JP4900008B2 - Method of manufacturing a piezoelectric ceramic - Google Patents

Method of manufacturing a piezoelectric ceramic Download PDF

Info

Publication number
JP4900008B2
JP4900008B2 JP2007105075A JP2007105075A JP4900008B2 JP 4900008 B2 JP4900008 B2 JP 4900008B2 JP 2007105075 A JP2007105075 A JP 2007105075A JP 2007105075 A JP2007105075 A JP 2007105075A JP 4900008 B2 JP4900008 B2 JP 4900008B2
Authority
JP
Japan
Prior art keywords
piezoelectric
raw material
piezoelectric ceramic
ppm
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007105075A
Other languages
Japanese (ja)
Other versions
JP2008260657A (en
Inventor
賢 阿部
松巳 渡辺
康夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007105075A priority Critical patent/JP4900008B2/en
Publication of JP2008260657A publication Critical patent/JP2008260657A/en
Application granted granted Critical
Publication of JP4900008B2 publication Critical patent/JP4900008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、圧電磁器の製造方法に関するものである。   The present invention relates to a method for manufacturing a piezoelectric ceramic.

従来より、例えば、発音体、センサ、アクチュエータ等の種々の用途に、圧電素子が利用されている。そして、圧電素子としては、単板圧電素子や積層型圧電素子が知られている。単板圧電素子は、一対の電極層間に圧電磁器からなる圧電体層を備える構造を有している。また、積層型圧電素子は、圧電体層と内部電極とが交互に積層された構造の素体を有している。この積層型圧電素子において、素体は、その積層方向の両端面が複数の圧電体層からなる保護層によって覆われていることが一般的である。   Conventionally, piezoelectric elements have been used in various applications such as sounding bodies, sensors, and actuators. As a piezoelectric element, a single plate piezoelectric element or a multilayer piezoelectric element is known. A single plate piezoelectric element has a structure including a piezoelectric layer made of a piezoelectric ceramic between a pair of electrode layers. The multilayer piezoelectric element has an element body having a structure in which piezoelectric layers and internal electrodes are alternately stacked. In this multilayer piezoelectric element, the element body is generally covered with a protective layer composed of a plurality of piezoelectric layers at both end surfaces in the stacking direction.

このような圧電素子に利用される圧電磁器の材料は、例えば、下記特許文献1に開示されている。
特開平5−24917号公報
A piezoelectric ceramic material used for such a piezoelectric element is disclosed in, for example, Patent Document 1 below.
JP-A-5-24917

上述のような圧電磁器の圧電体層においては、焼成時に生じる歪みの緩和及び結晶粒成長の安定化が望まれていた。発明者らは、リンを含む圧電材料を用いることで、歪みの緩和や結晶粒成長の安定化を実現できることを見い出した。ただし、圧電材料中のリンは圧電歪み特性に悪影響を及ぼしてしまうため、発明者らは、圧電歪み特性についての研究を重ね、ついに圧電歪み特性の劣化を抑制する技術を見い出した。   In the piezoelectric layer of the piezoelectric ceramic as described above, it has been desired to relax strain generated during firing and to stabilize crystal grain growth. The inventors have found that strain relaxation and stabilization of crystal grain growth can be realized by using a piezoelectric material containing phosphorus. However, since phosphorus in the piezoelectric material has an adverse effect on the piezoelectric strain characteristics, the inventors have conducted research on the piezoelectric strain characteristics and finally found a technique for suppressing the deterioration of the piezoelectric strain characteristics.

つまり、本発明は、焼成時における歪みの緩和及び結晶粒成長の安定化を図りつつ、圧電歪み特性の劣化を抑えることができる圧電磁器の製造方法を提供することを目的とする。   That is, an object of the present invention is to provide a method of manufacturing a piezoelectric ceramic that can suppress deterioration of piezoelectric strain characteristics while reducing strain during firing and stabilizing crystal grain growth.

発明者らは、圧電磁器に用いられる圧電材料にPが含有されており、そのPがPとして、圧電材料中のTiO原料及びZrO原料から所定範囲の量だけ混入し、且つ、圧電材料に副成分として添加されるPが所定割合以下である場合に、焼成時における歪みの緩和及び結晶粒成長の安定化が実現し、且つ、圧電歪み特性の劣化が抑えられることを見い出し、本発明を完成させるに至った。 The inventors include P in the piezoelectric material used in the piezoelectric ceramic, and P is mixed as P 2 O 5 in a predetermined range from the TiO 2 raw material and the ZrO 2 raw material in the piezoelectric material, and When the P 2 O 5 added to the piezoelectric material as a sub-component is less than a predetermined ratio, the strain during firing and the stabilization of the crystal grain growth can be realized, and the deterioration of the piezoelectric strain characteristics can be suppressed. As a result, the present invention has been completed.

すなわち、本発明に係る圧電磁器の製造方法は、主成分としてTiO原料とZrO原料とPbO原料とを含み、且つ、副成分としてPが添加された圧電材料を焼成して、圧電磁器を作製する圧電磁器の製造方法であって、圧電材料には、TiO原料及びZrO原料に含まれるPが40ppm以上350ppm以下の範囲で混入され、圧電材料に含まれるPのうち、副成分として添加されるPの割合が0%より大きく30%以下であることを特徴とする。 That is, the manufacturing method of the piezoelectric ceramic according to the present invention comprises a TiO 2 material and ZrO 2 raw material and Pb O raw material as a main component, and, P 2 O 5 is fired piezoelectric material that is added as an auxiliary component A piezoelectric ceramic manufacturing method for producing a piezoelectric ceramic, wherein the piezoelectric material contains P 2 O 5 contained in the TiO 2 raw material and the ZrO 2 raw material in a range of 40 ppm to 350 ppm, and is contained in the piezoelectric material. of P 2 O 5 which is characterized in that the ratio of P 2 O 5 is added as a sub-component is less than 30% greater than 0%.

本発明によれば、焼成時における歪みの緩和及び結晶粒成長の安定化を図りつつ、圧電歪み特性の劣化を抑えることができる圧電磁器の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the piezoelectric ceramic which can suppress deterioration of a piezoelectric distortion characteristic, aiming at the relaxation of the distortion at the time of baking, and stabilization of a crystal grain growth is provided.

以下、添付図面を参照して本発明を実施するにあたり最良と思われる形態について詳細に説明する。なお、同一又は同等の要素については同一の符号を付し、説明が重複する場合にはその説明を省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments that are considered to be the best in carrying out the invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected about the same or equivalent element, and the description is abbreviate | omitted when description overlaps.

まず、本発明の実施形態に係る製造方法によって作製される圧電素子について、図1を参照しつつ説明する。図1は、本発明の実施形態に係る圧電素子を示す斜視図である。図1に示す圧電素子1は、単板圧電素子であり、圧電磁器の圧電体層2と、この圧電体層2を挟むように配置された一対の電極層3A及び3Bとを備える。この圧電素子1においては、電極3A、3B間に電圧が印加されるとこれらに挟まれた圧電体層2に電界が生じ、この圧電体層2が変位(伸縮動作)する。   First, a piezoelectric element manufactured by a manufacturing method according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing a piezoelectric element according to an embodiment of the present invention. A piezoelectric element 1 shown in FIG. 1 is a single plate piezoelectric element, and includes a piezoelectric layer 2 of a piezoelectric ceramic and a pair of electrode layers 3A and 3B arranged so as to sandwich the piezoelectric layer 2 therebetween. In the piezoelectric element 1, when a voltage is applied between the electrodes 3A and 3B, an electric field is generated in the piezoelectric layer 2 sandwiched between them, and the piezoelectric layer 2 is displaced (expanded / contracted).

圧電体層2は、主としてPZT系圧電体セラミックの圧電材料から構成される層である。また、圧電体層2の圧電材料中にはリン元素が含まれている。圧電材料において、リン元素は、原子、酸化物又は圧電体層2に含まれている他の金属等との化合物の形態で含まれる。リン元素は、圧電体層2中に均一に分散していることが好ましい。   The piezoelectric layer 2 is a layer mainly composed of a piezoelectric material of PZT-based piezoelectric ceramic. The piezoelectric material of the piezoelectric layer 2 contains phosphorus element. In the piezoelectric material, the phosphorus element is included in the form of a compound with an atom, an oxide, or another metal included in the piezoelectric layer 2. The phosphorus element is preferably uniformly dispersed in the piezoelectric layer 2.

電極層3A,3Bは、主に金属から構成される導電性の層である。電極層3A,3Bに含まれる金属としては、Ag、Au、Cu、Ni、Pdやこれらの合金(例えば、Ag−Pd合金)等が挙げられる。   The electrode layers 3A and 3B are conductive layers mainly composed of metal. Examples of the metal contained in the electrode layers 3A and 3B include Ag, Au, Cu, Ni, Pd, and alloys thereof (for example, Ag—Pd alloy).

次に、上記圧電素子を作製する手順について、図2を参照しつつ説明する。図2は、本発明の実施形態に係る圧電素子の製造方法を示すフローチャートである。   Next, a procedure for manufacturing the piezoelectric element will be described with reference to FIG. FIG. 2 is a flowchart showing a method for manufacturing a piezoelectric element according to an embodiment of the present invention.

圧電素子1を作製する際は、まず、出発原料を用意する(ステップ11)。この出発原料は、PZT系圧電材料であり、主成分としてPbO、TiO、ZrO、ZnO、Nb等の粉体原料を含み、副成分としてP試薬(若しくは、P10試薬、HPO試薬)を含んでいる。そして、これらの原料が所定の組成比となるようにそれぞれの原料を秤量する。このとき、P試薬の量は、圧電材料に含まれるPの30%以下の割合となるように調整される。 When manufacturing the piezoelectric element 1, first, a starting material is prepared (step 11). This starting material is a PZT-based piezoelectric material, which includes a powder material such as PbO, TiO 2 , ZrO 2 , ZnO, Nb 2 O 5 as a main component, and a P 2 O 5 reagent (or P 4 as an accessory component). O 10 reagent, H 3 PO 4 reagent). And each raw material is weighed so that these raw materials may become a predetermined composition ratio. At this time, the amount of the P 2 O 5 reagent is adjusted so as to be 30% or less of the P 2 O 5 contained in the piezoelectric material.

次に、安定化ジルコニアボールをメディアに用いたボールミルによって、上記出発原料の湿式混合を24時間程度行う(ステップS12)。続いて、混合された原料を乾燥させる(ステップS13)。そして、混合された原料に対し、例えば850℃程度の温度で2時間程度の加熱処理を施す仮焼成をおこなう(ステップS14)。これにより、主にPb、Zr、Ti元素を含有したペロブスカイト構造を有する複合型酸化物圧電材料の原料組成物が得られる。   Next, the above starting materials are wet mixed for about 24 hours by a ball mill using stabilized zirconia balls as media (step S12). Subsequently, the mixed raw materials are dried (step S13). And the temporary baking which performs the heat processing for about 2 hours at the temperature of about 850 degreeC, for example with respect to the mixed raw material is performed (step S14). Thereby, a raw material composition of a composite oxide piezoelectric material having a perovskite structure mainly containing Pb, Zr, and Ti elements is obtained.

この原料組成物をボールミルにより湿式粉砕した後(ステップS15)、これを乾燥させ(ステップS16)、原料組成物の粉体(圧電磁器粉体)を得る。続いて、圧電磁器粉体にポリビニルアルコール系等のバインダーを加えて造粒をおこない(ステップS17)、これをプレス成形等により角板状に成形する(ステップS18)。これにより、圧電磁器となる圧電体成形物が得られる。   After this raw material composition is wet pulverized by a ball mill (step S15), it is dried (step S16) to obtain a raw material composition powder (piezoelectric ceramic powder). Subsequently, granulation is performed by adding a binder such as polyvinyl alcohol to the piezoelectric ceramic powder (step S17), and this is formed into a square plate shape by press molding or the like (step S18). Thereby, the piezoelectric molded product used as a piezoelectric ceramic is obtained.

得られた圧電体成形物を、安定化ジルコニアセッター等に載置した後、大気雰囲気中で加熱することにより、圧電体成形物中に含まれるバインダー等を除去する脱脂処理を行う(ステップS19;脱バインダー)。そして、圧電体成形物に対し、密閉された容器中で、例えば1050〜1200℃、2時間程度の加熱を行う焼成処理(本焼成)を行う(ステップS20)。   After the obtained piezoelectric molded product is placed on a stabilized zirconia setter or the like, it is heated in an air atmosphere to perform a degreasing process to remove the binder or the like contained in the piezoelectric molded product (step S19; Debinding). And the baking processing (main baking) which heats for about 2 hours, for example to 1050-1200 degreeC is performed with respect to a piezoelectric molded object in the sealed container (step S20).

最後に、得られた焼成体の両面に銀ペーストを焼き付けて、電極層3A,3Bを形成する(ステップS21)。これにより、焼成された圧電磁器である圧電体層2と、その両面に焼き付けられた電極層3A,3Bとで構成される図1の圧電素子1が得られる。   Finally, a silver paste is baked on both sides of the obtained fired body to form electrode layers 3A and 3B (step S21). As a result, the piezoelectric element 1 shown in FIG. 1 including the piezoelectric layer 2 which is a fired piezoelectric ceramic and the electrode layers 3A and 3B baked on both surfaces thereof is obtained.

以上で説明したように、発明者らは、圧電磁器に用いられる圧電材料にPが含有されており、そのPがPとして、圧電材料中のTiO原料及びZrO原料から所定範囲の量だけ混入し、且つ、圧電材料に副成分として添加されるPが所定割合以下である場合に、焼成時における歪みの緩和及び結晶粒成長の安定化が実現し、且つ、圧電歪み特性(d31)の劣化が抑えられることを見い出した。 As described above, the inventors include P in the piezoelectric material used in the piezoelectric ceramic, and the P is P 2 O 5 , and is within a predetermined range from the TiO 2 raw material and the ZrO 2 raw material in the piezoelectric material. When the amount of P 2 O 5 added as a subsidiary component to the piezoelectric material is equal to or less than a predetermined ratio, strain relaxation during firing and stabilization of crystal grain growth are realized, and piezoelectric It has been found that the deterioration of the distortion characteristic (d31) can be suppressed.

具体的には、圧電材料中のTiO粉末原料及びZrO粉末原料のリン元素の含有量は、Pに換算してモル基準で40ppm以上350ppm以下の範囲に調整される。すなわち、この量のリン元素が圧電材料に混入されている。このリン元素の含有量が40ppm未満であると、焼成による圧電材料の焼結が不十分となり、圧電体層2の密度が低下して十分な変位が得られ難くなる場合がある。一方、リン元素の含有量が350ppmを超えると圧電歪み定数(d31)の値が実用的なレベルを下回ってしまう。 Specifically, the phosphorus element content of the TiO 2 powder raw material and the ZrO 2 powder raw material in the piezoelectric material is adjusted to a range of 40 ppm or more and 350 ppm or less on a molar basis in terms of P 2 O 5 . That is, this amount of phosphorus element is mixed in the piezoelectric material. If the phosphorus element content is less than 40 ppm, the piezoelectric material may not be sufficiently sintered by firing, and the density of the piezoelectric layer 2 may be reduced, making it difficult to obtain sufficient displacement. On the other hand, when the phosphorus element content exceeds 350 ppm, the value of the piezoelectric strain constant (d31) falls below a practical level.

そして、圧電材料中のTiO原料及びZrO原料からPをPとして混入させて、副成分として圧電材料に添加するP試薬の添加割合を30%以下に下げることで、上記圧電歪み特性の劣化が効果的に抑制されることを、下記実施例において確認した。それにより、P試薬を添加して圧電材料中のP含有量を増加させる場合に比べて、圧電歪み定数を所定の基準値以上に維持しつつ、より多くのPを圧電材料中に含有させることができるため、さらなる歪み緩和及び結晶粒成長の安定性の向上を図ることができるようになる。 Then, P is mixed as P 2 O 5 from the TiO 2 raw material and the ZrO 2 raw material in the piezoelectric material, and the addition ratio of the P 2 O 5 reagent added to the piezoelectric material as a subcomponent is reduced to 30% or less. In the following examples, it was confirmed that the deterioration of the piezoelectric strain characteristics was effectively suppressed. Thereby, as compared with the case of increasing the content of P 2 O 5 in the piezoelectric material by adding P 2 O 5 reagent, while maintaining the piezoelectric strain constant to or greater than a predetermined reference value, the more P 2 O Since 5 can be contained in the piezoelectric material, further strain relaxation and stability of crystal grain growth can be achieved.

なお、上述した方法ではなく、電極層3A,3Bとなる電極ペースト(例えば、Ag−Pd合金を含むペースト)を圧電体成形物に塗布した後、脱バインダー処理(ステップS19)及び本焼成(ステップS20)をおこなうことでも、図1の圧電素子1と同様の素子を得ることができる。この場合には、電極ペースト層に含まれる金属が、本焼成の際に圧電体成形物中に拡散し易くなるが、圧電体成形物中に金属と反応し易いリン元素が分散されているため、金属の拡散は圧電体成形物中で均一に生じるようになる。その結果、圧電体成形物がリン元素を含まない場合に比して、焼結による圧電体成形物(圧電体層2)の収縮が均一に生じるようになる。その結果、圧電体層2は、歪みが少ない形状を有するものとなり、圧電素子1全体も歪みが少ないものとなる。   Instead of the method described above, an electrode paste (for example, a paste containing an Ag—Pd alloy) to be the electrode layers 3A and 3B is applied to the piezoelectric body, and then the binder removal process (step S19) and the main firing (step) By performing S20), an element similar to the piezoelectric element 1 of FIG. 1 can be obtained. In this case, the metal contained in the electrode paste layer easily diffuses into the piezoelectric molded product during the main firing, but phosphorus elements that easily react with the metal are dispersed in the piezoelectric molded product. The metal diffusion occurs uniformly in the piezoelectric molded product. As a result, the piezoelectric molded product (piezoelectric layer 2) contracts more uniformly by sintering than when the piezoelectric molded product does not contain a phosphorus element. As a result, the piezoelectric layer 2 has a shape with less distortion, and the entire piezoelectric element 1 also has less distortion.

以下、本発明を実施例により更に詳細に説明する。
(第1実施例)
Hereinafter, the present invention will be described in more detail with reference to examples.
(First embodiment)

まず、図2に示すステップS11〜S16を実施して、圧電材料の原料組成物の粉体(出発原料)を得た。この出発原料には、Pを含有するTiO及びZrOと、PbO、ZnO、Nbとが含まれている。そして、これらの出発原料を、焼成後にPb0.99[(Zn1/3 Nb2/30.1 Ti0.44 Zr0.46]Oの組成を有する圧電磁器が得られるように秤量し配合した。 First, Steps S11 to S16 shown in FIG. 2 were performed to obtain a piezoelectric material raw material composition powder (starting raw material). This starting material contains TiO 2 and ZrO 2 containing P 2 O 5 and PbO, ZnO, and Nb 2 O 5 . Then, after firing these starting materials, a piezoelectric ceramic having a composition of Pb 0.99 [(Zn 1/3 Nb 2/3 ) 0.1 Ti 0.44 Zr 0.46 ] O 3 is obtained. Weighed and blended.

次に、ステップS17に示すように、その圧電材料の原料組成物の粉体に、ポリビニルアルコール系のバインダーを加えて造粒した後、ステップS18に示すプレス成形を約196MPaで行い、一辺が約20mm、厚さ1.5mmのサイズを有する角板状の圧電体成形物を得た。   Next, as shown in step S17, after adding a polyvinyl alcohol binder to the powder of the raw material composition of the piezoelectric material and granulating, press molding shown in step S18 is performed at about 196 MPa, and one side is about 196 MPa. A square plate-like piezoelectric molded product having a size of 20 mm and a thickness of 1.5 mm was obtained.

その後、ステップS19に示すように、圧電体成形物の脱バインダーを行い、ステップS20に示すように、圧電体成形物をマグネシア(MgO)の密閉容器に入れ、1150℃で2時間加熱する本焼成を行った。これにより、角板状の圧電磁器を得た。   Thereafter, as shown in step S19, the binder is removed from the piezoelectric body, and as shown in step S20, the piezoelectric body is placed in a magnesia (MgO) sealed container and heated at 1150 ° C. for 2 hours. Went. Thereby, a square plate-shaped piezoelectric ceramic was obtained.

最後に、得られた圧電磁器を、高さ1.0mmに加工し、さらにその両面に銀焼付電極を形成して、図1に示す圧電素子と同様の単板圧電素子(12mm×3mm)を作製した。さらに、この単板圧電素子に、120℃のシリコーン油中で分極処理(処理条件:3kV/mm、15分)を行った。   Finally, the obtained piezoelectric ceramic is processed to a height of 1.0 mm, and further, a silver-baked electrode is formed on both sides thereof, and a single plate piezoelectric element (12 mm × 3 mm) similar to the piezoelectric element shown in FIG. Produced. Furthermore, this single plate piezoelectric element was subjected to polarization treatment (treatment conditions: 3 kV / mm, 15 minutes) in 120 ° C. silicone oil.

以上のようにして得られた単板圧電素子の圧電歪み定数(d31)を測定した。測定方法としては、インピーダンスアナライザーを用いて測定した素子の静電容量、共振周波数及び反共振周波数から、圧電歪み定数を算出した。また、圧電磁器の断面を走査型電子顕微鏡で観察し、圧電粒子の平均粒子径を円相当径として画像処理ソフト(Mac View)を用いて測定した。
(比較例)
The piezoelectric strain constant (d31) of the single-plate piezoelectric element obtained as described above was measured. As a measurement method, a piezoelectric strain constant was calculated from the capacitance, resonance frequency, and antiresonance frequency of the element measured using an impedance analyzer. In addition, the cross section of the piezoelectric ceramic was observed with a scanning electron microscope, and the average particle diameter of the piezoelectric particles was set to the equivalent circle diameter and measured using image processing software (Mac View).
(Comparative example)

上述した実施例と同様に、図2に示すステップS11〜S16を実施して、圧電材料の原料組成物の粉体を得た。この出発原料には、TiO、ZrO、PbO、ZnO、Nbが含まれており、これにP試薬が添加されている。そして、Pが添加された出発原料を、焼成後にPb0.99[(Zn1/3 Nb2/30.1 Ti0.44 Zr0.46]Oの組成を有する圧電磁器が得られるように秤量し配合した。 Similarly to the above-described example, steps S11 to S16 shown in FIG. 2 were performed to obtain a powder of the raw material composition of the piezoelectric material. This starting material contains TiO 2 , ZrO 2 , PbO, ZnO, Nb 2 O 5 , and a P 2 O 5 reagent is added thereto. Then, a piezoelectric material having a composition of Pb 0.99 [(Zn 1/3 Nb 2/3 ) 0.1 Ti 0.44 Zr 0.46 ] O 3 after firing is added to the starting material to which P 2 O 5 is added. The porcelain was weighed and blended to obtain a porcelain.

次に、ステップS17に示すように、その圧電材料の原料組成物の粉体に、ポリビニルアルコール系のバインダーを加えて造粒した後、ステップS18に示すプレス成形を約196MPaで行い、一辺が約20mm、厚さ1.5mmのサイズを有する角板状の圧電体成形物を得た。   Next, as shown in step S17, after adding a polyvinyl alcohol binder to the powder of the raw material composition of the piezoelectric material and granulating, press molding shown in step S18 is performed at about 196 MPa, and one side is about 196 MPa. A square plate-like piezoelectric molded product having a size of 20 mm and a thickness of 1.5 mm was obtained.

その後、ステップS19に示すように、圧電体成形物の脱バインダーを行い、ステップS20に示すように、圧電体成形物をマグネシア(MgO)の密閉容器に入れ、1150℃で2時間加熱する本焼成を行った。これにより、角板状の圧電磁器を得た。   Thereafter, as shown in step S19, the binder is removed from the piezoelectric body, and as shown in step S20, the piezoelectric body is placed in a magnesia (MgO) sealed container and heated at 1150 ° C. for 2 hours. Went. Thereby, a square plate-shaped piezoelectric ceramic was obtained.

最後に、得られた圧電磁器を、高さ1.0mmに加工し、さらにその両面に銀焼付電極を形成して、図1に示す圧電素子と同様の単板圧電素子(12mm×3mm)を作製した。さらに、この単板圧電素子に、120℃のシリコーン油中で分極処理(処理条件:3kV/mm、15分)を行った。   Finally, the obtained piezoelectric ceramic is processed to a height of 1.0 mm, and further, a silver-baked electrode is formed on both sides thereof, and a single plate piezoelectric element (12 mm × 3 mm) similar to the piezoelectric element shown in FIG. Produced. Furthermore, this single plate piezoelectric element was subjected to polarization treatment (treatment conditions: 3 kV / mm, 15 minutes) in 120 ° C. silicone oil.

以上のようにして得られた単板圧電素子の圧電歪み定数を、実施例同様に測定した。また、圧電磁器の断面を走査型電子顕微鏡で観察し、圧電粒子の平均粒子径を円相当径として画像処理ソフト(Mac View)を用いて測定した。   The piezoelectric strain constant of the single-plate piezoelectric element obtained as described above was measured in the same manner as in the example. In addition, the cross section of the piezoelectric ceramic was observed with a scanning electron microscope, and the average particle diameter of the piezoelectric particles was set to the equivalent circle diameter and measured using image processing software (Mac View).

上記実施例及び比較例により測定した圧電歪み定数は、以下の表1及び図3のグラフに示すとおりであった。ここで、図3のグラフの横軸は、圧電材料中のP含有量(ppm)を示しており、縦軸は圧電歪み定数(pC/N)を示している。
The piezoelectric strain constants measured by the above examples and comparative examples were as shown in the following Table 1 and the graph of FIG. Here, the horizontal axis of the graph of FIG. 3 indicates the P 2 O 5 content (ppm) in the piezoelectric material, and the vertical axis indicates the piezoelectric strain constant (pC / N).

これらの測定結果(表1及び図3のグラフ)から、圧電材料中にPを直接添加した比較例に比べて、圧電材料にTiO粉末原料及びZrO粉末原料からPを混入させた実施例のほうが、圧電歪み定数の値が高くなることがわかった。さらに、圧電材料中のTiO粉末原料及びZrO粉末原料のリン元素の含有量が、Pに換算してモル基準で350ppm以下である場合には、圧電歪み定数が実用上十分な値(200pC/N以上)となった。一方、Pが350ppmを超えると、圧電歪み定数が200pC/Nを下回ってしまった。そのため、圧電材料にTiO原料及びZrO原料から混入させるPは350ppm以下であることが好ましい。 From these measurement results (Table 1 and the graph of FIG. 3), compared to the comparative example in which P 2 O 5 was directly added to the piezoelectric material, the piezoelectric material was transformed into P 2 O 5 from the TiO 2 powder raw material and the ZrO 2 powder raw material. It was found that the piezoelectric strain constant value was higher in the example in which was mixed. Furthermore, when the content of the phosphorus element in the TiO 2 powder raw material and the ZrO 2 powder raw material in the piezoelectric material is 350 ppm or less on a molar basis in terms of P 2 O 5 , the piezoelectric strain constant is practically sufficient. It became a value (200 pC / N or more). On the other hand, when P 2 O 5 exceeded 350 ppm, the piezoelectric strain constant was below 200 pC / N. Therefore, it is preferable P 2 O 5 to be mixed from the TiO 2 material and ZrO 2 raw material in the piezoelectric material is less than 350 ppm.

また、実施例及び比較例における顕微鏡写真は図4に示すとおりであった。この写真から、圧電粒子の平均粒子径を測定した結果、図5に示すグラフが得られた。ここで、図5のグラフの横軸は、圧電材料のP含有量(ppm)を示しており、縦軸は圧電粒子の平均粒子径(μm)を示している。 Moreover, the micrographs in Examples and Comparative Examples were as shown in FIG. From this photograph, as a result of measuring the average particle diameter of the piezoelectric particles, the graph shown in FIG. 5 was obtained. Here, the horizontal axis of the graph of FIG. 5 indicates the P 2 O 5 content (ppm) of the piezoelectric material, and the vertical axis indicates the average particle diameter (μm) of the piezoelectric particles.

これらの測定結果(図4の写真及び図5のグラフ)から、同じ濃度のPを圧電材料中に含有させるとき、圧電材料中にPを直接添加した場合(比較例)に比べて、圧電材料にTiO粉末原料及びZrO粉末原料からPを混入させた場合(実施例)のほうが、圧電磁器が、大きな平均粒子径の圧電粒子で構成されることがわかる。つまり、所定のP含有量範囲(40ppm以上350ppm以下)において、任意の含有量で比較した場合、比較例に係る平均粒径よりも実施例に係る平均粒径のほうが大きくなる。このように実施例では比較例に比べて平均粒子径が大きくなるため、実施例に係る圧電磁器のほうがより高い焼結性を実現することができる。
(第2実施例)
From these measurement results (photograph of FIG. 4 and graph of FIG. 5), when P 2 O 5 having the same concentration is contained in the piezoelectric material, P 2 O 5 is directly added to the piezoelectric material (comparative example). In comparison with the piezoelectric material, when the P 2 O 5 is mixed from the TiO 2 powder raw material and the ZrO 2 powder raw material into the piezoelectric material (Example), the piezoelectric ceramic is composed of piezoelectric particles having a large average particle diameter. Recognize. That is, in the predetermined P 2 O 5 content range (40 ppm or more and 350 ppm or less), when compared at an arbitrary content, the average particle size according to the example is larger than the average particle size according to the comparative example. Thus, since an average particle diameter becomes large compared with a comparative example in an Example, the piezoelectric ceramic which concerns on an Example can implement | achieve higher sinterability.
(Second embodiment)

まず、図2に示すステップS11〜S16を実施して、圧電材料の原料組成物の粉体(出発原料)を得た。この出発原料には、Pを含有するTiO及びZrOと、PbO、ZnO、Nbとが含まれている。この出発原料には、所定量のP試薬が添加されている。そして、これらの出発原料を、焼成後にPb0.94 Sr0.05[(Zn1/3 Nb2/30.1 (Mg1/3 Nb2/30.2Ti0.38 Zr0.32]OにNiOが0.4wt%含まれる組成を有する圧電磁器が得られるように秤量し配合した。 First, Steps S11 to S16 shown in FIG. 2 were performed to obtain a piezoelectric material raw material composition powder (starting raw material). This starting material contains TiO 2 and ZrO 2 containing P 2 O 5 and PbO, ZnO, and Nb 2 O 5 . A predetermined amount of P 2 O 5 reagent is added to this starting material. And these starting materials are Pb 0.94 Sr 0.05 [(Zn 1/3 Nb 2/3 ) 0.1 (Mg 1/3 Nb 2/3 ) 0.2 Ti 0.38 Zr after firing. 0.32 ] It was weighed and blended to obtain a piezoelectric ceramic having a composition containing 0.4 wt% of NiO in O 3 .

次に、ステップS17に示すように、その圧電材料の原料組成物の粉体に、ポリビニルアルコール系のバインダーを加えて造粒した後、ステップS18に示すプレス成形を約196MPaで行い、一辺が約20mm、厚さ1.5mmのサイズを有する角板状の圧電体成形物を得た。   Next, as shown in step S17, after adding a polyvinyl alcohol binder to the powder of the raw material composition of the piezoelectric material and granulating, press molding shown in step S18 is performed at about 196 MPa, and one side is about 196 MPa. A square plate-like piezoelectric molded product having a size of 20 mm and a thickness of 1.5 mm was obtained.

その後、ステップS19に示すように、圧電体成形物の脱バインダーを行い、ステップS20に示すように、圧電体成形物をマグネシア(MgO)の密閉容器に入れ、1100℃で2時間加熱する本焼成を行った。これにより、角板状の圧電磁器を得た。   After that, as shown in step S19, the binder is removed from the piezoelectric body, and as shown in step S20, the piezoelectric body is put in a magnesia (MgO) sealed container and heated at 1100 ° C. for 2 hours. Went. Thereby, a square plate-shaped piezoelectric ceramic was obtained.

最後に、得られた圧電磁器を、高さ1.0mmに加工し、さらにその両面に銀焼付電極を形成して、図1に示す圧電素子と同様の単板圧電素子(12mm×3mm)を作製した。さらに、この単板圧電素子に、120℃のシリコーン油中で分極処理(処理条件:3kV/mm、15分)をおこなった。   Finally, the obtained piezoelectric ceramic is processed to a height of 1.0 mm, and further, a silver-baked electrode is formed on both sides thereof, and a single plate piezoelectric element (12 mm × 3 mm) similar to the piezoelectric element shown in FIG. Produced. Furthermore, this single plate piezoelectric element was subjected to polarization treatment (treatment conditions: 3 kV / mm, 15 minutes) in 120 ° C. silicone oil.

以上のようにして得られた単板圧電素子の圧電歪み定数(d31)を測定した。測定方法としては、インピーダンスアナライザーを用いて測定した素子の静電容量、共振周波数及び反共振周波数から、圧電歪み定数を算出した。   The piezoelectric strain constant (d31) of the single-plate piezoelectric element obtained as described above was measured. As a measurement method, a piezoelectric strain constant was calculated from the capacitance, resonance frequency, and antiresonance frequency of the element measured using an impedance analyzer.

なお、この実施例では、圧電材料に含まれるPの総量(P総量)が35ppm、150ppm、250ppm、350ppm、400ppmである試料をそれぞれ準備し、圧電材料中のTiO原料及びZrO原料から混入するPの量(P混入量)を250ppm、150ppm、35ppmとして、その不足分をPの試薬の量(P添加量)で補うようにしている。 In this example, samples in which the total amount of P 2 O 5 contained in the piezoelectric material (P 2 O 5 total amount) was 35 ppm, 150 ppm, 250 ppm, 350 ppm, and 400 ppm were prepared, respectively, and the TiO 2 raw material in the piezoelectric material was prepared. and the amount of P 2 O 5 which is mixed from ZrO 2 raw material (P 2 O 5 mixed amount) 250 ppm, 150 ppm, as 35 ppm, an amount of a reagent of P 2 O 5 the shortfall (P 2 O 5 amount) I make up for it.

上記実施例により測定した圧電歪み定数は、以下の表2〜4に示すとおりであった。なお、P添加量(ppm)は、原料化合物から換算した圧電体セラミックス1モルに対する値である。


The piezoelectric strain constants measured by the above examples were as shown in Tables 2 to 4 below. Incidentally, P 2 O 5 added amount (ppm) is a value relative to the piezoelectric ceramic 1 mole of converted from the starting compound.


なお、測定結果として、上記実施例1〜3におけるP総量とd31特性との関係を示すグラフを図6に、上記実施例1〜3における添加割合とd31特性との関係を示すグラフを図7に示す。ここで、図6のグラフの横軸は、圧電材料のP総量(ppm)を示しており、縦軸はd31特性(pC/N)を示している。また、図7のグラフの横軸は、P添加量の添加割合(%)を示しており、縦軸はd31特性(pC/N)を示している。 The graph showing the measurement result, in FIG. 6 a graph showing the relationship between the P 2 O 5 amount and d31 characteristic in Examples 1-3 above, the relationship between the mixing ratio and d31 characteristic in Examples 1-3 above Is shown in FIG. Here, the horizontal axis of the graph of FIG. 6 indicates the total amount (ppm) of P 2 O 5 of the piezoelectric material, and the vertical axis indicates the d31 characteristic (pC / N). In addition, the horizontal axis of the graph of FIG. 7 indicates the addition ratio (%) of the added amount of P 2 O 5 , and the vertical axis indicates the d31 characteristic (pC / N).

上述した実施例1〜3と同様に、図2に示すステップS11〜S16を実施して、圧電材料の原料組成物の粉体を得た。この出発原料には、Pを含有するTiO及びZrOと、PbO、ZnO、Nbとが含まれているが、上記実施例1〜3とは異なり、P試薬は添加されていない。そして、Pが添加された出発原料を、焼成後にPb0.94 Sr0.05[(Zn1/3 Nb2/30.1 (Mg1/3 Nb2/30.2Ti0.38 Zr0.32]OにNiOが0.4wt%含まれる組成を有する圧電磁器が得られるように秤量し配合した。 Similarly to Examples 1 to 3 described above, Steps S11 to S16 shown in FIG. 2 were performed to obtain a powder of the raw material composition of the piezoelectric material. This starting material contains TiO 2 and ZrO 2 containing P 2 O 5 and PbO, ZnO, and Nb 2 O 5 , but unlike the above Examples 1 to 3, P 2 O 5 No reagent is added. Then, the starting material to which P 2 O 5 was added was calcined with Pb 0.94 Sr 0.05 [(Zn 1/3 Nb 2/3 ) 0.1 (Mg 1/3 Nb 2/3 ) 0. 2 Ti 0.38 Zr 0.32 ] O 3 was weighed and blended to obtain a piezoelectric ceramic having a composition containing 0.4 wt% of NiO.

次に、ステップS17に示すように、その圧電材料の原料組成物の粉体に、ポリビニルアルコール系のバインダーを加えて造粒した後、ステップS18に示すプレス成形を約196MPaで行い、一辺が約20mm、厚さ1.5mmのサイズを有する角板状の圧電体成形物を得た。   Next, as shown in step S17, after adding a polyvinyl alcohol binder to the powder of the raw material composition of the piezoelectric material and granulating, press molding shown in step S18 is performed at about 196 MPa, and one side is about 196 MPa. A square plate-like piezoelectric molded product having a size of 20 mm and a thickness of 1.5 mm was obtained.

その後、ステップS19に示すように、圧電体成形物の脱バインダーを行い、ステップS20に示すように、圧電体成形物をマグネシア(MgO)の密閉容器に入れ、1150℃で2時間加熱する本焼成を行った。これにより、角板状の圧電磁器を得た。   Thereafter, as shown in step S19, the binder is removed from the piezoelectric body, and as shown in step S20, the piezoelectric body is placed in a magnesia (MgO) sealed container and heated at 1150 ° C. for 2 hours. Went. Thereby, a square plate-shaped piezoelectric ceramic was obtained.

最後に、得られた圧電磁器を、高さ1.0mmに加工し、さらにその両面に銀焼付電極を形成して、図1に示す圧電素子と同様の単板圧電素子(12mm×3mm)を作製した。さらに、この単板圧電素子に、120℃のシリコーン油中で分極処理(処理条件:3kV/mm、15分)をおこなった。   Finally, the obtained piezoelectric ceramic is processed to a height of 1.0 mm, and further, a silver-baked electrode is formed on both sides thereof, and a single plate piezoelectric element (12 mm × 3 mm) similar to the piezoelectric element shown in FIG. Produced. Furthermore, this single plate piezoelectric element was subjected to polarization treatment (treatment conditions: 3 kV / mm, 15 minutes) in 120 ° C. silicone oil.

以上のようにして得られた単板圧電素子の圧電歪み定数を、実施例1〜3同様に測定した。測定した圧電歪み定数は、以下の表5及び図6に示すとおりであった。
The piezoelectric strain constant of the single-plate piezoelectric element obtained as described above was measured in the same manner as in Examples 1 to 3. The measured piezoelectric strain constants were as shown in Table 5 below and FIG.

すなわち、同じ濃度のPを圧電材料中に含有させるとき、圧電材料にTiO粉末原料及びZrO粉末原料から所定の含有量範囲(40ppm以上350ppm以下)でPを混入させることで、平均粒径が大きくなって圧電磁器の焼結性が向上し、且つ、上記測定結果(表2〜5、図7のグラフ)からわかるとおり、副成分として圧電材料に添加するP試薬の添加割合を30%以下に下げることで、圧電歪み定数が実用上十分な値(200pC/N以上)となった。 That is, when P 2 O 5 having the same concentration is contained in the piezoelectric material, P 2 O 5 is mixed in the piezoelectric material from a TiO 2 powder raw material and a ZrO 2 powder raw material in a predetermined content range (40 ppm to 350 ppm). Thus, the average particle size is increased, the sinterability of the piezoelectric ceramic is improved, and as can be seen from the measurement results (Tables 2 to 5 and the graph of FIG. 7), P 2 added to the piezoelectric material as a subcomponent. By reducing the addition ratio of the O 5 reagent to 30% or less, the piezoelectric strain constant became a practically sufficient value (200 pC / N or more).

それにより、P試薬を添加して圧電材料中のP含有量を増加させる場合に比べて、圧電歪み定数を所定の基準値以上に維持しつつ、より多くのPを圧電材料中に含有させることができるため、さらなる歪み緩和及び結晶粒成長の安定性の向上を図ることができるようになる。 Thereby, as compared with the case of increasing the content of P 2 O 5 in the piezoelectric material by adding P 2 O 5 reagent, while maintaining the piezoelectric strain constant to or greater than a predetermined reference value, the more P 2 O Since 5 can be contained in the piezoelectric material, further strain relaxation and stability of crystal grain growth can be achieved.

本発明は上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、圧電素子として、単板圧電素子を例に説明したが、適宜積層型圧電素子にも適用することができる。   The present invention is not limited to the above embodiment, and various modifications are possible. For example, a single plate piezoelectric element has been described as an example of a piezoelectric element, but the present invention can also be applied to a multilayer piezoelectric element as appropriate.

本発明の実施例に係る圧電素子を示す斜視図である。It is a perspective view which shows the piezoelectric element which concerns on the Example of this invention. 図1に示した圧電素子の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the piezoelectric element shown in FIG. 本発明の実施例に係る測定結果を示したグラフである。It is the graph which showed the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示した顕微鏡写真である。It is the microscope picture which showed the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示したグラフである。It is the graph which showed the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示したグラフである。It is the graph which showed the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示したグラフである。It is the graph which showed the measurement result which concerns on the Example of this invention.

符号の説明Explanation of symbols

1…圧電素子、2…圧電体層、3A,3B…電極層。   DESCRIPTION OF SYMBOLS 1 ... Piezoelectric element, 2 ... Piezoelectric layer, 3A, 3B ... Electrode layer.

Claims (2)

主成分としてTiO原料とZrO原料とPbO原料とを含み、且つ、副成分としてPが添加された圧電材料を焼成して、圧電磁器を作製する圧電磁器の製造方法であって、
前記圧電材料には、前記TiO原料及び前記ZrO原料に含まれるPが40ppm以上350ppm以下の範囲で混入され、
前記圧電材料に含まれるPのうち、前記副成分として添加されるPの割合が0%より大きく30%以下である、圧電磁器の製造方法。
And a TiO 2 material and ZrO 2 raw material and Pb O raw material as a main component, and, by firing a piezoelectric material P 2 O 5 as a sub-component has been added, in the manufacturing method of the piezoelectric ceramic to produce a piezoelectric ceramic There,
In the piezoelectric material, P 2 O 5 contained in the TiO 2 raw material and the ZrO 2 raw material is mixed in a range of 40 ppm to 350 ppm,
A method for manufacturing a piezoelectric ceramic, wherein the proportion of P 2 O 5 added as the sub-component in the P 2 O 5 contained in the piezoelectric material is greater than 0% and 30% or less.
前記圧電材料の焼成には、本焼成と前記本焼成よりも前に前記本焼成よりも低温で行われる仮焼成とが含まれ、前記副成分として添加されるPは、前記仮焼成の前に添加される、請求項1に記載の圧電磁器の製造方法。 Firing of the piezoelectric material includes main firing and pre-baking performed at a lower temperature than the main firing before the main firing, and P 2 O 5 added as the subcomponent is pre-baked. The method for manufacturing a piezoelectric ceramic according to claim 1, wherein the piezoelectric ceramic is added before.
JP2007105075A 2007-04-12 2007-04-12 Method of manufacturing a piezoelectric ceramic Active JP4900008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105075A JP4900008B2 (en) 2007-04-12 2007-04-12 Method of manufacturing a piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105075A JP4900008B2 (en) 2007-04-12 2007-04-12 Method of manufacturing a piezoelectric ceramic

Publications (2)

Publication Number Publication Date
JP2008260657A JP2008260657A (en) 2008-10-30
JP4900008B2 true JP4900008B2 (en) 2012-03-21

Family

ID=39983426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105075A Active JP4900008B2 (en) 2007-04-12 2007-04-12 Method of manufacturing a piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JP4900008B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726209B2 (en) * 2010-12-22 2015-05-27 京セラ株式会社 Dielectric ceramics and dielectric filter provided with the same
DE102014211465A1 (en) * 2013-08-07 2015-02-12 Pi Ceramic Gmbh Keramische Technologien Und Bauelemente Lead-free piezoceramic material based on bismuth sodium titanate (BNT)
CN112457008A (en) * 2020-12-04 2021-03-09 中国船舶重工集团公司第七一五研究所 Large-strain piezoelectric ceramic material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542204A (en) * 1978-09-13 1980-03-25 Ngk Spark Plug Co Ltd Production of lead titanate powder
JPS59207841A (en) * 1983-05-10 1984-11-26 Taiyo Yuden Co Ltd Sintered powder of lead titanate zirconate and its production
JP2000349359A (en) * 1999-06-02 2000-12-15 Kansai Research Institute Ferroelectric thin film and manufacture of the same

Also Published As

Publication number Publication date
JP2008260657A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
EP2104152B1 (en) Piezoelectric ceramic and piezoelectric element employing it
JP4945801B2 (en) Piezoelectric element and method for manufacturing piezoelectric element
JP4129931B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP2009242167A (en) Piezoelectric ceramic and piezoelectric element using it
JP6104998B2 (en) Ceramic material, method for producing the ceramic material, and electronic ceramic device provided with the ceramic material
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
JP4238271B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP4924169B2 (en) Method for manufacturing piezoelectric element
JP4670822B2 (en) Method of manufacturing a piezoelectric ceramic
JP4900008B2 (en) Method of manufacturing a piezoelectric ceramic
JP2005154238A (en) Manufacturing method of piezoelectric porcelain composition
JP5940561B2 (en) Piezoelectric device
JP5303823B2 (en) Piezoelectric element
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP6034017B2 (en) Piezoelectric ceramics and multilayer piezoelectric elements
WO2011002021A1 (en) Semiconductor ceramic and positive-coefficient thermistor
JP5196124B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP2000086341A (en) Piezoelectric composition and its production
JPWO2006093002A1 (en) Piezoelectric ceramic composition
JP4370135B2 (en) Piezoelectric ceramic composition
JP5115342B2 (en) Piezoelectric ceramic, piezoelectric element and multilayer piezoelectric element
JP4793579B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP2004161519A (en) Piezoelectric ceramic composition, and piezoelectric element obtained by using the same
JP2005035843A (en) Piezoelectric ceramics, sintering aid, and laminated piezoelectric element
JP2003277142A (en) Piezoelectric ceramics and piezoelectric actuator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4900008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3