絡で発熱する場合が挙げられる。これら電池発熱に対し、種々の原因を想定した安全対策が講じられている。
Lithium-ion batteries, which are world-class for mobile communication devices and have proven to be compact and lightweight, are being considered for larger driving power sources for automobiles based on their track record. Safety measures are also important because the number of batteries used per unit increases.
Lithium ion batteries use a lithium compound as an electrode active material and a flammable organic solvent as an electrolyte, and are concerned about heat generation due to some factors, and are required to have a high safety function. As a safety problem of a battery using a flammable organic solvent as an electrolytic solution, battery heat generation due to a short circuit or the like can be mentioned. For example, when a battery circuit is short-circuited, that is, a state called a battery external short circuit, a large current flows and the battery itself generates heat due to the internal resistance of the battery, or the positive electrode due to some reason inside the battery. A case where the negative electrode is short-circuited, that is, when heat is generated due to a short-circuit inside the battery, can be mentioned. For these battery heat generation, safety measures have been taken assuming various causes.

例えば電池の発熱により電池缶に伝わる熱を感知し、設定値以上の温度上昇で電池回路を遮断するPTC素子や、発熱による電池内の圧力上昇を缶に設けられた安全弁作動させる事などを行っている。また、内部短絡時には電池外部の回路を遮断しても内部の電池回路を遮断する事が出来ず熱逸走を生じる可能性が有るが、この際の安全対策としてセパレータ特性が大きく寄与する事となる。
現在、リチウムイオン電池のセパレータは、要求される基本性能である電子不導性とイオン透過性および電解液での電気化学的安定性を満たすため、一般にポリオレフィン製微多孔膜が使用されている。即ち、電池の発熱によりセパレータ融点以上の温度に上昇した場合、セパレータに設けられたイオン透過をさせるための多孔部分が溶融により閉塞されイオン透過を阻止し、それに伴い電流も止まる原理を利用し、所謂シャトダウン機能で電池としての機能が安全に休止する事となる。
For example, the PTC element that detects heat transmitted to the battery can due to the heat generated by the battery and shuts off the battery circuit when the temperature rises above the set value, or the safety valve provided in the can is activated to increase the pressure inside the battery due to heat generation. ing. In addition, even if the circuit outside the battery is shut off when the internal short circuit occurs, the internal battery circuit cannot be shut off, and there is a possibility that thermal escape will occur, but as a safety measure at this time, the separator characteristics will greatly contribute. .
Currently, a separator of a lithium ion battery generally uses a microporous membrane made of polyolefin in order to satisfy the required basic performance of electron non-conductivity, ion permeability, and electrochemical stability in an electrolytic solution. In other words, when the temperature rises above the melting point of the separator due to the heat generation of the battery, the porous part for allowing ion permeation provided in the separator is blocked by melting and prevents ion permeation, and the current is stopped accordingly. A function as a battery is safely stopped by a so-called shutdown function.

セパレータにこの様な安全機能を持たせるためには低温で溶融する熱可塑性樹脂多孔膜が必要であり、ポリオレフィン製微多孔膜が多く使用されている。例えば旭化成ケミカルズ(株)の販売するポリエチレン製微多孔膜「ハイポア」(登録商標)がその例である。
この様にリチウムイオン電池に代表される可燃性有機電解液を使用する電池にはその他の安全装置を含め種々の安全対応策が設けられているが、電池の進歩に伴い更なる性能向上が求められている。
In order to give such a safety function to the separator, a thermoplastic resin porous film that melts at a low temperature is necessary, and a polyolefin microporous film is often used. For example, a polyethylene microporous membrane “Hypore” (registered trademark) sold by Asahi Kasei Chemicals Corporation is an example.
In this way, batteries using flammable organic electrolytes typified by lithium-ion batteries have various safety measures including other safety devices. However, with the advancement of batteries, further improvement in performance is required. It has been.

電池発熱は自己の反応熱により生じるのみならず、外部からの加熱によっても危険な状態となり、例えば加熱油に落とした場合や周囲の雰囲気が異常に高温となりリチウムイオン電池の内部温度がセパレータ溶融温度以上になると想定した場合、まずセパレータのシャットダウン機能が働き電池としての機能は無くなる。その後も外部加熱が続き電池内部温度が上昇した場合、無孔化したフィルム状セパレータが熱による収縮や流動化で破損する事や正極・負極の電極間に潜在的に掛かる圧力、すなわち捲回時の張力や電池充放電による電極体積の増加等による圧力により軟化したセパレータが押付けられ両極間が接触し短絡、急激にイオンと電子が流れ発熱を助長する事がある。   Battery heat generation is not only caused by its own reaction heat, but also becomes dangerous when heated from the outside.For example, when dropped in heated oil, the ambient atmosphere becomes abnormally high, and the internal temperature of the lithium ion battery becomes the separator melting temperature. Assuming that the above is the case, the shutdown function of the separator works first and the function as a battery is lost. After that, when the external heating continues and the internal temperature of the battery rises, the nonporous film-like separator may be damaged by heat shrinkage or fluidization, or the pressure that is applied between the positive and negative electrodes, that is, during winding The separator softened by the pressure of the electrode due to the tension of the battery or the increase in the electrode volume due to battery charging / discharging, etc., is pressed, the electrodes are brought into contact with each other and short-circuited.

電池が何らかの熱的異常状態になった時は電池電源のシステム上、種々の保護処置が働き全体としての安全性は確保されるような設計思想となっているが、自動車用大型電池の場合、モバイル用途に比べて容量が大きく、電池自体の安全性に対しより高い技術を要求される事となり、特に電池の異常時による内部発熱や、外部からの異常な加熱状態でも電極間の距離が保たれ短絡しない強固な電子絶縁性がセパレータに要求されている。大型電池の自動車駆動用への採用はCO2削減させる環境対策の手段としても効果が注目されており、レシプロエンジンとニッケル水素電池を組み合わせたハイブリッド型電気自動車が既に実用化されている。 When the battery is in some thermal abnormal state, it has a design philosophy that various protection measures work on the battery power system and the safety as a whole is ensured, but in the case of a large battery for automobiles, Compared to mobile applications, the capacity is high, and higher technology is required for the safety of the battery itself.Especially, the distance between the electrodes is maintained even when the battery is abnormally heated internally or abnormally heated from the outside. The separator is required to have a strong electronic insulating property that does not sag and short-circuit. The adoption of large batteries for driving automobiles has attracted attention as an environmental measure to reduce CO 2 , and hybrid electric vehicles combining reciprocating engines and nickel metal hydride batteries have already been put into practical use.

ニッケル水素電池は電解液に苛性カリ水溶液を使用しており過熱時にも発火する危険性は無く、電極は正極・負極とも焼結金属である事から電極活物質の脱落や電極生成物の発生がほとんど無い。そのためセパレータはこれらの脱落物や生成物のフィルター効果をほとんど必要としておらず、寧ろ硬い電極活物質間で潰されず電子絶縁性を有しイオン透過を妨げない隙間を持つ親水性能が要求されており、機能に合ったポリプロピレン製スルフォン化不織布がセパレータとして使用されている。   Nickel metal hydride batteries use a caustic potash solution as the electrolyte, and there is no risk of ignition when overheated. Since both the positive and negative electrodes are sintered metals, electrode active materials are almost eliminated and electrode products are generated. No. Therefore, the separator hardly requires the filter effect of these fallen products and products, and rather, hydrophilic performance is required with a gap that does not crush between the hard electrode active materials and does not prevent ion permeation. A sulfonated nonwoven fabric made of polypropylene suitable for the function is used as a separator.

一方、ハイブリッド型電気自動車のエネルギー高効率化を目指すためリチウムイオン電池が注目され始めているが、熱的安定性向上が大きな課題である。この問題を克服すればレシプロエンジンとのハイブリッド型のみならず燃料電池ハイブリッド型自動車やピュア−型電気自動車にも急速に大型のリチウムイオン電池の使用が始まるものと考えられる。
リチウムイオン電池の熱的安定性は、該電池の異常な高温雰囲気状態に置かれた場合においても高い安全性を確保する事であり、セパレータの機能を改善させる事もその対応策の一つである。
On the other hand, lithium ion batteries have begun to attract attention in order to increase the energy efficiency of hybrid electric vehicles, but improvement of thermal stability is a major issue. If this problem is overcome, it is considered that the use of large-sized lithium ion batteries will start rapidly not only in hybrid type with reciprocating engines but also in fuel cell hybrid type vehicles and pure type electric vehicles.
The thermal stability of the lithium ion battery is to ensure high safety even when the battery is placed in an abnormally high temperature atmosphere, and improving the function of the separator is one of the countermeasures. is there.

セパレータにおける電池内部での安全性確保には、セパレータの融点近くの温度、例えばポリエチレン製微多孔膜であれば130℃近辺で微多孔が閉塞してフィルム状となりイオンの透過を阻止するだけでなく、電池温度の上昇があった場合でもフィルム状となった無孔のポリエチレン製微多孔膜セパレータが強固にフィルム形状を保ちつつ電極を覆って短絡を防止させる等の新しい技術が必要となる。
この様な電池過熱状態でセパレータに期待する機能、即ち電子絶縁性を完全に維持するための熱溶融しない絶縁性無機物質による電極間距離の維持が効果的であると考えられる。
絶縁性無機物質をセパレータとして利用するためには、電池生産時の捲回工程等を考慮した場合、セパレータ構造上柔軟性が必要である事から柔軟な布帛構造物である不織布等を利用し、不織布を形成する繊維間の間隙に絶縁性無機粉体を充填させ加熱し固着させる方法が考えられる。
In order to ensure safety inside the battery in the separator, not only does the separator close to the melting point of the separator, for example, a polyethylene microporous film, the microporous film closes at around 130 ° C. and becomes a film, preventing the permeation of ions. Even when the battery temperature rises, a new technique is required such that a nonporous polyethylene microporous membrane separator in the form of a film covers the electrode while preventing the short circuit while keeping the film shape firmly.
It is considered effective to maintain the distance between the electrodes with an insulating inorganic material that does not melt by heat in order to completely maintain the electronic insulation, that is, the function expected of the separator in such a battery overheated state.
In order to use an insulating inorganic substance as a separator, considering a winding process at the time of battery production, etc., use a nonwoven fabric that is a flexible fabric structure because flexibility is required on the separator structure, A method is conceivable in which insulating inorganic powder is filled in the gaps between the fibers forming the nonwoven fabric and heated and fixed.

例えば、ポリエステル樹脂製不織布に絶縁性無機粉体である粉末シリカをコーティング繊維間に固着・保持させた、耐熱性に優れたリチウムイオン電池用セパレータが挙げられる。このセパレータを用いれば、リチウムイオン電池が何らかの原因により異常に高い温度になった場合でも耐熱性の高いポリエステル樹脂使用しているために電極間距離が保たれ、かつ該電池がより高温になってポリエステル繊維が軟化した場合でも繊維間隙に介在する粉末シリカによって電極間距離が保たれるため、短絡が防止され高温時の安全性確保に有効である。
しかし、リチウムイオン電池を生産する際において、電極とセパレータを捲回する工程ではかなりの張力がかかり、セパレータが引張され高速で捲回されるために、繊維間に充填したのみでは走行ガイドによる屈曲や摩擦で粉末シリカの脱落が生じる事となり、期待されるセパレータの耐熱性機能は完全ではない。
For example, a lithium ion battery separator having excellent heat resistance, in which powder silica, which is an insulating inorganic powder, is fixed and held between coating fibers on a non-woven fabric made of polyester resin. When this separator is used, even when the lithium ion battery becomes abnormally high for some reason, the distance between the electrodes is maintained because the polyester resin with high heat resistance is used, and the battery becomes hotter. Even when the polyester fiber is softened, the distance between the electrodes is maintained by the powder silica interposed in the fiber gap, so that a short circuit is prevented and it is effective for ensuring safety at high temperatures.
However, when producing a lithium ion battery, a considerable tension is applied in the process of winding the electrode and the separator, and the separator is pulled and wound at a high speed. As a result, powder silica falls off due to friction, and the expected heat resistance function of the separator is not perfect.

又、特許文献1に記載されているリチウムイオン電池用の高溶融完全性電池セパレータは、低温シャトダウン特性を有する熱可塑性樹脂微小孔径膜と不織フラットシート即ち不織布を接着してなり、不織布にはコーティングまたは表面処理を行う事も可能とされている。さらに該高溶融完全性電池セパレータは微小孔径膜と不織フラットシート即ち不織布との接着方法に重点をおいているが、該不織布としては高温溶融完全性を有する熱可塑性ポリマー、セルロース誘導体および/またはセラミックスからなる群より選択されるポリマーで作成される電池セパレータと説明されている。   In addition, the high-melting integrity battery separator for a lithium ion battery described in Patent Document 1 is formed by adhering a thermoplastic resin microporous membrane having a low-temperature shutdown characteristic and a non-woven flat sheet, that is, a non-woven fabric. It is also possible to perform coating or surface treatment. Further, the high melt integrity battery separator focuses on the method of bonding the microporous membrane and the non-woven flat sheet, i.e., non-woven fabric, as the non-woven fabric, thermoplastic polymer having high temperature melt integrity, cellulose derivative and / or A battery separator made of a polymer selected from the group consisting of ceramics is described.

従って、特許文献1に記載の発明は微小孔性膜に低温シャットダウン特性を持たせ該不織布に耐熱性を持たせ高温時の正極と負極の接触を防止する事にして機能を分担させたものである。
特開2005−38854号公報
Therefore, the invention described in Patent Document 1 shares the function by giving the microporous membrane a low-temperature shutdown characteristic and heat resistance of the nonwoven fabric to prevent contact between the positive electrode and the negative electrode at high temperatures. is there.
JP 2005-38854 A

本発明は、多くの電池類やキャパシタに有効に使用出来、特に自動車駆動用電源に代表される大型リチウムイオン電池の過熱時の安全性を向上させる事のできる布帛状セパレータ及びその製造方法を提供することを目的とする。   The present invention provides a fabric separator that can be used effectively for many types of batteries and capacitors, and in particular, can improve safety during overheating of a large-sized lithium ion battery represented by a power source for driving an automobile, and a method for manufacturing the same. The purpose is to do.

本発明者らは前記の問題を解決すべく、鋭意検討の末、多くの電池類やキャパシタ、特に大型電池に要求される高い熱安定性を有する布帛状セパレータを完成させた。
すなわち本発明は以下の通りである。
(1)無機粉体を40質量%以上95質量%以下含有し、粘度平均分子量(Mv)300万以上のポリオレフィン樹脂からなり、且つ空孔率が20%以上である繊維から構成される布帛からなることを特徴とするリチウムイオン電池用セパレータ。
無機粉体を40質量%以上95質量%以下含有し、粘度平均分子量(Mv)300万以上のポリオレフィン樹脂からなり、且つ空孔率が20%以上である繊維から構成される布帛上の少なくとも一面にシャットダウン効果を有する熱可塑性樹脂多孔膜を積層したことを特徴とするリチウムイオン電池用セパレータ。
)上記(1)又は(2)に記載のセパレータを用いたリチウムイオン電池。
粘度平均分子量(Mv)300万以上のポリオレフィン樹脂、無機粉体、当該ポリオレフィン樹脂の溶剤を含む混合物を熱溶融押出し装置により繊維状に成形する工程を経た後、溶剤を抽出して得た無機粉体を40質量%以上95質量%以下含有し、且つ空孔率が20%以上である繊維を、不織布製法により布帛状に形成する布帛の製造方法。
In order to solve the above problems, the present inventors have intensively studied and completed a fabric separator having high thermal stability required for many batteries and capacitors, particularly large batteries.
That is, the present invention is as follows.
(1) From a fabric comprising inorganic powder in an amount of 40% by mass to 95 % by mass, a polyolefin resin having a viscosity average molecular weight (Mv) of 3 million or more, and a fiber having a porosity of 20% or more The separator for lithium ion batteries characterized by becoming.
(2) an inorganic powder containing 95 mass% or less than 40 wt%, viscosity-average molecular weight (Mv) 300 million in consists more polyolefin resin, and a porosity of the fabric comprised of fibers at least 20% A separator for a lithium ion battery , wherein a thermoplastic resin porous film having a shutdown effect is laminated on at least one surface of the separator.
(3) Lithium-ion battery using the separators described in the above (1) or (2).
( 4 ) Viscosity average molecular weight (Mv) 3 million or more polyolefin resin, inorganic powder , obtained by extracting the solvent after passing through a step of forming a mixture containing the polyolefin resin solvent into a fiber using a hot melt extrusion apparatus A method for producing a fabric , wherein fibers containing 40% by mass or more and 95% by mass or less of inorganic powder and having a porosity of 20% or more are formed into a fabric by a nonwoven fabric manufacturing method.

本発明の布帛状セパレータによれば、電池或はキャパシタ等に、より高い安全性を付与せしめることができ、蓄電器類の異常過熱時にイオン透過阻止による電流遮断効果のみならずより高温時に生じる可能性があるセパレータの絶縁破壊を防止し電極短絡による熱逸走を防止することができる。   According to the fabric-like separator of the present invention, it is possible to give a battery or a capacitor higher safety, and it may occur not only at the time of higher temperature but also at the time of current interruption by preventing ion permeation when the condenser is abnormally overheated. It is possible to prevent dielectric breakdown of a separator and to prevent thermal escape due to an electrode short circuit.

本発明のセパレータは、無機粉体を40質量%以上95質量%以下含有する熱可塑性繊維(以下、単に「本発明の繊維」という)からなる布帛からなる。本発明のセパレータは、電池が短絡等の要因により発熱して過熱状態になり、熱可塑性樹脂の溶融温度近辺になったとしても、該繊維が軟化溶融することで、該繊維同士で構成される空隙が少なくなり、電解液に含まれるイオンの透過性が減少して電流が流れ難くなる結果、電池としての機能を無くす事で発熱が抑えられる。
またセパレータの軟化溶融によっても完全にイオン透過を防げなかった場合や何らかの電池過熱因、例えば外部からの加熱があり電池温度が上昇を続けた場合には、例えば熱可塑性樹脂として使用したポリエチレン樹脂が軟化し両極間の圧力に抗しきれずに短絡を生じる事が懸念されるが、本発明のセパレータは、この様な厳しい状態に移行しても繊維内に多量に含まれる絶縁性無機粉体によって両極間の距離が保たれ短絡を防ぎ、次いで他の電池安全機構が働き該電池は安全終息を迎える事が出来る画期的な安全性機能を持った蓄電器用セパレータとして提案出来るものである。
The separator of the present invention is made of a fabric made of thermoplastic fibers (hereinafter simply referred to as “fibers of the present invention”) containing inorganic powder in an amount of 40% by mass to 95% by mass. The separator of the present invention is constituted by the fibers by softening and melting the fibers even when the battery is heated due to a short circuit or the like and becomes overheated, and even near the melting temperature of the thermoplastic resin. The voids are reduced, the permeability of ions contained in the electrolytic solution is reduced, and it becomes difficult for current to flow. As a result, heat generation can be suppressed by eliminating the battery function.
Also, when the ion permeation could not be completely prevented even by softening and melting of the separator or when the battery temperature continued to rise due to some cause of overheating of the battery, such as external heating, for example, the polyethylene resin used as the thermoplastic resin Although there is a concern that a short circuit may occur without resisting the pressure between the two electrodes, the separator of the present invention is made of an insulating inorganic powder contained in a large amount in the fiber even when such a severe state is shifted. The distance between the two poles is maintained to prevent a short circuit, and then another battery safety mechanism is activated, and the battery can be proposed as a battery separator having an epoch-making safety function capable of reaching the end of safety.

更に、本発明のセパレータでは、無機粉体が繊維内部に含まれるため、電池作成時の捲回工程等の加工操作でセパレータが走行する際、ガイド等による曲げや高速走行での擦れによる外力による脱落を低減でき、その結果、高温状態においても両極間の絶縁性を高く維持できるという効果を奏する。   Furthermore, in the separator of the present invention, since the inorganic powder is contained in the fiber, when the separator travels in a processing operation such as a winding process at the time of battery creation, due to external force due to bending by a guide or rubbing at high speed travel Dropping can be reduced, and as a result, the insulation between the two electrodes can be maintained at a high temperature even in a high temperature state.

本発明で使用される無機粉体としては、金属粉体や合金粉体、炭素やセラミックス等の非金属粉体等多くの物が使用でき、その中でも絶縁性無機粉体を用いた場合にはセパレータが高性能な蓄電器用セパレータにできるためより好ましい。絶縁性無機粉体としては、Li2O,BeO,B2O3,Na2O,MgO,Al2O3,SiO2,P2O5,CaO,Cr2O3、Fe2O3,ZnO,ZrO2,TiO2等の酸化物、ゼオライト,BN,AlN,Si3O4,Ba3N2,等の窒化物、SiC,ZrSiO4,MgCO3,CaCO3等の炭酸塩、CaSO4,BaSO4等の硫酸塩、ステアタイト(MgO・SiO2)、フォルステライト(2MgO2・SiO2),コージェライト(2MgO2・2Al2O3・5SiO2)等のセラミック等が使用できる。この場合、繊維に占める絶縁性無機粉体の体積占有率が大きい方が高温時の電極間距離を保つ、即ち短絡しにくくさせるため、絶縁性無機粉体はその密度が小さいものがよく、例えば特にシリカ、酸化アルミニウム、酸化マグネシウム等の酸化物の使用が更に好ましい。 As the inorganic powder used in the present invention, many things such as metal powder, alloy powder, non-metal powder such as carbon and ceramics can be used, and among them, when insulating inorganic powder is used The separator is more preferable because it can be a high-performance capacitor separator. Insulating inorganic powders include Li 2 O, BeO, B 2 O 3 , Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , CaO, Cr 2 O 3 , Fe 2 O 3 , Oxides such as ZnO, ZrO 2 and TiO 2 , nitrides such as zeolite, BN, AlN, Si 3 O 4 and Ba 3 N 2 , carbonates such as SiC, ZrSiO 4 , MgCO 3 and CaCO 3 , CaSO 4 sulfate salts such as BaSO 4, steatite (MgO · SiO 2), forsterite (2MgO 2 · SiO 2), a ceramic such as cordierite (2MgO 2 · 2Al 2 O 3 · 5SiO 2) can be used. In this case, the larger the volume occupancy ratio of the insulating inorganic powder in the fiber is to keep the distance between the electrodes at a high temperature, that is, to make it difficult to short-circuit, the insulating inorganic powder should have a low density, for example, In particular, the use of oxides such as silica, aluminum oxide, and magnesium oxide is more preferable.

繊維中の無機粉体と熱可塑性樹脂の混合割合は、以下の方法により求めることができる。予めるつぼを電気炉に入れ900℃で1時間空焼きしたのち電気炉から取出しデシケータ中で約1時間冷却後電子天秤で秤量する操作を繰り返し、るつぼの重量差が0.0010g以下となった時をるつぼの恒量W1(g)とする。次いで約5gの繊維を電子天秤で小数点4桁まで秤量してW2(g)とし、恒量となったるつぼに入れ、直ちに電気炉に入れ800℃で1時間加熱して熱可塑性樹脂を焼却した後、るつぼを取出してデシケータに入れ約1時間冷却し電子天秤で秤量しW3(g)とする。
無機粉体の繊維に占める質量%は下記式(1)で求められる。
無機粉体質量%=〔(W3−W1)/W2〕 X 100 式(1)
The mixing ratio of the inorganic powder and the thermoplastic resin in the fiber can be determined by the following method. When the crucible is put in an electric furnace in advance and air-baked at 900 ° C. for 1 hour, taken out from the electric furnace, cooled in a desiccator for about 1 hour and then weighed with an electronic balance, and the weight difference between the crucibles becomes 0.0010 g or less. Is the constant weight W1 (g) of the crucible. Next, about 5 g of fiber was weighed to 4 decimal places with an electronic balance to make W2 (g), put into a constant crucible, immediately placed in an electric furnace and heated at 800 ° C. for 1 hour to incinerate the thermoplastic resin. The crucible is taken out, placed in a desiccator, cooled for about 1 hour, and weighed with an electronic balance to obtain W3 (g).
The mass% of the inorganic powder in the fiber is obtained by the following formula (1).
Inorganic powder mass% = [(W3-W1) / W2] X100 Formula (1)

繊維に含まれる無機粉体の量は40質量%以上95質量%以下であるが、無機粉体の性状を発揮させるために70質量%以上95質量%以下が好ましく、繊維強度の観点から40質量%以上80質量%以下がより好ましい。特に、シリカのように比重の小さい無機粉体の場合には製造上の理由から80質量%以下が好ましい。   The amount of the inorganic powder contained in the fiber is 40% by mass or more and 95% by mass or less, but preferably 70% by mass or more and 95% by mass or less in order to exhibit the properties of the inorganic powder, and 40% by mass from the viewpoint of fiber strength. % To 80% by mass is more preferable. In particular, in the case of an inorganic powder having a small specific gravity such as silica, 80% by mass or less is preferable for manufacturing reasons.

本発明のセパレータは、無機粉体を高濃度含有する熱可塑性繊維を使用するため、熱による収縮を防止する事が出来る。これは繊維を構成する熱可塑性樹脂の収縮作用を大量の無機粉体が支持体となって妨げ、熱可塑性樹脂のみによる布帛状セパレータと比較して殆ど熱収縮が無いからである。このため、本発明の布帛状セパレータを用いた蓄電器用セパレータを電池やコンデンサーに使用した場合、これら蓄電器類が過熱された状態でもセパレータは熱収縮することが無く、かつ往々にして生じる正・負電極の端面による短絡現象を起こす事が無いためより高い安全性に寄与する事ができる。
また、本発明のセパレータは、熱収縮を防止させる安定基板用素材類としても使用が可能であると共に、高濃度に無機粉体を混入・安定的に維持させることが出来るため、無機粉体の特性を選定することより熱伝導性や電気伝導性、イオン吸着性あるいは触媒作用を持たせる用途にも有効に利用できる。
Since the separator of the present invention uses thermoplastic fibers containing a high concentration of inorganic powder, it can prevent shrinkage due to heat. This is because the shrinkage action of the thermoplastic resin constituting the fibers is hindered by a large amount of inorganic powder as a support, and there is almost no thermal shrinkage as compared with the fabric separator made of only the thermoplastic resin. For this reason, when the capacitor separator using the fabric separator of the present invention is used for a battery or a capacitor, the separator does not thermally contract even when these capacitors are overheated, and the positive / negative generated frequently. Since the short circuit phenomenon by the end surface of an electrode does not occur, it can contribute to higher safety.
In addition, the separator of the present invention can be used as a material for a stable substrate that prevents thermal shrinkage, and can mix and stably maintain a high concentration of inorganic powder. By selecting the characteristics, it can be effectively used for applications having thermal conductivity, electrical conductivity, ion adsorption or catalytic action.

本発明の繊維を構成する熱可塑性樹脂は、個々の蓄電器類に使用される電解液や電気科学的な安定性に問題ないものであれば総て使用可能であり、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、AS樹脂、ABS樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメタクリル酸メチル、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、エチレンビニルアルコールコポリマー、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリテトラフルオロエチレンおよびポリフッ化ビニリデン等のフッソ樹脂等があげられ、これらの樹脂を単独でも混合して使用しても良い。本発明のセパレータがモバイル用電源として、あるいは高容量電源として重要な蓄電器であるリチウムイオン電池に使用される場合は、前記繊維はポリオレフィン樹脂からなることがより好ましい。   The thermoplastic resin constituting the fiber of the present invention can be used as long as there is no problem with the electrolytic solution used in individual capacitors and the electrical stability. For example, polyethylene, polypropylene, polystyrene AS resin, ABS resin, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, polyester resin, polyamide resin, polycarbonate resin, ethylene vinyl alcohol copolymer, polyacetal resin, polyether ether ketone resin, polytetrafluoroethylene and polyfluoride Examples thereof include a fluororesin such as vinylidene, and these resins may be used alone or in combination. When the separator of the present invention is used in a lithium ion battery which is an important battery as a mobile power source or a high capacity power source, the fiber is more preferably made of a polyolefin resin.

本発明の繊維は空孔率20%以上であることが好ましく、30%以上がより好ましく、40%以上が更に好ましい。繊維の空孔率は繊維に含まれる熱可塑性樹脂と無機粉体の重量比に基づき繊維密度を計算し、実測した繊維密度との比率より算定することができる。 すなわち、空孔率D%は、下記式(2)により求められる。
空孔率D(%) = 100*[A−(B+C)]/A 式(2)
なお、上記式(2)中、Aは繊維の体積、Bは繊維中の無機粉体の体積、Cは繊維中の樹脂の体積を示し、各々以下のとおり求められる。
繊維の体積A[cm3]=繊維長(イ)[cm]*繊維面積(ロ)[cm2]
繊維中の無機粉体体積B(cm3)=無機粉体重量b(g)/無機粉体密度(g/cm3)
無機粉体重量bは灰分測定による
繊維中の樹脂体積C(cm3)=(繊維重量a−無機粉体重量b)(g)/樹脂密度(g/cm3)
上記高空孔率の多孔体構造である繊維を用いると、電解液は繊維の空孔に浸透し、且つ繊維同士で構成する布帛の組織間にも保持され、より多くの電解液を長期間維持する事が可能となり電池寿命を長くできる等、電池特性を大きく向上させる事ができるので好ましい。
The fiber of the present invention preferably has a porosity of 20% or more, more preferably 30% or more, and still more preferably 40% or more. The porosity of the fiber can be calculated from the ratio of the fiber density calculated based on the weight ratio of the thermoplastic resin and the inorganic powder contained in the fiber and the measured fiber density. That is, the porosity D% is obtained by the following formula (2).
Porosity D (%) = 100 * [A− (B + C)] / A Formula (2)
In the above formula (2), A represents the volume of the fiber, B represents the volume of the inorganic powder in the fiber, and C represents the volume of the resin in the fiber, which are determined as follows.
Fiber volume A [cm 3 ] = fiber length (A) [cm] * fiber area (B) [cm 2 ]
Inorganic powder volume B (cm 3 ) in fiber = inorganic powder weight b (g) * / inorganic powder density (g / cm 3 )
Inorganic powder weight b * is based on ash measurement
Resin volume in fiber C (cm 3 ) = (fiber weight a−inorganic powder weight b) (g) / resin density (g / cm 3 )
When fibers having a porous structure with a high porosity are used, the electrolyte solution penetrates into the pores of the fiber and is also retained between the fabric structures composed of the fibers, thereby maintaining more electrolyte solution for a long period of time. This is preferable because the battery characteristics can be greatly improved.

本発明の繊維径は特に制限はないが、均一で高強度である布帛を得るために1μm 以上10μm以下であることが好ましい。
本発明の布帛の目付けは、用途に応じて適宜選択できるが、高温時の短絡防止の点から、20g/m以上、特に繊維中の無機粉体の含有量が40質量%以上90質量%以下でかつ布帛の目付けが20g/m以上であること、更には30g/m以上で、特に繊維中の無機粉体の含有量が40質量%以上80質量%以下であることあることが好ましい。ここで、目付けは、本発明の布帛を単位面積あたりの重量で表わしたものであり、測定方法はJIS−K7100の条件による。
The fiber diameter of the present invention is not particularly limited, but is preferably 1 μm or more and 10 μm or less in order to obtain a uniform and high-strength fabric.
The basis weight of the fabric of the present invention can be appropriately selected depending on the use, but from the viewpoint of prevention of short circuit at high temperature, it is 20 g / m 2 or more, in particular, the content of inorganic powder in the fiber is 40 mass% or more and 90 mass%. The fabric weight per unit area is 20 g / m 2 or more, further 30 g / m 2 or more, and the content of the inorganic powder in the fiber may be 40% by mass or more and 80% by mass or less. preferable. Here, the basis weight represents the fabric of the present invention in terms of weight per unit area, and the measurement method depends on the conditions of JIS-K7100.

すなわち、布帛を恒温恒湿条件にて所定の時間放置した後、面積を測定して得られるA(m2)、続いて該試料の重量を電子天秤で測定して得られる重量B(g)より、下記式(3)で求められる。
目付けC g/m2 = B / A 式(2)
That is, A (m 2 ) obtained by allowing the fabric to stand under a constant temperature and humidity condition for a predetermined time and then measuring the area, and then the weight B (g) obtained by measuring the weight of the sample with an electronic balance. From the following equation (3)
Weight per unit area C g / m 2 = B / A Formula (2)

本発明の布帛は、本発明の目的を損なわない範囲で、上記無機粉体含有繊維に加えて他の繊維、好ましくは熱可塑性繊維を含有してもよい。そのような熱可塑繊維を構成する樹脂としては、上記無機粉体含有繊維を構成する熱可塑性樹脂と同様のものを使用できる。
本発明のセパレータでは、上記の布帛上に熱可塑性樹脂多孔膜又は熱可塑性繊維布帛を積層することもできる。熱可塑性樹脂多孔膜とは、熱可塑性樹脂を使用して延伸法、相分離法、混合抽出法、焼結法等により多孔構造を有するフィルム状のものをいい、熱可塑性樹脂繊維とは、熱可塑性樹脂を使用して溶融紡糸等により押出して繊維状としたものをいう。
熱可塑性樹脂多孔膜又は熱可塑性繊維を構成する熱可塑性樹脂は、加工性、コスト、環境安全性の観点から、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、超高密度ポリエチレン等のポリエチレン、エチレン・プロピレン、エチレン・酢酸ビニル等の共重合体、ポリプロピレン、環状ポリオレフィン・コポリマー、 等のポリオレフィン樹脂が好ましい。上記積層セパレータは、例えば、熱可塑性樹脂多孔膜又は熱可塑性繊維布帛を上記布帛上の少なくとも一面に積層し、熱圧着法、超音波接着法、接着剤法等の手段により一体化させることにより得られる。
The fabric of the present invention may contain other fibers, preferably thermoplastic fibers, in addition to the inorganic powder-containing fibers as long as the object of the present invention is not impaired. As resin which comprises such a thermoplastic fiber, the thing similar to the thermoplastic resin which comprises the said inorganic powder containing fiber can be used.
In the separator of the present invention, a thermoplastic resin porous membrane or a thermoplastic fiber fabric can be laminated on the above fabric. The thermoplastic resin porous membrane refers to a film-like one having a porous structure by a stretching method, a phase separation method, a mixed extraction method, a sintering method, etc. using a thermoplastic resin. This refers to a fiber that is extruded by melt spinning or the like using a plastic resin.
The thermoplastic resin constituting the thermoplastic resin porous membrane or thermoplastic fiber is low density polyethylene, linear low density polyethylene, high density polyethylene, ultra high density polyethylene, etc. from the viewpoint of processability, cost, and environmental safety. Polyolefin resins such as polyethylene, copolymers of ethylene / propylene, ethylene / vinyl acetate, polypropylene, cyclic polyolefin / copolymers, and the like are preferable. The laminated separator can be obtained, for example, by laminating a thermoplastic resin porous membrane or a thermoplastic fiber cloth on at least one surface of the cloth and integrating them by means of a thermocompression bonding method, an ultrasonic bonding method, an adhesive method, or the like. It is done.

このように一体化された蓄電池用セパレータを、例えばリチウムイオン電池用セパレータとして使用した際には、昇温初期の130℃近辺でより確実にイオン透過を阻止することがきできる。即ち、リチウムイオン電池が熱可塑性樹脂多孔膜の溶融点以上にさらされた場合、熱可塑性樹脂多孔膜は溶融して無孔のフィルム状となり現在使用されている安全性機構であるシャットダウン効果が発揮されると共に、布帛状のセパレータを構成する軟化した繊維と容易に接着され、過熱により狭まった繊維間の間隙をより完全に閉塞させる事に寄与してイオンの透過をより完全に阻止出来る。   When the storage battery separator integrated in this way is used as, for example, a lithium ion battery separator, it is possible to more reliably prevent ion permeation at around 130 ° C. in the early stage of temperature rise. That is, when the lithium ion battery is exposed to the melting point of the thermoplastic resin porous membrane or more, the thermoplastic resin porous membrane melts into a non-porous film, and exhibits a shutdown effect that is a safety mechanism currently used. At the same time, it is easily bonded to the softened fibers constituting the cloth-like separator and contributes to more completely closing the gaps between the fibers narrowed by overheating, thereby preventing the permeation of ions more completely.

例えば、布帛を構成する熱可塑性樹脂としてポリエチレン樹脂を使用し、布帛上に積層する熱可塑性樹脂多孔膜にポリエチレン多孔膜を使用し、双方を一体化した蓄電器用セパレータを作成してリチウムイオン電池に使用する場合、電池が過熱状態になった場合、先ずポリエチレン多孔膜が融点温度である130℃近辺で軟化溶融して無孔化しフィルム状になり、同時に該セパレータを構成する繊維が軟化溶融し繊維間空隙を埋める作用を生じ、同様にして熱可塑性樹脂繊維を用いた場合においても安全性を高めることができる。   For example, a polyethylene resin is used as a thermoplastic resin constituting a fabric, a polyethylene porous membrane is used as a thermoplastic resin porous membrane laminated on the fabric, and a separator for a battery unit is formed by integrating both of them into a lithium ion battery. When the battery is overheated, the polyethylene porous membrane is first softened and melted around 130 ° C., which is the melting point temperature, to become non-porous to form a film, and at the same time, the fibers constituting the separator are softened and melted. The effect | action which fills a space | gap between gaps is produced and safety | security can be improved also when using a thermoplastic resin fiber similarly.

また、絶縁性無機粉体とポリエチレン樹脂を混合せしめて成形した繊維よりなる布帛Aと、無機粉体を含有させず熱可塑性樹脂としてポリエチレン樹脂のみ使用した繊維よりなる布帛Bとを、A/B/Aの積層体にした後、熱圧着等により布帛状に成形してリチウムイオン電池にセパレータとして使用した場合、電池が過熱状態になりポリエチレン樹脂溶融温度以上の条件では中間層の熱可塑性樹脂繊維Bは軟化溶融して多孔膜と同様にフィルム化し無孔状態となると共に布帛Aも軟化してイオンの透過性は完全に阻止出来る。その後何らかの要因で、温度上昇が発生した場合でも布帛Aが絶縁性無機粉体を有するため、電極間短絡が防止出来る。   Further, a fabric A made of fibers formed by mixing insulating inorganic powder and polyethylene resin, and a cloth B made of fibers not containing inorganic powder but using only polyethylene resin as a thermoplastic resin, are A / B. / A laminate, molded into a fabric by thermocompression bonding, etc., and used as a separator for a lithium ion battery, the battery becomes overheated and the thermoplastic resin fibers in the intermediate layer under conditions above the polyethylene resin melting temperature B softens and melts to form a film in the same manner as the porous film and becomes non-porous, while the fabric A softens and ion permeability can be completely prevented. Thereafter, even when the temperature rises due to some reason, the fabric A has the insulating inorganic powder, so that the short circuit between the electrodes can be prevented.

本発明のセパレータの厚みは特に制限はないが、例えば10μm以上100μm以下である。
本発明のセパレータは、例えば、熱可塑性樹脂5質量部以上60質量部以下と無機粉体40質量部以上95質量部以下含む混合物を、溶融押出し法等の繊維状に成形する工程の後、該繊維から布帛を形成する工程を含む方法により得られる。
無機粉体を非常に大量に混合せしめたセパレータを得るには、混合物中に熱可塑性樹脂の溶剤を含む事が好ましい。これは該溶剤が含まれていると無機粉体を大量に混合して繊維とする事が可能となるためである。熱可塑性樹脂の溶剤として、具体的には、熱可塑性樹脂が高温で溶解する貧溶媒が挙げられ、操作性やコスト、繊維への多孔性付与等の観点から流動パラフィン、DOP、デカリン等やこれらの混合物が好ましい。溶媒の量は特に制限はないが、熱可塑性樹脂と無機粉体の混合物を100質量部とした場合に、200質量部以上800質量部以下であること、更には300質量部以上600質量部以下であることが好ましい。
Although there is no restriction | limiting in particular in the thickness of the separator of this invention, For example, they are 10 micrometers or more and 100 micrometers or less.
The separator of the present invention, for example, after a step of forming a mixture containing 5 to 60 parts by mass of a thermoplastic resin and 40 to 95 parts by mass of an inorganic powder into a fibrous form such as a melt extrusion method, It is obtained by a method including a step of forming a fabric from fibers.
In order to obtain a separator in which a very large amount of inorganic powder is mixed, it is preferable that a thermoplastic resin solvent be included in the mixture. This is because when the solvent is contained, a large amount of inorganic powder can be mixed to form a fiber. Specific examples of the solvent for the thermoplastic resin include a poor solvent in which the thermoplastic resin dissolves at a high temperature. From the viewpoint of operability, cost, and imparting porosity to fibers, liquid paraffin, DOP, decalin, and the like. Is preferred. The amount of the solvent is not particularly limited, but when the mixture of the thermoplastic resin and the inorganic powder is 100 parts by mass, it is 200 parts by mass or more and 800 parts by mass or less, and further 300 parts by mass or more and 600 parts by mass or less. It is preferable that

又、熱可塑性樹脂としてポリエチレン樹脂を使用し、本発明の手法を用いて得られる繊維を細く且つ高強度にさせるためには、使用するポリエチレン樹脂の分子量が大きいものが好ましく粘度平均分子量Mv300万以上、より好ましくはMv600万以上を用いる事が適切である。そのため、無機粉体をより多く含有させてしかも高強度な繊維を得るためには出来るだけ分子量の大きなポリエチレン樹脂を使用する事が望ましい。   Moreover, in order to make the fiber obtained by using the polyethylene resin as the thermoplastic resin thin and high in strength, it is preferable that the polyethylene resin used has a large molecular weight, and the viscosity average molecular weight Mv is 3 million or more. More preferably, it is appropriate to use Mv 6 million or more. For this reason, it is desirable to use a polyethylene resin having a molecular weight as large as possible in order to obtain a fiber having a higher strength and containing more inorganic powder.

本発明のセパレータは、熱可塑性樹脂と無機粉体を含む混合物、或いはさらに熱可塑性樹脂の溶剤を含む混合物を熱溶融押出し装置等により繊維状に成形する工程を経た後、必要に応じて溶剤を揮発または抽出して得た繊維を、布帛状に形成する工程、すなわち織編または不織布製法等により布帛状に形成する方法、或いは繊維状に押出して得た繊維を織編または不織布製法等により布帛状に形成して後、溶剤を揮発または抽出する方法等、を経て得られる。   The separator of the present invention is subjected to a step of forming a mixture containing a thermoplastic resin and an inorganic powder, or a mixture containing a thermoplastic resin solvent into a fiber shape by a hot melt extrusion apparatus or the like, and then adding a solvent as necessary. A process of forming fibers obtained by volatilization or extraction into a fabric, that is, a method of forming into a fabric by a woven or non-woven fabric manufacturing method, or a fabric obtained by extruding fibers obtained by extrusion into a fiber into a fabric or the like After forming into a shape, it is obtained through a method of volatilizing or extracting the solvent.

本発明の製法においては、使用する溶剤、無機粉体を調整することにより、繊維の空孔率を調整することができる。例えば、繊維に空孔を形成させる前記の溶剤が、熱によっても比較的不揮発性である流動パラフィンの様な場合、熱可塑性樹脂と無機粉体および熱可塑性樹脂の溶剤を含む混合物を熱溶融押出し装置より繊維状に押出した時に、温度低下による相分離で形成された繊維の空孔内に溶剤が保持され繊維が冷却後も空孔状態は溶剤が詰まり維持され、溶剤を溶媒により抽出した場合に繊維全体に微細孔を有する。また使用する絶縁性無機粉体が多孔体である場合はより多くの空孔率を有する繊維となる。   In the manufacturing method of this invention, the porosity of a fiber can be adjusted by adjusting the solvent and inorganic powder to be used. For example, when the solvent for forming pores in the fiber is liquid paraffin that is relatively non-volatile even by heat, a mixture containing a thermoplastic resin, an inorganic powder, and a solvent for the thermoplastic resin is subjected to hot melt extrusion. When the solvent is retained in the pores of the fiber formed by phase separation due to temperature drop when extruded from the device, and the solvent remains clogged even after the fiber cools, and the solvent is extracted with the solvent Have fine pores throughout the fiber. Moreover, when the insulating inorganic powder to be used is a porous body, it becomes a fiber having more porosity.

又、熱可塑性樹脂の溶剤がデカリンの様な熱揮発性である場合は熱可塑性樹脂と無機粉体および熱可塑性樹脂の溶剤を含む混合物を熱溶融押出し装置より繊維状に押出した時に温度低下による相分離後直ちに熱可塑性樹脂溶融状態で揮発し繊維に空孔が形成される事は殆ど無く、該繊維の容積に占める無機粉体の量を多く出来る事から空孔率のコントロールは容易に出来るので、好ましい。
本発明により得られる布帛形成体は使用用途によりその最適形状は異なるが、例えば蓄電器用セパレータを不織布製法で得るためには目付けが小さい場合に繊維間で形成される間隙即ち孔径が大きく且つバラツキも大きくなる。又、布帛形成させる繊維の太さも重要であり、同一の布帛目付けであれば出来るだけ細い繊維を重ねて構成させる方が形成する孔径とバラツキを小さくできるが反面強度や生産性に問題も有る。
Also, when the thermoplastic resin solvent is volatile, such as decalin, when the mixture containing the thermoplastic resin, the inorganic powder and the thermoplastic resin solvent is extruded into a fiber from a hot melt extruder, the temperature decreases. Vaporization occurs almost immediately after the phase separation in the molten state of the thermoplastic resin, and voids are not formed in the fibers, and the amount of inorganic powder occupying the volume of the fibers can be increased, so the porosity can be easily controlled. Therefore, it is preferable.
The optimum shape of the fabric-formed body obtained by the present invention varies depending on the intended use. For example, in order to obtain a capacitor separator by a nonwoven fabric manufacturing method, the gap formed between fibers when the basis weight is small, that is, the pore diameter is large and the variation is also large. growing. In addition, the thickness of the fibers to be formed is also important, and if the fabric weight is the same, it is possible to reduce the hole diameter and variation by forming the thin fibers as much as possible, but there are problems in strength and productivity.

従って、不織布製法で布帛を形成させる場合に、断面方向の一部を出来るだけ細い繊維で堆積させた層を形成し小孔径化を図り、他層を比較的太い高強度の繊維で形成する堆積層を作成、即ち複層を形成して一体化する事も機能分担には有効な手段である。
本発明の手法により蓄電器用セパレータを得るためには、例えば、熱可塑性樹脂として超高分子量を含むポリエチレン樹脂、絶縁性無機粉体として疎水性SiO2、および流動パラフィンを均一に混合させ原料とし、熱押出し機に導入して高温溶融状態にて多数の紡口より押出し繊維として、ベルト状のコンベアに振り落とした後過熱ロール間で加圧して繊維間を融着させて布帛とさせる。その後、ポリエチレンの溶剤である流動パラフィンを溶解させる溶媒浴中に導入して溶媒を乾燥して本発明の布帛状セパレータが得られる。
同様にして、繊維となった後で熱可塑性樹脂の溶剤例えば流動パラフィンを抽出し、その後布帛状に形成し熱融着、接着剤あるいは流体による繊維絡ませ等によって布帛状セパレータとし、本発明の蓄電器用セパレータとして使用できる。
Therefore, when forming a fabric by a nonwoven fabric manufacturing method, a layer in which a part of the cross-sectional direction is deposited with as thin fibers as possible is formed to reduce the pore diameter, and the other layer is formed with relatively thick high-strength fibers. Creating layers, that is, forming multiple layers and integrating them is also an effective means for function sharing.
In order to obtain a capacitor separator by the method of the present invention, for example, a polyethylene resin containing an ultra-high molecular weight as a thermoplastic resin, hydrophobic SiO 2 as an insulating inorganic powder, and liquid paraffin are uniformly mixed as a raw material, Introduced into a hot extruder and extruded as fibers from a number of spinning nozzles in a high-temperature melted state, after being shaken down on a belt-like conveyor, pressurized between superheated rolls to fuse the fibers into a fabric. Then, it introduce | transduces into the solvent bath which dissolves the liquid paraffin which is a solvent of polyethylene, and a solvent is dried, and the fabric-like separator of this invention is obtained.
Similarly, after becoming a fiber, a thermoplastic resin solvent such as liquid paraffin is extracted, then formed into a cloth shape, and formed into a fabric separator by thermal fusion, fiber entanglement with an adhesive or fluid, and the like. Can be used as a separator.

本発明のセパレータの製造方法は、従来のセパレータの製造方法に比べて優れた効果を奏する。例えばリチウムイオン電池用セパレータは、より薄く高強度で且つ電池性能として問題ない限り微細孔な多孔体が要求されている。、多孔膜セパレータでは高強度化は樹脂の組成を選択するか物理的に引張させ分子配向、即ち延伸をする事が一般的であるが、膜の延伸は面積拡大であり高延伸には実用的に限界があるばかりでなく、設備的にも高価格となり現実的でない。
また、多孔膜生産時に無機粉体を熱可塑性樹脂に対し高濃度で含有させて製膜した場合、延伸に伴い高濃度の無機粉体が延伸を妨げ膜の厚さ方向の減少、即ち薄膜化が困難である事ばかりでなく無機粉体が起因となり膜破れが発生する事が有り多孔膜の生産性が優れない。これに対して、本発明の製造方法は紡糸方法により高速高延伸で分子が高配列されるため細く強い繊維が多量に得られる。この様な繊維によって布帛状セパレータとするため、同じ該熱可塑性樹脂で製造した微多孔膜より単位面積当りの強度は非常に大きくなるという利点がある。不織布生産方式で蓄電器用セパレータを得る場合、最も大きな欠点は形成される孔の孔径が大きく且つ孔径バラツキも大きい事に有りこの要因として多孔膜に比べ繊維が太い事がもっとも大きいと考えられる。
The separator manufacturing method of the present invention has an excellent effect compared to the conventional separator manufacturing method. For example, a lithium-ion battery separator is required to have a porous body that is thinner and higher in strength and has fine pores as long as there is no problem in battery performance. In the case of porous membrane separators, increasing the strength is generally done by selecting the resin composition or physically pulling it and molecular orientation, that is, stretching, but stretching the membrane is an area expansion and is practical for high stretching. In addition to its limitations, the equipment is expensive and unrealistic.
In addition, when producing a porous film containing inorganic powder at a high concentration with respect to the thermoplastic resin, the high concentration of the inorganic powder prevents the stretching along with the stretching, ie, the thickness of the membrane decreases. In addition to being difficult, the membrane may be broken due to inorganic powder and the productivity of the porous membrane is not excellent. On the other hand, the production method of the present invention can produce a large amount of fine and strong fibers because the molecules are highly aligned by high speed and high stretch by the spinning method. Since such a fiber-like separator is formed by such fibers, there is an advantage that the strength per unit area is much higher than that of a microporous membrane made of the same thermoplastic resin. When obtaining a separator for a capacitor by the nonwoven fabric production method, the biggest drawback is that the pore diameter of the formed pore is large and the pore diameter variation is large, and this is considered to be because the fiber is thicker than the porous membrane.

この解決策として、繊維径を細くする事により繊維積層本数を多くしてばらつきを小さくさせる事が好ましく、例えばメルトブロー方式等の極細で高強度繊維が得られる不織布製法やフラッシュ紡糸法、これらの方式とスパンボンド方式の組合せ等も有効であり、あるいは不織布形成後熱ローラーによる圧着によって繊維を潰す方法等によっても繊維間間隙すなわち孔径と孔径バラツキが小さく均一な高強度の不織布が得られ、これらの手法を利用する事により画期的な布帛状セパレータである蓄電器用セパレータが得られる。
また、紡糸した繊維をカットして短繊維とし、水等に分散して紙漉きの様な製法によって不織布を得る方法も、繊維の分散性が良くなりバラツキが少なく孔径も均一とするため、本発明の布帛を得る好適な方法の一つである。
As a solution to this, it is preferable to reduce the dispersion by increasing the number of fiber laminations by reducing the fiber diameter, for example, a nonwoven fabric manufacturing method such as a melt blow method or a high-strength fiber, a flash spinning method, or the like. And a spunbond combination are also effective, or even after forming the nonwoven fabric, a method of crushing the fibers by heat-bonding with a heat roller or the like can obtain a uniform high-strength nonwoven fabric with small inter-fiber gaps, that is, pore diameter and hole diameter variation. By utilizing this technique, a battery separator that is an epoch-making fabric separator can be obtained.
In addition, a method of cutting a spun fiber into a short fiber, dispersing in water or the like to obtain a non-woven fabric by a method such as papermaking, the fiber dispersibility is improved, variation is small, and the pore diameter is uniform. This is one of the preferred methods for obtaining the fabric.

この様な本発明による手法により蓄電器用セパレータとして最も均一で小孔径且つ薄膜を要求されるリチウムイオン電池用セパレータが作製出来、電池の異常高温状態テストでシャットダウン機能の作動が確認でき、それ以上の昇温状態でも他の安全装置が働くまで該電池が安定した状態にあることが実証でき、本発明の目的を達成できた。   Such a method according to the present invention makes it possible to produce a lithium ion battery separator that requires the most uniform, small pore diameter and thin film as a capacitor separator, and confirms the operation of the shutdown function in an abnormally high temperature test of the battery. Even when the temperature was raised, it was proved that the battery was stable until another safety device worked, and the object of the present invention was achieved.

本発明は上記蓄電器用セパレータを用いたリチウムイオン電池をも包含する。このようなリチウムイオン電池は、例えば次のような方法により作製できる。本発明のセパレータと帯状正極(活物質としてリチウムコバルト複合酸化物LiCoO、導電剤としてリン片状グラファイト、アセチレンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)をN−メチルピロリドン(NMP)中に分散させてスラリーを調製したものをアルミニウム箔の両面にコートすること等により得られる)及び帯状負極(活物質として人造グラファイト、バインダーとしてカルボキシメチルセルロースのアンモニウム塩とスチレン−ブタジエン共重合体ラテックスを精製水中に分散させてスラリーを調製したものを銅箔の両面に塗付すること等により得られる)を、帯状負極、セパレータ、帯状正極、セパレータの順に重ねて渦巻状に複数回捲回した後、平板状にプレスを行うことによって電極板積層体を作製する。作製した電極板積層体をアルミニウム製容器に収納し、正極集電体から導出したアルミニウム製リードを容器壁に、負極集電体から導出したニッケル製リードを容器蓋端子部に接続する。さらにこの容器内に前記した非水電解液を注入し封口する。 The present invention also includes a lithium ion battery using the above-described battery separator. Such a lithium ion battery can be manufactured by the following method, for example. Separator and strip positive electrode of the present invention (lithium cobalt composite oxide LiCoO 2 as an active material, flake graphite as a conductive agent, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are dispersed in N-methylpyrrolidone (NMP). Obtained by coating the both sides of the aluminum foil with a slurry prepared) and a strip-shaped negative electrode (artificial graphite as an active material, ammonium salt of carboxymethyl cellulose and a styrene-butadiene copolymer latex as a binder are dispersed in purified water) Obtained by applying a slurry prepared on both sides of the copper foil, etc.), and then winding the strip-shaped negative electrode, separator, strip-shaped positive electrode, separator in the order of a plurality of times in a spiral shape, Electrode plate lamination by pressing The to produce. The produced electrode plate laminate is housed in an aluminum container, the aluminum lead led out from the positive electrode current collector is connected to the container wall, and the nickel lead led out from the negative electrode current collector is connected to the container lid terminal portion. Further, the non-aqueous electrolyte described above is injected into the container and sealed.

以下の説明により本発明を具体的に説明するが、本発明はこれによって限定されるものではない。なお、特に断らない限り、部および%は質量基準である。また、本発明で使用する測定方法は、以下の方法によった。
(1)ガーレー透気度
JIS P−8117に準じ、ガーレー式デンソメータ(東洋精機製)を用いて測定した。
(2)厚さ
微小側厚計(東洋精機社製「KBM側厚計」)にて3点測定した平均値を用いた。なお、側定圧は63.7±7.5kPa、測定端子径は5±0.05mm、23±3℃雰囲気下で測定した。
(3)平均孔径
水銀ポロシメーター法により、測定装置「島津オートポアー」(商標、島津製作所製)を用いて測定し、モード径を平均孔径とした。
The present invention will be specifically described by the following description, but the present invention is not limited thereto. Unless otherwise specified, parts and% are based on mass. Moreover, the measuring method used by this invention was based on the following method.
(1) Gurley air permeability Measured according to JIS P-8117 using a Gurley type densometer (manufactured by Toyo Seiki).
(2) Thickness An average value measured at three points with a minute thickness gauge (“KBM thickness gauge” manufactured by Toyo Seiki Co., Ltd.) was used. The constant side pressure was 63.7 ± 7.5 kPa, the measurement terminal diameter was 5 ± 0.05 mm, and measured at 23 ± 3 ° C. atmosphere.
(3) Average pore diameter The average pore diameter was measured by a mercury porosimeter method using a measuring device “Shimadzu Autopore” (trademark, manufactured by Shimadzu Corporation), and the mode diameter was defined as the average pore diameter.

[実施例1]
Mv600万の粉末ポリエチレン「ハイゼックスミリオン630M」(商標、三井化学社製)と粉末状SiO「ニプシールLP」(商標、東ソーシリカ社製)および流動パラフィン「モレスコホワイトp−260」(商標、松村石油研究所社製)、をそれぞれ32部、8部、160部計量したものをA組成とし、同様に28部、12部、140部を計量したものをB組成、24部、16部、120部計量したものをC組成、16部、24部、100部計量したものをD組成とし、それらの組成別に先ず粉末ポリエチレンと粉末状SiOをミキサーに入れ均一混合させ、その後所定量の流動パラフィンを添加してさらに混合させたものを押出し機に送り出し200℃に加熱させて混合溶融状態として押出し機出口に取り付けた紡口より繊維状に押出し、ボビンにて巻き取り組成A、B、C、Dよりなる4種の繊維サンプルを作成した。これら4種の繊維を25℃の流動パラフィンの溶剤で抽出して乾燥後個別に約2cmに切断してカードにて綿状にして積層し加熱ロールにて加圧、布帛状として非常に薄膜である目付け30g/m2の布帛を作製した。
[Example 1]
Mv 6 million powdered polyethylene “Hi-Zex Million 630M” (trademark, manufactured by Mitsui Chemicals), powdered SiO 2 “Nipseal LP” (trademark, manufactured by Tosoh Silica), and liquid paraffin “Molesco White p-260” (trademark, Matsumura) Made by Petroleum Laboratories Co., Ltd.) were weighed 32 parts, 8 parts, and 160 parts, respectively, and A composition, and 28 parts, 12 parts, and 140 parts were weighed, and B composition, 24 parts, 16 parts, 120 Partly weighed C composition, 16 parts, 24 parts, and 100 parts weighed D composition. According to these compositions, powdered polyethylene and powdered SiO 2 are first mixed in a mixer and then mixed uniformly, then a predetermined amount of liquid paraffin Is added to the extruder and fed to an extruder, heated to 200 ° C. to be mixed and melted, and the fibers from the spout attached to the extruder outlet. Created extrusion, winding the composition A at the bobbin, B, C, and four fabric samples made of D to. These four types of fibers are extracted with a liquid paraffin solvent at 25 ° C., dried, individually cut to about 2 cm, layered in a cotton form with a card, pressed with a heating roll, and made into a very thin film as a fabric. A fabric having a basis weight of 30 g / m 2 was produced.

得られた布帛状のサンプルを銅板上に置き、サンプル上に直径2cm、重さ200gのニッケル金属棒を横にして置き、150℃の雰囲気中に10分間放置した後取出し、両金属間に50Vの電圧を印加して通電の有無を確認した。その結果、A組成およびB組成のものが通電する事を確認された。これにより少なくとも高温状態での絶縁性を必要とするセパレータには、布帛を形成する繊維中の粉末状SiO2の含有量が40質量%以上であることが必要である事が示唆される。 The obtained fabric-like sample was placed on a copper plate, a nickel metal rod having a diameter of 2 cm and a weight of 200 g was placed on the sample, left in an atmosphere of 150 ° C. for 10 minutes, and then taken out. The presence or absence of energization was confirmed by applying a voltage of. As a result, it was confirmed that the A composition and the B composition were energized. This suggests that a separator that requires insulation at least in a high-temperature state needs to have a powdered SiO 2 content in the fibers forming the fabric of 40 % by mass or more.

[実施例2]
熱可塑性樹脂に無機粉体を高濃度に含有させて繊維形状とする際に、使用する熱可塑性樹脂の分子量によって繊維特性が影響するものと考えられる。本実施例は熱可塑性樹脂としてポリエチレン樹脂を使用し粘度平均分子量の異なったものを用いて繊維物性との関係について検討したものである。
Mv330万の粉末ポリエチレン「サンファインUH900」(商標、旭化成ケミカルズ社製)、粉末状SiO(同実施例1)、流動パラフィン(同実施例1)をそれぞれ15部、25部、80部計量したものをE組成、同様にそれぞれ12部、28部、80部のものをF組成とした。同じくMv600万の粉末ポリエチレン(同実施例1)、粉末状SiO(同実施例1)、流動パラフィン(同実施例1)をそれぞれ15部、25部、80部計量したものをG組成、12部、28部、80部のものをH組成とした。これらの組成のものを実施例1に記載の操作方法と同様にして溶融押出しして繊維状のものを得てボビンに巻き取り流動パラフィンの溶剤にて抽出し繊維サンプルを得た。
繊維サンプルとして得られたものはG,H組成で有るがE組成の繊維は弱く完全にボビンに巻き取る事は不可能であり、F組成のものは繊維状として成型出来るものではなかった。この結果、ポリエチレンの分子量を大きくする事が無機粉体を多く含有させ、且つ繊維強度を向上させる事が実証できた。
[Example 2]
It is considered that the fiber characteristics are influenced by the molecular weight of the thermoplastic resin used when the thermoplastic resin is made into a fiber shape by containing inorganic powder at a high concentration. In this example, a polyethylene resin is used as the thermoplastic resin, and the relationship with the fiber physical properties is examined using materials having different viscosity average molecular weights.
Mv 3.3 million powdered polyethylene “Sunfine UH900” (trademark, manufactured by Asahi Kasei Chemicals), powdered SiO 2 (same example 1), and liquid paraffin (same example 1) were weighed as 15 parts, 25 parts, and 80 parts, respectively. Those having E composition, and those having 12 parts, 28 parts, and 80 parts, respectively, were F compositions. Similarly, powdered polyethylene (same example 1) with Mv 6 million (same example 1), powdered SiO 2 (same example 1), liquid paraffin (same example 1) as weighed 15 parts, 25 parts and 80 parts, respectively, G composition, 12 Parts, 28 parts, and 80 parts were designated as H composition. Those having these compositions were melt-extruded in the same manner as in the operation method described in Example 1 to obtain a fibrous material, wound around a bobbin, and extracted with a liquid paraffin solvent to obtain a fiber sample.
What was obtained as a fiber sample had G and H compositions, but the fibers of E composition were weak and could not be completely wound on a bobbin, and those of F composition could not be molded as fibers. As a result, it was proved that increasing the molecular weight of polyethylene contained a large amount of inorganic powder and improved fiber strength.

[実施例3]
無機粉体含有量の高濃度化は熱可塑性樹脂量の減少により形成される繊維の強度を低下するため、布帛を形成させる事が困難となる。本実施例はその限界量を把握するために行ったものである。高強度が得られる超高分子量ポリエチレン、即ちMv600万の粉末ポリエチレン(同実施例1)と粉末状SiO(同実施例1)および流動パラフィン(同実施例1)をそれぞれ12部、28部、80部計量したものをI組成とし、同様に10部、30部、80部を計量したものをJ組成、8部、32部、80部計量したものをK組成、4部、36部、80部計量したものをL組成とし、同じく「ハイゼックスミリオン630M」、粉末SiO(同実施例1)より比重の大きな粉末ZnO「銀嶺A90−1」(商標 東邦亜鉛社製)、流動パラフィン(同実施例1)をそれぞれ10部、30部、80部計量したものをM組成とし、同様に8部、32部、80部を計量したものをN組成、4部、36部、80部計量したものをO組成、2部、38部、80部計量したものをP組成とした。これらを実施例1に記載の操作方法と同様にして溶融押出しして繊維状のものを得てボビンに巻き取り流動パラフィンの溶剤にて抽出し繊維サンプルを得た。
その結果、I、J、M、N、O組成は正常に長繊維化されボビンにて巻き取る事が出来るが、L組成は繊維状を得る事は全く不可能であった。 また。K、P組成は繊維状とはなるが非常にもろく切断する事が多いが、短繊維として形成させ積層させて布帛状に形成する事は可能であった。
[Example 3]
Since the increase in the concentration of the inorganic powder content decreases the strength of the fibers formed by the decrease in the amount of the thermoplastic resin, it becomes difficult to form a fabric. The present embodiment is performed in order to grasp the limit amount. Ultra-high molecular weight polyethylene capable of obtaining high strength, that is, 12 parts by weight and 28 parts by weight of powdered polyethylene having Mv 6 million (same Example 1), powdered SiO 2 (same Example 1) and liquid paraffin (same Example 1), respectively. 80 parts weighed are I composition, 10 parts, 30 parts, 80 parts are weighed J composition, 8 parts, 32 parts, 80 parts are weighed K composition, 4 parts, 36 parts, 80 parts a material obtained by parts weighed and L composition, like "Hizex Million 630M" (manufactured by TM Toho Zinc Co., Ltd.) powder SiO 2 (the first embodiment) than the specific gravity larger powder ZnO of "Ginrei A90-1", liquid paraffin (same embodiment What weighed 10 parts, 30 parts and 80 parts of Example 1) as M composition, and similarly weighed 8 parts, 32 parts and 80 parts, and weighed N parts, 4 parts, 36 parts and 80 parts. O composition, 2 , 38 parts of a material obtained by weighing 80 parts is P composition. These were melt-extruded in the same manner as in the operation method described in Example 1 to obtain a fibrous material, wound around a bobbin and extracted with a liquid paraffin solvent to obtain a fiber sample.
As a result, the I, J, M, N, and O compositions were normally made into long fibers and could be wound with a bobbin, but the L composition was completely impossible to obtain a fibrous form. Also. Although the K and P compositions are fibrous, they are very fragile and often cut, but they could be formed as short fibers and laminated to form a fabric.

本実施例および実施例2より、粉末ポリエチレンに無機粉体として比重の小さい粉末状SiO2を使用した場合には無機粉体濃度は80質量%以下が、比重の大きな粉末状ZnOは95質量%以下が好ましく、無機粉体の比重が大きいほど含有濃度を上げる事が可能であることが確認され、安定的に繊維を得るには無機粉体75質量%以下が望ましい事が解った。 From this example and Example 2, when powdered SiO 2 having a low specific gravity is used as an inorganic powder in powdered polyethylene, the inorganic powder concentration is 80 % by mass or less, and powdered ZnO having a large specific gravity is 95 % by mass. The following is preferable, and it has been confirmed that the higher the specific gravity of the inorganic powder, the higher the content concentration can be, and it has been found that 75 % by mass or less of the inorganic powder is desirable in order to obtain fibers stably.

[実施例4]
Mv600万の粉末状ポリエチレン(同実施例1)8部、粉末状SiO2(同実施例1)32部、流動パラフィン(同実施例1)140部を計量し粉末状ポリエチレンと粉末状SiO2をミキサーに入れ混合させて均一に分散させた後、所定量の流動パラフィンを添加してさらに攪拌混合させたものを押出し機に送り出し200℃に加熱させて混合溶融状態としT型ダイの紡口より押出すと同時に紡口両サイドから高温のエアーを噴射させ、所謂メルトブロー方式により無機粉体が高濃度に分散された極細の繊維が得られた。極細の繊維は金網状ベルトに捕集されて繊維堆積状をなし、次いで加熱したロール間に通し加圧、不織布を形成させた。その後、流動パラフィンを溶解する溶剤が入った25℃のバスに通し抽出し乾燥後本発明の蓄電器用セパレータを得る事が出来た。
得られた本発明による蓄電器用セパレータは超高分子量ポリエチレン20質量%、SiO280質量%の繊維でなる空孔率52%、厚さ42μm、目付け35g/m2の不織布形状のものであった。このセパレータを銅板の上に置き、セパレータ上には直径2cm重さ200gのニッケル金属棒を横に置いた状態で150℃雰囲気中に10分間放置した後取出して両金属間に50Vの電圧を印加したが電流は流れずセパレータを目視観察したがセパレータの切断はなく且つ収縮は殆ど見られず高温状態で放置しても金属板と金属棒に間
隙を維持する事が確認できた。
[Example 4]
Mv 6 million powdered polyethylene (same example 1) 8 parts, powdery SiO 2 (same example 1) 32 parts, liquid paraffin (same example 1) 140 parts were weighed to obtain powdered polyethylene and powdered SiO 2 After mixing in a mixer and uniformly dispersing, a predetermined amount of liquid paraffin added and further stirred and mixed is sent to an extruder and heated to 200 ° C. to be in a mixed molten state from a T-die die nozzle. At the same time as extrusion, high-temperature air was jetted from both sides of the spinneret to obtain ultrafine fibers in which inorganic powder was dispersed at a high concentration by a so-called melt blow method. The ultrafine fibers were collected on a wire mesh belt to form a fiber deposit, and then pressed between heated rolls to form a nonwoven fabric. Then, it extracted through the bath of 25 degreeC containing the solvent which melt | dissolves a liquid paraffin, and was able to obtain the separator for electrical storage devices of this invention after drying.
The obtained capacitor separator according to the present invention was a nonwoven fabric having a porosity of 52%, a thickness of 42 μm, and a basis weight of 35 g / m 2 made of fibers of ultrahigh molecular weight polyethylene 20 % by mass and SiO 2 80 % by mass . . This separator is placed on a copper plate, and a nickel metal rod with a diameter of 2 cm and a weight of 200 g is placed on the separator, left in an atmosphere at 150 ° C. for 10 minutes, and then taken out and a voltage of 50 V is applied between the two metals. However, the current did not flow and the separator was visually observed, but the separator was not cut and the shrinkage was hardly observed, and it was confirmed that the gap was maintained between the metal plate and the metal rod even when left at a high temperature.

[比較例1]
ポリエチレン製微多孔膜、厚さ45μm、空孔率41%のセパレータを実施例1と同様な条件で熱処理し実験した結果、両金属間に電流が流れる事を確認すると共に収縮、薄膜化が著しく部分的に貫通孔も目視出来、本発明による蓄電器用セパレータが優れている事が認められた。
[Comparative Example 1]
As a result of conducting an experiment by heat-treating a polyethylene microporous membrane having a thickness of 45 μm and a porosity of 41% under the same conditions as in Example 1, it was confirmed that a current flows between both metals, and shrinkage and thinning were remarkable. The through-holes were partially visible, and it was confirmed that the capacitor separator according to the present invention was excellent.

[実施例5]
Mv600万の粉末ポリエチレン(同実施例1)18部、粉末状SiO2(同実施例1)22部、流動パラフィン(同実施例1)240部を使用して実施例3と同様の操作にて得られた超高分子量ポリエチレン45質量%、SiO255質量%の繊維を積層させて布帛Aを作成し、その上に続けてMv70万「サンファインUH650」(商標、旭化成ケミカルズ社製)の粉末ポリエチレン40質量%と流動パラフィン(同実施例1)60質量%を混合して溶融押出し機に送り出し、200℃に加熱させて混合溶融状態としシリカ混入繊維と同様に紡口より押出すと同時に紡口両サイドから高温のエアーを噴射させるメルトブロー方式により繊維を吹き出し布帛Aに上に布帛Bを作成、その後再び布帛Aを同様に布帛B上に形成させA/B/Aの布帛を得て熱ロール中にて圧延成形し厚さ44μm、空孔率41%、目付け36g/m2のセパレータを得た。
[Example 5]
Mv 6 million powdered polyethylene (same example 1) 18 parts, powdered SiO 2 (same example 1) 22 parts, liquid paraffin (same example 1) 240 parts in the same operation as example 3 Fabric A was made by laminating the obtained fibers of 45 % by mass of ultrahigh molecular weight polyethylene and 55 % by mass of SiO 2 , followed by powder of Mv 700,000 “Sunfine UH650” (trademark, manufactured by Asahi Kasei Chemicals). 40 % by mass of polyethylene and 60 % by mass of liquid paraffin (Example 1) are mixed and fed to a melt extruder, heated to 200 ° C. to be in a mixed molten state, extruded at the same time as the silica-mixed fiber, and simultaneously spun. Fabric B is formed on fabric A by blowing a fiber by hot blown air from both sides of the mouth, and then fabric A is again formed on fabric B in the same manner as A / B / A fabric A was obtained and rolled in a hot roll to obtain a separator having a thickness of 44 μm, a porosity of 41%, and a basis weight of 36 g / m 2 .

このようにして得られたセパレータを高温状態にてテストしシャットダウン効果を確認した。
即ち、この状態に加工した本発明のセパレータの透気度はガーレー方式にて57秒/100ccであったが、このセパレータを銅管に捲回して140℃で10分間放置した後取出して同様に測定したところ5650秒/100ccとなり、高温状態におけるシャットダウン効果が確認できた。
The separator thus obtained was tested at a high temperature to confirm the shutdown effect.
That is, the air permeability of the separator of the present invention processed in this state was 57 seconds / 100 cc by the Gurley method, but this separator was wound around a copper tube and left at 140 ° C. for 10 minutes, and then taken out in the same manner. It was 5650 seconds / 100cc when measured, and the shutdown effect in a high temperature state was confirmed.

[実施例6]
Mv200万の粉末ポリエチレン「サンファインUH850」(商標、旭化成ケミカルズ社製)20質量%と流動パラフィン(同実施例1)80質量%を混合して溶融押出し機に送り出し、200℃に加熱させて溶融しT型ダイより押出したのち縦横延伸しその後流動パラフィンを25℃の溶剤で抽出して得られた膜厚20μm、平均孔径0.06μmの多孔膜を実施例4で得られたシリカ入り不織布とホットメルト接着剤で部分接着して複合セパレータとし、140℃オーブンに5分間入れて熱処理した後取出し透気度変化によるシャットダウン効果をテストした。その結果、熱処理前のガーレー透気度は210秒/100ccであったが熱処理後1万秒/100cc以上となり完全にシャットダウン効果が見られ、実施例3の高温状態での絶縁効果に低温でのシャットダウン効果を付加する事が出来た。
[Example 6]
Mv 2 million powdered polyethylene “Sunfine UH850” (trademark, manufactured by Asahi Kasei Chemicals) 20 % by mass and liquid paraffin (Example 1) 80 % by mass are mixed and sent to a melt extruder, heated to 200 ° C. and melted. Then, after extruding from a T-shaped die, longitudinally and transversely stretching, and then extracting liquid paraffin with a solvent at 25 ° C., a porous film having a film thickness of 20 μm and an average pore diameter of 0.06 μm was obtained with the silica-containing nonwoven fabric obtained in Example 4. A partial separator was bonded with a hot-melt adhesive to form a composite separator, which was heat treated by placing it in an oven at 140 ° C. for 5 minutes, and then taken out and tested for a shutdown effect due to a change in air permeability. As a result, the Gurley air permeability before the heat treatment was 210 seconds / 100 cc, but after the heat treatment was 10,000 seconds / 100 cc or more, and a complete shutdown effect was seen. The insulation effect in the high temperature state of Example 3 was low at low temperatures. A shutdown effect could be added.

本発明のセパレータは、無機粉体を大量に保持出来るため、電磁波吸収体、伝熱・放熱構造体、電極構造体、寸法安定支持体、吸着構造体、触媒構造体、濾過材、蓄電器用セパレータ等様々な用途に使用可能であるが、特に、薄膜で且つ耐熱性を要求されている観点から蓄電器用セパレータに使用することが好ましい。本発明の蓄電器用セパレータは、特に自動車駆動用のエネルギー源として期待の大きなリチウムイオン電池用セパレータ、電気二重層コンデンサー用セパレータ、或は他の有機溶媒使用電池用セパレータとして特に高温時に安定した性能を有する高安全性セパレータとして好適に利用できる。
更に、繊維中に無機粉体を高濃度に含有させるのみならず、高空孔率の多孔体構造である繊維を布帛状に形成した場合には、電解液は該繊維の空孔に浸透し、且つ該繊維同士で構成する布帛の組織間にも保持され、より多くの電解液を長期間維持する事が可能となり電池特性を大きく向上させる事ができるので、リチウムイオン電池や電気二重層コンデンサーの様に電解液へのイオン溶解量が大きい事が必要な用途に特に有効である。
Since the separator of the present invention can hold a large amount of inorganic powder, an electromagnetic wave absorber, a heat transfer / heat dissipation structure, an electrode structure, a dimensional stability support, an adsorption structure, a catalyst structure, a filter medium, and a capacitor separator However, it is particularly preferable to use it for a capacitor separator from the viewpoint of being a thin film and requiring heat resistance. The separator for a battery of the present invention has a stable performance especially at a high temperature as a separator for lithium ion battery, a separator for electric double layer capacitor, or a separator for other organic solvent battery, which is particularly expected as an energy source for driving an automobile. It can be suitably used as a high safety separator.
Furthermore, in addition to containing a high concentration of inorganic powder in the fiber, when the fiber having a porous structure with a high porosity is formed in a fabric shape, the electrolyte solution penetrates into the pores of the fiber, In addition, it is also retained between fabrics composed of the fibers, and more electrolyte can be maintained for a long period of time, so that battery characteristics can be greatly improved. In particular, it is particularly effective for applications that require a large amount of ions dissolved in the electrolyte.

本発明の無機粉体含有熱可塑性繊維(一例)の一本の横方向の断面図を表す概略図である。It is the schematic showing the cross-sectional view of one horizontal direction of the inorganic powder containing thermoplastic fiber (an example) of this invention. 本発明の布帛(一例)を表す概略図である。It is the schematic showing the fabric (an example) of this invention. 本発明の布帛(一例)と、それを加熱した際の断面構造を表す概略図である。It is the schematic showing the cross-sectional structure at the time of heating the fabric (an example) of this invention, and it. 無機粉体含有熱可塑性繊維と熱可塑性繊維から構成される本発明の布帛(一例)と、それを加熱した際の断面構造を表す概略図である。It is the schematic showing the cross-sectional structure at the time of heating the fabric (an example) of this invention comprised from the inorganic powder containing thermoplastic fiber and thermoplastic fiber. 本発明の布帛に熱可塑性樹脂多孔膜を貼り合わせた構造体(一例)と、その構造体を加熱した際の断面構造を表す概略図である。It is the schematic showing the cross-sectional structure at the time of heating the structure (an example) which bonded the thermoplastic resin porous film to the fabric of this invention, and the structure.

符号の説明Explanation of symbols

1 無機粉体
2 熱可塑性樹脂
3 空孔
4 繊維(熱可塑性樹脂+無機粉体)
5 繊維(熱可塑性樹脂)
6 多孔膜
7 溶融後多孔膜
1 Inorganic powder 2 Thermoplastic resin 3 Hole 4 Fiber (thermoplastic resin + inorganic powder)
5 Fiber (thermoplastic resin)
6 Porous membrane 7 Melted porous membrane

Claims (4)

無機粉体を40質量%以上95質量%以下含有し、粘度平均分子量(Mv)300万以上のポリオレフィン樹脂からなり、且つ空孔率が20%以上である繊維から構成される布帛からなることを特徴とするリチウムイオン電池用セパレータ。 It is made of a fabric comprising inorganic powder in an amount of 40% by mass to 95 % by mass, a polyolefin resin having a viscosity average molecular weight (Mv) of 3 million or more, and a fiber having a porosity of 20% or more. A lithium ion battery separator. 無機粉体を40質量%以上95質量%以下含有し、粘度平均分子量(Mv)300万以上のポリオレフィン樹脂からなり、且つ空孔率が20%以上である繊維から構成される布帛上の少なくとも一面にシャットダウン効果を有する熱可塑性樹脂多孔膜を積層したことを特徴とするリチウムイオン電池用セパレータ。 At least one surface on a fabric comprising inorganic powder in an amount of 40% to 95% by mass, a polyolefin resin having a viscosity average molecular weight (Mv) of 3 million or more, and a porosity of 20% or more. A separator for a lithium ion battery , wherein a thermoplastic porous film having a shutdown effect is laminated on the separator. 請求項1又は2に記載のセパレータを用いたリチウムイオン電池。 Lithium-ion batteries using the separators of claim 1 or 2. 粘度平均分子量(Mv)300万以上のポリオレフィン樹脂、無機粉体、当該ポリオレフィン樹脂の溶剤を含む混合物を熱溶融押出し装置により繊維状に成形する工程を経た後、溶剤を抽出して得た無機粉体を40質量%以上95質量%以下含有し、且つ空孔率が20%以上である繊維を、不織布製法により布帛状に形成する布帛の製造方法。 The viscosity-average molecular weight (Mv) 300 10,000 or more of the polyolefin resin, inorganic powder, the mixture containing the solvent of the polyolefin resin through the steps of forming a fibrous thermally melt extrusion apparatus, the inorganic powder obtained by extracting the solvent A method for producing a fabric , wherein fibers containing 40% by mass or more and 95% by mass or less of a body and having a porosity of 20% or more are formed into a fabric by a nonwoven fabric manufacturing method.
JP2006228370A 2005-08-31 2006-08-24 Separator and manufacturing method thereof Active JP5153101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228370A JP5153101B2 (en) 2005-08-31 2006-08-24 Separator and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005252313 2005-08-31
JP2005252313 2005-08-31
JP2006228370A JP5153101B2 (en) 2005-08-31 2006-08-24 Separator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007095668A JP2007095668A (en) 2007-04-12
JP5153101B2 true JP5153101B2 (en) 2013-02-27

Family

ID=37981079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228370A Active JP5153101B2 (en) 2005-08-31 2006-08-24 Separator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5153101B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114173A (en) * 2008-11-05 2010-05-20 Nippon Kodoshi Corp Separator and solid electrolytic capacitor using the same
JP2010239062A (en) * 2009-03-31 2010-10-21 Nippon Kodoshi Corp Separator for electrolytic capacitor, and electrolytic capacitor
KR101173201B1 (en) 2010-02-25 2012-08-13 주식회사 엘지화학 Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
KR101173202B1 (en) 2010-02-25 2012-08-13 주식회사 엘지화학 Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
KR101703956B1 (en) * 2013-10-30 2017-02-08 주식회사 엘지화학 Porous composite separator incorporated with inorganic particles, electrochemical device comprising the same, and method of preparing the separator
KR101765045B1 (en) * 2014-03-13 2017-08-11 더블유스코프코리아 주식회사 A separator film for secondary battery and a redox flow battery using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170153A (en) * 1995-12-21 1997-06-30 Tonen Chem Corp Heat stable nonwoven fabric
JP2002198026A (en) * 2000-12-26 2002-07-12 Japan Vilene Co Ltd Separator for cell, and manufacturing method of the same
JP4238099B2 (en) * 2003-09-11 2009-03-11 日立マクセル株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2007095668A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP6373387B2 (en) Separation membrane for electrochemical devices
JP6157040B2 (en) Method for manufacturing electrode structure including insulating layer
JP5655088B2 (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
KR101057844B1 (en) Separators for polyolefin microporous membranes and nonaqueous electrolyte batteries
EP1509960B1 (en) Electric separator, method for the production and use thereof
KR100890594B1 (en) Separator with high permeability for electrochemical device and manufacturing method of the same
KR102126212B1 (en) Polyolefin microporous membrane, separator for nonaqueous electrolyte based secondary battery, and nonaqueous electrolyte based secondary battery
JP6803913B2 (en) Separator and electrochemical device containing it
JP5153101B2 (en) Separator and manufacturing method thereof
CN110621731B (en) Polyolefin microporous membrane, separator for electricity storage device, and electricity storage device
JP2014526776A (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
JP2019505974A (en) Separator and electrochemical device including the same
KR20180113517A (en) Polyolefin microporous film, separator film for electric storage device, and electric storage device
KR20200028505A (en) Separator for electricity storage devices, and electricity storage device
JPWO2008044761A1 (en) Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery
JP5235324B2 (en) Polyolefin microporous membrane
KR101726382B1 (en) A stack/folding type electrode assembly with safety improvement and a electrochemical cell comprising the same
KR101895100B1 (en) Porous separator and preparation method thereof
JP2011113921A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
KR20150030102A (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
CN111801811B (en) Separator for electrochemical device and electrochemical device comprising the same
JPH07302584A (en) Battery separator
KR20150145309A (en) Manufacturing method for separator including filler and electro-chemical device having the same
KR101780036B1 (en) A stack/folding type electrode assembly with safety improvement and a electrochemical cell comprising the same
JP2022026935A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350