JP2003171175A - Piezoelectric ceramic composition, and piezoelectric element using the same - Google Patents

Piezoelectric ceramic composition, and piezoelectric element using the same

Info

Publication number
JP2003171175A
JP2003171175A JP2001371546A JP2001371546A JP2003171175A JP 2003171175 A JP2003171175 A JP 2003171175A JP 2001371546 A JP2001371546 A JP 2001371546A JP 2001371546 A JP2001371546 A JP 2001371546A JP 2003171175 A JP2003171175 A JP 2003171175A
Authority
JP
Japan
Prior art keywords
component
mol
molar amount
piezoelectric
piezoelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001371546A
Other languages
Japanese (ja)
Other versions
JP4092542B2 (en
Inventor
Yoichi Tsuji
陽一 辻
Yuji Yoshikawa
祐司 吉川
Masanori Kimura
雅典 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001371546A priority Critical patent/JP4092542B2/en
Publication of JP2003171175A publication Critical patent/JP2003171175A/en
Application granted granted Critical
Publication of JP4092542B2 publication Critical patent/JP4092542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a piezoelectric ceramic composition for producing a piezoelectric element having piezoelectric properties such as the temperatuer properties and oscillation properties of resonance frequency. <P>SOLUTION: A second glass material other than a first glass material forming a Pb-W based glass phase is added to a piezoelectric ceramic composition composing piezoelectric ceramic 1, and is expressed by the general formula of Pb<SB>x</SB>M<SB>y</SB>TiO<SB>3</SB>+αMnO<SB>2</SB>+βWO<SB>3</SB>+γN<SB>u</SB>O<SB>v</SB>(M is La or La/Nd, and N<SB>u</SB>O<SB>v</SB>is the oxide composition of the above second glass material). The addition weight γof the second glass material satisfies 0.015≤γ≤0.040. As for the contained molar quantities of the Pb component and M component, (x) and (y) respectively satisfy 0.790≤x≤0.910 and 0.060≤y≤0.135 (wherein, x=1-(1.5 y+z), and 0.000≤z≤0.070). As for the addition molar quantities of MnO<SB>2</SB>and WO<SB>3</SB>, αand β respectively satisfy 0.010≤α≤0.032, and 0.007≤β≤0.020 (wherein, 0.50≤α/β≤4.00). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は圧電体磁器組成物、
及び圧電素子に関し、特に圧電発振子等の圧電素子に使
用される圧電体磁器組成物、及び該圧電体磁器組成物を
使用して製造される圧電発振子等の圧電素子に関する。
TECHNICAL FIELD The present invention relates to a piezoelectric ceramic composition,
The present invention also relates to a piezoelectric element, and more particularly to a piezoelectric ceramic composition used for a piezoelectric element such as a piezoelectric oscillator, and a piezoelectric element such as a piezoelectric oscillator manufactured using the piezoelectric ceramic composition.

【0002】[0002]

【従来の技術】圧電発振子等の圧電素子には、従来よ
り、Pb(Ti,Zr)O(チタン酸ジルコン酸鉛)
やPbTiO(チタン酸鉛)を主成分とした圧電体磁
器が広く使用されている。
2. Description of the Related Art Pb (Ti, Zr) O 3 (lead zirconate titanate) has been conventionally used for piezoelectric elements such as piezoelectric oscillators.
And PbTiO 3 piezoelectric ceramic mainly composed of (lead titanate) have been widely used.

【0003】そして、今日では、圧電素子の高性能化が
要請されてきており、このため製造コストの低廉化と共
に、圧電体の電極間に加えられた電気エネルギの機械的
エネルギへの変換効率を示す電気機械結合係数Kを高く
維持することが要求されてきている。
Nowadays, there is a demand for higher performance of the piezoelectric element, and therefore the manufacturing cost is lowered and the efficiency of conversion of electric energy applied between the electrodes of the piezoelectric body into mechanical energy is improved. It has been required to keep the electromechanical coupling coefficient K shown high.

【0004】そこで、このような観点から、ガラス材と
しての2PbO・WOを磁器組成物に1wt%〜10
wt%添加した技術が提案されている(特開平1−14
8744号公報;以下「第1の従来技術」という)。
Therefore, from such a viewpoint, 2PbO.WO 3 as a glass material is added to the porcelain composition in an amount of 1 wt% to 10%.
A technique in which wt% is added has been proposed (JP-A-1-14).
No. 8744; hereinafter referred to as "first conventional technique".

【0005】該第1の従来技術では、2PbO・WO
ガラス成分が、低温焼結作用及び電気機械結合係数Kの
低下抑制作用を有することから、例えば、(Pb
0.85La0.1)TiO+0.5wt%MnO
で示される磁器組成物に2PbO・WOのガラス粉粒
体を1wt%〜10wt%添加し、これにより電気機械
結合係数Kの低下を抑制しつつ、1050℃以下の低温
での焼結を可能にしている。
In the first prior art, 2PbO.WO 3
Since the glass component has a low-temperature sintering effect and an effect of suppressing a decrease in the electromechanical coupling coefficient K, for example, (Pb
0.85 La 0.1 ) TiO 3 +0.5 wt% MnO 2
1% by weight to 10% by weight of glass powder of 2PbO.WO 3 is added to the porcelain composition shown in Fig. 1 to suppress sintering of the electromechanical coupling coefficient K at a low temperature of 1050 ° C or lower. I have to.

【0006】また、高温環境下での使用を可能とするた
めには強誘電体が常誘電相に転移するキュリー点が高い
ことが要求され、高周波領域での使用に適合させるため
には誘電率が低いことが必要とされることから、チタン
酸鉛を主成分とし、副成分としてマンガン化合物、タン
グステン化合物を含有し、ケイ素化合物を添加させた技
術も提案されている(特開2001−80956号公
報;以下、「第2の従来技術」という)。
Further, a high Curie point at which a ferroelectric substance is transformed into a paraelectric phase is required in order to enable use in a high temperature environment, and a dielectric constant is required in order to be suitable for use in a high frequency region. Therefore, a technique has been proposed in which lead titanate is the main component, a manganese compound and a tungsten compound are contained as auxiliary components, and a silicon compound is added (Japanese Patent Laid-Open No. 2001-80956). Gazette; hereinafter referred to as "second conventional technology").

【0007】該第2の従来技術では、キュリー点が高く
誘電率が低いという長所を有するPbTiO(チタン
酸鉛)を主成分とし、一般式(Pb(1−1.5x)
)TiO+Pb(Mn(1−y))O+Si
(MはLa、Nd、Ceのうちの少なくとも1種)
で示される磁気組成物をセラミック素体として使用する
ことにより、高温環境下で高周波領域の使用にも適合し
た圧電発振子を得ている。
In the second conventional technique, PbTiO 3 (lead titanate), which has the advantage of having a high Curie point and a low dielectric constant, is used as a main component, and the general formula (Pb (1-1.5x) M
x ) TiO 3 + Pb (Mn y W (1-y) ) O 3 + Si
O 2 (M is at least one of La, Nd, and Ce)
By using the magnetic composition represented by the above as a ceramic body, a piezoelectric oscillator suitable for use in a high frequency region under a high temperature environment is obtained.

【0008】しかも、該第2の従来技術では、磁気組成
物にケイ素化合物を添加しているので、Pb−W系から
なるガラス相が焼結体中に偏析するのを防止することが
でき、これにより圧電素子間での電気的特性がばらつい
たり機械的強度が低下するのを防止することができる。
Moreover, in the second prior art, since the silicon compound is added to the magnetic composition, it is possible to prevent the glass phase of Pb-W system from segregating in the sintered body. As a result, it is possible to prevent variations in electrical characteristics between the piezoelectric elements and reduction in mechanical strength.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記第
1の従来技術では、磁器組成物に2PbO・WOから
なるガラス材を1wt%〜10wt%添加することによ
り製造コストの低廉化と電気機械結合係数Kの低下抑制
を図っているものの、焼成段階で形成されたPb−W系
ガラス相(凝集塊)が結晶体中に偏析して介在し、この
ため製品化された圧電素子間での電気特性にバラツキが
生じたり、機械的強度の低下を招来するという問題点が
あった。
However, in the first prior art, the manufacturing cost is reduced and the electromechanical coupling is achieved by adding 1 wt% to 10 wt% of a glass material made of 2PbO.WO 3 to the porcelain composition. Although the reduction of the coefficient K is suppressed, the Pb-W-based glass phase (aggregate) formed in the firing step segregates and intervenes in the crystal body. There are problems that the characteristics are varied and the mechanical strength is lowered.

【0010】また、上記第2の従来技術では、ケイ素化
合物を磁器組成物に添加することによりPb−W系ガラ
ス相の偏析を防止することはできるものの、逆に前記偏
析が生じないため結晶粒界の気孔が埋められることなく
残存し、このため焼結体の緻密性が低下し、共振周波数
が温度によって変化してしまうという問題点があった。
In the second prior art, the segregation of the Pb-W glass phase can be prevented by adding the silicon compound to the porcelain composition, but on the contrary, the segregation does not occur, so that the crystal grains are not formed. There is a problem that the pores in the boundary remain without being filled, and as a result, the compactness of the sintered body deteriorates and the resonance frequency changes with temperature.

【0011】本発明はこのような問題点に鑑みなされた
ものであって、共振周波数の温度特性や発振特性等の圧
電特性に優れた圧電素子を製造することのできる圧電体
磁器組成物、及びそれを用いた圧電素子を提供すること
を目的とする。
The present invention has been made in view of the above problems, and a piezoelectric ceramic composition capable of manufacturing a piezoelectric element having excellent piezoelectric characteristics such as temperature characteristics and oscillation characteristics of resonance frequency, and It is an object to provide a piezoelectric element using the same.

【0012】[0012]

【課題を解決するための手段】圧電発振子等の圧電素子
における共振周波数の温度特性や発振特性の低下の原因
は、セラミック素体である磁気組成物の緻密性が低いた
めと考えられるが、緻密な磁気組成物を得るためにはP
b−W系のガラス質を主成分とするガラス相を結晶体に
或る程度偏析させ、これにより結晶粒界に残存する気孔
を埋めることが効果的であると考えられる。
It is considered that the cause of the decrease in the temperature characteristic and the oscillation characteristic of the resonance frequency in the piezoelectric element such as the piezoelectric oscillator is that the magnetic composition, which is the ceramic body, has low density. To obtain a dense magnetic composition, P
It is considered effective to segregate the glass phase of the bW type glassy material as a main component in the crystal to some extent, thereby filling the pores remaining in the crystal grain boundaries.

【0013】そこで、本発明者らは斯かる観点から鋭意
研究を進めたところ、Pb−W系ガラス相を形成する第
1のガラス材以外に第2のガラス材を磁器組成物に添加
することにより、結晶体中のガラス相の偏析状態を制御
することができるという知見を得た。そして、前記第2
のガラス材を重量%で0.015%〜0.040%添加
することにより、Pb−W系ガラス成分を主成分とする
ガラス相を結晶体中に均一に分散させて偏析させること
ができ、これにより電気的特性にバラツキが生じること
なく緻密な磁器組成物を得ることができるという知見を
得た。
Therefore, the inventors of the present invention have made earnest studies from such a viewpoint, and found that the second glass material is added to the porcelain composition in addition to the first glass material forming the Pb-W glass phase. As a result, it was found that the segregation state of the glass phase in the crystal can be controlled. And the second
By adding 0.015% to 0.040% by weight of the glass material, the glass phase containing the Pb-W glass component as a main component can be uniformly dispersed in the crystal and segregated. This has led to the finding that a dense porcelain composition can be obtained without causing variations in electrical characteristics.

【0014】本発明はこのような知見に基づきなされた
ものであって、本発明に係る圧電体磁器組成物は、鉛−
タングステン系ガラス相を形成する第1のガラス材が圧
電性セラミックス材料に添加された圧電体磁器組成物に
おいて、前記第1のガラス材以外の第2のガラス材が、
重量%で、0.015%〜0.040%添加されている
ことを特徴としている。
The present invention has been made on the basis of such findings, and the piezoelectric ceramic composition according to the present invention contains lead-
In a piezoelectric ceramic composition in which a first glass material forming a tungsten glass phase is added to a piezoelectric ceramic material, a second glass material other than the first glass material is
It is characterized by adding 0.015% to 0.040% by weight.

【0015】すなわち、上記構成によれば、第1のガラ
ス材以外に第2のガラス材が0.015%〜0.040
%添加されているので、Pb−W系ガラス成分を主成分
とするガラス相が結晶体中に均一に分散した形態で前記
ガラス相を偏析させることができ、これにより結晶粒界
の気孔が埋められ、電気的特性にバラツキが生じること
なく緻密化された圧電体磁器組成物を得ることが可能と
なる。
That is, according to the above construction, the second glass material is contained in an amount of 0.015% to 0.040 in addition to the first glass material.
%, It is possible to segregate the glass phase having a Pb-W-based glass component as a main component in a state where the glass phase is uniformly dispersed in the crystal body, thereby filling the pores of the crystal grain boundaries. As a result, it is possible to obtain a densified piezoelectric ceramic composition without causing variations in electrical characteristics.

【0016】また、圧電性セラミックス材料としては、
Pb(Ti,Zr)OやPbTiO更にはBaTi
等各種存在するが、この内、PbTiOを主成分
とするセラミックス材料は、キュリー点が高く誘電率を
低く抑えることができるため、高温環境下や高周波領域
での使用に好適した圧電素子を得ることが可能である。
そして、本発明者らの鋭意研究により、PbTiO
含有されるPb成分の一部をLa(ランタン)、又はL
a及びNd(ネオジム)で置換することにより、圧電素
子の発振特性を向上させることのできることが判明し
た。
As the piezoelectric ceramic material,
Pb (Ti, Zr) O 3 and PbTiO 3 as well as BaTi
Although there are various kinds of O 3 and the like, among them, the ceramic material containing PbTiO 3 as a main component has a high Curie point and can suppress the dielectric constant to a low level, so that a piezoelectric element suitable for use in a high temperature environment or a high frequency region It is possible to obtain
Then, as a result of earnest studies by the present inventors, a part of the Pb component contained in PbTiO 3 was changed to La (lanthanum) or L
It has been found that the oscillation characteristics of the piezoelectric element can be improved by substituting a and Nd (neodymium).

【0017】そこで、本発明の圧電体磁器組成物は、前
記圧電性セラミック材料が、PbTiOを主成分と
し、Pb成分の一部がLa、又はLa及びNdで置換さ
れていることを特徴としている。
Therefore, the piezoelectric ceramic composition of the present invention is characterized in that the piezoelectric ceramic material contains PbTiO 3 as a main component and a part of the Pb component is replaced with La, or La and Nd. There is.

【0018】また、圧電素子を高周波領域での使用に適
合させるためには、該圧電素子を研磨処理して薄肉化す
る必要があり、そのためには研磨処理中に割れやクラッ
ク等が生じないような良好な機械的強度を確保する必要
がある。したがって、第2のガラス材としては、偏析状
態を制御する作用を有する他、良好な機械的強度を有す
ることが必要であり、斯かる観点からは第2のガラス材
としてケイ素化合物を含むのが好ましい。
Further, in order to adapt the piezoelectric element for use in a high frequency range, it is necessary to polish the piezoelectric element to reduce its thickness, and therefore, cracks or cracks do not occur during the polishing process. It is necessary to secure good mechanical strength. Therefore, the second glass material needs to have good mechanical strength in addition to the function of controlling the segregation state. From this viewpoint, it is preferable that the second glass material contains a silicon compound. preferable.

【0019】したがって、本発明の圧電体磁気組成物
は、前記第2のガラス材が、ケイ素化合物を含んでいる
ことを特徴としている。
Therefore, the piezoelectric magnetic composition of the present invention is characterized in that the second glass material contains a silicon compound.

【0020】また、本発明の圧電体磁気組成物は、粒径
2μm〜40μmの粒子が、結晶体中に偏析して介在し
ていることを特徴としている。
Further, the piezoelectric magnetic composition of the present invention is characterized in that particles having a particle size of 2 μm to 40 μm are segregated and interposed in the crystal body.

【0021】すなわち、粒径2μm〜40μmの粒子を
結晶体中に偏析して介在させることにより、大きな粒径
の偏析粒子が局所的に介在することなく該偏析粒子が均
一に分散し、これにより電気的特性のバラツキが生じた
り機械的強度が低下することなく、緻密化された磁気組
成物を得ることができる。
That is, by segregating and interposing particles having a particle size of 2 μm to 40 μm in the crystal, the segregated particles having a large particle size are uniformly dispersed without being locally present, whereby the segregated particles are dispersed. It is possible to obtain a densified magnetic composition without causing variations in electrical characteristics or reducing mechanical strength.

【0022】また、本発明の圧電体磁器組成物は、一般
式PbyTiO+αMnO+βWO+γNu
v(MはLa、又はLa/Nd、Nuvは前記第2のガ
ラス材の酸化物組成を示す)で表わされ、上記第2のガ
ラス材の添加重量γが、重量%で、0.015≦γ≦
0.040に設定されると共に、Pb成分の含有モル量
x、Mの含有モル量yが、夫々0.790≦x≦0.9
10、0.060≦y≦0.135(但し、x=1−
(1.5y+z)であって且つ0.000≦z≦0.0
70)に設定され、かつ、上記MnOの添加モル量
α、及びWOの添加モル量βが、夫々0.010≦α
≦0.032、0.007≦β≦0.020(但し、
0.500≦α/β≦4.000)に設定されているこ
とを特徴としている。
Further, the piezoelectric ceramic composition of the present invention have the general formula Pb x M y TiO 3 + αMnO 2 + βWO 3 + γN u O
v (M is La, or La / Nd, N u O v shows the oxide composition of the second glass material) is represented by the addition weight of the second glass material γ, by weight%, 0.015 ≦ γ ≦
While being set to 0.040, the molar content x of Pb component and the molar content y of M are 0.790 ≦ x ≦ 0.9, respectively.
10, 0.060 ≦ y ≦ 0.135 (where x = 1−
(1.5y + z) and 0.000 ≦ z ≦ 0.0
70), and the addition molar amount α of MnO 2 and the addition molar amount β of WO 3 are each 0.010 ≦ α.
≦ 0.032, 0.007 ≦ β ≦ 0.020 (however,
It is characterized in that it is set to 0.500 ≤ α / β ≤ 4.000).

【0023】焼成中でのPb成分の蒸発防止や製品コス
トの低廉化等を考慮すると焼成温度を極力低く抑えるの
が望ましく、斯かる観点からはW酸化物を添加するのが
好ましい。そして、本発明者らは所望の圧電特性を得る
べく更に鋭意研究を進めた結果、Pb成分の含有モル量
x、M成分の含有モル量y、MnOの添加モル量α、
及びWOの添加モル量βの最適範囲を見出した。すな
わち、上記含有モル量x、y、及び添加モル量α、βを
上述した範囲に設定することにより、周波数温度特性や
発振特性その他の圧電特性に優れた圧電体磁器組成物を
得ることが可能となる。
Considering the prevention of evaporation of the Pb component during firing and the reduction of product cost, it is desirable to keep the firing temperature as low as possible. From this viewpoint, it is preferable to add W oxide. Then, as a result of further intensive research conducted by the present inventors in order to obtain desired piezoelectric characteristics, the molar amount x of Pb component, the molar amount y of M component, the molar amount α of MnO 2 added,
And the optimum range of the addition molar amount β of WO 3 was found. That is, it is possible to obtain a piezoelectric ceramic composition having excellent frequency-temperature characteristics, oscillation characteristics and other piezoelectric characteristics by setting the above-described molar amounts x and y and the molar amounts added α and β in the ranges described above. Becomes

【0024】また、上記一般式でM成分として(La/
Nd)を使用した場合は、周波数温度特性や発振特性の
低下を回避する必要性からLa/Nd≧1.0に設定す
るのが好ましい。
In the above general formula, as the M component (La /
When Nd) is used, it is preferable to set La / Nd ≧ 1.0 because it is necessary to avoid deterioration of frequency temperature characteristics and oscillation characteristics.

【0025】したがって、本発明の圧電体磁気組成物
は、上記一般式においてNd成分に対するLa成分のモ
ル比La/Ndが、La/Nd≧1.0に設定されてい
ることを特徴としている。
Therefore, the piezoelectric magnetic composition of the present invention is characterized in that the molar ratio La / Nd of the La component to the Nd component in the above general formula is set to La / Nd ≧ 1.0.

【0026】また、本発明に係る圧電素子は、上述した
圧電体磁器組成物でセラミック素体が形成されているこ
とを特徴としている。
Further, the piezoelectric element according to the present invention is characterized in that a ceramic body is formed of the above-mentioned piezoelectric ceramic composition.

【0027】上記構成によれば、圧電体磁器組成物が適
度な粒径の偏析粒子を均一に分散して形成されているの
で、機械的強度に優れ、各種圧電特性に優れた圧電素子
を得ることができる。
According to the above structure, since the piezoelectric ceramic composition is formed by uniformly dispersing segregated particles having an appropriate particle size, a piezoelectric element having excellent mechanical strength and various piezoelectric characteristics can be obtained. be able to.

【0028】[0028]

【発明の実施の形態】次に、本発明の一実施の形態とし
て圧電発振子用の圧電体磁器組成物について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a piezoelectric ceramic composition for a piezoelectric oscillator will be described as an embodiment of the present invention.

【0029】本実施の形態に係る圧電体磁器組成物は、
一般式(1)で表わされる。
The piezoelectric ceramic composition according to the present embodiment is
It is represented by the general formula (1).

【0030】 PbxLayTiO+αMnO+βWO+γNuv …(1) ここで、NuvはPb−W系ガラス相を形成する第1の
ガラス材以外の第2のガラス材を形成する酸化物組成を
示している。
[0030] Pb x La y TiO 3 + αMnO 2 + βWO 3 + γN u O v ... (1) where, N u O v a second glass material other than the first glass material for forming a Pb-W-based glass phase 3 shows the composition of the oxide forming the.

【0031】以下、上記圧電体磁器組成物の成分組成に
ついて説明する。
The composition of the piezoelectric ceramic composition will be described below.

【0032】圧電性セラミックス材料としては、上述し
たようにPb(Ti,Zr)OやPbTiO更には
BaTiO等各種存在するが、高温下でも安定した良
好な圧電性を維持するためには、強誘電相から常誘電相
に転移して圧電性の消失する臨界点、すなわちキュリー
点が極力高いことが望ましく、また10MHz〜80M
Hzの高周波領域での使用に適合するためには誘電率の
低いことが要求される。このため、本実施の形態では圧
電性セラミックス材料の主成分としてPbTiOを使
用している。
As the piezoelectric ceramic material, there are various kinds such as Pb (Ti, Zr) O 3 , PbTiO 3 and BaTiO 3 as mentioned above, but in order to maintain stable and good piezoelectricity even at high temperature, , It is desirable that the critical point at which the piezoelectricity disappears due to the transition from the ferroelectric phase to the paraelectric phase, that is, the Curie point is as high as possible, and 10 MHz to 80 M
A low dielectric constant is required in order to be suitable for use in the high frequency region of Hz. Therefore, in this embodiment, PbTiO 3 is used as the main component of the piezoelectric ceramic material.

【0033】また、この種の圧電発振子は、圧電体磁器
組成物の厚み縦振動モードの3倍波が広く使用されてお
り、良好な発振特性を得るためには3倍波位相角θの高
いことが要求される。このため本実施の形態ではPbT
iOにおけるPb成分の一部をLa成分で置換してい
る。
Further, in this type of piezoelectric oscillator, the third harmonic of the thickness longitudinal vibration mode of the piezoelectric ceramic composition is widely used, and in order to obtain good oscillation characteristics, the third harmonic phase angle θ It is required to be expensive. Therefore, in the present embodiment, PbT
A part of the Pb component in iO 3 is replaced with the La component.

【0034】また、製造コストを低廉化すると共に、焼
成過程でのPb成分の蒸発を阻止して磁器組成物の組成
変動を防止するためには、可能な限り低温で焼成するの
が好ましく、斯かる観点から本実施の形態では磁器組成
物にWOを添加している。
Further, in order to reduce the manufacturing cost and prevent the evaporation of the Pb component during the firing process to prevent the composition variation of the porcelain composition, it is preferable to perform firing at the lowest possible temperature. From this point of view, WO 3 is added to the porcelain composition in the present embodiment.

【0035】さらに、共振周波数の温度特性や発振特性
等の電気的特性を向上させるためには、2PbO・WO
等のPb−W系ガラス相を結晶体中に或る程度偏析さ
せて焼結体の緻密化を図る必要があり、そのためにはW
酸化物としてのWOを添加する必要がある。
Further, in order to improve the electrical characteristics such as the temperature characteristic of the resonance frequency and the oscillation characteristic, 2PbO.WO
It is necessary to segregate a Pb-W-based glass phase such as No. 3 into the crystal body to a certain degree to densify the sintered body.
It is necessary to add WO 3 as an oxide.

【0036】ところで、磁器組成物にWOのみを添加
し、ガラス成分としてPb−W系のみが結晶中に存在す
るように磁器組成物を形成した場合は、大粒径のPb−
W系ガラス成分が結晶体中に凝集塊となって偏析するた
め、電気的特性にバラツキが生じたり機械的強度の低下
を招来する虞がある。一方、Pb−W系ガラス成分の偏
析が結晶体中に全く形成されなくなると結晶粒界に気孔
が残存して緻密な焼結体を得ることができず、その結果
発振特性等の圧電特性の低下を招来する。
By the way, when WO 3 alone is added to the porcelain composition and the porcelain composition is formed so that only Pb-W type is present in the crystal as a glass component, Pb-having a large particle size is formed.
Since the W-based glass component segregates as agglomerates in the crystal body, there is a risk of variations in electrical characteristics and a decrease in mechanical strength. On the other hand, if segregation of the Pb-W glass component is not formed in the crystal at all, pores remain at the crystal grain boundaries and a dense sintered body cannot be obtained. As a result, piezoelectric characteristics such as oscillation characteristics Invite decline.

【0037】このため本実施の形態では、上記第1のガ
ラス材以外の第2のガラス材を磁器組成物に所定量添加
し、これにより結晶体の偏析状態を制御し、焼結体を緻
密化させている。
For this reason, in the present embodiment, a predetermined amount of the second glass material other than the first glass material is added to the porcelain composition, whereby the segregation state of the crystal body is controlled, and the sintered body is compacted. Have been converted.

【0038】すなわち、Pb−W系ガラス相を形成する
第1のガラス材以外の第2のガラス材を磁気組成物に
0.015wt%〜0.040wt%添加することによ
り、粒径2μm〜40μmのPb−W系ガラス成分を主
成分とするガラス相が偏析粒子となって結晶体中に均一
に分散し、これにより結晶粒界に形成される気孔を偏析
粒子で埋めて磁気組成物の緻密化を図ることができる。
That is, by adding the second glass material other than the first glass material forming the Pb-W glass phase to the magnetic composition in an amount of 0.015 wt% to 0.040 wt%, the particle diameter is 2 μm to 40 μm. The glass phase containing the Pb-W-based glass component as a main component becomes segregated particles and is uniformly dispersed in the crystal body, whereby the pores formed at the crystal grain boundaries are filled with the segregated particles and the magnetic composition becomes dense. Can be realized.

【0039】前記第2のガラス材としては、上記Pb−
W系ガラス成分を主成分とするガラス相の偏析状態を制
御できるガラス材であればよく、例えば、Pb−B系、
Pb−Si系、Pb−Ge系、Pb−P系等の各ガラス
相を形成するガラス材を使用することができるが、50
MHz以上の高周波領域で使用するためには焼成された
磁器組成物を研磨して120μm程度まで薄肉化する必
要があり、したがって研磨処理中での割れや破損、クラ
ックを回避する必要がある。そして、研磨処理中での割
れや破損、クラックを回避するためには抗折強度Pが2
00MPa以上の機械的強度が必要であり、そのために
は第2のガラス材としてPb−Si系ガラス相を形成す
るSiOを含んでいるのが好ましい。すなわち、第2
のガラス材としては、少なくともSiOを含み、必要
に応じてPb−B系、Pb−Ge系、Pb−P系等の各
ガラス相を形成するBi、GeO、P
使用するのが好ましい。
As the second glass material, the above Pb-
Any glass material can be used as long as it can control the segregation state of the glass phase containing the W-based glass component as a main component, and examples thereof include Pb-B-based
A glass material forming each glass phase such as Pb-Si system, Pb-Ge system and Pb-P system can be used, but 50
In order to use it in a high frequency region of MHz or higher, it is necessary to polish the fired porcelain composition to a thickness of about 120 μm, and therefore it is necessary to avoid cracks, breakage and cracks during the polishing process. The bending strength P is 2 in order to avoid cracks, breakage, and cracks during the polishing process.
A mechanical strength of 00 MPa or more is required, and for that purpose, it is preferable that the second glass material contains SiO 2 that forms a Pb—Si-based glass phase. That is, the second
The glass material of the includes at least SiO 2, Pb-B system optionally, Pb-Ge-based, Bi 2 O 3 forming each glass phase Pb-P system or the like, GeO 2, P 2 O 5 Is preferably used.

【0040】そして、本実施の形態では、上記一般式
(1)において、第2のガラス材の添加重量γが、上述
したように0.015≦γ≦0.045に設定される
他、Pb成分及びM成分の含有モル量x、yは、夫々
0.790≦x≦0.910、0.060≦y≦0.1
35に設定されている。しかも、含有モル量xと含有モ
ル量yとは数式(2)の関係を満たすように決定され
る。
Further, in the present embodiment, in the general formula (1), the addition weight γ of the second glass material is set to 0.015 ≦ γ ≦ 0.045 as described above, and Pb is added. The molar amounts x and y of the component and the M component are 0.790 ≦ x ≦ 0.910 and 0.060 ≦ y ≦ 0.1, respectively.
It is set to 35. Moreover, the contained molar amount x and the contained molar amount y are determined so as to satisfy the relationship of the mathematical expression (2).

【0041】x=1−(1.5y+z)…(2) ここで、変数zは0≦z≦0.070に設定される。X = 1- (1.5y + z) (2) Here, the variable z is set to 0 ≦ z ≦ 0.070.

【0042】また、MnO及びWOの添加モル量
α、βは、夫々0.010≦α≦0.032、0.00
7≦β≦0.020(但し、0.50≦α/β≦3.5
0)に設定される。
The addition molar amounts α and β of MnO 2 and WO 3 are 0.010 ≦ α ≦ 0.032 and 0.00, respectively.
7 ≦ β ≦ 0.020 (however, 0.50 ≦ α / β ≦ 3.5
It is set to 0).

【0043】以下、(1)上記含有モル量x、y、変数
z、(2)添加モル量α、β、モル比α/β、及び
(3)添加重量γを上述の範囲に設定した理由を述べ
る。
Below, the reasons for setting (1) the above-mentioned contained molar amounts x and y, variables z, (2) the added molar amounts α, β, the molar ratio α / β, and (3) the added weights γ within the above-mentioned ranges. State.

【0044】(1)Pb成分の含有モル量x、La成分
の含有モル量y、及び変数z Pb成分は圧電体磁器組成物の主成分であるが、その含
有モル量xが0.790mol未満になると磁器組成物中
のPb成分が不足して圧電特性に優れた所望の緻密な磁
器組成物を得ることができなくなる。一方、Pb成分の
含有モル量yが0.910molを超えると焼結性が低下
する。
(1) The molar content x of the Pb component, the molar content y of the La component, and the variable z The Pb component is the main component of the piezoelectric ceramic composition, but the molar content x is less than 0.790 mol. In this case, the Pb component in the porcelain composition is insufficient, and it becomes impossible to obtain a desired dense porcelain composition having excellent piezoelectric characteristics. On the other hand, if the molar amount y of the Pb component exceeds 0.910 mol, the sinterability decreases.

【0045】また、Pb成分の一部をLa成分で置換す
ることにより、発振特性、すなわち厚み縦振動モードの
3倍波位相角(以下、単に「3倍波位相角」という)θ
を向上させることができるが、La成分の含有モル量y
が0.060mol未満の場合は含有量が少なすぎるため
発振特性の向上に寄与することができず、一方、La成
分の含有モル量yが0.135molを超えると温度変化
率ηが大きくなって温度特性が悪化する。
Further, by substituting a part of the Pb component with the La component, the oscillation characteristic, that is, the third harmonic phase angle of the thickness longitudinal vibration mode (hereinafter simply referred to as “third harmonic phase angle”) θ
Can be improved, but the molar amount y of the La component is y.
When the content is less than 0.060 mol, the content is too small to contribute to the improvement of oscillation characteristics. On the other hand, when the content mol y of the La component exceeds 0.135 mol, the temperature change rate η becomes large. The temperature characteristics deteriorate.

【0046】一方、Pb成分含有モル量x及びLa成分
の含有モル量yを決定する際に、上記数式(2)におけ
る変数zが0.070を超えた場合は焼結性が低下して
発振特性が悪化し、また変数zが0未満になると共振周
波数の温度変化率(以下、単に「温度変化率」という)
ηが大きくなって周波数温度特性の悪化を招来する。
On the other hand, in determining the molar content x of the Pb component and the molar content y of the La component, if the variable z in the above formula (2) exceeds 0.070, the sinterability decreases and the oscillation occurs. When the characteristic deteriorates and the variable z becomes less than 0, the temperature change rate of the resonance frequency (hereinafter, simply referred to as "temperature change rate")
η becomes large, which causes deterioration of frequency-temperature characteristics.

【0047】そこで、本実施の形態では、Pb成分の含
有モル量xを0.790≦x≦0.910、好ましくは
0.800≦x≦0.905に設定し、La成分の含有
モル量yを0.060≦y≦0.135、好ましくは
0.084≦y≦0.092に設定し、変数zを0≦z
≦0.070、好ましくは0≦z≦0.060に設定し
た。
Therefore, in the present embodiment, the molar content x of the Pb component is set to 0.790 ≦ x ≦ 0.910, preferably 0.800 ≦ x ≦ 0.905, and the molar content of the La component is set. y is set to 0.060 ≦ y ≦ 0.135, preferably 0.084 ≦ y ≦ 0.092, and the variable z is set to 0 ≦ z
≦ 0.070, preferably 0 ≦ z ≦ 0.060.

【0048】(2)MnOの添加モル量α、WO
添加モル量β、及びモル比α/β MnOは発振特性を向上させる作用を有することから
磁器組成物に添加されるが、MnOの添加モル量αが
0.010mol未満の場合、又は0.032molを超えた
場合は発振特性が低下する。
(2) The molar amount α of MnO 2 added, the molar amount β of WO 3 and the molar ratio α / β MnO 2 are added to the porcelain composition because they have the effect of improving oscillation characteristics. When the added molar amount α of MnO 2 is less than 0.010 mol or exceeds 0.032 mol, the oscillation characteristics deteriorate.

【0049】そこで、本実施の形態では、MnOの添
加モル量αを0.010≦α≦0.032、好ましくは
0.010≦α≦0.024に設定した。
Therefore, in the present embodiment, the addition molar amount α of MnO 2 is set to 0.010 ≦ α ≦ 0.032, preferably 0.010 ≦ α ≦ 0.024.

【0050】WOはPbO等のPb酸化物と反応して
Pb−W系ガラス相を形成する物質であり、低焼成温度
であっても高い電気機械結合係数Kを得るために添加さ
れるが、WOの添加モル量βが0.007mol未満の
場合はガラス成分が十分に形成されず温度変化率ηが大
きくなる。一方、WOの添加モル量βが0.020mo
lを超えると焼結体中にガラス相が過剰に形成されて緻
密な焼結体を形成することができず、しかも電気的特性
にバラツキが生じたり、機械的強度の低下を招来する。
WO 3 is a substance that reacts with Pb oxide such as PbO to form a Pb-W glass phase, and is added to obtain a high electromechanical coupling coefficient K even at a low firing temperature. When the added molar amount β of WO 3 is less than 0.007 mol, the glass component is not sufficiently formed and the temperature change rate η becomes large. On the other hand, the addition molar amount β of WO 3 is 0.020mo
If it exceeds 1, the glass phase is excessively formed in the sintered body, and a dense sintered body cannot be formed, and further, the electrical characteristics vary, and the mechanical strength decreases.

【0051】そこで、本実施の形態ではWOの添加モ
ル量βを、0.007≦β≦0.020、好ましくは
0.007≦β≦0.016に設定した。
Therefore, in the present embodiment, the added molar amount β of WO 3 is set to 0.007 ≦ β ≦ 0.020, preferably 0.007 ≦ β ≦ 0.016.

【0052】また、このようにMnO及びWOを添
加することにより、焼成温度を低く設定しつつ大きな電
気機械結合係数Kを得ることができるが、モル比α/β
が4.000を超えると温度変化率ηが大きくなる。一
方、上述したようにα≧0.010、β≦0.020で
あることからα/β≧0.500が成立する。したがっ
て、本実施の形態ではモル比α/βは0.500≦α/
β≦4.000、好ましくは0.625≦α/β≦3.
500に設定した。
Further, by adding MnO 2 and WO 3 in this way, a large electromechanical coupling coefficient K can be obtained while setting the firing temperature low, but the molar ratio α / β
When it exceeds 4.000, the temperature change rate η becomes large. On the other hand, since α ≧ 0.010 and β ≦ 0.020 as described above, α / β ≧ 0.500 is established. Therefore, in this embodiment, the molar ratio α / β is 0.500 ≦ α /
β ≦ 4,000, preferably 0.625 ≦ α / β ≦ 3.
It was set to 500.

【0053】すなわち、MnO及びWOの添加モル
量α、βは、モル比α/βが0.500≦α/β≦4.
000(好ましくは0.625≦α/β≦3.500)
の範囲内で上述の範囲に設定される。
That is, the addition molar amounts α and β of MnO 2 and WO 3 are such that the molar ratio α / β is 0.500 ≦ α / β ≦ 4.
000 (preferably 0.625 ≦ α / β ≦ 3.500)
Within the range, the above range is set.

【0054】(3)第2のガラス材(N)の添加
重量γ 第2のガラス材は、Pb−W系ガラス成分を主成分とす
るガラス相を結晶体中に偏析させて該ガラス相を結晶体
中に均一に分散させ、これにより結晶粒界に形成される
気孔を埋めて焼結体を緻密化させることができる。しか
るに、偏析粒子の粒径が2μm未満の場合は、粒径が小
さすぎて前記気孔を埋めることができず発振特性や温度
特性等の圧電特性を向上させることができない。一方、
偏析粒子の粒径が40μmを超えると偏析部分の体積が
大きくなり、このため製品化された圧電素子間で電気的
特性にバラツキが生じ、また機械的強度が低下して割れ
やクラックが発生する虞がある。したがって、偏析粒子
としては粒径が2μm〜40μm、好ましくは2μm〜
20μmに制御する必要がある。
[0054] (3) addition weight γ second glass material of the second glass material (N u O v) is by segregating the glass phase mainly composed of Pb-W-based glass component in the crystal the The glass phase is uniformly dispersed in the crystal body, whereby the pores formed in the crystal grain boundaries can be filled and the sintered body can be densified. However, when the particle size of the segregated particles is less than 2 μm, the particle size is too small to fill the pores and the piezoelectric characteristics such as oscillation characteristics and temperature characteristics cannot be improved. on the other hand,
When the particle size of the segregated particles exceeds 40 μm, the volume of the segregated portion becomes large, which causes variations in the electrical characteristics among the manufactured piezoelectric elements, and also reduces the mechanical strength and causes cracks and cracks. There is a risk. Therefore, the segregated particles have a particle size of 2 μm to 40 μm, preferably 2 μm to
It is necessary to control to 20 μm.

【0055】しかるに、第2のガラス材の添加重量γが
総計で0.015wt%未満の場合は偏析粒子が40μ
mを超え、機械的強度が低下する。一方、第2のガラス
材の添加重量γが総計で0.040wt%を超えると2
μm以上の粒径を有する偏析粒子を形成することができ
ず、緻密化した焼結体を得ることができない。そこで、
本実施の形態では第2のガラス材の添加重量γを0.0
15≦γ≦0.040、好ましくは0.015≦γ≦
0.020に設定した。
However, when the added weight γ of the second glass material is less than 0.015 wt% in total, the segregated particles are 40 μm.
m, the mechanical strength is reduced. On the other hand, when the added weight γ of the second glass material exceeds 0.040 wt% in total, 2
Segregated particles having a particle diameter of μm or more cannot be formed, and a densified sintered body cannot be obtained. Therefore,
In the present embodiment, the addition weight γ of the second glass material is 0.0
15 ≦ γ ≦ 0.040, preferably 0.015 ≦ γ ≦
It was set to 0.020.

【0056】次に、上記圧電体磁器組成物の製造方法を
説明する。
Next, a method for producing the above-mentioned piezoelectric ceramic composition will be described.

【0057】まず、出発原料として、Pb化合物、La
化合物、Ti化合物、Mn化合物、WO、及び第2の
ガラス材(N)としてSiO、必要に応じてB
、GeO、Pを準備する。
First, as a starting material, Pb compound, La
Compound, Ti compound, Mn compound, WO 3 , and SiO 2 as the second glass material (N u O v ), and optionally B
i 2 O 3 , GeO 2 , and P 2 O 5 are prepared.

【0058】Pb化合物としては、化学的に高純度であ
って焼成により酸化物となる物質であれば特に限定され
るものではなく、例えばPbOやPb等のPb酸
化物を使用することができる。
The Pb compound is not particularly limited as long as it is a substance that is chemically highly pure and becomes an oxide by firing. For example, a Pb oxide such as PbO or Pb 3 O 4 is used. You can

【0059】La化合物も焼成により酸化物となる物質
であれば特に限定されるものではなく、例えばLa
を使用することができる。
The La compound is not particularly limited as long as it is a substance that becomes an oxide by firing, and for example, La 2 O is used.
3 can be used.

【0060】また、Ti化合物、Mn化合物について
も、略同様、焼成により酸化物となる物質であれば特に
限定されるものではなく、TiOやTiO等のTi酸
化物、更にはTi(OH)を使用することができ、M
n化合物の場合であればMnCOやMnOを使用す
ることができる。
Also, the Ti compound and the Mn compound are not particularly limited as long as they are substances that become oxides by firing, and Ti oxides such as TiO and TiO 2 and further Ti (OH) 2 can be used, M
In the case of the n compound, MnCO 3 or MnO 2 can be used.

【0061】そして、これら各化合物及び酸化物の粉末
を、所定組成となるように秤量する。すなわち、Pb成
分の含有モル量xが0.790≦x≦0.910、La
成分の含有モル量yが0.060≦y≦0.135、M
nOの添加モル量αが0.010≦α≦0.032、
WOの添加モル量βが0.007≦β≦0.020
(但し、変数zが0.000≦z≦0.007、モル比
α/βは0.500≦α/β≦4.000)、第2のガ
ラス材(N)の添加重量γが総計で0.015≦
γ≦0.040となるように各化合物及び酸化物を夫々
秤量する。
Then, the powder of each of these compounds and oxides is weighed so as to have a predetermined composition. That is, the molar amount x of Pb component is 0.790 ≦ x ≦ 0.910, La
The molar content y of the component is 0.060 ≦ y ≦ 0.135, M
The addition molar amount α of nO 2 is 0.010 ≦ α ≦ 0.032,
The addition molar amount β of WO 3 is 0.007 ≦ β ≦ 0.020
(However, the variable z is 0.000 ≤ z ≤ 0.007, the molar ratio α / β is 0.500 ≤ α / β ≤ 4.000), and the added weight γ of the second glass material (N u O v ). Is 0.015 ≦
Each compound and oxide are weighed so that γ ≦ 0.040.

【0062】次いで、これら秤量物をジルコニア等の粉
砕媒体が内有されたボールミルに投入して混合し、純水
を加えて湿式粉砕し、スラリーを作製する。
Next, these weighed materials are put into a ball mill containing a grinding medium such as zirconia and mixed, pure water is added, and wet grinding is carried out to prepare a slurry.

【0063】次に、このようにして得られたスラリーに
脱水・乾燥処理を施した後、所定の仮焼温度で仮焼し、
その後再度上記ボールミルに仮焼物を投入して湿式粉砕
し、乾燥させて仮焼粉末を作製する。
Next, the slurry thus obtained is dehydrated and dried, and then calcined at a predetermined calcination temperature,
Then, the calcined product is again charged into the ball mill, wet-milled, and dried to prepare a calcined powder.

【0064】そしてこの後、前記仮焼粉末に適量のバイ
ンダ(例えば、ポリビニルアルコール樹脂)を加えて混
合し、脱水して成形用粉末を作製し、この後プレス成形
を施して角板状の成形体を作製する。そして、最後に酸
素雰囲気中、所定の焼成温度で焼成処理を施し、これに
より焼結体としての圧電体磁器組成物が製造される。
Then, an appropriate amount of binder (for example, polyvinyl alcohol resin) is added to and mixed with the calcined powder, and dehydrated to prepare a molding powder, which is then press-molded to form a rectangular plate. Make a body. Then, finally, a firing treatment is performed in an oxygen atmosphere at a predetermined firing temperature, whereby a piezoelectric ceramic composition as a sintered body is manufactured.

【0065】このようにして製造された圧電体磁器組成
物は、第1のガラス材以外に0.015wt%〜0.0
40wt%の第2のガラス材が添加されているので、焼
成過程において第2のガラス材は第1のガラス材と共に
結晶粒界或いは結晶粒子の三重点に凝集してガラス相を
形成し、これにより粒径2μm〜40μのPb−W系ガ
ラス成分を主成分とするガラス相が結晶体中に均一に分
散して偏析し、結晶粒界の気孔が前記ガラス相で埋めら
れ、したがって磁気組成物が緻密化し、製品化された圧
電素子の発振特性や共振周波数の温度特性を向上させる
ことができる。
The piezoelectric ceramic composition produced as described above contains 0.015 wt% to 0.05 wt% of the first glass material.
Since 40 wt% of the second glass material is added, the second glass material aggregates with the first glass material at the grain boundaries or triple points of the crystal particles to form a glass phase during the firing process. The glass phase mainly composed of a Pb-W glass component having a particle diameter of 2 μm to 40 μ is uniformly dispersed and segregated in the crystal body, and the pores of the crystal grain boundaries are filled with the glass phase. In addition, it is possible to improve the oscillation characteristics and the temperature characteristics of the resonance frequency of the manufactured piezoelectric element.

【0066】図1は本発明に係る圧電素子としての圧電
発振子の一実施の形態を示す圧電発振子の斜視図であっ
て、該圧電発振子は、板状の圧電体セラミック1と、圧
電体セラミック1の主面上に形成された上下一対の振動
電極2a、2bと、該振動電極2a、2bに電気的に接
続された外部電極(不図示)とを備えている。また、振
動電極2a、2bは、圧電体セラミック1の中央近傍に
形成された励振部3a、3bと、該励振部3a、3bと
前記外部電極とを電気的に接続している引出部4a、4
bとを有している。そして、圧電セラミック1は上述し
た圧電体磁器組成物を板状に切り出して製造される。
FIG. 1 is a perspective view of a piezoelectric oscillator showing an embodiment of a piezoelectric oscillator as a piezoelectric element according to the present invention. The piezoelectric oscillator includes a plate-shaped piezoelectric ceramic 1 and a piezoelectric ceramic. The body ceramic 1 includes a pair of upper and lower vibrating electrodes 2a and 2b formed on the main surface thereof, and an external electrode (not shown) electrically connected to the vibrating electrodes 2a and 2b. The vibrating electrodes 2a and 2b include excitation portions 3a and 3b formed near the center of the piezoelectric ceramic 1 and lead portions 4a that electrically connect the excitation portions 3a and 3b to the external electrodes. Four
b. The piezoelectric ceramic 1 is manufactured by cutting the above-mentioned piezoelectric ceramic composition into a plate shape.

【0067】このようにして形成された圧電発振子は、
セラミック素体としての圧電体セラミック1が、粒径2
μm〜40μmのガラス相を結晶体中に均一に分散・偏
析させてなるので、圧電体セラミック1は緻密化してお
り、したがって厚み縦振動モードにおける3倍波位相角
θも81.0deg以上の良好な数値となって発振特性も
優れたものとなる。また、斯かるガラス相の存在により
コンプライアンスも変わり、温度変化率ηも温度−40
℃〜125℃の範囲で±0.1%の範囲内に抑制するこ
とができ、良好な温度特性を得ることができる。
The piezoelectric oscillator thus formed is
The piezoelectric ceramic 1 as a ceramic body has a grain size of 2
Since the glass phase of μm to 40 μm is uniformly dispersed and segregated in the crystal body, the piezoelectric ceramic 1 is densified, and therefore the third harmonic phase angle θ in the thickness longitudinal vibration mode is 81.0 deg or more. And the oscillation characteristics are excellent. In addition, the presence of such glass phase also changes the compliance, and the temperature change rate η is also −40.
In the range of ℃ to 125 ℃, it can be suppressed within ± 0.1%, and good temperature characteristics can be obtained.

【0068】尚、本発明は上記実施の形態に限定される
ものではない。上記実施の形態ではPb成分の一部をL
aで置換することにより発振特性の向上を図っている
が、NdもLaと略同様の作用を有する。したがって、
Pb成分の置換元素としてLa単独に代えて、或いはL
aと共にNdを使用するのも好ましい。
The present invention is not limited to the above embodiment. In the above embodiment, part of the Pb component is L
Although the oscillation characteristics are improved by substituting with a, Nd also has an action similar to that of La. Therefore,
As a substituting element for the Pb component, instead of La alone or L
It is also preferred to use Nd with a.

【0069】そして、この場合、圧電体磁器組成物は、
一般式(3)で表わされることになる。
In this case, the piezoelectric ceramic composition is
It will be represented by the general formula (3).

【0070】 Pbx(La/Nd)yTiO+αMnO+βWO+γNuv …(3) ところで、本発明者らの研究により、一般式(3)でL
aの含有モル量がNdの含有モル量よりも少ない場合は
温度変化率ηが大きくなって発振特性が低下することが
判明した。したがって、この場合はLaの含有モル量を
Ndの含有モル量よりも同等以上となるように、すなわ
ちLa/Nd≧1となるようにLa及びNdの夫々の含
有モル量を調整する必要がある。
Pb x (La / Nd) y TiO 3 + αMnO 2 + βWO 3 + γN u O v (3) By the research of the present inventors, L in the general formula (3) was obtained.
It has been found that when the molar content of a is smaller than the molar content of Nd, the temperature change rate η becomes large and the oscillation characteristics deteriorate. Therefore, in this case, it is necessary to adjust the respective molar amounts of La and Nd so that the molar amount of La is equal to or more than the molar amount of Nd, that is, La / Nd ≧ 1. .

【0071】尚、上記実施の形態では圧電発振子用の磁
器組成物について説明したが、本発明は圧電発振子用の
磁器組成物に限定されることはなく、その他の圧電セラ
ミック材料や圧電素子にも適用可能なことはいうまでも
ない。
Although the porcelain composition for the piezoelectric oscillator has been described in the above embodiment, the present invention is not limited to the porcelain composition for the piezoelectric oscillator, and other piezoelectric ceramic materials or piezoelectric elements may be used. It goes without saying that it is also applicable to.

【0072】また、上記実施の形態では、プレス成形を
施すことにより成形体を作製しているが、成形方法も特
に限定されるものではなく、他の成形法を使用してもよ
いのはいうまでもない。
Further, in the above-mentioned embodiment, the molded body is produced by performing press molding, but the molding method is not particularly limited, and other molding methods may be used. There is no end.

【0073】[0073]

【実施例】次に、本発明の実施例を具体的に説明する。EXAMPLES Next, examples of the present invention will be specifically described.

【0074】〔第1の実施例〕本発明者らは、PbO、
TiO、La、MnCO、WO、SiO
を出発原料とし、Pb成分の含有モル量xが0.853
mol、La成分の含有モル量yが0.085mol、Ti成
分の含有モル量が1.000mol、MnOの添加モル
量αが0.013mol、WOの添加モル量βが0.0
08molとなるように上記出発原料を秤量し、さらに
0.010wt%〜0.100wt%の範囲内で所定量
のSiOを秤量した。
[First Embodiment] The present inventors have found that PbO,
TiOTwo, LaTwoOThree, MnCOThree, WOThree, SiO Two
Is used as a starting material, and the molar amount x of Pb component is 0.853.
mol, the molar amount y of the La component is 0.085 mol, Ti composition
Min content molar amount is 1.000 mol, MnOTwoAdd mol of
The amount α is 0.013 mol, WOThreeThe added molar amount β is 0.0
The above starting materials were weighed so that the amount became 08 mol, and
Predetermined amount within the range of 0.010 wt% to 0.100 wt%
SiOTwoWas weighed.

【0075】そして、これら各秤量物を粉砕媒体として
のジルコニア製ボールが内有された内容積が9×10
−3のボールミルに純水4.5kgと共に投入し、
前記秤量物を混合して2時間湿式粉砕してスラリーを作
製し、次いで該スラリーを脱水・乾燥し、温度800〜
1000℃で4時間仮焼した。
Each of these weighed materials had an internal volume of 9 × 10 9 in which zirconia balls as grinding media were contained.
-3 m 3 ball mill together with pure water 4.5 kg,
The above-mentioned weighed materials are mixed and wet-milled for 2 hours to prepare a slurry, and then the slurry is dehydrated and dried at a temperature of 800-
It was calcined at 1000 ° C. for 4 hours.

【0076】次に、このようにして得られた仮焼粉末に
バインダとしてのポリビニルアルコールを0.45kg
加えて混合し、湿式粉砕した後、乾燥させて成形用粉末
を作製し、プレス成形して縦35mm、横25mm、厚
み1.0mmの角板状成形体を作製した。そして、該成
形体を酸素雰囲気中で温度1100℃〜1300℃で3
時間保持して焼成処理を施し、これによりSiOの添
加重量γが異なる6種類の試験片を作製した。
Next, 0.45 kg of polyvinyl alcohol as a binder was added to the calcined powder thus obtained.
In addition, the mixture was mixed, wet pulverized, and then dried to prepare a molding powder, which was press-molded to prepare a rectangular plate-shaped molded body having a length of 35 mm, a width of 25 mm, and a thickness of 1.0 mm. Then, the molded body is heated in an oxygen atmosphere at a temperature of 1100 ° C to 1300 ° C for 3 hours.
A firing treatment was performed while holding for 6 hours, whereby 6 kinds of test pieces having different addition weights γ of SiO 2 were prepared.

【0077】そして、本発明者らは、上記作製した6種
類の試験片について、3点曲げ式抗折強度測定機(サン
サイエティフィック社製レオメータCR−200D)を
使用し、JIS R 1601に準拠して各々抗折強度
Pを測定した。尚、磁器組成物のモル組成比は、誘導結
合プラズマ発光分光分析装置(ICP)(セイコーイン
スツルメンツ社製SPS4000)で測定した。
The inventors of the present invention used three-point bending type bending strength measuring machine (Rheometer CR-200D, manufactured by San Scientific Co., Ltd.) for the above-prepared six kinds of test pieces and conformed to JIS R 1601. Then, the transverse rupture strength P was measured. The molar composition ratio of the porcelain composition was measured by an inductively coupled plasma emission spectroscopic analyzer (ICP) (SPS4000 manufactured by Seiko Instruments Inc.).

【0078】図2は抗折強度の測定結果であって、横軸
はSiOの添加重量(wt%)、縦軸は抗折強度P
(MPa)を示している。
FIG. 2 shows the results of bending strength measurement. The horizontal axis represents the added weight of SiO 2 (wt%), and the vertical axis represents the bending strength P.
(MPa) is shown.

【0079】この図2から明らかなように、SiO
添加重量が0.015wt%未満の場合、及び0.04
0wt%を超えた場合は、抗折強度Pが200MPa未
満となって十分な機械的強度を得ることができないこと
が分かった。
As is clear from FIG. 2, when the added weight of SiO 2 is less than 0.015 wt%,
It has been found that when the content exceeds 0 wt%, the bending strength P becomes less than 200 MPa and sufficient mechanical strength cannot be obtained.

【0080】すなわち、50MHz以上の高周波領域で
使用可能な圧電発振子を磁器組成物から製造する場合、
120μm程度まで均一に表面研磨して薄肉化するが、
研磨処理中に破損したりクラックが発生するのを回避す
るためには抗折強度Pが200MPa以上必要とされて
おり、斯かる200MPa以上の抗折強度Pを確保する
ためにはSiOの添加重量γとして、0.015wt
%〜0.040wt%が必要であることが分かった。
That is, when a piezoelectric oscillator which can be used in a high frequency region of 50 MHz or more is manufactured from a porcelain composition,
The surface is uniformly polished to a thickness of about 120 μm to reduce the thickness.
The bending strength P is required to be 200 MPa or more in order to avoid the occurrence of breakage or cracks during the polishing process. To secure the bending strength P of 200 MPa or more, addition of SiO 2 is required. 0.015 wt as weight γ
% -0.040 wt% was found necessary.

【0081】〔第2の実施例〕次に、本発明者らは、第
1の実施例と同様、PbO、TiO、La、M
nCO、WO、SiOを出発原料とし、Pb成分
の含有モル量xが0.853mol、La成分の含有モル
量yが0.085mol、Ti成分の含有モル量が1.0
00mol、MnOの添加モル量αが0.013mol、W
の添加モル量βが0.008molとなるように上記
出発原料を秤量し、さらに0.010wt%〜0.06
5wt%の範囲内で所定量のSiOを秤量し、上記第
1の実施例と同様の手順で圧電体磁器組成物を製造し
た。
[Second Embodiment] Next, the inventors of the present invention, similar to the first embodiment, have PbO, TiO 2 , La 2 O 3 , and M.
Starting materials are nCO 3 , WO 3 , and SiO 2 , and the molar amount x of Pb component is 0.853 mol, the molar amount y of La component is 0.085 mol, and the molar amount of Ti component is 1.0.
00 mol, MnO 2 addition molar amount α is 0.013 mol, W
The above starting materials were weighed so that the added molar amount β of O 3 was 0.008 mol, and further 0.010 wt% to 0.06
A predetermined amount of SiO 2 was weighed within the range of 5 wt%, and a piezoelectric ceramic composition was manufactured by the same procedure as in the first embodiment.

【0082】次に、本発明者らは、上記磁器組成物を板
厚が250μmとなるまで表面研磨し、その後電極を形
成し、油温60℃〜80℃、6.0kV/mm〜10.
0kV/mmの条件で電界を印加し、分極処理を行なっ
た。次いで、温度150℃で時効処理を1時間施し、S
iOの添加重量γが異なる5種類の試験片を作製し
た。
Next, the inventors of the present invention surface-polished the above porcelain composition to a plate thickness of 250 μm, then formed electrodes, and oil temperatures of 60 ° C. to 80 ° C. and 6.0 kV / mm to 10.
An electric field was applied under the condition of 0 kV / mm to perform polarization treatment. Then, aging treatment is performed at a temperature of 150 ° C. for 1 hour, and S
Five kinds of test pieces having different addition weights γ of iO 2 were prepared.

【0083】そして、本発明者らは、インピーダンスア
ナライザ(YHP社製4194A)を使用し、共振周波
数が30MHz(室温20℃基準)の場合の125℃に
おける温度変化率ηを測定した。
Then, the present inventors measured the temperature change rate η at 125 ° C. when the resonance frequency was 30 MHz (room temperature 20 ° C. standard) by using an impedance analyzer (4194A manufactured by YHP).

【0084】図3は温度変化率の測定結果であって、横
軸はSiOの添加重量(wt%)、縦軸は温度変化率
η(%)を示している。
FIG. 3 shows the measurement results of the temperature change rate, wherein the horizontal axis shows the added weight of SiO 2 (wt%) and the vertical axis shows the temperature change rate η (%).

【0085】この図3から明らかなように、SiO
添加量が0.040wt%を超えると温度変化率ηが
0.10%を超え、温度特性が悪化することが確認され
た。
As is clear from FIG. 3, it was confirmed that when the added amount of SiO 2 exceeds 0.040 wt%, the temperature change rate η exceeds 0.10% and the temperature characteristics deteriorate.

【0086】〔第3の実施例〕本発明者らは、上記第1
の実施例と同様、PbO、TiO、La、Mn
CO、WO、SiOを出発原料とし、Pb成分の
含有モル量xが0.853mol、La成分の含有モル量
yが0.085mol、Ti成分の含有モル量が1.00
0mol、MnOの添加モル量αが0.013mol、WO
の添加モル量βが0.008mol、SiOの添加量
γが0.018wt%となるように上記出発原料を秤量
し、上記第1の実施例と同様の手順で、圧電体磁器組成
物を作製した。
[Third Embodiment] The present inventors
In the same manner as in the above example, PbO, TiO 2 , La 2 O 3 , Mn
Starting from CO 3 , WO 3 , and SiO 2 , the molar amount x of Pb component is 0.853 mol, the molar amount y of La component is 0.085 mol, and the molar amount of Ti component is 1.00.
0 mol, the molar amount α of MnO 2 added is 0.013 mol, WO
The starting material was weighed so that the addition molar amount β of 3 was 0.008 mol and the addition amount γ of SiO 2 was 0.018 wt%, and the piezoelectric ceramic composition was prepared in the same procedure as in the first embodiment. Was produced.

【0087】そして、本発明者らは、作製した圧電体磁
器磁器組成物の断面を波長分散型X線マイクロアナライ
ザ(日本電子社製JXA−8800R/RL)で観察し
た。
The present inventors then observed the cross section of the prepared piezoelectric ceramic composition with a wavelength dispersive X-ray microanalyzer (JXA-8800R / RL manufactured by JEOL Ltd.).

【0088】図4はその観察結果を示すマッピングイメ
ージであって、図中、白く見える点がPb−W系ガラス
成分を主成分とするガラス相であって、粒径2μm〜2
0μmの偏析粒子が均一に分散しており、これにより結
晶粒界の気孔が前記偏析粒子で埋められ、緻密化した磁
気組成物を得ることのできることが分かった。
FIG. 4 is a mapping image showing the observation results. In the figure, the white points are the glass phase containing the Pb-W glass component as the main component, and the particle size is 2 μm to 2 μm.
It was found that 0 μm of segregated particles were uniformly dispersed, whereby the pores of the grain boundaries were filled with the segregated particles, and a densified magnetic composition could be obtained.

【0089】〔第4の実施例〕本発明者らは、第2のガ
ラス材としてSiO、及びBiを使用し、第2
のガラス材の添加重量が異なる圧電体磁器組成物、及び
圧電発振子を作製し、作製された磁器組成物の抗折強度
P、及び圧電発振子の温度変化率η、3倍波位相角θを
測定した。
[Fourth Embodiment] The present inventors have used SiO 2 and Bi 2 O 3 as the second glass material.
Piezoelectric porcelain compositions with different added weights of glass materials and piezoelectric oscillators were produced, and the bending strength P of the produced porcelain compositions and the temperature change rate η of the piezoelectric oscillator, the triple wave phase angle θ Was measured.

【0090】すなわち、PbO、TiO、La
、MnCO、WO、SiO、Bi
出発原料とし、Pb成分の含有モル量xが0.865mo
l、La成分の含有モル量yが0.090mol、Ti成分
の含有モル量が1.000mol、MnOの添加モル量
αが0.013mol、WOの添加モル量βが0.00
8mol、SiO及びBiの添加量γが総計で
0.015wt%〜0.040wt%となるように秤量
し、第2の実施例と同様の手順で圧電体磁器組成物及び
圧電発振子を作製した(実施例1〜4)。
That is, PbO, TiO 2 , La
2 O 3 , MnCO 3 , WO 3 , SiO 2 , and Bi 2 O 3 are used as starting materials, and the molar amount x of Pb component is 0.865 mo.
1, the molar amount y of the La component is 0.090 mol, the molar amount of the Ti component is 1.000 mol, the molar amount α of MnO 2 added is 0.013 mol, and the molar amount β of WO 3 added is 0.00.
8 mol, SiO 2 and Bi 2 O 3 were weighed so that the added amount γ was 0.015 wt% to 0.040 wt%, and the piezoelectric ceramic composition and the piezoelectric oscillation were performed in the same procedure as in the second embodiment. Offspring were produced (Examples 1 to 4).

【0091】また、本発明者らは、比較例としてSiO
及びBiの添加重量γが総計で0.010wt
%、及び0.045wt%とした圧電体磁器組成物及び
圧電発振子を作製した(比較例1、2)。
As a comparative example, the present inventors have made SiO 2
2 and Bi 2 O 3 added weight γ is 0.010 wt in total
% And 0.045 wt%, a piezoelectric ceramic composition and a piezoelectric oscillator were produced (Comparative Examples 1 and 2).

【0092】そして、本発明者らは第1の実施例及び第
2の実施例と同様にして各試験片の抗折強度P、及び温
度変化率ηを測定し、さらにインピーダンスアナライザ
(YHP社製4194A)を使用して3倍波位相角θを
測定した。
Then, the present inventors measured the bending strength P and the temperature change rate η of each test piece in the same manner as in the first and second examples, and further measured the impedance analyzer (manufactured by YHP). 4194A) was used to measure the third harmonic phase angle θ.

【0093】表1はこれらの測定結果を示している。Table 1 shows the results of these measurements.

【0094】[0094]

【表1】 この表1から明らかなように、比較例1は、第2のガラ
ス材であるSiO及びBiの添加重量γが総計
で0.010wt%と少なく、特にSiOの添加量γ
が0.005wt%と少ないため抗折強度Pが150M
Paと小さく機械的強度の低下することが分かった。
[Table 1] As is clear from Table 1, in Comparative Example 1, the added weight γ of the second glass materials SiO 2 and Bi 2 O 3 was as small as 0.010 wt% in total, and particularly the added amount γ of SiO 2 was γ.
Is as small as 0.005 wt%, so the bending strength P is 150M.
It was found to be as small as Pa and the mechanical strength was lowered.

【0095】また、比較例2は、SiOの添加重量γ
は0.035wt%と、0.015wt%以上のSiO
量が添加されているため、抗析強度Pは200MPa
と満足すべき値が得られたが、Biを含めた第2
のガラス材の総添加重量が0.045wt%と多すぎる
ため、ガラス相の偏析が形成されず、したがって結晶粒
界に気孔が残存して所望の緻密な焼結体を得ることがで
きず、このため温度変化率ηが0.12%となって温度
特性が悪化し、また3倍波位相角θも80.8degとな
って発振特性が悪化することが確認された。
Further, in Comparative Example 2, the added weight γ of SiO 2 is
Is 0.035 wt% and 0.015 wt% or more of SiO
Since the amount of 2 is added, the electro-deposition strength P is 200 MPa.
And a satisfactory value was obtained, but the second value including Bi 2 O 3
Since the total addition weight of the glass material of 0.045 wt% is too large, the segregation of the glass phase is not formed, and therefore the pores remain in the crystal grain boundaries and the desired dense sintered body cannot be obtained. Therefore, it was confirmed that the temperature change rate η was 0.12% and the temperature characteristics were deteriorated, and the third harmonic phase angle θ was 80.8 deg, and the oscillation characteristics were deteriorated.

【0096】これに対して実施例1〜4はSiO及び
Biの添加重量γが総計で0.015wt%〜
0.040wt%の範囲内にあるため、抗折強度Pは2
00MPa以上を確保することができ、薄肉の圧電発振
子の場合であっても機械的強度が低下せず、また温度変
化率ηも±0.10%の範囲内に収まり、3倍角位相角
θも81.0deg以上となり、温度特性や発振特性に優
れた高周波領域の使用に適合した圧電発振子を得ること
ができることが分かった。
On the other hand, in Examples 1 to 4, the added weight γ of SiO 2 and Bi 2 O 3 was 0.015 wt% in total.
Since it is within the range of 0.040 wt%, the bending strength P is 2
00 MPa or more can be secured, the mechanical strength does not decrease even in the case of a thin piezoelectric oscillator, and the temperature change rate η is within ± 0.10%, and the triple angle phase angle θ Also became 81.0 deg or more, and it was found that it is possible to obtain a piezoelectric oscillator excellent in temperature characteristics and oscillation characteristics and suitable for use in a high frequency region.

【0097】〔第5の実施例〕次に、本発明者らは、P
bO、TiO、La、MnCO、WO、S
iOを出発原料とし、各含有モル量x、y、変数z、
添加モル量α、β、及び添加重量γの異なる磁器組成物
を作製し、該磁器組成物から圧電発振子を作製して、温
度変化率η及び3倍波位相角θを測定した。
[Fifth Embodiment] Next, the present inventors
bO, TiO 2 , La 2 O 3 , MnCO 3 , WO 3 , S
Using iO 2 as a starting material, each contained molar amount x, y, variable z,
Porcelain compositions having different addition amounts of α, β and addition weight γ were prepared, and a piezoelectric oscillator was prepared from the composition, and the temperature change rate η and the third harmonic phase angle θ were measured.

【0098】表2は実施例の測定結果を示し、表3は比
較例の測定結果を示している。
Table 2 shows the measurement results of the examples, and Table 3 shows the measurement results of the comparative examples.

【0099】[0099]

【表2】 [Table 2]

【0100】[0100]

【表3】 以下、表2及び表3の各実施例及び比較例について説明
する。
[Table 3] Hereinafter, each Example and Comparative Example of Tables 2 and 3 will be described.

【0101】(実施例11)Pb成分の含有モル量xが
0.910mol、La成分の含有モル量yが0.060m
ol(変数zは0)、Ti成分の含有モル量が1.000
mol、MnOの添加モル量αが0.024mol、WO
の添加モル量βが0.016mol、SiOの添加重量
γが0.020wt%となるように秤量し、第2の実施
例と同様の手順で圧電発振子を作製した。
(Example 11) The molar amount x of Pb component was 0.910 mol, and the molar amount y of La component was 0.060 m.
ol (variable z is 0), Ti component content molar amount is 1.000
mol, MnO 2 addition molar amount α is 0.024 mol, WO 3
Were weighed so that the addition molar amount β of was 0.016 mol and the addition weight γ of SiO 2 was 0.020 wt%, and a piezoelectric oscillator was produced by the same procedure as in the second example.

【0102】(実施例12)Pb成分の含有モル量xが
0.865mol、La成分の含有モル量yが0.090m
ol(変数zは0)、Ti成分の含有モル量が1.000
mol、MnOの添加モル量αが0.010mol、WO
の添加モル量βが0.016mol、SiOの添加重量
γが0.020wt%となるように秤量し、実施例11
と同様の手順で圧電発振子を作製した。
(Example 12) The molar amount x of Pb component was 0.865 mol, and the molar amount y of La component was 0.090 m.
ol (variable z is 0), Ti component content molar amount is 1.000
mol, MnO 2 addition molar amount α is 0.010 mol, WO 3
Example 11 was measured such that the addition molar amount β of 0.016 mol and the addition weight γ of SiO 2 were 0.020 wt%.
A piezoelectric oscillator was produced by the same procedure as in.

【0103】(実施例13)MnOの添加モル量αを
0.020molとした以外は実施例12と同様の手順で
圧電発振子を作製した。
Example 13 A piezoelectric oscillator was produced in the same procedure as in Example 12 except that the added molar amount α of MnO 2 was 0.020 mol.

【0104】(実施例14)MnOの添加モル量αを
0.016mol、WOの添加モル量βを0.008mol
とした以外は実施例12と同様の手順で圧電発振子を作
製した。
(Example 14) Addition molar amount α of MnO 2 was 0.016 mol, and addition molar amount β of WO 3 was 0.008 mol.
A piezoelectric oscillator was produced in the same procedure as in Example 12 except for the above.

【0105】(実施例15)MnOの添加モル量αを
0.024mol、WOの添加モル量βを0.012mol
とした以外は実施例12と同様の手順で圧電発振子を作
製した。
Example 15 MnO 2 addition molar amount α is 0.024 mol, WO 3 addition molar amount β is 0.012 mol
A piezoelectric oscillator was produced in the same procedure as in Example 12 except for the above.

【0106】(実施例16)MnOの添加モル量αを
0.024mol、WOの添加mol量βを0.016mo
l、SiOの添加重量γを0.040wt%とした以
外は実施例12と同様の手順で圧電発振子を作製した。
(Example 16) The addition molar amount α of MnO 2 was 0.024 mol, and the addition molar amount β of WO 3 was 0.016 mol.
A piezoelectric oscillator was produced in the same procedure as in Example 12 except that the added weight γ of SiO 2 and SiO 2 was 0.040 wt%.

【0107】(実施例17)La成分の含有モル量yを
0.060mol(変数zを0.045)、MnOの添
加モル量αを0.024molとした以外は実施例12と
同様の手順で圧電発振子を作製した。
(Example 17) The same procedure as in Example 12 except that the content mol y of the La component was 0.060 mol (variable z was 0.045) and the addition mol amount α of MnO 2 was 0.024 mol. Then, a piezoelectric oscillator was manufactured.

【0108】(実施例18)Pb成分の含有モル量xを
0.845mol、La成分の含有モル量yを0.090m
ol(変数zを0.020)、MnOの添加モル量αを
0.024molとした以外は実施例12と同様の手順で
圧電発振子を作製した。
(Example 18) The molar content x of the Pb component was 0.845 mol, and the molar content y of the La component was 0.090 m.
A piezoelectric oscillator was produced in the same procedure as in Example 12 except that the ol (variable z was 0.020) and the added molar amount α of MnO 2 was 0.024 mol.

【0109】(実施例19)MnOの添加モル量αを
0.028mol、WOの添加モル量βを0.007mol
とした以外は実施例18と同様の手順で圧電発振子を作
製した。
(Example 19) The addition molar amount α of MnO 2 was 0.028 mol, and the addition molar amount β of WO 3 was 0.007 mol.
A piezoelectric oscillator was produced in the same procedure as in Example 18 except for the above.

【0110】(実施例20)Pb成分の含有モル量xが
0.843mol、La成分の含有モル量yが0.105m
ol(変数zは0)、Ti成分の含有モル量が1.000
mol、MnOの添加モル量αが0.020mol、WO
の添加mol量βが0.012mol、SiOの添加重量γ
が0.020wt%となるように秤量し、実施例11と
同様の手順で圧電発振子を作製した。
(Example 20) The molar amount x of Pb component was 0.843 mol, and the molar amount y of La component was 0.105 m.
ol (variable z is 0), Ti component content molar amount is 1.000
mol, MnO 2 addition molar amount α is 0.020 mol, WO 3
Added mol amount β of 0.012 mol, added weight of SiO 2 γ
Was weighed so as to be 0.020 wt%, and a piezoelectric oscillator was produced in the same procedure as in Example 11.

【0111】(実施例21)Pb成分の含有モル量xを
0.820mol、La成分の含有モル量yを0.120m
ol(変数zは0)とした以外は実施例11と同様の手順
で圧電発振子を作製した。
(Example 21) The molar amount x of Pb component was 0.820 mol, and the molar amount y of La component was 0.120 m.
A piezoelectric oscillator was produced by the same procedure as in Example 11 except that ol (variable z was 0).

【0112】(実施例22)Pb成分の含有モル量xを
0.818mol、La成分の含有モル量yを0.075m
ol(変数zは0.070)とした以外は実施例11と同
様の手順で圧電発振子を作製した。
(Example 22) The molar amount x of Pb component was 0.818 mol, and the molar amount y of La component was 0.075 m.
A piezoelectric oscillator was produced in the same procedure as in Example 11 except that ol (variable z was 0.070).

【0113】(実施例23)Pb成分の含有モル量xを
0.790mol、La成分の含有モル量yを0.135m
ol(変数zは0.007)とした以外は実施例11と同
様の手順で圧電発振子を作製した。
(Example 23) The molar content x of Pb component was 0.790 mol, and the molar content y of La component was 0.135 m.
A piezoelectric oscillator was produced in the same procedure as in Example 11 except that ol (variable z was 0.007).

【0114】(比較例11)Pb成分の含有モル量xが
0.780mol、La成分の含有モル量yが0.135m
ol(変数zは0.018)、Ti成分の含有モル量が
1.000mol、MnOの添加モル量αが0.032m
ol、WOの添加モル量βが0.020mol、SiO
の添加重量γが0.020wt%となるように秤量し、
上記実施例11と同様の手順で圧電発振子を作製した。
(Comparative Example 11) The molar content x of the Pb component was 0.780 mol, and the molar content y of the La component was 0.135 m.
ol (variable z is 0.018), Ti component content molar amount is 1.000 mol, MnO 2 addition molar amount α is 0.032 m
ol, WO 3 addition molar amount β is 0.020 mol, SiO 2
Was weighed so that the added weight γ of was 0.020 wt%,
A piezoelectric oscillator was produced in the same procedure as in Example 11 above.

【0115】(比較例12)Pb成分の含有モル量xが
0.900mol、La成分の含有モル量yが0.055m
ol(変数zは0.018)、Ti成分の含有モル量が
1.000mol、MnOの添加モル量αが0.024m
ol、WOの添加モル量βが0.016mol、SiO
の添加重量γが0.020wt%となるように秤量し、
上記実施例11と同様の手順で圧電発振子を作製した。
(Comparative Example 12) The molar content x of Pb component was 0.900 mol, and the molar content y of La component was 0.055 m.
ol (variable z is 0.018), Ti component content molar amount is 1.000 mol, MnO 2 addition molar amount α is 0.024 m
ol, WO 3 addition molar amount β is 0.016 mol, SiO 2
Was weighed so that the added weight γ of was 0.020 wt%,
A piezoelectric oscillator was produced in the same procedure as in Example 11 above.

【0116】(比較例13)Pb成分の含有モル量xを
0.790mol、La成分の含有モル量yを0.140m
ol(変数zは0)とした以外は比較例12と同様の手順
で圧電発振子を作製した。
(Comparative Example 13) The molar amount x of Pb component was 0.790 mol, and the molar amount y of La component was 0.140 m.
A piezoelectric oscillator was produced in the same procedure as in Comparative Example 12 except that ol (variable z was 0).

【0117】(比較例14)Pb成分の含有モル量xを
0.865mol、La成分の含有モル量yを0.105m
ol(変数zは−0.023)とした以外は比較例12と
同様の手順で圧電発振子を作製した。
(Comparative Example 14) The molar amount x of Pb component was 0.865 mol, and the molar amount y of La component was 0.105 m.
A piezoelectric oscillator was produced in the same procedure as in Comparative Example 12 except that ol (variable z was −0.023).

【0118】(比較例15)Pb成分の含有モル量xが
0.790mol、La成分の含有モル量yが0.090m
ol(変数zは0.075)、Ti成分の含有モル量が
1.000mol、MnOの添加モル量αが0.016m
ol、WOの添加モル量βが0.016mol、SiO
の添加重量γが0.020wt%となるように秤量し、
上記比較例11と同様の手順で圧電発振子を作製した。
(Comparative Example 15) The molar content x of Pb component was 0.790 mol, and the molar content y of La component was 0.090 m.
ol (variable z is 0.075), the content molar amount of Ti component is 1.000 mol, and the addition molar amount α of MnO 2 is 0.016 m.
ol, WO 3 addition molar amount β is 0.016 mol, SiO 2
Was weighed so that the added weight γ of was 0.020 wt%,
A piezoelectric oscillator was produced in the same procedure as in Comparative Example 11 above.

【0119】(比較例16)Pbの含有モル量xが0.
865mol、La成分の含有モル量yが0.090mol
(変数zは0)、Ti成分の含有モル量が1.000mo
l、MnOの添加モル量αが0.008mol、WO
添加モル量βが0.020mol、SiOの添加重量γ
が0.020wt%となるように秤量し、上記比較例1
1と同様の手順で圧電発振子を作製した。
(Comparative Example 16) The molar amount x of Pb was 0.
865 mol, the molar content y of the La component is 0.090 mol
(Variable z is 0), Ti component content molar amount is 1.000mo
l, MnO 2 addition molar amount α is 0.008 mol, WO 3 addition molar amount β is 0.020 mol, SiO 2 addition weight γ
Was weighed so as to be 0.020 wt%, and the above Comparative Example 1
A piezoelectric oscillator was produced in the same procedure as in 1.

【0120】(比較例17)Pb成分の含有モル量xが
0.845mol、La成分の含有モル量yが0.090m
ol(変数zは0.020)、Ti成分の含有モル量が
1.000mol、MnOの添加モル量αが0.036m
ol、WOの添加モル量βが0.016mol、SiO
の添加重量γが0.020wt%となるように秤量し、
上記比較例11と同様の手順で圧電発振子を作製した。
(Comparative Example 17) The molar amount x of Pb component was 0.845 mol, and the molar amount y of La component was 0.090 m.
ol (variable z is 0.020), the content molar amount of Ti component is 1.000 mol, and the addition molar amount α of MnO 2 is 0.036 m.
ol, WO 3 addition molar amount β is 0.016 mol, SiO 2
Was weighed so that the added weight γ of was 0.020 wt%,
A piezoelectric oscillator was produced in the same procedure as in Comparative Example 11 above.

【0121】(比較例18)Pb成分の含有モル量xが
0.865mol、La成分の含有モル量yが0.090m
ol(変数zは0)、Ti成分の含有モル量が1.000
mol、MnOの添加モル量αが0.016mol、SiO
の添加重量γが0.020wt%となるように秤量
し、上記比較例11と同様の手順で圧電発振子を作製し
た。
(Comparative Example 18) The molar amount x of Pb component was 0.865 mol, and the molar amount y of La component was 0.090 m.
ol (variable z is 0), Ti component content molar amount is 1.000
mol, MnO 2 addition molar amount α is 0.016 mol, SiO
2 was weighed so that the added weight γ of 0.02 wt%, and a piezoelectric oscillator was produced in the same procedure as in Comparative Example 11 above.

【0122】(比較例19)MnOの添加モル量αを
0.024mol、WOの添加モル量βを0.004mol
とした以外は比較例18と同様の手順で圧電発振子を作
製した。
(Comparative Example 19) The addition molar amount α of MnO 2 was 0.024 mol, and the addition molar amount β of WO 3 was 0.004 mol.
A piezoelectric oscillator was produced in the same procedure as in Comparative Example 18 except that.

【0123】(比較例20)MnOの添加モル量αを
0.024mol、WOの添加モル量βを0.024mol
とした以外は比較例18と同様の手順で圧電発振子を作
製した。
(Comparative Example 20) The addition molar amount α of MnO 2 was 0.024 mol, and the addition molar amount β of WO 3 was 0.024 mol.
A piezoelectric oscillator was produced in the same procedure as in Comparative Example 18 except that.

【0124】(比較例21)MnOの添加モル量αを
0.032mol、WOの添加モル量βを0.024mol
とした以外は比較例18と同様の手順で圧電発振子を作
製した。
(Comparative Example 21) The addition molar amount α of MnO 2 was 0.032 mol, and the addition molar amount β of WO 3 was 0.024 mol.
A piezoelectric oscillator was produced in the same procedure as in Comparative Example 18 except that.

【0125】(比較例22)MnOの添加モル量αを
0.030mol、WOの添加モル量βを0.007mol
とした以外は比較例18と同様の手順で圧電発振子を作
製した。
(Comparative Example 22) The addition molar amount α of MnO 2 was 0.030 mol, and the addition molar amount β of WO 3 was 0.007 mol.
A piezoelectric oscillator was produced in the same procedure as in Comparative Example 18 except that.

【0126】(比較例23)MnOの添加モル量αを
0.024mol、WOの添加モル量βを0.016mo
l、SiOの添加重量γを0.045wt%とした以
外は比較例18と同様の手順で圧電発振子を作製した。
(Comparative Example 23) The addition molar amount α of MnO 2 was 0.024 mol, and the addition molar amount β of WO 3 was 0.016 mol.
A piezoelectric oscillator was produced in the same procedure as in Comparative Example 18 except that the added weight γ of SiO 2 and SiO 2 was 0.045 wt%.

【0127】次に、各測定結果について説明する。Next, each measurement result will be described.

【0128】比較例11は、Pb成分の含有モル量xが
0.780molと少なく、緻密な磁気組成物を得ること
ができないため、温度変化率ηは0.12%と悪化し、
3倍波位相角θも80.8degと悪く、温度特性や発振
特性が悪化することが分かった。
In Comparative Example 11, the Pb component content molar amount x was as small as 0.780 mol and a dense magnetic composition could not be obtained, so the temperature change rate η deteriorated to 0.12%,
The third-harmonic phase angle θ was also as bad as 80.8 deg, and it was found that the temperature characteristics and the oscillation characteristics deteriorate.

【0129】比較例12は、La成分の含有モル量yが
0.055molと少ないため、3倍波位相角θが80.
1degと小さく、発振特性が低下した。
In Comparative Example 12, since the molar amount y of the La component was as small as 0.055 mol, the third harmonic phase angle θ was 80.
It was as small as 1deg, and the oscillation characteristics deteriorated.

【0130】比較例13は、La成分の含有モル量yが
0.140molと多いため、発振特性は良好であるもの
の温度変化率が0.14%と大きく、温度特性の悪化が
認められた。
In Comparative Example 13, since the content y of the La component was as large as 0.140 mol, the oscillation characteristics were good, but the temperature change rate was as large as 0.14%, and deterioration of the temperature characteristics was observed.

【0131】比較例14は、Pb成分の含有モル量x及
びLa成分の含有モル量yは本発明の範囲内であるが、
変数zが−0.023と0未満であるため、温度変化率
ηが悪化した。
In Comparative Example 14, the molar amount x of the Pb component and the molar amount y of the La component are within the scope of the present invention.
Since the variable z was −0.023, which was less than 0, the temperature change rate η deteriorated.

【0132】比較例15も、Pb成分の含有モル量x及
びLa成分の含有モル量yは本発明の範囲内であるが、
変数zが0.075と大きいために磁気組成物の焼結性
が不足し、このため3倍波位相角θが80.3degと小
さく、発振特性が低下することが分かった。
Also in Comparative Example 15, the molar amount x of the Pb component and the molar amount y of the La component are within the scope of the present invention.
It was found that the variable z is as large as 0.075 and the sinterability of the magnetic composition is insufficient, so that the third harmonic phase angle θ is as small as 80.3 deg and the oscillation characteristics are deteriorated.

【0133】比較例16はMnOが0.008molと
少なく、また比較例17はMnOが0.036molと
多すぎるため、いずれの場合も3倍波位相角θが81.
0deg未満となって発振特性の低下が認められた。
In Comparative Example 16, MnO 2 was as small as 0.008 mol, and in Comparative Example 17, MnO 2 was 0.036 mol, which was too large. Therefore, in all cases, the third harmonic phase angle θ was 81.
It was less than 0 deg, and deterioration of oscillation characteristics was recognized.

【0134】比較例18はPb−W系ガラス相を形成す
べきWOが添加されておらず、また比較例19はWO
が添加されているものの、その添加モル量βが0.0
04molと少なく、このため十分なガラス相を形成する
ことができず、温度特性が悪化することが分かった。
In Comparative Example 18, WO 3 which should form a Pb-W glass phase was not added, and in Comparative Example 19, WO 3 was added.
3 was added, but the addition molar amount β was 0.0
It was found to be as small as 04 mol, so that a sufficient glass phase could not be formed, and the temperature characteristics deteriorated.

【0135】比較例20及び比較例21は、WOの添
加モル量βが0.024molと多すぎるため、ガラス相
が過剰に形成されて緻密な磁気組成物を得ることができ
ず、3倍波位相角θが81.0deg未満に悪化すること
が分かった。
In Comparative Example 20 and Comparative Example 21, since the added molar amount β of WO 3 was 0.024 mol, which was too large, the glass phase was excessively formed and a dense magnetic composition could not be obtained. It was found that the wave phase angle θ deteriorates to less than 81.0 deg.

【0136】比較例22は、WOの添加モル量βに比
しMnOの添加モル量αが多すぎ、したがってモル比
α/βが大きすぎるため、緻密な磁気組成物を得ること
ができず、発振特性が81.0deg未満に悪化すること
が分かった。
In Comparative Example 22, the addition molar amount α of MnO 2 was too large compared to the addition molar amount β of WO 3 , and therefore the molar ratio α / β was too large, so that a dense magnetic composition could be obtained. It was found that the oscillation characteristics deteriorated to less than 81.0 deg.

【0137】比較例23は、SiOの添加重量γが
0.045wt%と多すぎるため、2μm以上の偏析粒
子を形成することができず、温度変化率ηが悪化するこ
とが確認された。
In Comparative Example 23, since the additive weight γ of SiO 2 was 0.045 wt%, which was too large, it was confirmed that segregated particles of 2 μm or more could not be formed and the temperature change rate η was deteriorated.

【0138】これに対して実施例11〜23は全て本発
明の範囲内にあり、温度変化率ηは±0.10%以内、
3倍波位相角θは81.0deg以上であり、共振周波数
の温度特性や発振特性の良好な圧電発振子を得ることが
できることが確認された。
On the other hand, Examples 11 to 23 are all within the scope of the present invention, and the temperature change rate η is within ± 0.10%,
The third harmonic phase angle θ was 81.0 deg or more, and it was confirmed that a piezoelectric oscillator having good resonance frequency temperature characteristics and good oscillation characteristics can be obtained.

【0139】〔第6の実施例〕本発明者らは、PbO、
TiO、La、Nd、MnCO、WO
、SiOを出発原料とし、各含有モル量x、y、変
数z、添加モル量α、β、及び添加重量γの異なる磁器
組成物を作製し、該磁器組成物から圧電発振子を作製し
て温度変化率η及び3倍波位相角θを測定した。
[Sixth Embodiment] The present inventors have found that PbO,
TiO 2 , La 2 O 3 , Nd 2 O 3 , MnCO 3 , WO
3. Using SiO 2 as a starting material, ceramic compositions having different molar contents x, y, variables z, added molar amounts α, β, and added weight γ were prepared, and piezoelectric oscillators were prepared from the ceramic compositions. Then, the temperature change rate η and the third harmonic phase angle θ were measured.

【0140】表4はその測定結果を示している。Table 4 shows the measurement results.

【0141】[0141]

【表4】 以下、表4の各実施例及び比較例について説明する。[Table 4] Hereinafter, each example and comparative example of Table 4 will be described.

【0142】(実施例31)Pb成分の含有モル量xが
0.865mol、La成分の含有モル量yが0.075m
ol及びNd成分の含有モル量が0.008mol(総計で
0.083mol)、(変数zは0.011)、Ti成分
の含有モル量が1.000mol、MnOの添加モル量
αが0.020mol、WOの添加モル量βが0.02
0mol、SiO の添加重量γが0.020wt%とな
るように秤量し、第2の実施例と同様の手順で圧電発振
子を作製した。
(Example 31) The molar amount x of Pb component was
0.865 mol, the molar content y of the La component is 0.075 m
The molar content of ol and Nd components is 0.008 mol (total
0.083 mol), (variable z is 0.011), Ti component
Content of MnO is 1.000 mol, MnOTwoMolar amount of
α is 0.020 mol, WOThreeThe added molar amount β is 0.02
0 mol, SiO TwoAdded weight γ of 0.020 wt%
And piezo-oscillate in the same procedure as in the second embodiment.
I made a child.

【0143】(実施例32)Pb成分の含有モル量xが
0.865mol、La成分の含有モル量yが0.060m
ol及びNd成分の含有モル量が0.008mol(総計で
0.068mol)、(変数zは0.034)、Ti成分
の含有モル量が1.000mol、MnOの添加モル量
αが0.024mol、WOの添加モル量βが0.01
6mol、SiO の添加重量γが0.020wt%とな
るように秤量し、実施例31と同様の手順で圧電発振子
を作製した。
(Example 32) The molar amount x of Pb component was
0.865 mol, the molar content y of the La component is 0.060 m
The molar content of ol and Nd components is 0.008 mol (total
0.068 mol), (variable z is 0.034), Ti component
Content of MnO is 1.000 mol, MnOTwoMolar amount of
α is 0.024 mol, WOThreeThe addition molar amount of β is 0.01
6 mol, SiO TwoAdded weight γ of 0.020 wt%
And measure the piezoelectric oscillator in the same manner as in Example 31.
Was produced.

【0144】(実施例33)Pb成分の含有モル量xが
0.845mol、La成分の含有モル量yが0.060m
ol及びNd成分の含有モル量が0.030mol(総計で
0.090mol)、(変数zは0.020)、Ti成分
の含有モル量が1.000mol、MnOの添加モル量
αが0.032mol、WOの添加モル量βが0.01
6mol、SiO の添加重量γが0.020wt%とな
るように秤量し、実施例31と同様の手順で圧電発振子
を作製した。
(Example 33) The molar amount x of Pb component was
0.845 mol, the molar content y of La component is 0.060 m
The molar content of ol and Nd components is 0.030mol (total
0.090 mol), (variable z is 0.020), Ti component
Content of MnO is 1.000 mol, MnOTwoMolar amount of
α is 0.032 mol, WOThreeThe addition molar amount of β is 0.01
6 mol, SiO TwoAdded weight γ of 0.020 wt%
And measure the piezoelectric oscillator in the same manner as in Example 31.
Was produced.

【0145】(実施例34)Pb成分の含有モル量xが
0.845mol、La成分の含有モル量yが0.045m
ol及びNd成分の含有モル量が0.025mol(総計で
0.070mol)、(変数zは0.050)、Ti成分
の含有モル量が1.000mol、MnOの添加モル量
αが0.016mol、WOの添加モル量βが0.02
0mol、SiO の添加重量γが0.020wt%とな
るように秤量し、実施例31と同様の手順で圧電発振子
を作製した。
(Example 34) The molar amount x of Pb component was
0.845 mol, the molar content y of the La component is 0.045 m
The molar content of ol and Nd components is 0.025 mol (total
0.070 mol), (variable z is 0.050), Ti component
Content of MnO is 1.000 mol, MnOTwoMolar amount of
α is 0.016mol, WOThreeThe added molar amount β is 0.02
0 mol, SiO TwoAdded weight γ of 0.020 wt%
And measure the piezoelectric oscillator in the same manner as in Example 31.
Was produced.

【0146】(実施例35)Pb成分の含有モル量xが
0.805mol、La成分の含有モル量yが0.045m
ol及びNd成分の含有モル量が0.045mol(総計で
0.090mol)、(変数zは0.060)、Ti成分
の含有モル量が1.000mol、MnOの添加モル量
αが0.025mol、WOの添加モル量βが0.01
7mol、SiO の添加重量γが0.020wt%とな
るように秤量し、実施例31と同様の手順で圧電発振子
を作製した。
(Example 35) The molar amount x of Pb component was
0.805mol, La component content molar amount y is 0.045m
The molar content of ol and Nd components is 0.045 mol (total
0.090 mol), (variable z is 0.060), Ti component
Content of MnO is 1.000 mol, MnOTwoMolar amount of
α is 0.025 mol, WOThreeThe addition molar amount of β is 0.01
7 mol, SiO TwoAdded weight γ of 0.020 wt%
And measure the piezoelectric oscillator in the same manner as in Example 31.
Was produced.

【0147】(比較例31)Pb成分の含有モル量xが
0.820mol、La成分の含有モル量yが0.045m
ol及びNd成分の含有モル量が0.060mol(総計で
0.105mol)、(変数zは0.023)、Ti成分
の含有モル量が1.000mol、MnOの添加モル量
αが0.024mol、WOの添加モル量βが0.01
6mol、SiO の添加重量γが0.020wt%とな
るように秤量し、実施例31と同様の手順で圧電発振子
を作製した。
Comparative Example 31 The molar amount x of Pb component is
0.820 mol, the molar content y of the La component is 0.045 m
The molar content of ol and Nd components is 0.060 mol (total
0.105 mol), (variable z is 0.023), Ti component
Content of MnO is 1.000 mol, MnOTwoMolar amount of
α is 0.024 mol, WOThreeThe addition molar amount of β is 0.01
6 mol, SiO TwoAdded weight γ of 0.020 wt%
And measure the piezoelectric oscillator in the same manner as in Example 31.
Was produced.

【0148】そして、この表4から明らかなように比較
例31はLa/Ndが0.750と1.0未満であるた
め、温度変化率ηが大きくなって温度特性が悪化し、ま
た3倍波位相角θも小さくなって発振特性が悪化するこ
とが確認された。
As is apparent from Table 4, Comparative Example 31 has La / Nd of 0.750, which is less than 1.0, so that the temperature change rate η becomes large and the temperature characteristic deteriorates, and the ratio is tripled. It was confirmed that the wave phase angle θ also became smaller and the oscillation characteristics deteriorated.

【0149】これに対して実施例31〜35はいずれも
La/Ndが1以上であり、その他の組成も本発明の範
囲内であり、したがって温度変化率ηは±0.10%以
内、3倍波位相角θは81.0deg以上であり、共振周
波数の温度特性や発振特性の良好な圧電発振子を得るこ
とができることが確認された。
On the other hand, in each of Examples 31 to 35, La / Nd was 1 or more, and the other compositions were within the scope of the present invention. Therefore, the temperature change rate η was within ± 0.10%, 3 The harmonic phase angle θ is 81.0 deg or more, and it was confirmed that a piezoelectric oscillator having good resonance frequency temperature characteristics and good oscillation characteristics can be obtained.

【0150】[0150]

【発明の効果】以上詳述したように本発明に係る圧電体
磁器組成物は、鉛−タングステン系ガラス相を形成する
第1のガラス材が圧電性セラミックス材料に添加された
圧電体磁器組成物において、前記第1のガラス材以外の
第2のガラス材が、重量%で、0.015%〜0.04
0%添加されているので、結晶体内にガラス相が均一分
散された緻密な焼結体を得ることができ、共振周波数の
温度特性や発振周波数に優れた圧電素子を得ることが可
能となる。
As described in detail above, the piezoelectric ceramic composition according to the present invention is a piezoelectric ceramic composition in which the first glass material forming the lead-tungsten glass phase is added to the piezoelectric ceramic material. In, the second glass material other than the first glass material is 0.015% to 0.04% by weight.
Since 0% is added, it is possible to obtain a dense sintered body in which the glass phase is uniformly dispersed in the crystal body, and it is possible to obtain a piezoelectric element excellent in temperature characteristics of resonance frequency and oscillation frequency.

【0151】また、前記圧電性セラミック材料が、Pb
TiOを主成分とし、Pb成分の一部がLa成分、又
はLa成分及びNd成分で置換されているので、キュリ
ー点が高く誘電率を低く抑制することのできる磁器組成
物を得ることができ、高温環境下で高周波領域で周波数
温度特性や発振特性に優れた圧電素子を得ることが可能
となる。
The piezoelectric ceramic material is Pb.
Since TiO 3 is the main component and part of the Pb component is replaced with the La component or the La component and the Nd component, it is possible to obtain a porcelain composition having a high Curie point and a low dielectric constant. It is possible to obtain a piezoelectric element having excellent frequency temperature characteristics and oscillation characteristics in a high frequency region under a high temperature environment.

【0152】さらに、本発明の圧電体磁器組成物は、前
記第2のガラス材は、ケイ素化合物を含んでいるので、
上記効果に加えて優れた機械的強度を確保することがで
きる。
Furthermore, in the piezoelectric ceramic composition of the present invention, since the second glass material contains a silicon compound,
In addition to the above effects, excellent mechanical strength can be secured.

【0153】また、本発明の圧電体磁気組成物は、粒径
2μm〜40μmの粒子が、結晶体中に偏析して介在し
ているので、大きな偏析粒子が局所的に偏在することも
なく、結晶粒界に残存する気孔が埋められ、その結果緻
密な焼結体が製造され、製品化される圧電素子の周波数
温度特性や発振特性の向上を図ることができる。
Further, in the piezoelectric magnetic composition of the present invention, since particles having a particle size of 2 μm to 40 μm are segregated and intervened in the crystal body, large segregated particles are not locally unevenly distributed. The pores remaining in the crystal grain boundaries are filled, and as a result, a dense sintered body is manufactured, and it is possible to improve the frequency temperature characteristics and the oscillation characteristics of the piezoelectric element to be manufactured.

【0154】また、本発明の圧電体磁気組成物は、一般
式PbyTiO+αMnO+βWO+γNu
v(MはLa、又はLa/Nd、Nuvは前記第2のガ
ラス材の化合物組成を示す)で表わされ、上記第2のガ
ラス材の添加重量γは、重量%で、0.015≦γ≦
0.040に設定されると共に、Pb成分の含有モル量
x、M成分の含有モル量yが、夫々0.790≦x≦
0.910、0.060≦y≦0.135(但し、x=
1−(1.5y+z)であって0.000≦z≦0.0
70)に設定され、かつ、上記MnOの添加モル量
α、及びWOの添加モル量βが、夫々0.010≦α
≦0.032、0.007≦β≦0.020(但し、
0.50≦α/β≦3.50)に設定されているので、
種々の圧電特性に優れた所望の圧電素子を得ることが可
能となる。
[0154] Further, the piezoelectric porcelain composition of the present invention, the general formula Pb x M y TiO 3 + αMnO 2 + βWO 3 + γN u O
v (M is La, or La / Nd, N u O v denotes the compound composition of the second glass material) is represented by, the addition weight γ of the second glass material, by weight percent, 0 .015 ≦ γ ≦
While being set to 0.040, the molar amount x of Pb component and the molar amount y of M component are 0.790 ≦ x ≦, respectively.
0.910, 0.060 ≦ y ≦ 0.135 (where x =
1- (1.5y + z) and 0.000 ≦ z ≦ 0.0
70), and the addition molar amount α of MnO 2 and the addition molar amount β of WO 3 are each 0.010 ≦ α.
≦ 0.032, 0.007 ≦ β ≦ 0.020 (however,
Since 0.50 ≦ α / β ≦ 3.50) is set,
It is possible to obtain a desired piezoelectric element excellent in various piezoelectric characteristics.

【0155】また、Nd成分に対するLa成分のモル比
La/Ndを、La/Nd≧1.0に設定することによ
り、優れた発振特性を維持することができる。
By setting the molar ratio La / Nd of the La component to the Nd component to La / Nd ≧ 1.0, excellent oscillation characteristics can be maintained.

【0156】さらに、本発明に係る圧電素子は、上記圧
電体磁器組成物でセラミック素体が形成されているの
で、共振周波数の温度特性や発振特性に優れた高周波領
域での使用に好適した圧電発振子等の各種圧電素子を得
ることができる。
Further, in the piezoelectric element according to the present invention, since the ceramic body is formed of the above-mentioned piezoelectric ceramic composition, the piezoelectric element suitable for use in the high frequency region excellent in the temperature characteristic of the resonance frequency and the oscillation characteristic. Various piezoelectric elements such as oscillators can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る圧電素子としての圧電発振子の一
実施の形態を示す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a piezoelectric oscillator as a piezoelectric element according to the present invention.

【図2】SiOの添加重量と抗折強度との関係を示す
特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the added weight of SiO 2 and bending strength.

【図3】SiOの添加重量と共振周波数の温度変化率
との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the added weight of SiO 2 and the temperature change rate of the resonance frequency.

【図4】磁器組成物中のガラス相の分散状態を示すマッ
ピングイメージである。
FIG. 4 is a mapping image showing a dispersed state of a glass phase in a porcelain composition.

【符号の説明】[Explanation of symbols]

1 圧電体セラミック(セラミック素体) 1 Piezoelectric ceramic (ceramic body)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 雅典 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 4G031 AA07 AA09 AA11 AA18 AA19 AA30 AA32 BA10 CA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masanori Kimura             2-10-10 Tenjin, Nagaokakyo, Kyoto Stock             Murata Manufacturing Co., Ltd. F term (reference) 4G031 AA07 AA09 AA11 AA18 AA19                       AA30 AA32 BA10 CA04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 鉛−タングステン系ガラス相を形成する
第1のガラス材が圧電性セラミックス材料に添加された
圧電体磁器組成物において、 前記第1のガラス材以外の第2のガラス材が、重量%
で、0.015%〜0.040%添加されていることを
特徴とする圧電体磁器組成物。
1. A piezoelectric ceramic composition in which a first glass material forming a lead-tungsten glass phase is added to a piezoelectric ceramic material, wherein a second glass material other than the first glass material comprises: weight%
The piezoelectric ceramic composition is characterized by being added in an amount of 0.015% to 0.040%.
【請求項2】 前記圧電性セラミック材料はチタン酸鉛
を主成分とし、鉛成分の一部がランタン、又はランタン
及びネオジムで置換されていることを特徴とする請求項
1記載の圧電体磁器組成物。
2. The piezoelectric ceramic composition according to claim 1, wherein the piezoelectric ceramic material contains lead titanate as a main component, and a part of the lead component is replaced with lanthanum or lanthanum and neodymium. object.
【請求項3】 前記第2のガラス材は、ケイ素化合物を
含んでいることを特徴とする請求項1又は請求項2記載
の圧電体磁器組成物。
3. The piezoelectric ceramic composition according to claim 1 or 2, wherein the second glass material contains a silicon compound.
【請求項4】 粒径2μm〜40μmの粒子が、結晶体
中に偏析して介在していることを特徴とする請求項1乃
至請求項3のいずれかに記載の圧電体磁器組成物。
4. The piezoelectric ceramic composition according to claim 1, wherein particles having a particle diameter of 2 μm to 40 μm are segregated and present in the crystal body.
【請求項5】 一般式PbyTiO+αMnO
+βWO+γNuv(MはLa、又はLa/Nd、N
uvは前記第2のガラス材の酸化物組成を示す)で表わ
され、上記第2のガラス材の添加重量γが、重量%で、
0.015≦γ≦0.040に設定されると共に、 Pb成分の含有モル量x、M成分の含有モル量yが、夫
々0.790≦x≦0.910、0.060≦y≦0.
135(但し、x=1−(1.5y+z)であって0.
000≦z≦0.070)に設定され、 かつ、上記MnOの添加モル量α、及びWOの添加
モル量βが、夫々0.010≦α≦0.032、0.0
07≦β≦0.020(但し、0.500≦α/β≦
4.000)に設定されていることを特徴とする請求項
1乃至請求項4のいずれかに記載の圧電体磁器組成物。
5. The general formula Pb x M y TiO 3 + αMnO 2
+ ΒWO 3 + γN u O v (M is La, or La / Nd, N
u O v is represented by the oxide composition of the second glass material), and the addition weight γ of the second glass material is, by weight%,
0.015 ≦ γ ≦ 0.040, and the molar amount x of the Pb component and the molar amount y of the M component are 0.790 ≦ x ≦ 0.910 and 0.060 ≦ y ≦ 0, respectively. .
135 (however, x = 1− (1.5y + z) and 0.
000 ≦ z ≦ 0.070), and the addition molar amount α of MnO 2 and the addition molar amount β of WO 3 are 0.010 ≦ α ≦ 0.032, 0.0, respectively.
07 ≦ β ≦ 0.020 (however, 0.500 ≦ α / β ≦
4.000) is set, The piezoelectric ceramic composition in any one of Claim 1 thru | or 4 characterized by the above-mentioned.
【請求項6】 Nd成分に対するLa成分のモル比La
/Ndが、La/Nd≧1.0に設定されていることを
特徴とする請求項5記載の圧電体磁器組成物。
6. The molar ratio La of the La component to the Nd component is La.
The piezoelectric ceramic composition according to claim 5, wherein / Nd is set to La / Nd ≧ 1.0.
【請求項7】 請求項1乃至請求項6のいずれかに記載
の圧電体磁器組成物でセラミック素体が形成されている
ことを特徴とする圧電素子。
7. A piezoelectric element, wherein a ceramic body is formed of the piezoelectric ceramic composition according to any one of claims 1 to 6.
JP2001371546A 2001-12-05 2001-12-05 Piezoelectric porcelain composition and piezoelectric element using the same Expired - Lifetime JP4092542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001371546A JP4092542B2 (en) 2001-12-05 2001-12-05 Piezoelectric porcelain composition and piezoelectric element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371546A JP4092542B2 (en) 2001-12-05 2001-12-05 Piezoelectric porcelain composition and piezoelectric element using the same

Publications (2)

Publication Number Publication Date
JP2003171175A true JP2003171175A (en) 2003-06-17
JP4092542B2 JP4092542B2 (en) 2008-05-28

Family

ID=19180574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371546A Expired - Lifetime JP4092542B2 (en) 2001-12-05 2001-12-05 Piezoelectric porcelain composition and piezoelectric element using the same

Country Status (1)

Country Link
JP (1) JP4092542B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235863A (en) * 2004-02-17 2005-09-02 Denso Corp Piezoelectric stack and manufacturing method thereof
JP2005235861A (en) * 2004-02-17 2005-09-02 Denso Corp Method for manufacturing piezoelectric stack
JP2018023142A (en) * 2011-11-29 2018-02-08 スナップトラック・インコーポレーテッド Micro acoustic device with waveguide layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235863A (en) * 2004-02-17 2005-09-02 Denso Corp Piezoelectric stack and manufacturing method thereof
JP2005235861A (en) * 2004-02-17 2005-09-02 Denso Corp Method for manufacturing piezoelectric stack
JP4554232B2 (en) * 2004-02-17 2010-09-29 株式会社デンソー Piezoelectric stack and method of manufacturing piezoelectric stack
JP4552450B2 (en) * 2004-02-17 2010-09-29 株式会社デンソー Method for manufacturing piezoelectric stack
JP2018023142A (en) * 2011-11-29 2018-02-08 スナップトラック・インコーポレーテッド Micro acoustic device with waveguide layer

Also Published As

Publication number Publication date
JP4092542B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP5668632B2 (en) Dielectric porcelain composition and electronic component
JP5760890B2 (en) Dielectric porcelain composition and electronic component
JP2001181040A (en) Piezoelectric porcelain composition and piezoelectric ceramic element using the same
JP4756629B2 (en) Piezoelectric ceramic composition
JP7363966B2 (en) Piezoelectric ceramics, ceramic electronic components, and piezoelectric ceramic manufacturing methods
JP2009078964A (en) Method for producing piezoelectric ceramic
JP4092542B2 (en) Piezoelectric porcelain composition and piezoelectric element using the same
JP4449331B2 (en) Piezoelectric ceramic and piezoelectric ceramic element using the same
KR20060031637A (en) Piezoelectric ceramic composition and piezoelectric device
JP2008094706A (en) Piezoelectric ceramic composition and rezonator
JP4992796B2 (en) Oscillator
JP3613140B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP2000313662A (en) Ceramic composition
JP3761355B2 (en) Piezoelectric ceramic composition
TWI383964B (en) Piezoelectric ceramic composition and oscillator
JPH08283069A (en) Piezoelectric ceramic and its production
JP3912098B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP5018648B2 (en) Piezoelectric ceramic and resonator using the same
EP1083611A2 (en) Piezoelectric ceramic material and monolithic piezoelectric transducer employing the ceramic material
JP2000001367A (en) Piezoelectric porcelain composition and its production
JP2005162556A (en) Piezoelectric ceramic and piezoelectric element
JP2011006307A (en) Piezoelectric ceramic composition, piezoelectric element and oscillator
JP2003128462A (en) Piezoelectric porcelain composition and process for making the same
JP2002137966A (en) Piezoelectric ceramic and piezoelectric element
JP2005029832A (en) Sintered body for depositing ferroelectric thin film, method for manufacturing the same, and sputtering target using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4092542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

EXPY Cancellation because of completion of term