JP4552450B2 - Method for manufacturing piezoelectric stack - Google Patents

Method for manufacturing piezoelectric stack Download PDF

Info

Publication number
JP4552450B2
JP4552450B2 JP2004040439A JP2004040439A JP4552450B2 JP 4552450 B2 JP4552450 B2 JP 4552450B2 JP 2004040439 A JP2004040439 A JP 2004040439A JP 2004040439 A JP2004040439 A JP 2004040439A JP 4552450 B2 JP4552450 B2 JP 4552450B2
Authority
JP
Japan
Prior art keywords
grain boundary
piezoelectric
stack
based glass
boundary filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004040439A
Other languages
Japanese (ja)
Other versions
JP2005235861A (en
Inventor
庸一 小羽根
章 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004040439A priority Critical patent/JP4552450B2/en
Priority to DE200510007078 priority patent/DE102005007078A1/en
Publication of JP2005235861A publication Critical patent/JP2005235861A/en
Application granted granted Critical
Publication of JP4552450B2 publication Critical patent/JP4552450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based

Description

本発明は,自動車用燃料噴射装置等に使用する圧電アクチュエータに用いることができる圧電スタックの製造方法に関する。   The present invention relates to a method for manufacturing a piezoelectric stack that can be used in a piezoelectric actuator used in an automobile fuel injection device or the like.

自動車等の車両用内燃機関に対する燃料噴射装置の駆動源として圧電スタックを採用した圧電アクチュエータを用いることがある。
圧電アクチュエータ内の圧電スタックは、高温の燃料や外部の湿気から保護するために気密パッケージに密閉してある。
A piezoelectric actuator employing a piezoelectric stack may be used as a drive source of a fuel injection device for an internal combustion engine for a vehicle such as an automobile.
The piezoelectric stack in the piezoelectric actuator is hermetically sealed in a hermetic package to protect it from hot fuel and external moisture.

特開平5−234807号公報Japanese Patent Laid-Open No. 5-234807 特開2001−181041号公報JP 2001-181041 A

しかしながら、圧電スタックの圧電層は多結晶なセラミックよりなり、従って内部には多数の結晶粒界が存在する。結晶粒界には後述する図5に示すように空隙がある。
高温かつ密閉された環境に圧電スタックを晒した場合、元々吸着していた水分や構成樹脂材料の分解生成物や内部電極層及び圧電層を構成する各種の物質が上記結晶粒界に入り込むことがあり、この現象によって圧電層の絶縁抵抗値等の物性が変わってしまう。
この現象は、圧電スタックの性能劣化や信頼性低下の原因となる。
特に、入り込んだ物質が導電物質である場合、圧電層の絶縁抵抗値が低下を招くおそれがある。
However, the piezoelectric layer of the piezoelectric stack is made of polycrystalline ceramic, and therefore there are a large number of grain boundaries inside. There are voids at the grain boundaries as shown in FIG.
When the piezoelectric stack is exposed to a high temperature and sealed environment, the moisture that was originally adsorbed, the decomposition products of the constituent resin materials, and various substances constituting the internal electrode layer and the piezoelectric layer may enter the crystal grain boundary. Yes, this phenomenon changes the physical properties such as the insulation resistance value of the piezoelectric layer.
This phenomenon causes deterioration in performance and reliability of the piezoelectric stack.
In particular, when the entering material is a conductive material, the insulation resistance value of the piezoelectric layer may be reduced.

本発明は、性能劣化し難く信頼性高い圧電スタックの製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a piezoelectric stack which is less likely to deteriorate in performance and has high reliability.

第1の発明は、PZT(チタン酸ジルコン酸鉛)からなる圧電層と内部電極層とを交互に積層してなる圧電スタックを作製するに当たり、
内部電極層用の導電ペーストを印刷した圧電層用の未焼成シートを積層して未焼成積層体を作製し、
該未焼成積層体を上記圧電層内部における結晶粒界にPb系ガラスが析出するよう焼成して焼成スタックを得て、
その後上記焼成スタックに、上記結晶粒界におけるPb系ガラスの粒界充填率(ただし、粒界充填率は、結晶粒においてPb系ガラスによって充填された領域の粒界長さ、即ち結晶粒の界面にPb系ガラスが付着している部分の長さをJ1とし、結晶粒における全体の粒界長さをJとすると、粒界充填率=J1/J×100で表される値である)が95%以上となるよう粒界充填熱処理を行うことを特徴とする圧電スタックの製造方法(請求項1)にある。
The first invention is to produce a piezoelectric stack formed by alternately laminating piezoelectric layers made of PZT (lead zirconate titanate) and internal electrode layers.
Laminating a green sheet for a piezoelectric layer printed with a conductive paste for an internal electrode layer to produce a green laminate,
The unfired laminate is fired so that Pb-based glass precipitates at the crystal grain boundaries inside the piezoelectric layer to obtain a fired stack,
After that, the Pb-based glass grain boundary filling factor at the crystal grain boundary (where the grain boundary filling factor is the grain boundary length of the region filled with the Pb-based glass in the crystal grain, that is, the interface of the crystal grains) (Where Jb is the length of the portion where the Pb-based glass adheres to J1 and J is the total grain boundary length in the crystal grains), the grain boundary filling factor is a value represented by J1 / J × 100). A method for manufacturing a piezoelectric stack (Claim 1) is characterized in that a grain boundary filling heat treatment is performed so as to be 95% or more.

または、第2の発明は、PZTからなる圧電層と内部電極層とを交互に積層してなる圧電スタックを作製するに当たり、
PbをPZT(チタン酸ジルコン酸鉛)における化学量論比よりも過剰に含有してなると共に内部電極層用の導電ペーストを印刷した圧電層用の未焼成シートを積層して未焼成積層体を作製し、
該未焼成積層体を、焼成前後における過剰Pbの揮発が上記化学量論比よりも過剰に含有してなるPbのうちの5%以内となり、かつ圧電層内部における結晶粒界に対するPb系ガラスの粒界充填率(ただし、粒界充填率は、結晶粒においてPb系ガラスによって充填された領域の粒界長さ、即ち結晶粒の界面にPb系ガラスが付着している部分の長さをJ1とし、結晶粒における全体の粒界長さをJとすると、粒界充填率=J1/J×100で表される値である)が95%以上となるように焼成することを特徴とする圧電スタックの製造方法にある(請求項5)。
Alternatively, when the second invention is to produce a piezoelectric stack formed by alternately laminating piezoelectric layers made of PZT and internal electrode layers,
An unfired laminate is obtained by laminating an unfired sheet for a piezoelectric layer containing Pb in excess of the stoichiometric ratio in PZT (lead zirconate titanate) and printed with a conductive paste for an internal electrode layer. Make and
In the green laminate, volatilization of excess Pb before and after firing is within 5% of Pb contained in excess of the stoichiometric ratio , and the Pb-based glass with respect to the crystal grain boundary inside the piezoelectric layer Grain boundary filling factor (however, the grain boundary filling factor is the grain boundary length of the region filled with Pb-based glass in the crystal grains, that is, the length of the portion where the Pb-based glass adheres to the interface of the crystal grains. And the total grain boundary length in the crystal grains is J, the grain boundary filling factor = a value represented by J1 / J × 100)). It is in the manufacturing method of a stack (claim 5).

第1の発明にかかる製造方法では、Pb系ガラスが結晶粒界に析出するような条件で未焼成積層体を焼成して焼成スタックを得る。
その後、焼成スタックに粒界充填熱処理を行うことで、結晶粒界に析出したPb系ガラスが融解し、結晶粒界がPb系ガラスによって充填され、水分や他の物質が入る余地を殆どなくすることができる。
In the manufacturing method according to the first invention, the unfired laminate is fired under conditions such that the Pb-based glass is precipitated at the grain boundaries to obtain a fired stack.
Then, by performing a grain boundary filling heat treatment on the fired stack, the Pb-based glass precipitated at the crystal grain boundaries is melted, and the crystal grain boundaries are filled with the Pb-based glass, so that there is almost no room for moisture or other substances to enter. be able to.

また、第2の発明にかかる製造方法では、Pbの揮発を抑制することで、Pb系ガラスが結晶粒界を充填できるほど、結晶粒界に残留するように焼成を行う。
これにより、圧電層の結晶粒界がPb系ガラスによって充填されて、水分や他の物質が入る余地を殆どなくすることができる。
Moreover, in the manufacturing method concerning 2nd invention, it bakes so that it may remain in a crystal grain boundary, so that Pb-type glass can fill a crystal grain boundary by suppressing volatilization of Pb.
Thereby, the crystal grain boundary of the piezoelectric layer is filled with the Pb-based glass, and there is almost no room for moisture or other substances to enter.

以上、第1、第2の発明によれば、圧電層の絶縁抵抗値等の物性が変わり難く、圧電スタックの性能劣化や信頼性低下を生じ難くすることができる。   As described above, according to the first and second inventions, the physical properties such as the insulation resistance value of the piezoelectric layer are hardly changed, and it is possible to prevent the performance deterioration and the reliability deterioration of the piezoelectric stack.

第1、第2の発明にかかる圧電スタックは、圧電層と内部電極層を交互に積層してなるもので、内部電極層に通電することで、各圧電層に電位差を付与し、圧電層を伸張させるものである。内部電極層に対する通電は、圧電スタックの側面に設けた側面電極に通電することで行う。
また、圧電スタックには、圧電層の全面に対し内部電極層を形成する全面電極構成と、圧電層に部分的に内部電極層を設ける部分電極構成(後述する図1、図2参照)とが知られており、第1、第2の発明はいずれの圧電スタックも製造することができる。
また、圧電スタックの積層方向の端面に、通電によって伸張しないダミー層等の別層を設けることがある。
The piezoelectric stack according to the first and second inventions is formed by alternately laminating piezoelectric layers and internal electrode layers. By energizing the internal electrode layers, a potential difference is applied to each piezoelectric layer, and the piezoelectric layers are It is intended to stretch. The internal electrode layer is energized by energizing a side electrode provided on the side surface of the piezoelectric stack.
In addition, the piezoelectric stack has an overall electrode configuration in which an internal electrode layer is formed on the entire surface of the piezoelectric layer, and a partial electrode configuration in which the internal electrode layer is partially provided on the piezoelectric layer (see FIGS. 1 and 2 described later). As is known, the first and second inventions can produce either piezoelectric stack.
In addition, another layer such as a dummy layer that does not expand by energization may be provided on the end face in the stacking direction of the piezoelectric stack.

また、第1、第2の発明で得られた圧電スタックにおいて、圧電層は焼結したPZTの多結晶からなり、結晶粒と結晶粒の間に結晶粒界があり、該結晶粒界におけるPb系ガラスの粒界充填率が95%以上となっている。
ここで粒界充填率とは、後述する実施例4や図5、図6に示すごとく、Pb系ガラスによって充填された領域の粒界長さを、着目した結晶粒全体の粒界長さで割った値(%)である。
ここで全体の粒界長さとは、着目した結晶粒において、「充填されている粒界長さ(つまり結晶粒の界面にPb系ガラスが付着している部分の長さ)+充填されていない粒界長さ」である。
粒界充填率が95%未満の場合、水分や他の物質が入って圧電層の特性が変化するおそれがある。また粒界充填率が100%であることがもっとも好ましい。
In the piezoelectric stacks obtained in the first and second inventions, the piezoelectric layer is made of sintered PZT polycrystal, and there is a crystal grain boundary between crystal grains, and Pb in the crystal grain boundary The grain boundary filling factor of the system glass is 95% or more.
Here, the grain boundary filling rate is the grain boundary length of the entire crystal grain of interest, as shown in Example 4, which will be described later, and FIG. 5 and FIG. Divided value (%).
Here, the total grain boundary length is “filled grain boundary length (that is, the length of the portion where the Pb-based glass adheres to the interface of the crystal grains) + not filled in the crystal grain of interest. Grain boundary length ".
If the grain boundary filling factor is less than 95%, moisture and other substances may enter and the characteristics of the piezoelectric layer may change. The grain boundary filling factor is most preferably 100%.

また、上記Pb系ガラスは、圧電層や内部電極層に含まれる物質から構成され、例えばPb−WO3やPb−MoO3を主として含有するガラス物質からなる。このガラス物質は略非晶質である。また、PbやW、Mo以外の物質をも含有している。 The Pb-based glass is made of a material contained in the piezoelectric layer or the internal electrode layer, and is made of a glass material mainly containing, for example, Pb—WO 3 or Pb—MoO 3 . This glass material is substantially amorphous. It also contains substances other than Pb, W, and Mo.

また、未焼成積層体を上記圧電層内部における結晶粒界にPb系ガラスが析出するよう焼成して焼成スタックを得る方法について説明する。
圧電層はPZTからなるため、圧電層の原料としてPbを含む化合物を用いる必要がある。この場合、PZTの化学量論比より若干多めにPbが含まれるような原料を用いることで、Pbと他の物質とが結びついたガラス成分を、結晶粒界に析出させることができる。
また、未焼成積層体を焼成して焼成スタックとする際の焼成雰囲気にPbが含まれるようにして、未焼成積層体からのPbの揮発を防ぐ、または積極的にPb過剰雰囲気を形成することで、Pbと他の物質とが結びついたガラス成分が、隙間である結晶粒界に入り込み、焼成の終了に伴う温度低下によって、結晶粒界で析出することができる。
In addition, a method for obtaining a fired stack by firing the unfired laminate so that Pb-based glass precipitates at the crystal grain boundaries inside the piezoelectric layer will be described.
Since the piezoelectric layer is made of PZT, it is necessary to use a compound containing Pb as a raw material for the piezoelectric layer. In this case, by using a raw material containing Pb slightly more than the stoichiometric ratio of PZT, a glass component in which Pb and other substances are combined can be precipitated at the crystal grain boundary.
In addition, Pb is included in the firing atmosphere when firing the unfired laminate to form a fired stack to prevent volatilization of Pb from the unfired laminate or actively forming a Pb-excess atmosphere. Thus, the glass component in which Pb and another substance are combined can enter the crystal grain boundary which is a gap, and can be precipitated at the crystal grain boundary due to a temperature decrease accompanying the end of firing.

また、上記粒界充填熱処理は温度600〜900℃で行うことが好ましい(請求項2)。
これにより、Pb系ガラスが結晶粒界を充分充填することができる。
600℃未満ではPb系ガラスの融解が進まずに、結晶粒界の充填が困難となるおそれがある。800℃を越えると、Pbの揮発が促進されるため、結晶粒界からPbが揮発して充填困難となるおそれがある。
The grain boundary filling heat treatment is preferably performed at a temperature of 600 to 900 ° C. (Claim 2).
Thereby, the Pb-based glass can sufficiently fill the crystal grain boundaries.
If it is less than 600 ° C., the melting of the Pb-based glass does not proceed, and it may be difficult to fill the crystal grain boundaries. If the temperature exceeds 800 ° C., the volatilization of Pb is promoted, so that Pb volatilizes from the crystal grain boundary, which may make filling difficult.

また、上記粒界充填熱処理は5〜300分間行うことが好ましい(請求項3)。
これによりPb系ガラスが結晶粒界を充分充填することができる。
5分未満ではPb系ガラスの融解が進まずに、結晶粒界の充填が困難となるおそれがある。300分を越えると、Pbの揮発が促進されるため、結晶粒界からPbが揮発して充填困難となるおそれがある。
The grain boundary filling heat treatment is preferably performed for 5 to 300 minutes.
As a result, the Pb-based glass can sufficiently fill the crystal grain boundaries.
If it is less than 5 minutes, melting of the Pb-based glass does not proceed, and it may be difficult to fill the crystal grain boundaries. If it exceeds 300 minutes, the volatilization of Pb is promoted, and therefore Pb volatilizes from the crystal grain boundary, which may make filling difficult.

また、上記焼成スタックを所望の形状に研削した後に、上記粒界充填熱処理を行うことが好ましい(請求項4)。
研削は、一般に焼成スタックを研削液などに浸しつつ行うため、研削液が焼成スタック内部に滲み込むなどして、結晶粒界に水分や他の成分が入り込むことがある。そのため、研削した後で、粒界充填熱処理を行うことで、結晶粒界に残った水分や他の成分を揮発除去させることができる。
また、焼成スタックを研削した際は残留ひずみ等が生じるが、粒界充填熱処理において焼成スタックを加熱することで残留ひずみを除去することができる。更に、加熱により応力を緩和したり、焼成スタックの研削面を緻密化させることができる。
Moreover, it is preferable to perform the grain boundary filling heat treatment after grinding the fired stack to a desired shape.
Since grinding is generally performed while the firing stack is immersed in a grinding fluid or the like, the grinding fluid may permeate into the firing stack and moisture and other components may enter the crystal grain boundaries. Therefore, by performing the grain boundary filling heat treatment after grinding, moisture and other components remaining at the crystal grain boundaries can be volatilized and removed.
Further, when the fired stack is ground, residual strain or the like occurs, but the residual strain can be removed by heating the fired stack in the grain boundary filling heat treatment. Furthermore, the stress can be relaxed by heating, and the ground surface of the fired stack can be densified.

また、第2の発明において、未焼成積層体を、焼成前後における過剰Pbの揮発が5%以内となるように焼成するが、これは、焼成前後のPbの重量をM0、M1、PZTの化学量論比から導出した圧電スタック中のPbの重量をMとすると、(M0−M1)/(M0−M)の値が5%以下となることである(実施例10参照)。なお、Pbの揮発をゼロとすることもできる。   In the second invention, the unfired laminate is fired so that the volatilization of excess Pb before and after firing is within 5%. This is because the weight of Pb before and after firing is the chemistry of M0, M1, and PZT. When the weight of Pb in the piezoelectric stack derived from the stoichiometric ratio is M, the value of (M0−M1) / (M0−M) is 5% or less (see Example 10). Note that the volatilization of Pb can be made zero.

また、焼成前後でPbの揮発を5%以内に抑制する方法としては、焼成雰囲気にPbの蒸気を放出することができる雰囲気調整剤を焼成雰囲気に配置する方法がある(後述する実施例2参照)。
また、第2の発明では、PbをPZTにおける化学量論比よりも過剰に含有した圧電層用の未焼成シートを用いて圧電スタックを作製するが、本圧電スタックはABO3型の誘電体セラミックスであり、通常A:B:O=1:1:3のモル比となるように配合されるが、鉛を含むAサイトの成分の合計がBサイトを1とした時に1.00モル比以上となるようにAサイトに鉛を過剰に含有させることで、Pb過剰となった未焼成シートを作製出来る。
Further, as a method for suppressing the volatilization of Pb within 5% before and after firing, there is a method in which an atmosphere conditioner capable of releasing Pb vapor is disposed in the firing atmosphere (see Example 2 described later). ).
In the second invention, a piezoelectric stack is produced using an unsintered sheet for a piezoelectric layer containing Pb in excess of the stoichiometric ratio in PZT. This piezoelectric stack is made of ABO3 type dielectric ceramics. In general, it is blended so as to have a molar ratio of A: B: O = 1: 1: 3, but the total of the components of the A site containing lead is 1.00 molar ratio or more when the B site is 1. Thus, an unsintered sheet with Pb excess can be produced by adding lead excessively to the A site.

また、第2の発明において、焼成は、温度950〜1030℃で行うことが好ましい(請求項6)。
これにより、Pb系ガラスが結晶粒界を充分充填することができる。
温度が950℃未満である場合は、素子の焼結が不十分となりアクチュエータとしての変位性能を満足することが困難となるおそれがある。1030℃を越えると、Pbの揮発が促進されるため、結晶粒界からPbが揮発して充填困難となるおそれがある。
Moreover, in 2nd invention, it is preferable to perform baking at the temperature of 950-1030 degreeC (Claim 6).
Thereby, the Pb-based glass can sufficiently fill the crystal grain boundaries.
When the temperature is lower than 950 ° C., the element is not sufficiently sintered and it may be difficult to satisfy the displacement performance as the actuator. If the temperature exceeds 1030 ° C., the volatilization of Pb is promoted, so that Pb volatilizes from the crystal grain boundary, which may make filling difficult.

(実施例1)
本発明にかかる圧電スタックの製造方法について説明する。
すなわち、本例にかかる圧電スタックは、図1、図2に示すように、PZT(チタン酸ジルコン酸鉛)からなる圧電層と内部電極層とを交互に積層してなる。
これを製造するには、圧電層用の未焼成シートと内部電極層用の未焼成シートを交互に積層して未焼成積層体を作製し、該未焼成積層体を上記圧電層内部における結晶粒界にPb系ガラスが析出するよう焼成して焼成スタックを得て、その後上記焼成スタックに、上記結晶粒界におけるPb系ガラスの粒界充填率が95%以上となるよう粒界充填熱処理を行う。
Example 1
A method for manufacturing a piezoelectric stack according to the present invention will be described.
That is, the piezoelectric stack according to this example is formed by alternately stacking piezoelectric layers made of PZT (lead zirconate titanate) and internal electrode layers as shown in FIGS.
In order to manufacture this, an unfired laminate is produced by alternately laminating unfired sheets for piezoelectric layers and unfired sheets for internal electrode layers, and the unfired laminate is made of crystal grains inside the piezoelectric layer. A fired stack is obtained by firing so that Pb-based glass is deposited on the boundary, and then a grain boundary filling heat treatment is performed on the fired stack so that the grain boundary filling rate of the Pb-based glass at the crystal grain boundary is 95% or more. .

以下、詳細に説明する。
まず、本例の圧電スタックは、図1、図2に示すように、電極控え部110以外の部分に内部電極層121を設けた圧電層111と電極控え部110以外の部分に内部電極層122を設けた圧電層112とを交互に積層してなる。
内部電極層121は側面101に端部が露出し、内部電極層122は側面102に端部が露出する。この露出した端部はそれぞれ側面電極15、16によって導通させることができる。圧電層111、112はPZTからなり、内部電極層121、122はAg−Pd、側面電極はAgからなる。なお、積層方向両端面に配置した圧電層131、132は通電により伸張しないダミー層である。
Details will be described below.
First, as shown in FIGS. 1 and 2, the piezoelectric stack of this example includes a piezoelectric layer 111 in which an internal electrode layer 121 is provided in a portion other than the electrode holding portion 110 and an internal electrode layer 122 in a portion other than the electrode holding portion 110. The piezoelectric layers 112 provided with are laminated alternately.
An end portion of the internal electrode layer 121 is exposed on the side surface 101, and an end portion of the internal electrode layer 122 is exposed on the side surface 102. The exposed ends can be conducted by side electrodes 15 and 16, respectively. The piezoelectric layers 111 and 112 are made of PZT, the internal electrode layers 121 and 122 are made of Ag—Pd, and the side electrodes are made of Ag. The piezoelectric layers 131 and 132 disposed on both end surfaces in the stacking direction are dummy layers that do not expand when energized.

上記圧電スタック1を製造する方法を詳細に説明する。
まず、圧電層用のスラリーの作製について説明する。
圧電層の原料粉末を秤量し、原料粉末と分散剤とを混合機で混合させ、その後乾燥させ、ライカイ機で解砕する。
A method for manufacturing the piezoelectric stack 1 will be described in detail.
First, preparation of a slurry for the piezoelectric layer will be described.
The raw material powder of the piezoelectric layer is weighed, and the raw material powder and the dispersing agent are mixed with a mixer, then dried, and crushed with a likai machine.

解砕した原料粉末を仮焼して仮焼粉となし、分散剤を仮焼粉に混ぜて、湿式粉砕し、乾燥後に再びライカイ機にかけて解砕する。次いで分散剤、溶剤、可塑剤、バインダーを加えて混合してスラリーとする。これを脱泡処理を行い、粘度を調整してフィルターで濾過することで圧電層用のスラリーを得る。
次に、内部電極層用のペーストを作製して、これを得る。
The pulverized raw material powder is calcined to form calcined powder, the dispersant is mixed with the calcined powder, wet pulverized, dried, and then pulverized again by a laika machine. Next, a dispersant, a solvent, a plasticizer, and a binder are added and mixed to form a slurry. This is defoamed, and the viscosity is adjusted and filtered through a filter to obtain a slurry for the piezoelectric layer.
Next, a paste for the internal electrode layer is prepared and obtained.

次に、圧電層用のスラリーからドクターブレード法を利用して、グリーンシートを作製する。このグリーンシートを適当な大きさに切断、乾燥後、型で打ち抜いて、圧電層用の未焼成シートを得た。
上記未焼成シートに、内部電極層用のペーストを印刷、乾燥後、所定の枚数を圧着・積層して未焼成積層体を得た。
Next, a green sheet is produced from the slurry for the piezoelectric layer using a doctor blade method. The green sheet was cut to an appropriate size, dried, and punched out with a mold to obtain an unfired sheet for the piezoelectric layer.
A paste for the internal electrode layer was printed on the green sheet and dried, and then a predetermined number of sheets were pressed and laminated to obtain a green laminate.

未焼成積層体の焼成について説明する。
未焼成積層体は、上記圧電層内部における結晶粒界にPb系ガラスが析出するよう焼成して焼成スタックを得る。
具体的には、図3に示すような焼成炉2に、雰囲気調整剤23を配置したセッター22及び未焼積層体20を配置したセッター21を積み重ねてセットする。雰囲気調整剤23はジルコン酸鉛(PbZrO3)を用いた。
こうして、温度1045℃、2時間焼成して、焼成スタックを得た。
The firing of the unfired laminate will be described.
The unfired laminated body is fired so that Pb-based glass is deposited at the crystal grain boundaries inside the piezoelectric layer, thereby obtaining a fired stack.
Specifically, the setter 22 in which the atmosphere adjusting agent 23 and the setter 21 in which the unfired laminate 20 are arranged are stacked and set in the firing furnace 2 as shown in FIG. As the atmosphere control agent 23, lead zirconate (PbZrO 3 ) was used.
Thus, firing was performed at a temperature of 1045 ° C. for 2 hours to obtain a fired stack.

次いで、焼成スタックの外形寸法を検査し、所定の寸法となるように、平面研削盤にて研削を行った。
研削を終えた後は、再び外形寸法を測定して、所定の値に達した焼成スタックを洗浄し、更に乾燥させた。
その後、結晶粒界におけるPb系ガラスの粒界充填率が95%以上となるよう粒界充填熱処理を行う。この粒界充填熱処理は、メッシュベルト炉にて大気雰囲気中で実施した。
最後に、側面電極用の印刷ペーストを図1にかかる側面電極が得られるように塗布して、焼き付ける。最後に洗浄、乾燥して、圧電スタック1を得た。
Next, the outer dimensions of the fired stack were inspected, and grinding was performed with a surface grinder so as to obtain a predetermined dimension.
After finishing the grinding, the external dimensions were measured again, and the fired stack that reached the predetermined value was washed and further dried.
Thereafter, a grain boundary filling heat treatment is performed so that the grain boundary filling rate of the Pb-based glass at the grain boundary becomes 95% or more. This grain boundary filling heat treatment was performed in an air atmosphere in a mesh belt furnace.
Finally, a side electrode printing paste is applied and baked to obtain the side electrode according to FIG. Finally, the piezoelectric stack 1 was obtained by washing and drying.

本例にかかる製造方法では、Pb系ガラスが結晶粒界に析出するような条件で未焼成積層体を焼成して焼成スタックを得る。
その後、焼成スタックに粒界充填熱処理を行うことで、結晶粒界に析出したPb系ガラスが融解し、結晶粒界がPb系ガラスによって充填され、水分や他の物質が入る余地を殆どなくすることができる。
よって、本例によれば、圧電層の絶縁抵抗値等の物性が変わり難く、性能劣化や信頼性低下が生じ難い圧電スタックを製造することができる。
In the manufacturing method according to this example, the unfired laminate is fired under conditions such that the Pb-based glass precipitates at the crystal grain boundaries to obtain a fired stack.
Then, by performing a grain boundary filling heat treatment on the fired stack, the Pb-based glass precipitated at the crystal grain boundaries is melted, and the crystal grain boundaries are filled with the Pb-based glass, so that there is almost no room for moisture or other substances to enter. be able to.
Therefore, according to this example, it is possible to manufacture a piezoelectric stack in which the physical properties such as the insulation resistance value of the piezoelectric layer are hardly changed, and the performance and reliability are hardly deteriorated.

(実施例2)
本例は、実施例1とは異なる製造方法について説明するものである。
すなわち、PbをPZT(チタン酸ジルコン酸鉛)における化学量論比よりも過剰に含有してなると共に内部電極層用の導電ペーストを印刷した圧電層用の未焼成シートを積層して未焼成積層体を作製し、該未焼成積層体を、焼成前後におけるPbの揮発が5%以内となり、かつ圧電層内部における結晶粒界に対するPb系ガラスの粒界充填率が95%以上となるように焼成する。
(Example 2)
In this example, a manufacturing method different from that in Example 1 will be described.
That is, Pb is contained in excess of the stoichiometric ratio in PZT (lead zirconate titanate), and an unfired laminate is formed by laminating unfired sheets for piezoelectric layers on which conductive paste for internal electrode layers is printed. The green laminate is fired so that the Pb volatilization before and after firing is within 5% and the grain boundary filling rate of the Pb-based glass with respect to the crystal grain boundaries inside the piezoelectric layer is 95% or more. To do.

以下、詳細に説明する。
実施例1と同様の手順で圧電層用ペースト、内部電極層用ペーストを準備する。
この時、圧電層の原料粉末は、PZTの化学量論比よりもPbを過剰に含有させたものを使用する。つまりABO3型の誘電体セラミックスである本スタックは、通常A:B:O=1:1:3のモル比となるように配合されるが、鉛を含むAサイトの成分の合計がBサイトを1とした時に1.00モル比以上となるようにAサイトに鉛を過剰に含有させている。
その他詳細は実施例1と同様にして、未焼成積層体を作製する。
Details will be described below.
A piezoelectric layer paste and an internal electrode layer paste are prepared in the same procedure as in Example 1.
At this time, the raw material powder for the piezoelectric layer is one containing Pb in excess of the stoichiometric ratio of PZT. In other words, this stack, which is an ABO3 type dielectric ceramic, is usually formulated so as to have a molar ratio of A: B: O = 1: 1: 3, but the total of the components of the A site containing lead is the B site. When it is set to 1, lead A is excessively contained at the A site so that the molar ratio is 1.00 or more.
Other details are the same as in Example 1, and an unfired laminate is produced.

上記未焼成積層体を、焼成前後におけるPbの揮発が5%以内となり、かつ圧電層内部における結晶粒界に対するPb系ガラスの粒界充填率が95%以上となるように焼成する。
具体的には、図3に示すような焼成炉2に、雰囲気調整剤23を配置したセッター22及び未焼積層体20を配置したセッター21を積み重ねてセットする。雰囲気調整剤23はジルコン酸鉛(PbZrO3)を用いた。
こうして、温度990℃、2時間焼成した。
焼成後は、実施例1と同様に、側面電極用の印刷ペーストを図1にかかる側面電極が得られるように塗布して、焼き付ける。最後に洗浄、乾燥して、圧電スタック1を得た。
The green laminate is fired so that the volatilization of Pb before and after firing is within 5%, and the Pb-based glass has a grain boundary filling ratio of 95% or more with respect to the crystal grain boundaries inside the piezoelectric layer.
Specifically, the setter 22 in which the atmosphere adjusting agent 23 and the setter 21 in which the unfired laminate 20 are arranged are stacked and set in the firing furnace 2 as shown in FIG. As the atmosphere control agent 23, lead zirconate (PbZrO 3 ) was used.
Thus, the temperature was 990 ° C. for 2 hours.
After firing, as in Example 1, the side electrode printing paste is applied and baked to obtain the side electrode according to FIG. Finally, the piezoelectric stack 1 was obtained by washing and drying.

本例の製造方法では、Pbの揮発を抑制することで、Pb系ガラスが結晶粒界を充填できるほど、結晶粒界に残留するように焼成を行う。これにより、圧電層の結晶粒界がPb系ガラスによって充填されて、水分や他の物質が入る余地を殆どなくすることができる。
このように本例の発明によれば、圧電層の絶縁抵抗値等の物性が変わり難く、圧電スタックの性能劣化や信頼性低下を生じ難くすることができる。
In the manufacturing method of this example, by suppressing the volatilization of Pb, firing is performed so that the Pb-based glass can fill the crystal grain boundary and remain in the crystal grain boundary. Thereby, the crystal grain boundary of the piezoelectric layer is filled with the Pb-based glass, and there is almost no room for moisture or other substances to enter.
Thus, according to the invention of this example, the physical properties such as the insulation resistance value of the piezoelectric layer are unlikely to change, and it is possible to prevent the piezoelectric stack from being deteriorated in performance and reliability.

(実施例3)
本例は、Pb系ガラスの結晶粒界充填率と圧電スタックの性能とについて評価する。
圧電スタックは図1、図2に記載したものであるが、比較試料C1は従来製法で作製し、結晶粒界の粒界充填率が10%〜15%程度である。
比較試料C2は実施例1にかかる製造方法で作製したが、粒界充填熱処理の温度が400℃と低く、粒界充填率が50%前後となった。
試料1は実施例1にかかる製造方法で、粒界充填熱処理の温度を850℃とした。試料2は実施例2にかかる製造方法で作製した。試料1、2はいずれも粒界充填率が95%を越えていた。
なお、各試料、比較試料にかかる圧電スタックは2個準備してそれぞれについて測定を行った。
(Example 3)
In this example, the crystal grain boundary filling rate of Pb-based glass and the performance of the piezoelectric stack are evaluated.
The piezoelectric stack is the one described in FIGS. 1 and 2, but the comparative sample C1 is manufactured by a conventional manufacturing method, and the grain boundary filling factor of the crystal grain boundary is about 10% to 15%.
Comparative sample C2 was produced by the production method according to Example 1, but the temperature of the grain boundary filling heat treatment was as low as 400 ° C., and the grain boundary filling ratio was around 50%.
Sample 1 was the manufacturing method according to Example 1, and the temperature of the grain boundary filling heat treatment was set to 850 ° C. Sample 2 was produced by the production method according to Example 2. Samples 1 and 2 each had a grain boundary filling rate exceeding 95%.
Two piezoelectric stacks for each sample and comparative sample were prepared and measured for each.

これらの各試料について、気密パッケージに封入して温度190℃で1000時間放置して、放置前の絶縁抵抗値をIR0、放置後の絶縁抵抗値をIR1とすると、IR1/IR0の値を縦軸にプロットし、横軸は粒界充填率として、図4の線図に記載した。
ここで気密パッケージとは、圧電スタックを大気から遮断し、かつ圧電スタックへ電気信号を入出力できる構造を備えたものである。
図4に示されるごとく、粒界充填率が高ければ高い程、絶縁抵抗値の低下が小さく、信頼性に優れた圧電スタックであることが分かった。
なお、粒界充填率の測定方法は後述する実施例4に、絶縁抵抗値の測定方法は後述する実施例5に記載した。
Each of these samples is sealed in an airtight package and allowed to stand at a temperature of 190 ° C. for 1000 hours. If the insulation resistance value before leaving is IR0 and the insulation resistance value after leaving is IR1, the value of IR1 / IR0 is the vertical axis. The horizontal axis is shown in the diagram of FIG. 4 as the grain boundary filling factor.
Here, the airtight package has a structure capable of shielding the piezoelectric stack from the atmosphere and inputting / outputting electric signals to / from the piezoelectric stack.
As shown in FIG. 4, it was found that the higher the grain boundary filling rate, the smaller the decrease in the insulation resistance value, and the higher the reliability of the piezoelectric stack.
The method for measuring the grain boundary filling rate was described in Example 4 described later, and the method for measuring the insulation resistance value was described in Example 5 described later.

(実施例4)
圧電層の微細構造と粒界充填率の測定方法について説明する。
圧電スタックにおける圧電層の微細構造は、図5に示すように、不定形の結晶粒31と結晶粒31との間である結晶粒界310に形成された隙間に充填されたPb系ガラス32とからなる。
ここで、粒界充填率は、走査型電子顕微鏡(SEM)に組み込まれた反射電子検出器から得られた圧電層における結晶粒31の反射電子像(組成像)から測定した。
実施例3の測定で使用した反射電子検出器の条件は、以下に記載した。
使用機器:走査型電子顕微鏡
メーカー:日立製作所
型式:S4300
試料(圧電スタック破面)への蒸着有無:無蒸着
加速電圧:5kV
観察倍率:数百倍から1万倍
WD(ワーキングディスタンス):15mm
反射電子検出器:YAGヤングシンチレータタイプ
Example 4
A method for measuring the microstructure of the piezoelectric layer and the grain boundary filling factor will be described.
As shown in FIG. 5, the microstructure of the piezoelectric layer in the piezoelectric stack includes a Pb-based glass 32 filled in a gap formed in a crystal grain boundary 310 between the amorphous crystal grains 31 and the crystal grains 31. Consists of.
Here, the grain boundary filling factor was measured from a reflected electron image (composition image) of the crystal grains 31 in the piezoelectric layer obtained from a reflected electron detector incorporated in a scanning electron microscope (SEM).
The conditions of the backscattered electron detector used in the measurement of Example 3 are described below.
Equipment used: Scanning electron microscope Manufacturer: Hitachi, Ltd. Model: S4300
Vapor deposition on sample (piezoelectric stack fracture surface): No vapor deposition Acceleration voltage: 5 kV
Observation magnification: several hundred times to 10,000 times WD (working distance): 15 mm
Backscattered electron detector: YAG Young scintillator type

観察は電界が印加される領域の圧電スタック破面について実施しており、粒界充填率は、圧電層の結晶粒子31の1個について、次のように算出した。
すなわち、図6に示すごとく、粒界充填率とは、Pb系ガラスによって充填された領域の粒界長さJ1を、全体の粒界長さJで割った値(%)である。
ここで全体の粒界長さJとは、図6に示すごとく、着目するひとつの結晶粒31において、「充填されている粒界長さJ1(つまり結晶粒の界面にPb系ガラスが付着している部分の長さ)+充填されていない粒界長さJ0」である。
実際の測定は、1万倍の倍率にて圧電スタックの破面を観察し、ひとつの破面につき2個の結晶粒子をピックアップして測定し、この測定を3つの破面について実施した。
こうして、合計6個の結晶粒子から得た粒界充填率の平均値を、「圧電スタックの粒界充填率」として用いた。
Observation was carried out on the fracture surface of the piezoelectric stack in the region to which an electric field was applied, and the grain boundary filling rate was calculated for one crystal grain 31 of the piezoelectric layer as follows.
That is, as shown in FIG. 6, the grain boundary filling factor is a value (%) obtained by dividing the grain boundary length J1 of the region filled with the Pb-based glass by the total grain boundary length J.
Here, as shown in FIG. 6, the total grain boundary length J is defined as “filled grain boundary length J1 (that is, Pb-based glass adheres to the interface between crystal grains) in one crystal grain 31 of interest. The length of the portion that is filled) + the unfilled grain boundary length J0 ”.
In actual measurement, the fracture surface of the piezoelectric stack was observed at a magnification of 10,000 times, and two crystal particles were picked up and measured for each fracture surface, and this measurement was performed on three fracture surfaces.
Thus, the average value of the grain boundary filling factor obtained from a total of six crystal grains was used as the “grain boundary filling factor of the piezoelectric stack”.

(実施例5)
絶縁抵抗値の測定方法について説明する。
図7に示すごとく、圧電スタック1を回路保護抵抗42と10kΩの抵抗器43、直流電源41を直列に接続すると共に、10kΩの抵抗器43に対し並列に接続したデジタルマルチメータ44からなる測定回路4に接続した。
この測定回路4において、圧電スタック1の側面電極15、16から150Vの直流電圧を印加する。そして2分後にデジタルマルチメータ44の値を読み取り、この電圧から回路電流値を求めることで、絶縁抵抗値=150/回路電流値より、圧電スタック1の絶縁抵抗値を算出することができる。
(Example 5)
A method for measuring the insulation resistance value will be described.
As shown in FIG. 7, the piezoelectric stack 1 includes a circuit protection resistor 42, a 10 kΩ resistor 43, and a DC power supply 41 connected in series, and a measurement circuit comprising a digital multimeter 44 connected in parallel to the 10 kΩ resistor 43. 4 connected.
In this measurement circuit 4, a DC voltage of 150 V is applied from the side electrodes 15, 16 of the piezoelectric stack 1. Then, the value of the digital multimeter 44 is read after 2 minutes, and the circuit current value is obtained from this voltage, whereby the insulation resistance value of the piezoelectric stack 1 can be calculated from insulation resistance value = 150 / circuit current value.

(実施例6)
本例は、実施例1の製造方法において、焼成スタックに研削を行った後に、粒界充填熱処理を行った試料3と行わなかった比較試料C3について、粒界充填率を比較し、図8にかかる線図に記載した。
なお、各試料、比較試料にかかる圧電スタックは2個準備してそれぞれについて測定を行った。
同図より明らかであるが、研削した後、粒界充填熱処理を850℃で行ったことで、粒界充填率が100%近くとなった。研削したままの状態では、粒界充填率が20%より小さくなった。
(Example 6)
In this example, in the manufacturing method of Example 1, after the grinding stack was ground, the grain boundary filling rate was compared between Sample 3 subjected to the grain boundary filling heat treatment and Comparative Sample C3 not subjected to the grain boundary filling heat treatment. This is shown in the diagram.
Two piezoelectric stacks for each sample and comparative sample were prepared and measured for each.
As is clear from the figure, the grain boundary filling rate was close to 100% by performing the grain boundary filling heat treatment at 850 ° C. after grinding. In the state of being ground, the grain boundary filling rate was smaller than 20%.

(実施例7)
本例は、実施例2の製造方法にかかる試料5、6と、980℃で焼成を行った試料4、1045℃という高温で焼成を行った比較試料C4の粒界充填率を比較した。比較試料C4の製造方法のその他の点は実施例2と同様であり、また各試料、比較試料の圧電スタックは2個準備してそれぞれ測定を行った。そして、横軸を焼成温度、縦軸を粒界充填率にとった図9にプロットした。
(Example 7)
In this example, the grain boundary filling ratios of Samples 5 and 6 according to the manufacturing method of Example 2 and Sample 4 fired at 980 ° C. and Comparative Sample C4 fired at a high temperature of 1045 ° C. were compared. The other points of the manufacturing method of the comparative sample C4 were the same as in Example 2, and two piezoelectric stacks of each sample and comparative sample were prepared and measured. And it plotted in FIG. 9 which took the firing temperature on the horizontal axis and the grain boundary filling factor on the vertical axis.

同図より、試料5、6は、過剰Pbの揮発を5%以下に抑えてあるため、粒界充填率が95%以上となるものが得られることが分かった。
焼成温度が低い試料4は粒界充填率は高いが、焼結不足により変位性能が若干劣るおそれもある。
更に、高温で焼成した比較試料C4は焼成温度が高いためPbの揮発が生じやすく、雰囲気調整剤を配置しても過剰Pbの揮発を5%以下に抑えることができなかった。そして粒界充填率も20%以下であった。
なお、過剰Pbについての説明は実施例10に記載した。
From the same figure, it was found that Samples 5 and 6 have an excess Pb volatilization of 5% or less, so that a grain boundary filling factor of 95% or more can be obtained.
Sample 4 having a low firing temperature has a high grain boundary filling rate, but displacement performance may be slightly inferior due to insufficient sintering.
Further, the comparative sample C4 fired at a high temperature was likely to cause Pb volatilization because of the high firing temperature, and even if an atmosphere control agent was arranged, the excess Pb volatilization could not be suppressed to 5% or less. And the grain boundary filling factor was 20% or less.
The explanation of excess Pb is described in Example 10.

(実施例8)
本例では、実施例1の製造方法で作製した試料7〜10(それぞれ粒界充填熱処理の温度が異なる)にかかる圧電スタック、実施例1と同様の製造方法で作製したが、粒界充填熱処理を行わなかった比較試料C5にかかる圧電スタックを、実施例3と同様の気密パッケージに封入して、温度190℃の環境で放置した。
そして、放置時間を横軸に、放置前の絶縁抵抗値をIR0、放置後の絶縁抵抗値をIR1とすると、IR1/IR0の値を縦軸にプロットし、図10の線図に記載した。
なお、各試料、比較試料の圧電スタックは2個準備してそれぞれについて測定を行った。
(Example 8)
In this example, the piezoelectric stack according to Samples 7 to 10 (the temperatures of the grain boundary filling heat treatment are different from each other) produced by the production method of Example 1 and the production method similar to Example 1 were used. The piezoelectric stack according to the comparative sample C5 that was not subjected to the above was enclosed in an airtight package similar to that in Example 3, and left in an environment at a temperature of 190 ° C.
Then, assuming that the leaving time is on the horizontal axis, the insulation resistance value before being left is IR0, and the insulation resistance value after being left is IR1, the value of IR1 / IR0 is plotted on the vertical axis and shown in the diagram of FIG.
Two piezoelectric stacks for each sample and comparative sample were prepared and measured for each.

その結果、粒界充填熱処理を行った試料7〜10は、気密パッケージに封入して190℃の環境で放置して1000時間経過後も、絶縁抵抗値があまり低下しなかったことが分かった。
反対に、粒界充填熱処理を行わなかった比較試料C5は、400時間以降、急激に絶縁抵抗値が低下したことが分かった。
As a result, it was found that the insulation resistance values of Samples 7 to 10 subjected to the grain boundary filling heat treatment did not decrease so much even after 1000 hours were sealed in an airtight package and left in an environment of 190 ° C.
On the other hand, it was found that the insulation resistance value of Comparative Sample C5 that did not perform the grain boundary filling heat treatment decreased rapidly after 400 hours.

(実施例9)
本例は、実施例1の製造方法で作製した試料9〜11(それぞれ粒界充填処理にかけた時間が異なり、粒界充填熱処理の温度はいずれも850℃である。)にかかる圧電スタック、実施例1と同様の製造方法で作製したが、粒界充填熱処理を行わなかった比較試料C6にかかる圧電スタックそれぞれ2個準備して、実施例8と同様の気密パッケージに封入して、温度190℃の環境で放置した。
そして、放置時間を横軸に、放置前の絶縁抵抗値をIR0、放置後の絶縁抵抗値をIR1とすると、IR1/IR0の値を縦軸にプロットし、図11の線図に記載した。
その結果、粒界充填熱処理の継続時間を長くすることで、より絶縁抵抗値が低下し難い圧電スタックが得られることが分かった。
Example 9
This example is a piezoelectric stack according to Samples 9 to 11 manufactured by the manufacturing method of Example 1 (the time taken for the grain boundary filling process is different, and the temperature of the grain boundary filling heat treatment is 850 ° C.). Two piezoelectric stacks were prepared for the comparative sample C6 that was manufactured by the same manufacturing method as in Example 1, but was not subjected to the grain boundary filling heat treatment, and sealed in an airtight package similar to that in Example 8. Left in the environment.
Then, assuming that the leaving time is on the horizontal axis, the insulation resistance value before being left is IR0, and the insulation resistance value after being left is IR1, the value of IR1 / IR0 is plotted on the vertical axis and shown in the diagram of FIG.
As a result, it was found that by increasing the duration of the grain boundary filling heat treatment, a piezoelectric stack in which the insulation resistance value is more difficult to decrease can be obtained.

(実施例10)
本例は、実施例2の製造方法で作製した試料12、13にかかる圧電スタック(それぞれ焼成の温度が異なる。)と、実施例2と同様の製造方法で作製したが、焼成温度が高く(1045℃)、鉛の揮発を抑制できなかった比較試料C7にかかる圧電スタックをそれぞれ2個準備した。
そして、これらの焼成前後におけるPbの揮発率と粒界充填率について調べた。
なお、Pbの揮発率は、未焼成積層体中のPb量(M0)と、焼成された圧電スタック中のPb量(M1)を蛍光X線装置を用いて測定し、PZTの化学量論比から算出したPb量(M)とから、(M0−M1)/(M0−M)を揮発率とした。
(Example 10)
In this example, the piezoelectric stacks of Samples 12 and 13 produced by the production method of Example 2 (the firing temperatures are different from each other) and the production method similar to Example 2 were produced, but the firing temperature was high ( 1045 ° C.), two piezoelectric stacks were prepared for the comparative sample C7 that could not suppress the volatilization of lead.
Then, the volatilization rate and the grain boundary filling rate of Pb before and after firing were examined.
The volatilization rate of Pb is determined by measuring the Pb amount (M0) in the unfired laminate and the Pb amount (M1) in the fired piezoelectric stack using a fluorescent X-ray apparatus, and the stoichiometric ratio of PZT. From the Pb amount calculated from (M), (M0−M1) / (M0−M) was defined as the volatility.

その結果、試料12、13は鉛の揮発量も少なく、Pb系ガラス粒界充填率が95%を越えているが、比較試料C7は過剰鉛の大半が揮発してしまい、したがってPb系ガラス粒界充填率が95%を大きく下回った。   As a result, samples 12 and 13 have a small amount of lead volatilization, and the Pb-based glass grain boundary filling ratio exceeds 95%, but comparative sample C7 has most of the excess lead volatilized, and thus Pb-based glass particles. The field filling factor was significantly below 95%.

実施例1にかかる、圧電スタックの断面説明図。FIG. 3 is a cross-sectional explanatory view of the piezoelectric stack according to the first embodiment. 実施例1にかかる、圧電層と内部電極層の平面図。1 is a plan view of a piezoelectric layer and internal electrode layers according to Example 1. FIG. 実施例1にかかる、未焼成積層体の焼成の説明図。Explanatory drawing of baking of the unbaking laminated body concerning Example 1. FIG. 実施例3にかかる、Pb系ガラスによる粒界充填率と、絶縁抵抗値の変化との関係を示す線図。The diagram which shows the relationship between the grain boundary filling rate by Pb type glass concerning Example 3, and the change of an insulation resistance value. 実施例4にかかる、圧電層の結晶粒と結晶粒界を示す説明図。FIG. 6 is an explanatory diagram illustrating crystal grains and crystal grain boundaries of a piezoelectric layer according to Example 4; 実施例4にかかる、結晶粒の充填されている粒界長さJ1と充填されていない粒界長さJ0とを示す説明図。Explanatory drawing concerning Example 4 which shows the grain boundary length J1 with which the crystal grain was filled, and the grain boundary length J0 with which it is not filled. 実施例5にかかる、絶縁抵抗値を測定する測定回路の説明図。Explanatory drawing of the measuring circuit concerning Example 5 which measures the insulation resistance value. 実施例6にかかる、粒界充填熱処理の有無と、Pb系粒界充填率との関係を示す線図。The diagram which shows the relationship between the presence or absence of the grain boundary filling heat treatment and the Pb-based grain boundary filling factor according to Example 6. 実施例7にかかる、焼成温度と、Pb系粒界充填率との関係を示す線図。The diagram which shows the relationship between the calcination temperature concerning Example 7, and a Pb-type grain-boundary filling factor. 実施例8にかかる、耐久時間と、絶縁抵抗地の変化との関係を示す線図。The diagram which shows the relationship between the durable time concerning Example 8, and the change of an insulation resistance ground. 実施例9にかかる、耐久時間と、絶縁抵抗地の変化との関係を示す線図。The diagram which shows the relationship between the durable time concerning Example 9, and the change of an insulation resistance ground. 実施例10にかかる、焼成温度と、過剰Pb揮発率と、Pb系ガラス粒界充填率との関係を示す線図。The diagram which shows the relationship between the calcination temperature concerning Example 10, excess Pb volatilization rate, and a Pb-type glass grain-boundary filling factor.

符号の説明Explanation of symbols

1 圧電スタック
111、112 圧電層
121、122 内部電極層
1 Piezoelectric stack 111, 112 Piezoelectric layer 121, 122 Internal electrode layer

Claims (6)

PZT(チタン酸ジルコン酸鉛)からなる圧電層と内部電極層とを交互に積層してなる圧電スタックを作製するに当たり、
内部電極層用の導電ペーストを印刷した圧電層用の未焼成シートを積層して未焼成積層体を作製し、
該未焼成積層体を上記圧電層内部における結晶粒界にPb系ガラスが析出するよう焼成して焼成スタックを得て、
その後上記焼成スタックに、上記結晶粒界におけるPb系ガラスの粒界充填率(ただし、粒界充填率は、結晶粒においてPb系ガラスによって充填された領域の粒界長さ、即ち結晶粒の界面にPb系ガラスが付着している部分の長さをJ1とし、結晶粒における全体の粒界長さをJとすると、粒界充填率=J1/J×100で表される値である)が95%以上となるよう粒界充填熱処理を行うことを特徴とする圧電スタックの製造方法。
In producing a piezoelectric stack in which piezoelectric layers made of PZT (lead zirconate titanate) and internal electrode layers are alternately laminated,
Laminating a green sheet for a piezoelectric layer printed with a conductive paste for an internal electrode layer to produce a green laminate,
The unfired laminate is fired so that Pb-based glass precipitates at the crystal grain boundaries inside the piezoelectric layer to obtain a fired stack,
After that, the Pb-based glass grain boundary filling factor at the crystal grain boundary (where the grain boundary filling factor is the grain boundary length of the region filled with the Pb-based glass in the crystal grain, that is, the interface of the crystal grains) (Where Jb is the length of the portion where the Pb-based glass adheres to J1 and J is the total grain boundary length in the crystal grains), the grain boundary filling factor is a value represented by J1 / J × 100). A method for manufacturing a piezoelectric stack, comprising performing grain boundary filling heat treatment so as to be 95% or more.
請求項1において、上記粒界充填熱処理は温度600〜900℃で行うことを特徴とする圧電スタックの製造方法。   2. The method of manufacturing a piezoelectric stack according to claim 1, wherein the grain boundary filling heat treatment is performed at a temperature of 600 to 900.degree. 請求項1または2において、上記粒界充填熱処理は5〜300分間行うことを特徴とする圧電スタックの製造方法。   3. The method of manufacturing a piezoelectric stack according to claim 1, wherein the grain boundary filling heat treatment is performed for 5 to 300 minutes. 請求項1〜3のいずれか1項において、上記焼成スタックを所望の形状に研削した後に、上記粒界充填熱処理を行うことを特徴とする圧電スタックの製造方法。   4. The method of manufacturing a piezoelectric stack according to claim 1, wherein the grain boundary filling heat treatment is performed after the fired stack is ground into a desired shape. PZTからなる圧電層と内部電極層とを交互に積層してなる圧電スタックを作製するに当たり、
PbをPZT(チタン酸ジルコン酸鉛)における化学量論比よりも過剰に含有してなると共に内部電極層用の導電ペーストを印刷した圧電層用の未焼成シートを積層して未焼成積層体を作製し、
該未焼成積層体を、焼成前後における過剰Pbの揮発が上記化学量論比よりも過剰に含有してなるPbのうちの5%以内となり、かつ圧電層内部における結晶粒界に対するPb系ガラスの粒界充填率(ただし、粒界充填率は、結晶粒においてPb系ガラスによって充填された領域の粒界長さ、即ち結晶粒の界面にPb系ガラスが付着している部分の長さをJ1とし、結晶粒における全体の粒界長さをJとすると、粒界充填率=J1/J×100で表される値である)が95%以上となるように焼成することを特徴とする圧電スタックの製造方法。
In producing a piezoelectric stack formed by alternately laminating piezoelectric layers made of PZT and internal electrode layers,
An unfired laminate is obtained by laminating an unfired sheet for a piezoelectric layer containing Pb in excess of the stoichiometric ratio in PZT (lead zirconate titanate) and printed with a conductive paste for an internal electrode layer. Make and
In the green laminate, volatilization of excess Pb before and after firing is within 5% of Pb contained in excess of the stoichiometric ratio , and the Pb-based glass with respect to the crystal grain boundary inside the piezoelectric layer Grain boundary filling factor (however, the grain boundary filling factor is the grain boundary length of the region filled with Pb-based glass in the crystal grains, that is, the length of the portion where the Pb-based glass adheres to the interface of the crystal grains. And the total grain boundary length in the crystal grains is J, the grain boundary filling factor = a value represented by J1 / J × 100)). Stack manufacturing method.
請求項5において、上記焼成は、温度950〜1030℃で行うことを特徴とする圧電スタックの製造方法。   6. The method of manufacturing a piezoelectric stack according to claim 5, wherein the firing is performed at a temperature of 950 to 1030.degree.
JP2004040439A 2004-02-17 2004-02-17 Method for manufacturing piezoelectric stack Expired - Fee Related JP4552450B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004040439A JP4552450B2 (en) 2004-02-17 2004-02-17 Method for manufacturing piezoelectric stack
DE200510007078 DE102005007078A1 (en) 2004-02-17 2005-02-16 Manufacturing method of piezoelectric stack for motor vehicle, involves performing grain-boundary filling heat processing with respect to baking stack, so that grain-boundary filling factor of lead type glass is specific percentage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040439A JP4552450B2 (en) 2004-02-17 2004-02-17 Method for manufacturing piezoelectric stack

Publications (2)

Publication Number Publication Date
JP2005235861A JP2005235861A (en) 2005-09-02
JP4552450B2 true JP4552450B2 (en) 2010-09-29

Family

ID=34908378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040439A Expired - Fee Related JP4552450B2 (en) 2004-02-17 2004-02-17 Method for manufacturing piezoelectric stack

Country Status (2)

Country Link
JP (1) JP4552450B2 (en)
DE (1) DE102005007078A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007202A1 (en) 2008-02-01 2009-08-06 Robert Bosch Gmbh Piezo actuator module for use with piezo injector, has piezo actuator that is enclosed with coating made of resin material and metal cover, where oxidation gas is inserted or introduced in area

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267320A (en) * 1991-02-21 1992-09-22 Tokin Corp Layered ceramic capacitor production method
JPH04305057A (en) * 1991-03-30 1992-10-28 Aisin Seiki Co Ltd Method for strengthening piezoelectric ceramics
JPH0867562A (en) * 1995-09-25 1996-03-12 Taiyo Yuden Co Ltd Grain boundary insulating type semiconductor porcelain
JPH11340090A (en) * 1998-05-29 1999-12-10 Matsushita Electric Ind Co Ltd Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2001307939A (en) * 2000-04-26 2001-11-02 Taiyo Yuden Co Ltd Laminated ceramic capacitor and its manufacturing method
JP2002054525A (en) * 2000-05-31 2002-02-20 Denso Corp Piezoelectric element for injector
JP2003171175A (en) * 2001-12-05 2003-06-17 Murata Mfg Co Ltd Piezoelectric ceramic composition, and piezoelectric element using the same
WO2003070641A1 (en) * 2002-02-19 2003-08-28 Matsushita Electric Industrial Co.,Ltd. Piezoelectric body, manufacturing method thereof, piezoelectric element having the piezoelectric body, inject head, and inject type recording device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267320A (en) * 1991-02-21 1992-09-22 Tokin Corp Layered ceramic capacitor production method
JPH04305057A (en) * 1991-03-30 1992-10-28 Aisin Seiki Co Ltd Method for strengthening piezoelectric ceramics
JPH0867562A (en) * 1995-09-25 1996-03-12 Taiyo Yuden Co Ltd Grain boundary insulating type semiconductor porcelain
JPH11340090A (en) * 1998-05-29 1999-12-10 Matsushita Electric Ind Co Ltd Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2001307939A (en) * 2000-04-26 2001-11-02 Taiyo Yuden Co Ltd Laminated ceramic capacitor and its manufacturing method
JP2002054525A (en) * 2000-05-31 2002-02-20 Denso Corp Piezoelectric element for injector
JP2003171175A (en) * 2001-12-05 2003-06-17 Murata Mfg Co Ltd Piezoelectric ceramic composition, and piezoelectric element using the same
WO2003070641A1 (en) * 2002-02-19 2003-08-28 Matsushita Electric Industrial Co.,Ltd. Piezoelectric body, manufacturing method thereof, piezoelectric element having the piezoelectric body, inject head, and inject type recording device

Also Published As

Publication number Publication date
JP2005235861A (en) 2005-09-02
DE102005007078A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US8540832B2 (en) Laminated ceramic electronic component and manufacturing method therefor
KR101343091B1 (en) Process for producing multilayered ceramic capacitor, and multilayered ceramic capacitor
JP2004002069A (en) Processes for manufacturing piezoelectric ceramic and piezoelectric element
EP1728773A1 (en) Piezoelectric ceramic composition
JP5655036B2 (en) Dielectric ceramics, dielectric ceramic manufacturing method and multilayer ceramic capacitor
JP6631854B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor
JP4554232B2 (en) Piezoelectric stack and method of manufacturing piezoelectric stack
JP4924169B2 (en) Method for manufacturing piezoelectric element
JP7239350B2 (en) Piezoelectric ceramics, manufacturing method thereof, and piezoelectric element
JP6175528B2 (en) Piezoelectric device
JP4992192B2 (en) Piezoelectric ceramic manufacturing method and piezoelectric element
JP2005154238A (en) Manufacturing method of piezoelectric porcelain composition
US20230303451A1 (en) Dielectric composition and multilayer ceramic electronic device
JP4670822B2 (en) Method of manufacturing a piezoelectric ceramic
JP4552450B2 (en) Method for manufacturing piezoelectric stack
JP3982267B2 (en) Manufacturing method of multilayer piezoelectric ceramic element
JP4900008B2 (en) Method of manufacturing a piezoelectric ceramic
JP2017157830A (en) Piezoelectric ceramic plate, plate-like substrate, and electronic component
JP6798901B2 (en) Plate-shaped substrate and electronic components
JP5303823B2 (en) Piezoelectric element
JP2005235862A (en) Piezoelectric stack and manufacturing method thereof
JP4688330B2 (en) Piezoelectric ceramic, multilayer piezoelectric element, and injection device
JP2000086341A (en) Piezoelectric composition and its production
JP2001230147A (en) Laminated displacement element and method of manufacturing it
JP2019067827A (en) Laminate electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees