JP4793579B2 - Piezoelectric ceramic composition and multilayer piezoelectric element - Google Patents

Piezoelectric ceramic composition and multilayer piezoelectric element Download PDF

Info

Publication number
JP4793579B2
JP4793579B2 JP2006324772A JP2006324772A JP4793579B2 JP 4793579 B2 JP4793579 B2 JP 4793579B2 JP 2006324772 A JP2006324772 A JP 2006324772A JP 2006324772 A JP2006324772 A JP 2006324772A JP 4793579 B2 JP4793579 B2 JP 4793579B2
Authority
JP
Japan
Prior art keywords
piezoelectric
subcomponent
mass
ceramic composition
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006324772A
Other languages
Japanese (ja)
Other versions
JP2008137834A (en
JP2008137834A5 (en
Inventor
久美子 家住
純一 山崎
典正 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006324772A priority Critical patent/JP4793579B2/en
Priority to US11/944,808 priority patent/US7528531B2/en
Priority to DE102007057474A priority patent/DE102007057474B4/en
Publication of JP2008137834A publication Critical patent/JP2008137834A/en
Publication of JP2008137834A5 publication Critical patent/JP2008137834A5/ja
Application granted granted Critical
Publication of JP4793579B2 publication Critical patent/JP4793579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アクチュエータや圧電ブザー、発音体、センサ等の各種圧電素子の圧電体層に好適な圧電磁器組成物および当該組成物を用いた積層型圧電素子に関し、特に950℃以下の温度かつ低酸素還元性雰囲気中で焼成することのできる圧電磁器組成物に関する。   The present invention relates to a piezoelectric ceramic composition suitable for a piezoelectric layer of various piezoelectric elements such as an actuator, a piezoelectric buzzer, a sounding body, and a sensor, and a laminated piezoelectric element using the composition, and particularly, a temperature of 950 ° C. or lower and a low The present invention relates to a piezoelectric ceramic composition that can be fired in an oxygen reducing atmosphere.

圧電素子に用いられる圧電磁器組成物としては、圧電特性、特に圧電歪定数が大きいことが要求される。従来、大きな圧電歪定数が得られる圧電磁器としては、例えば、チタン酸鉛(PbTiO;PT)とジルコン酸鉛(PbZrO;PZ)と亜鉛・ニオブ酸鉛(Pb(Zn1/3Nb2/3)O)との三元系(PZT)、あるいは、その鉛(Pb)の一部をストロンチウム(Sr)、バリウム(Ba)あるいはカルシウム(Ca)などで置換したものが知られている。 A piezoelectric ceramic composition used for a piezoelectric element is required to have a large piezoelectric characteristic, particularly a piezoelectric strain constant. Conventionally, piezoelectric ceramics capable of obtaining a large piezoelectric strain constant include, for example, lead titanate (PbTiO 3 ; PT), lead zirconate (PbZrO 3 ; PZ), and lead zinc niobate (Pb (Zn 1/3 Nb 2). / 3 ) A ternary system (PZT) with O 3 ) or a part of its lead (Pb) is replaced with strontium (Sr), barium (Ba), calcium (Ca) or the like. .

しかしながら、これら従来の圧電磁器は、焼成温度が1200℃程度と高温であるので、積層型圧電素子を作製する場合には、内部電極に白金(Pt)やパラジウム(Pd)のような高価な貴金属を使用しなければならず、製造コストが高いという問題があった。そこで、より安価な銀−パラジウム(Ag−Pd)合金を内部電極に使用するために、焼成温度を低くすることが望まれていた。
このような状況に対して本出願人は、前記三元系の圧電磁器組成物に、Fe、Co、NiおよびCuから選ばれる少なくとも1種を含む第1副成分、および、Sb、NbおよびTaから選ばれる少なくとも1種を含む第2副成分を加えることにより1050℃以下の低温焼成を可能とし、内部電極にAg−Pd合金等の安価な材料を使用可能とすることを特許文献1において提案した。
However, since these conventional piezoelectric ceramics have a firing temperature as high as about 1200 ° C., an expensive noble metal such as platinum (Pt) or palladium (Pd) is used as an internal electrode when a laminated piezoelectric element is manufactured. There is a problem that the manufacturing cost is high. Therefore, in order to use a cheaper silver-palladium (Ag—Pd) alloy for the internal electrode, it has been desired to lower the firing temperature.
In such a situation, the applicant of the present invention includes a first subcomponent including at least one selected from Fe, Co, Ni, and Cu, and Sb, Nb, and Ta in the ternary piezoelectric ceramic composition. Patent Document 1 proposes that low temperature firing at 1050 ° C. or lower is possible by adding a second subcomponent containing at least one selected from the above, and that an inexpensive material such as an Ag—Pd alloy can be used for the internal electrode. did.

さらに最近では、Ag−Pd合金よりも安価な銅(Cu)を内部電極に使用することも検討されている。しかるに、Cuの融点は1085℃であるので、Cuを用いるには焼成温度を1050℃以下にする必要がある。しかし、Cuはさらに低温から焼結し始めるため、できるだけ焼成温度を低く、例えば950℃以下にする必要がある。加えてCuは卑金属であるので、大気中で焼成すると酸化してしまい電極として使用できなくなる。したがって、Cuを内部電極に用いた積層型圧電素子を作製する場合には、低酸素還元性雰囲気中での焼成が必要となる。   More recently, the use of copper (Cu), which is less expensive than an Ag—Pd alloy, for the internal electrode has also been studied. However, since the melting point of Cu is 1085 ° C., the firing temperature must be 1050 ° C. or lower in order to use Cu. However, since Cu begins to be sintered at a lower temperature, the firing temperature should be as low as possible, for example, 950 ° C. or lower. In addition, since Cu is a base metal, it oxidizes when fired in the atmosphere and cannot be used as an electrode. Therefore, when a multilayer piezoelectric element using Cu as an internal electrode is manufactured, firing in a low oxygen reducing atmosphere is required.

この要請に対して本出願人は、(Pba-bMe)[(Zn1/3Nb2/3TiZr]O(ただし、a、b、x、y、zは、0.96≦a≦1.03、0≦b≦0.1、x+y+z=1、0.05≦x≦0.40、0.1≦y≦0.5、0.2≦z≦0.6をそれぞれ満たす範囲内の値である。Meは、ストロンチウム(Sr)、カルシウム(Ca)およびバリウム(Ba)からなる群のうちの少なくとも1種を表す)の組成を有する仮焼き粉に対して、Pbを酸化物(PbO)に換算した割合で0.01〜1.5質量%、およびCuを酸化物(CuO)に換算した割合で1質量%以下を添加して焼成する圧電磁器の製造方法を、特許文献2で提案した。 In response to this request, the present applicant has (Pb ab Me b ) [(Zn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3 (where a, b, x, y, z are 0.96 ≦ a ≦ 1.03, 0 ≦ b ≦ 0.1, x + y + z = 1, 0.05 ≦ x ≦ 0.40, 0.1 ≦ y ≦ 0.5, 0.2 ≦ z ≦ 0 For each calcined powder having a composition of strontium (Sr), calcium (Ca) and barium (Ba). Of a piezoelectric ceramic that is fired by adding 0.01 to 1.5% by mass in terms of Pb converted to oxide (PbO) and 1% by mass or less in terms of Cu converted to oxide (CuO) A manufacturing method was proposed in Patent Document 2.

特開2004−137106号公報JP 2004-137106 A 特開2006−193414号公報JP 2006-193414 A

特許文献2において、低い焼成温度であって、かつ低酸素還元性雰囲気中で焼成しても、高い圧電特性が得られることが確認されている。
ところが、本発明者等のその後の検討によると、特許文献2の圧電磁器組成物は、例えば1V/mm以下の低い印加電圧下においては優れた圧電特性を示すものの、高電圧下での駆動が要求されるアクチュエータ等の製品においては十分な変位が得られなかった。これらの製品は1〜3kV/mmの高電圧下で駆動されるため、圧電磁器としてもこの高電圧下で良好な圧電特性を発現することが必要である。この圧電特性を評価する物性値は複数存在するが、積層型圧電素子として用いる場合、電気機械結合係数kr(%)や変位量が重要である。ところが、1kV/mm以上の高電圧下で材料を評価することが煩雑なため、1V/mm以下の低電圧下において簡便なインピーダンス測定やd33メータによる測定が行われているのが実情である。そして、低電圧下における圧電特性と高電圧下における圧電特性とがリンクするものと仮定して、これまで圧電磁器組成物の評価を行っていた。しかし、特許文献2に開示される圧電磁器組成物は、低電圧下における圧電特性と高電圧下における圧電特性がリンクしていなかったのである。
In Patent Document 2, it has been confirmed that high piezoelectric characteristics can be obtained even when firing in a low oxygen reducing atmosphere at a low firing temperature.
However, according to subsequent studies by the present inventors, the piezoelectric ceramic composition of Patent Document 2 shows excellent piezoelectric characteristics under a low applied voltage of, for example, 1 V / mm or less, but can be driven under a high voltage. Sufficient displacement could not be obtained in the required products such as actuators. Since these products are driven under a high voltage of 1 to 3 kV / mm, it is necessary for a piezoelectric ceramic to exhibit good piezoelectric characteristics under this high voltage. There are a plurality of physical property values for evaluating the piezoelectric characteristics. However, when used as a multilayer piezoelectric element, the electromechanical coupling coefficient kr (%) and the displacement amount are important. However, since it is cumbersome to evaluate a material under a high voltage of 1 kV / mm or more, the actual situation is that simple impedance measurement or measurement using a d33 meter is performed under a low voltage of 1 V / mm or less. The piezoelectric ceramic composition has been evaluated so far, assuming that the piezoelectric characteristics under a low voltage and the piezoelectric characteristics under a high voltage are linked. However, in the piezoelectric ceramic composition disclosed in Patent Document 2, the piezoelectric characteristics under a low voltage and the piezoelectric characteristics under a high voltage are not linked.

そこで本発明では、低温かつ低酸素還元性雰囲気中において焼成が可能で、かつ1kV/mm以上の高電圧下においても十分な変位が得られる圧電磁器組成物および積層型圧電素子を提供することを目的とする。   Accordingly, the present invention provides a piezoelectric ceramic composition and a multilayer piezoelectric element that can be fired in a low-temperature, low-oxygen reducing atmosphere and that can be sufficiently displaced even under a high voltage of 1 kV / mm or more. Objective.

本発明者等はPZTの組成について検討したところ、(Pba−bMe)[(Zn1/3Nb2/3TiZr]Oで示される組成において、高電圧下の圧電特性が、リラクサ(relaxer)と称される(Zn1/3Nb2/3)の置換量を示すxの値によって変動することを見出した。つまり、xが小さくなるにつれて1kV/mm以上の高電圧下における圧電特性が向上することが判明した。しかしながら、xの値が小さくなる、つまりリラクサ成分が少なくなると、十分な密度が得られる焼成温度が1100℃以上と高くなってしまい、積層型圧電素子を低い焼成温度で得ることができなくなった。
この焼成温度の問題に対しては、Cuを添加することにより低い焼成温度で緻密な磁器が得られることを確認した。ところが、Cuの添加は高電圧下における圧電特性の低下を招くという問題も明らかとなった。本発明者等のさらなる検討によると、Cuの添加による焼成温度低減の効果を享受しつつ、高電圧下において高い圧電特性を得るためには、Co、Ni、MgおよびGaから選ばれる少なくとも1種、さらにはTb、Nb、WおよびSbから選ばれる少なくとも1種を添加することが有効であることを知見した。
When the present inventors examined the composition of PZT, in the composition shown by (Pb a-b Me b ) [(Zn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3 , It has been found that the piezoelectric characteristics vary depending on the value of x indicating the amount of substitution of (Zn 1/3 Nb 2/3 ), which is called a relaxer. That is, it has been found that the piezoelectric characteristics are improved under a high voltage of 1 kV / mm or more as x decreases. However, when the value of x decreases, that is, the relaxor component decreases, the firing temperature at which a sufficient density can be obtained increases to 1100 ° C. or higher, making it impossible to obtain a multilayer piezoelectric element at a lower firing temperature.
Regarding the problem of the firing temperature, it was confirmed that a dense porcelain was obtained at a low firing temperature by adding Cu. However, it has also become clear that the addition of Cu causes a decrease in piezoelectric characteristics under high voltage. According to further studies by the present inventors, at least one selected from Co, Ni, Mg and Ga in order to obtain high piezoelectric characteristics under high voltage while enjoying the effect of reducing the firing temperature by adding Cu. Furthermore, it has been found that it is effective to add at least one selected from Tb, Nb, W and Sb.

以上の知見に基づく本発明の圧電磁器組成物は、
下記の組成式(1)または(2)で示される複合酸化物を主成分とし、
主成分に対し、
第1副成分として、CuをCuO換算量αで0<α≦0.5質量%、
第2副成分として、Co、Ni、GaおよびMgから選ばれる少なくとも1種を、Co、NiおよびGaは酸化物換算量β、Mgは炭酸物換算量βで0<β≦0.2質量%、
第3副成分として、Ta、Nb、WおよびSbから選ばれる少なくとも1種を酸化物換算量γで0<γ≦0.6質量%を含むことを特徴としている。
組成式(1):Pb[(Zn1/3Nb2/3TiZr]O
組成式(1)のa、x、yおよびzが、
0.96≦a≦1.03、
0.005≦x≦0.047、
0.42≦y≦0.53、
0.45≦z≦0.56、
x+y+z=1を満足するとともに、
式中のMeは、Sr、CaおよびBaから選ばれる少なくとも1種を表す。
組成式(2):(Pba−bMe)[(Zn1/3Nb2/3TiZr]O
組成式(2)のa、b、x、yおよびzが、
0.96≦a≦1.03、
0<b≦0.1、
0.005≦x≦0.047、
0.42≦y≦0.53、
0.45≦z≦0.56、
x+y+z=1を満足するとともに、
式中のMeは、Sr、CaおよびBaから選ばれる少なくとも1種を表す。
The piezoelectric ceramic composition of the present invention based on the above knowledge is
The main component is a complex oxide represented by the following composition formula (1) or (2),
For the main component,
As a first subcomponent, Cu is 0 <α ≦ 0.5 mass% in terms of Cu 2 O conversion amount α,
As the second subcomponent, at least one selected from Co, Ni, Ga and Mg, Co, Ni and Ga are oxide equivalent amounts β, and Mg is carbonate equivalent amount β 0 <β ≦ 0.2 mass% ,
As the third subcomponent, at least one selected from Ta, Nb, W, and Sb is contained in an oxide equivalent amount γ that includes 0 <γ ≦ 0.6 mass%.
Composition formula (1): Pb a [(Zn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3
A, x, y and z in the composition formula (1) are
0.96 ≦ a ≦ 1.03,
0.005 ≦ x ≦ 0.047,
0.42 ≦ y ≦ 0.53,
0.45 ≦ z ≦ 0.56,
While satisfying x + y + z = 1,
Me in the formula represents at least one selected from Sr, Ca and Ba.
Composition formula (2): (Pb ab Me b ) [(Zn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3
A, b, x, y and z in the composition formula (2) are
0.96 ≦ a ≦ 1.03,
0 <b ≦ 0.1,
0.005 ≦ x ≦ 0.047,
0.42 ≦ y ≦ 0.53,
0.45 ≦ z ≦ 0.56,
While satisfying x + y + z = 1,
Me in the formula represents at least one selected from Sr, Ca and Ba.

以上の本発明の圧電磁器組成物は、特許文献1、特許文献2に開示される圧電磁器組成物のリラクサ成分の量が、上記組成式のxとして0.05以上であるのに対して、0.047以下である点で相違している。これは、前述したように、リラクサ成分の量が0.047以下と低減することにより、高電圧下で高い圧電特性を得ることができるからである。   In the piezoelectric ceramic composition of the present invention described above, the amount of the relaxor component of the piezoelectric ceramic composition disclosed in Patent Document 1 and Patent Document 2 is 0.05 or more as x in the above composition formula, The difference is that it is 0.047 or less. This is because, as described above, when the amount of the relaxor component is reduced to 0.047 or less, high piezoelectric characteristics can be obtained under a high voltage.

ここで、Cuと圧電磁器組成物の主構成元素であるPbは963℃付近において共晶を生成するため、Cuを内部電極材料とした積層型圧電素子を作製する場合、圧電磁器組成物は950℃以下で焼結が可能な材料でなくてはならない。また、Cuは大気中での焼成では酸化してしまうため、低酸素還元性雰囲気下において焼成しなくてはならない。しかしながら、本発明による圧電磁器組成物は、低酸素還元性雰囲気下での焼成でも緻密な焼結体を得ることができる。   Here, since Cu and Pb, which is the main constituent element of the piezoelectric ceramic composition, form a eutectic near 963 ° C., when a multilayer piezoelectric element using Cu as an internal electrode material is produced, the piezoelectric ceramic composition is 950 It must be a material that can be sintered below ℃. Moreover, since Cu oxidizes when fired in the air, it must be fired in a low oxygen reducing atmosphere. However, the piezoelectric ceramic composition according to the present invention can obtain a dense sintered body even by firing in a low oxygen reducing atmosphere.

本発明は積層型圧電素子に適用できるものである。つまり本発明は、複数の圧電体層と、圧電体層間に挿入される複数の内部電極とを備える積層型圧電素子において、圧電体層を上記圧電磁器組成物から構成した積層型圧電素子を提供する。この積層型圧電素子において、内部電極をCuから構成することができる。本発明の圧電磁器組成物は、低温かつ低酸素還元性雰囲気中において焼成が可能だからである。ただし、本発明の積層型圧電素子は、内部電極をCuとすることに限定されるものではなく、従来のPt、PdおよびAg−Pd合金を内部電極に用いることができることは勿論、安価なニッケル(Ni)、その他の金属(合金を含む)を内部電極とすることも許容する。   The present invention can be applied to multilayer piezoelectric elements. That is, the present invention provides a multilayer piezoelectric element comprising a plurality of piezoelectric layers and a plurality of internal electrodes inserted between the piezoelectric layers, wherein the piezoelectric layer is composed of the piezoelectric ceramic composition. To do. In this multilayer piezoelectric element, the internal electrode can be made of Cu. This is because the piezoelectric ceramic composition of the present invention can be fired in a low temperature and low oxygen reducing atmosphere. However, the multilayer piezoelectric element of the present invention is not limited to the internal electrode made of Cu, and conventional Pt, Pd, and Ag—Pd alloys can be used for the internal electrode. (Ni) and other metals (including alloys) may be used as the internal electrode.

以上説明したように、本発明によれば、950℃以下の低温かつ低酸素還元性雰囲気中において焼成が可能で、かつ1kV/mm以上の高電圧下においても十分な変位が得られる。   As described above, according to the present invention, firing is possible in a low-temperature and low-oxygen reducing atmosphere of 950 ° C. or lower, and sufficient displacement can be obtained even under a high voltage of 1 kV / mm or higher.

本発明による圧電磁器組成物は、下記組成式(1)または(2)で示される複合酸化物を主成分とする。
組成式(1):Pb[(Zn1/3Nb2/3TiZr]O
組成式(1)のa、x、yおよびzが、
0.96≦a≦1.03、
0.005≦x≦0.047、
0.42≦y≦0.53、
0.45≦z≦0.56、
x+y+z=1を満足するとともに、
式中のMeは、Sr、CaおよびBaから選ばれる少なくとも1種を表す。
組成式(2):(Pba−bMe)[(Zn1/3Nb2/3TiZr]O
組成式(2)のa、b、x、yおよびzが、
0.96≦a≦1.03、
0<b≦0.1、
0.005≦x≦0.047、
0.42≦y≦0.53、
0.45≦z≦0.56、
x+y+z=1を満足するとともに、
式中のMeは、Sr、CaおよびBaから選ばれる少なくとも1種を表す。
The piezoelectric ceramic composition according to the present invention is mainly composed of a composite oxide represented by the following composition formula (1) or (2).
Composition formula (1): Pb a [(Zn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3
A, x, y and z in the composition formula (1) are
0.96 ≦ a ≦ 1.03,
0.005 ≦ x ≦ 0.047,
0.42 ≦ y ≦ 0.53,
0.45 ≦ z ≦ 0.56,
While satisfying x + y + z = 1,
Me in the formula represents at least one selected from Sr, Ca and Ba.
Composition formula (2): (Pb ab Me b ) [(Zn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3
A, b, x, y and z in the composition formula (2) are
0.96 ≦ a ≦ 1.03,
0 <b ≦ 0.1,
0.005 ≦ x ≦ 0.047,
0.42 ≦ y ≦ 0.53,
0.45 ≦ z ≦ 0.56,
While satisfying x + y + z = 1,
Me in the formula represents at least one selected from Sr, Ca and Ba.

前記複合酸化物は、いわゆるペロブスカイト構造を有しており、PbおよびPbの置換元素Meについては、ペロブスカイト構造のいわゆるAサイトに位置する。ZnやNb、Ti、Zrは、ペロブスカイト構造のいわゆるBサイトに位置する。
前記組成式において、Aサイト元素であるPb、またはPbとMeの合計の割合aは、0.96≦a≦1.03である。Aサイト元素の割合aが0.96未満だと、低温での焼成が困難になる。逆に、Aサイト元素の割合aが1.03を超えると、高電圧下における圧電特性が低下する。さらに好ましいAサイト元素の割合aは0.97≦a≦1.02であり、より好ましいAサイト元素の割合aは0.98≦a≦1.01である。
The composite oxide has a so-called perovskite structure, and the substitution element Me of Pb and Pb is located at a so-called A site of the perovskite structure. Zn, Nb, Ti, and Zr are located at the so-called B site of the perovskite structure.
In the composition formula, Pb which is an A-site element, or the total ratio a of Pb and Me is 0.96 ≦ a ≦ 1.03. When the ratio a of the A site element is less than 0.96, firing at a low temperature becomes difficult. On the other hand, when the ratio “a” of the A-site element exceeds 1.03, the piezoelectric characteristics under high voltage are deteriorated. A more preferable A-site element ratio a is 0.97 ≦ a ≦ 1.02, and a more preferable A-site element ratio a is 0.98 ≦ a ≦ 1.01.

上記組成式において、Pbの一部を元素Me(Sr、Ca、Ba)で置換することを許容しているが、これにより圧電歪定数を大きくすることができる。ただし、置換元素Meの置換量bが多くなりすぎると、高電圧下における圧電特性が低下する。また、キュリー温度も置換量bの増加に伴って低下する傾向にある。したがって、置換元素Meの置換量bは、0.1以下とすることが好ましい。さらに好ましい置換元素Meの置換量bは0.005≦b≦0.08であり、より好ましい置換元素Meの置換量bは0.007≦b≦0.05である。なお、Pbの一部をMeで置換する場合のPbの割合はa−bとなる。   In the above composition formula, it is allowed to replace a part of Pb with the element Me (Sr, Ca, Ba), but this can increase the piezoelectric strain constant. However, if the substitution amount b of the substitution element Me is too large, the piezoelectric characteristics under high voltage are deteriorated. Also, the Curie temperature tends to decrease as the substitution amount b increases. Therefore, the substitution amount b of the substitution element Me is preferably 0.1 or less. A more preferred substitution amount b of the substitution element Me is 0.005 ≦ b ≦ 0.08, and a more preferred substitution amount b of the substitution element Me is 0.007 ≦ b ≦ 0.05. Note that the ratio of Pb when a part of Pb is replaced by Me is ab.

一方、Bサイト元素のうち、リラクサ成分であるZnとNbの総量の割合xは、0.005≦x≦0.047である。本発明者等の検討によると、xの値が低いほど高電圧下による圧電特性が向上する傾向にある。そこで本発明では、xを0.047以下とする。ただし、リラクサ成分の量が0.005未満になると、高電圧下による圧電特性の低下が顕著となる。好ましいZnとNbの割合xは0.01≦x≦0.04であり、より好ましいZnとNbの割合xは0.015≦x≦0.025である。
なお、特許文献1、特許文献2のいずれにも、リラクサ成分の量を低くすることにより高電圧下による圧電特性が向上することを示唆する記載がない。
On the other hand, the ratio x of the total amount of Zn and Nb, which are relaxor components, among the B site elements is 0.005 ≦ x ≦ 0.047. According to the study by the present inventors, the lower the value of x, the better the piezoelectric characteristics under high voltage. Therefore, in the present invention, x is set to 0.047 or less. However, when the amount of the relaxor component is less than 0.005, the deterioration of the piezoelectric characteristics due to high voltage becomes significant. A preferable ratio x of Zn and Nb is 0.01 ≦ x ≦ 0.04, and a more preferable ratio x of Zn and Nb is 0.015 ≦ x ≦ 0.025.
Note that neither Patent Document 1 nor Patent Document 2 has a description suggesting that the piezoelectric characteristics under high voltage are improved by reducing the amount of the relaxor component.

Bサイト元素のうちTiの割合yおよびZrの割合zは、圧電特性の観点から好ましい範囲が設定される。具体的には、Tiの割合yは0.42≦y≦0.53とし、Zrの割合zは0.45≦z≦0.56とする。この範囲内に設定することで、モルフォトロピック相境界(MPB)付近において、大きな圧電歪定数を得ることができる。
好ましいTiの割合yは0.45≦y≦0.49であり、より好ましいTiの割合yは0.45≦y≦0.48である。
また、好ましいZrの割合zは0.46≦z≦0.55であり、より好ましいZrの割合zは0.48≦z≦0.54である。
なお、上記組成式における各元素、例えば酸素(O)の組成は化学量論的に求められるものであり、実際に焼成して得られた磁器においては、化学量論組成からのずれが生ずることがあるが、そのようなものも本発明に包含されるものとする。
Of the B site elements, the Ti ratio y and the Zr ratio z are preferably set in terms of piezoelectric characteristics. Specifically, the Ti ratio y is 0.42 ≦ y ≦ 0.53, and the Zr ratio z is 0.45 ≦ z ≦ 0.56. By setting within this range, a large piezoelectric strain constant can be obtained in the vicinity of the morphotropic phase boundary (MPB).
A preferable Ti ratio y is 0.45 ≦ y ≦ 0.49, and a more preferable Ti ratio y is 0.45 ≦ y ≦ 0.48.
Moreover, the preferable zr ratio z is 0.46 ≦ z ≦ 0.55, and the more preferable Zr ratio z is 0.48 ≦ z ≦ 0.54.
In addition, the composition of each element in the above composition formula, for example, oxygen (O), is determined stoichiometrically, and in a porcelain obtained by actual firing, a deviation from the stoichiometric composition occurs. Such a thing is included in the present invention.

本発明の圧電磁器組成物は、第1副成分として、CuをCuO換算量αで0<α≦0.5質量%含有する。
本発明の圧電磁器組成物は、高電圧下における圧電特性を確保するために、Bサイトにおけるリラクサ成分(ZnおよびNb)の割合xを低めに設定している。ところが、そうすることにより、十分な焼結密度を得るための焼成温度が高くなり、950℃以下の低温焼成を実現することができない。本発明は、Cuを上記のように含有させることにより、950℃以下の焼成で緻密な焼結を可能にした。ただし、Cuの量がCuO換算で0.5質量%を超えると、高電圧下における圧電特性の低下が顕著となり、後述する第2副成分の効果を享受できなくなる。そのため、上限を0.5質量%とする。Cuの好ましい含有量は0.01≦α≦0.2質量%、さらに好ましい含有量は0.01≦α≦0.1質量%である。
The piezoelectric ceramic composition of the present invention contains Cu as a first subcomponent in a Cu 2 O equivalent amount α of 0 <α ≦ 0.5% by mass.
In the piezoelectric ceramic composition of the present invention, the ratio x of the relaxor components (Zn and Nb) at the B site is set low in order to ensure the piezoelectric characteristics under a high voltage. However, by doing so, the firing temperature for obtaining a sufficient sintered density becomes high, and low-temperature firing at 950 ° C. or lower cannot be realized. In the present invention, by containing Cu as described above, dense sintering is possible by firing at 950 ° C. or lower. However, if the amount of Cu exceeds 0.5% by mass in terms of Cu 2 O, the piezoelectric characteristics are significantly lowered under high voltage, and the effect of the second subcomponent described later cannot be enjoyed. Therefore, the upper limit is 0.5% by mass. The preferable content of Cu is 0.01 ≦ α ≦ 0.2 mass%, and the more preferable content is 0.01 ≦ α ≦ 0.1 mass%.

Cuの量は上記のようにCuOに換算して特定されるが、これは圧電磁器組成物中におけるCuの存在形態を特定する趣旨ではない。例えば、Cuについては、CuO、CuO等、任意の酸化状態のCu酸化物として圧電磁器組成物中に含まれていてよいし、あるいは金属Cuとして存在していてもよい。
また、圧電磁器組成物に含まれるCuは、前駆体中に例えばCuOとして添加されたものに基づくものであってもよいし、後述する内部電極に含まれるCuが焼成中に圧電体層に拡散することにより含まれるに到ったものであってもよい。また、両者が複合されたものであってもよい。本発明においては、圧電磁器組成物にCuが含まれることが重要なのであって、その添加方法や存在形態を基本的には問わない。ただし、添加されたCuと拡散によるCuとは、以下説明するように圧電体層中における存在形態が相違する。
The amount of Cu is specified in terms of Cu 2 O as described above, but this is not intended to specify the presence form of Cu in the piezoelectric ceramic composition. For example, Cu may be contained in the piezoelectric ceramic composition as Cu oxide in any oxidation state, such as Cu 2 O and CuO, or may exist as metal Cu.
Further, Cu contained in the piezoelectric ceramic composition may be based on, for example, Cu 2 O added to the precursor, or the piezoelectric layer is formed during the firing of Cu contained in the internal electrode described later. It may have been included by diffusing into. Moreover, both may be combined. In the present invention, it is important that Cu is contained in the piezoelectric ceramic composition, and its addition method and existence form are basically not limited. However, the presence form in the piezoelectric layer is different between the added Cu and the Cu by diffusion as described below.

後述する実施例1の主成分の原料粉末を用い、実施例1と同様にして円板状の成形体を得た。この成形体に、粒径1.0μmのCu粉末を含むCuペーストを表裏両面に印刷した。その後、この成形体に熱処理を施してバインダを揮発させ、低酸素還元性雰囲気中(酸素分圧1×10−10〜1×10−6気圧)において950℃で8時間焼成した。
また、後述する実施例1の主成分の原料粉末にCuO粉末を0.05質量%添加し、その他は実施例1と同様にして円板状の成形体を得た。その後、上記と同様に焼成した。
Using the raw material powder of the main component of Example 1 described later, a disk-shaped molded body was obtained in the same manner as Example 1. A Cu paste containing Cu powder having a particle size of 1.0 μm was printed on both the front and back surfaces of this molded body. Thereafter, the molded body was heat-treated to volatilize the binder, and fired at 950 ° C. for 8 hours in a low oxygen reducing atmosphere (oxygen partial pressure 1 × 10 −10 to 1 × 10 −6 atm).
Further, 0.05% by mass of Cu 2 O powder was added to the raw material powder of the main component of Example 1 described later, and a disk-shaped molded body was obtained in the same manner as in Example 1. Then, it baked similarly to the above.

以上で得られた2種類の焼結体について、EPMA(Electron Probe Micro Analyzer)による元素(Cu)マッピングを行った。その結果を、図1(Cuペースト印刷)および図2(CuO粉末添加)に示す。図1および図2に示すように、Cuペースト印刷をして得られた焼結体に比べて、CuO粉末を添加した焼結体は、Cuの偏析が顕著に観察された。なお、図1、図2において、色が薄い部分はCuの濃度が濃いことを示している。このCuの偏析の正体を確認するため、CuO粉末を添加した焼結体について、TEM(Transmission Electron Microscope)観察を行った。具体的には、図3に示す点A〜Fの位置の組成分析を行った。その結果、点Fの位置におけるCuO量が93.6質量%であることが確認された。したがって、点Fを含む位置に存在する粒子は、添加されたCuO粉末に基づくものと解される。一方、Cuペースト印刷を行って得られた焼結体についてもTEMによる観察を行ったところ、CuOを多量に含む粒子を見出すことはできず、焼結体の結晶粒同士の粒界にCuが存在していることが確認された。そして、このように、Cuが粒子として存在することなく、専ら粒界相に存在することにより、後述する実施例8に示されるように、圧電特性の耐久性が向上する。 About two types of sintered compacts obtained above, element (Cu) mapping by EPMA (Electron Probe Micro Analyzer) was performed. The results are shown in FIG. 1 (Cu paste printing) and FIG. 2 (Cu 2 O powder addition). As shown in FIGS. 1 and 2, the segregation of Cu was significantly observed in the sintered body to which the Cu 2 O powder was added, compared to the sintered body obtained by printing the Cu paste. In FIGS. 1 and 2, the light-colored portion indicates that the Cu concentration is high. In order to confirm the identity of the segregation of Cu, TEM (Transmission Electron Microscope) observation was performed on the sintered body to which the Cu 2 O powder was added. Specifically, composition analysis was performed at the positions of points A to F shown in FIG. As a result, it was confirmed that the amount of Cu 2 O at the position of the point F was 93.6% by mass. Therefore, it is understood that the particles present at the position including the point F are based on the added Cu 2 O powder. On the other hand, when the sintered body obtained by printing the Cu paste was also observed by TEM, particles containing a large amount of Cu 2 O could not be found, and the grain boundaries of the sintered body crystal grains were not found. It was confirmed that Cu was present. In this way, Cu does not exist as particles but exists exclusively in the grain boundary phase, so that durability of piezoelectric characteristics is improved as shown in Example 8 described later.

本発明の圧電磁器組成物は、第2副成分として、Co、Ni、GaおよびMgから選ばれる少なくとも1種を含む。第2副成分は、高電圧下での圧電特性を向上する効果を発揮する。ただし、これら第2副成分の含有量は、主成分に対して、Co、NiおよびGaは酸化物換算量βで、またMgは炭酸物換算量βで0<β≦0.2質量%とする。第2副成分の含有量が酸化物換算で0.2質量%を超えると、高電圧下における圧電特性が低下するからである。酸化物換算は、Coの場合にはCoO換算とし、Niの場合にはNiO換算とし、Gaの場合にはGa換算とする。また、Mgの炭酸物換算は、MgCO換算とする。
第2副成分の好ましい含有量は0.01≦β≦0.15質量%、より好ましい含有量は0.02≦β≦0.1質量%である。
The piezoelectric ceramic composition of the present invention contains at least one selected from Co, Ni, Ga and Mg as the second subcomponent. The second subcomponent exhibits the effect of improving the piezoelectric characteristics under a high voltage. However, the content of these second subcomponents is such that Co, Ni, and Ga are oxide equivalents β, and Mg is carbonate equivalent β and 0 <β ≦ 0.2 mass% with respect to the main component. To do. This is because when the content of the second subcomponent exceeds 0.2% by mass in terms of oxide, the piezoelectric characteristics under high voltage are deteriorated. The oxide conversion is CoO conversion in the case of Co, NiO conversion in the case of Ni, and Ga 2 O 3 conversion in the case of Ga. Further, Mg carbonate conversion is MgCO 3 conversion.
A preferable content of the second subcomponent is 0.01 ≦ β ≦ 0.15 mass%, and a more preferable content is 0.02 ≦ β ≦ 0.1 mass%.

本発明の圧電磁器組成物は、第3副成分として、Ta、Nb、WおよびSbから選ばれる少なくとも1種を含む。この副成分を添加することで、圧電特性を向上させることができる。ただし、これら第3副成分の含有量は、主成分に対して、酸化物換算量γで0<γ≦0.6質量%とする。第3副成分の含有量が、酸化物換算で0.6質量%を超えると、焼結性が低下し、圧電特性が低下するおそれがあるからである。酸化物換算は、Taの場合にはTa換算とし、Nbの場合にはNb換算とし、Wの場合にはWO換算とし、Sbの場合にはSb換算とする。
第3副成分の好ましい含有量は0.05≦γ≦0.4質量%、より好ましい含有量は0.1≦γ≦0.35質量%である。
The piezoelectric ceramic composition of the present invention contains at least one selected from Ta, Nb, W and Sb as the third subcomponent. By adding this subcomponent, the piezoelectric characteristics can be improved. However, the content of these third subcomponents is 0 <γ ≦ 0.6 mass% in terms of oxide equivalent γ with respect to the main component. This is because if the content of the third subcomponent exceeds 0.6% by mass in terms of oxide, the sinterability may decrease and the piezoelectric characteristics may decrease. The terms of oxide, in the case of Ta is set to Ta 2 O 5 in terms, in the case of Nb is set to calculated as Nb 2 O 5, in the case of W is the terms of WO 3, in the case of Sb is a Sb 2 O 3 in terms of To do.
The preferred content of the third subcomponent is 0.05 ≦ γ ≦ 0.4 mass%, and the more preferred content is 0.1 ≦ γ ≦ 0.35 mass%.

ここで、第2副成分および第3副成分ともにBサイトに入る。
Bサイトは、上記組成式(1)、(2)に示すように、TiおよびZrに占められているが、両者ともに4価の元素である。これに対し、第2副成分、例えばCoは2価であり、4価のサイトに対して価数が小さい、一般にアクセプタと呼ばれる元素である。
Coのように価数の小さい元素は他の元素から受ける拘束力が小さいため、焼成時の動き(拡散)が速く、焼結助剤として働くと解される。このようにCoは焼結性を改善することにより、本発明の圧電磁器組成物の圧電特性を向上させる。他の第2副成分も、2価をとるため、同様の効果を奏する。もっとも、このような他の元素から受ける拘束力が小さい元素は、圧電効果をハード化するものと解され、圧電磁器組成物本来の特性を低下させるおそれがある。
Here, both the second subcomponent and the third subcomponent enter the B site.
As shown in the composition formulas (1) and (2), the B site is occupied by Ti and Zr, both of which are tetravalent elements. On the other hand, the second subcomponent, for example Co, is an element generally called an acceptor that is divalent and has a small valence with respect to a tetravalent site.
It is understood that an element having a small valence such as Co has a small restraint force received from other elements, and therefore, the movement (diffusion) at the time of firing is fast and acts as a sintering aid. Thus, Co improves the piezoelectric characteristics of the piezoelectric ceramic composition of the present invention by improving the sinterability. The other second subcomponents are also bivalent and thus have the same effect. However, such an element having a small binding force from other elements is understood to harden the piezoelectric effect, and there is a possibility that the original characteristics of the piezoelectric ceramic composition may be deteriorated.

一方、第3副成分、例えばWは6価であり、4価のサイトに対して価数が大きい、一般にドナーと呼ばれる元素である。
Wのように価数が大きい元素は他の元素から受ける拘束力が大きいため、焼成時の動き(拡散)が遅く、焼結性を低下させるおそれがある。しかしながら、このような他の元素から受ける拘束力が大きい元素は圧電効果をソフト化して、圧電本来の特性を改善するものと解される。他の第3副成分も、5価あるいは6価をとるため、同様の効果を奏する。
On the other hand, the third subcomponent, for example, W is an element generally called a donor, which is hexavalent and has a large valence with respect to a tetravalent site.
An element having a large valence such as W has a large restraining force from other elements, so that the movement (diffusion) during firing is slow, and the sinterability may be reduced. However, it is understood that an element having a large restraining force from such other elements softens the piezoelectric effect and improves the original characteristics of the piezoelectric element. Other third subcomponents also have the same effect because they are pentavalent or hexavalent.

本発明は、基本的には、ソフト化剤である第3副成分を加えることによる圧電特性の向上を狙い、一方で、その焼結性を改善するために、第2副成分を加えるという色彩を有するといえる。また、第3副成分を加えると、Bサイトの平均価数が化学量論量値である4価からずれるが、同時に第2副成分を加えると、そのずれの分が補正され、より安定な化合物となる点で、第2副成分と第3副成分を同時に加える意義がある。   The present invention basically aims to improve piezoelectric characteristics by adding a third subcomponent which is a softening agent, while adding a second subcomponent to improve the sinterability. It can be said that it has. In addition, when the third subcomponent is added, the average valence of the B site deviates from the tetravalent value that is the stoichiometric value, but when the second subcomponent is added at the same time, the deviation is corrected and more stable. In terms of forming a compound, it is meaningful to add the second subcomponent and the third subcomponent simultaneously.

本発明の圧電磁器組成物は、以上の第1副成分〜第3副成分の他に、さらに他の副成分を含有することができる。例えば、Ag、希土類金属元素、Liである。Agを含有させる場合には、酸化物(AgO)換算で1質量%以下とする。希土類金属元素を含有させる場合には、具体的には、Dy、Nd、Eu、Gd、Tb、HoおよびErから選ばれる少なくとも1種を酸化物換算で0.3質量%以下とする。Liを含有させる場合には、炭酸物換算で0.1質量%以下とする。これらの副成分も、高電圧下での圧電特性向上の効果を発揮する。 The piezoelectric ceramic composition of the present invention can further contain other subcomponents in addition to the first to third subcomponents described above. For example, Ag, rare earth metal element, and Li. When Ag is contained, the content is 1% by mass or less in terms of oxide (Ag 2 O). When the rare earth metal element is contained, specifically, at least one selected from Dy, Nd, Eu, Gd, Tb, Ho and Er is made 0.3 mass% or less in terms of oxide. When Li is contained, the content is 0.1% by mass or less in terms of carbonate. These subcomponents also exhibit the effect of improving the piezoelectric characteristics under high voltage.

以上、本発明による圧電磁器組成物について説明したが、次いで、本発明の圧電磁器組成物が適用される積層型圧電素子について説明する。
図4は、本発明により得られる積層型圧電素子1の構成例を示す断面図である。なお、図4はあくまで一例を示すものであって、本発明が図4の積層型圧電素子1に限定されないことはいうまでもない。この積層型圧電素子1は、複数の圧電体層11と複数の内部電極12とを交互に積層した積層体10を備えている。圧電体層11の一層当たりの厚さは例えば1〜200μm、好ましくは20〜150μm、さらに好ましくは50〜100μmとする。なお、圧電体層11の積層数は目標とする変位量に応じて決定される。
The piezoelectric ceramic composition according to the present invention has been described above. Next, a multilayer piezoelectric element to which the piezoelectric ceramic composition of the present invention is applied will be described.
FIG. 4 is a cross-sectional view showing a configuration example of the multilayer piezoelectric element 1 obtained by the present invention. Note that FIG. 4 is merely an example, and it is needless to say that the present invention is not limited to the multilayer piezoelectric element 1 of FIG. The multilayer piezoelectric element 1 includes a multilayer body 10 in which a plurality of piezoelectric layers 11 and a plurality of internal electrodes 12 are alternately stacked. The thickness per layer of the piezoelectric layer 11 is, for example, 1 to 200 μm, preferably 20 to 150 μm, and more preferably 50 to 100 μm. Note that the number of stacked piezoelectric layers 11 is determined according to the target displacement.

圧電体層11を構成する圧電磁器組成物として、上述した本発明による圧電磁器組成物を用いる。この圧電体層11は、上述した組成式(1)または組成式(2)を主成分とし、第1副成分〜第3副成分を含むことにより、950℃以下の低温かつ低酸素還元性雰囲気での焼成によっても高電圧下で高い圧電特性を実現することができる。   As the piezoelectric ceramic composition constituting the piezoelectric layer 11, the above-described piezoelectric ceramic composition according to the present invention is used. The piezoelectric layer 11 has the composition formula (1) or the composition formula (2) described above as a main component and includes a first subcomponent to a third subcomponent, so that the low temperature and low oxygen reducing atmosphere at 950 ° C. or lower. High piezoelectric properties can be realized under high voltage even by firing at.

内部電極12は、導電材料を含有している。本発明による圧電磁器組成物は、1050℃以下、さらには950℃以下の低温で焼成可能であるため、導電材料としてAg−Pd合金は勿論、Cu、Niを用いることができる。上述したように、Cuを内部電極12の導電材料とする場合、950℃以下であって、かつ低酸素還元性雰囲気で焼成できる必要があるが、本発明による圧電磁器組成物は2つの条件を満足する。   The internal electrode 12 contains a conductive material. Since the piezoelectric ceramic composition according to the present invention can be fired at a low temperature of 1050 ° C. or lower, further 950 ° C. or lower, not only Ag—Pd alloy but also Cu and Ni can be used as the conductive material. As described above, when Cu is used as the conductive material of the internal electrode 12, it is necessary that the piezoelectric ceramic composition according to the present invention satisfies two conditions. Satisfied.

複数の内部電極12は例えば交互に逆方向に延長されており、その延長方向には内部電極12と電気的に接続された一対の端子電極21、22がそれぞれ設けられている。端子電極21、22は、例えば、図示しないリード線を介して図示しない外部電源に対して電気的に接続される。
端子電極21、22は、例えばCuをスパッタリングすることにより形成されていてもよく、また端子電極用ペーストを焼き付けることにより形成されていてもよい。端子電極21、22の厚さは用途等に応じて適宜決定されるが、通常、10〜50μmである。
For example, the plurality of internal electrodes 12 are alternately extended in opposite directions, and a pair of terminal electrodes 21 and 22 electrically connected to the internal electrode 12 are provided in the extending direction. The terminal electrodes 21 and 22 are electrically connected to an external power source (not shown) via a lead wire (not shown), for example.
The terminal electrodes 21 and 22 may be formed by sputtering Cu, for example, or may be formed by baking terminal electrode paste. Although the thickness of the terminal electrodes 21 and 22 is suitably determined according to a use etc., it is 10-50 micrometers normally.

次に、積層型圧電素子1の好適な製造方法について図5をも参照しつつ説明する。図5は積層型圧電素子1の製造工程を示すフローチャートである。
まず、圧電体層11を得るための主成分の出発原料として、例えば、PbO、TiO、ZrO、ZnOおよびNbまたは焼成によりこれら酸化物に変わり得る化合物;SrO、BaOおよびCaOから選ばれる少なくとも一つの酸化物または焼成によりこれら酸化物に変わり得る化合物等の粉末を用意し、秤量する(ステップS101)。出発原料としては、酸化物でなく、炭酸塩あるいはシュウ酸塩のように焼成により酸化物となるものを用いてもよい。これらの原料粉末は、通常、平均粒子径0.5〜10μm程度のものが用いられる。
Next, a preferred method for manufacturing the multilayer piezoelectric element 1 will be described with reference to FIG. FIG. 5 is a flowchart showing the manufacturing process of the multilayer piezoelectric element 1.
First, as the main starting material for obtaining the piezoelectric layer 11, for example, PbO, TiO 2 , ZrO 2 , ZnO and Nb 2 O 5 or compounds that can be converted to these oxides by firing; from SrO, BaO and CaO A powder such as at least one selected oxide or a compound that can be converted into these oxides by firing is prepared and weighed (step S101). As a starting material, not an oxide but a material that becomes an oxide by firing, such as carbonate or oxalate, may be used. As these raw material powders, those having an average particle diameter of about 0.5 to 10 μm are usually used.

圧電体層11の出発原料に副成分を含ませる場合には、上記に加えて各副成分の原料を用意する。第1副成分として、Cu粉末、CuO粉末およびCuO粉末の少なくとも1種を用いることができる。第2副成分として、CoO粉末、NiO粉末、MgO粉末およびGa粉末の少なくとも1種を用いることができる。また、第3副成分として、Ta粉末、Nb粉末、WO粉末およびSb粉末の少なくとも1種を用いることができる。酸化物でなく、炭酸塩あるいはシュウ酸塩のように焼成により酸化物となるものを用いてもよいことは上述の通りである。 When subcomponents are included in the starting material of the piezoelectric layer 11, in addition to the above, raw materials for each subcomponent are prepared. As the first subcomponent, at least one of Cu powder, Cu 2 O powder and CuO powder can be used. As the second subcomponent, at least one of CoO powder, NiO powder, MgO powder, and Ga 2 O 3 powder can be used. Further, as a third subcomponent, Ta 2 O 5 powder, Nb 2 O 5 powder, it is possible to use at least one of WO 3 powder and Sb 2 O 3 powder. As described above, instead of an oxide, a material that becomes an oxide by firing, such as carbonate or oxalate, may be used.

続いて、主成分および副成分の出発原料を例えばボールミルを用いて湿式粉砕・混合して、原料混合物とする(ステップS102)。
なお、副成分の出発原料は、後述する仮焼成(ステップS103)の前に添加してもよいが、仮焼成後に添加するようにしてもよい。但し、仮焼成前に添加した方がより均質な圧電体層11を作製することができるので好ましい。仮焼成後に添加する場合には、副成分の出発原料には酸化物を用いることが好ましい。
Subsequently, the starting materials of the main component and the subcomponent are wet pulverized and mixed using, for example, a ball mill to form a raw material mixture (step S102).
In addition, although the starting material of a subcomponent may be added before temporary baking (step S103) mentioned later, you may make it add after temporary baking. However, it is preferable to add it before calcination because a more uniform piezoelectric layer 11 can be produced. When added after calcination, it is preferable to use an oxide as a starting material for the auxiliary component.

次いで、原料混合物を乾燥し、例えば、750〜950℃の温度で1〜6時間にわたり仮焼成する(ステップS103)。この仮焼成は、大気中で行ってもよく、また大気中よりも酸素分圧の高い雰囲気または純酸素雰囲気で行ってもよい。
仮焼成したのち、例えば、この仮焼物をボールミルにて湿式粉砕・混合し、主成分および必要に応じた副成分を含む仮焼成粉とする(ステップS104)。
次に、この仮焼成粉にバインダを加えて圧電体層用ペーストを作製する(ステップS105)。具体的には以下の通りである。はじめに、例えばボールミル等を用いて、湿式粉砕によりスラリを得る。このとき、スラリの溶媒として、水もしくはエタノールなどのアルコール、または水とエタノールとの混合溶媒を用いることができる。湿式粉砕は、仮焼成粉の平均粒径が0.5〜2.0μm程度となるまで行うことが好ましい。
Next, the raw material mixture is dried and, for example, pre-baked at a temperature of 750 to 950 ° C. for 1 to 6 hours (step S103). This pre-baking may be performed in the air, or may be performed in an atmosphere having a higher oxygen partial pressure or in a pure oxygen atmosphere than in the air.
After calcining, for example, the calcined product is wet pulverized and mixed in a ball mill to obtain a calcined powder containing a main component and optional subcomponents (step S104).
Next, a binder is added to the temporarily fired powder to produce a piezoelectric layer paste (step S105). Specifically, it is as follows. First, a slurry is obtained by wet pulverization using, for example, a ball mill. At this time, water or an alcohol such as ethanol, or a mixed solvent of water and ethanol can be used as a solvent for the slurry. The wet pulverization is preferably performed until the average particle size of the calcined powder becomes about 0.5 to 2.0 μm.

次いで、得られたスラリを有機ビヒクル中に分散させる。有機ビヒクルとは、バインダを有機溶剤中に溶解したものであり、有機ビヒクルに用いられるバインダは、特に限定されず、エチルセルロース、ポリビニルブチラール、アクリル等の通常の各種バインダから適宜選択すればよい。また、このとき用いられる有機溶剤も特に限定されず、印刷法やシート成形法など、利用する方法に応じてテルピネオール、ブチルカルビトール、アセトン、トルエン、MEK(メチルエチルケトン)、ターピネオール等の有機溶剤から適宜選択すればよい。   The resulting slurry is then dispersed in an organic vehicle. The organic vehicle is obtained by dissolving a binder in an organic solvent, and the binder used in the organic vehicle is not particularly limited, and may be appropriately selected from usual various binders such as ethyl cellulose, polyvinyl butyral, and acrylic. Also, the organic solvent used at this time is not particularly limited, and may be appropriately selected from organic solvents such as terpineol, butyl carbitol, acetone, toluene, MEK (methyl ethyl ketone), terpineol, etc. Just choose.

圧電体層用ペーストを水系の塗料とする場合には、水溶性のバインダや分散剤などを水に溶解させた水系ビヒクルと、仮焼成粉とを混練すればよい。水系ビヒクルに用いる水溶性バインダは特に限定されず、例えば、ポリビニルアルコール、セルロース、水溶性アクリル樹脂などを用いればよい。   When the piezoelectric layer paste is used as a water-based paint, a water-based vehicle in which a water-soluble binder, a dispersant, or the like is dissolved in water and a pre-fired powder may be kneaded. The water-soluble binder used for the water-based vehicle is not particularly limited, and for example, polyvinyl alcohol, cellulose, water-soluble acrylic resin, or the like may be used.

また、内部電極用ペーストを作製する(ステップS106)。
内部電極用ペーストは、上述した各種導電材料あるいは焼成後に上述した導電材料となる各種酸化物、有機金属化合物、レジネート等と、上述した有機ビヒクルとを混練して調製される。
後述する焼成工程において、内部電極用ペーストに導電材料としてCuが含まれると、圧電体層用ペーストの焼成によって形成される圧電体層11中にCuが拡散する。
Also, an internal electrode paste is prepared (step S106).
The internal electrode paste is prepared by kneading the various conductive materials described above or various oxides, organometallic compounds, resinates, and the like, which become the conductive materials described above after firing, and the above-described organic vehicle.
In the firing step described later, if the internal electrode paste contains Cu as a conductive material, Cu diffuses into the piezoelectric layer 11 formed by firing the piezoelectric layer paste.

端子電極用ペーストも内部電極用ペーストと同様にして作製する(ステップS107)。
以上では圧電体層用ペースト、内部電極用ペーストおよび端子電極用ペーストを順番に作製しているが、並行して作製してもよいし、逆の順番でもよいことは言うまでもない。
各ペーストの有機ビヒクルの含有量は、特に限定されず、通常の含有量、例えば、バインダは5〜10質量%程度、溶剤は10〜50質量%程度とすればよい。また、各ペースト中には必要に応じて各種分散剤、可塑剤、誘電体、絶縁体等から選択される添加物が含有されてもよい。
The terminal electrode paste is prepared in the same manner as the internal electrode paste (step S107).
In the above, the piezoelectric layer paste, the internal electrode paste, and the terminal electrode paste are produced in order, but it goes without saying that they may be produced in parallel or in the reverse order.
The content of the organic vehicle in each paste is not particularly limited, and may be a normal content, for example, about 5 to 10% by mass for the binder and about 10 to 50% by mass for the solvent. Each paste may contain an additive selected from various dispersants, plasticizers, dielectrics, insulators and the like as necessary.

次に、以上のペーストを用いて焼成の対象であるグリーンチップ(積層体)を作製する(ステップS108)。
印刷法を用いグリーンチップを作製する場合は、圧電体層用ペーストを、例えば、ポリエチレンテレフタレート等の基板上に所定厚さで複数回印刷して、図4に示すように、グリーン状態の外側圧電体層11aを形成する。次に、このグリーン状態の外側圧電体層11aの上に、内部電極用ペーストを所定パターンで印刷して、グリーン状態の内部電極(内部電極前駆体)12aを形成する。次に、このグリーン状態の内部電極12aの上に、前記同様に圧電体層用ペーストを所定厚さで複数回印刷して、グリーン状態の圧電体層(圧電体層前駆体)11bを形成する。次に、このグリーン状態の圧電体層11bの上に、内部電極用ペーストを所定パターンで印刷して、グリーン状態の内部電極12bを形成する。グリーン状態の内部電極12a、12b…は、対向して相異なる端部表面に露出するように形成する。以上の作業を所定回数繰り返し、最後に、グリーン状態の内部電極12の上に、前記同様に圧電体層用ペーストを所定厚さで所定回数印刷して、グリーン状態の外側圧電体層11cを形成する。その後、加熱しながら加圧、圧着し、所定形状に切断してグリーンチップ(積層体)とする。
以上では、印刷法によりグリーンチップを作製する例を説明したが、シート成形法を用いてグリーンチップを作製することもできる。
Next, a green chip (laminated body) to be fired is manufactured using the above paste (step S108).
When producing a green chip by using a printing method, a piezoelectric layer paste is printed a plurality of times on a substrate such as polyethylene terephthalate at a predetermined thickness, as shown in FIG. The body layer 11a is formed. Next, the internal electrode paste is printed in a predetermined pattern on the green outer piezoelectric layer 11a to form a green internal electrode (internal electrode precursor) 12a. Next, a piezoelectric layer paste is printed a plurality of times at a predetermined thickness on the internal electrode 12a in the green state to form a green state piezoelectric layer (piezoelectric layer precursor) 11b. . Next, an internal electrode paste is printed in a predetermined pattern on the green piezoelectric layer 11b to form a green internal electrode 12b. The green internal electrodes 12a, 12b,... Are formed so as to be exposed to different end surfaces. The above operation is repeated a predetermined number of times, and finally, a piezoelectric layer paste is printed a predetermined number of times with a predetermined thickness on the internal electrode 12 in the green state to form the outer piezoelectric layer 11c in the green state. To do. Then, it pressurizes and pressure-bonds, heating, cut | disconnects to a predetermined shape, and is set as a green chip (laminated body).
In the above, an example in which a green chip is manufactured by a printing method has been described. However, a green chip can also be manufactured by using a sheet forming method.

次に、グリーンチップについて脱バインダ処理を行う(ステップS109)。
脱バインダ処理において、内部電極前駆体中の導電材料によってその雰囲気を決定する必要がある。貴金属を導電材料として用いる場合には、大気中、または大気中よりも酸素分圧が高い雰囲気または純酸素雰囲気で行ってもよい。しかし、CuまたはNiを導電材料として用いる場合には、酸化を考慮する必要があり、低酸素還元性雰囲気下での加熱を採用すべきである。一方で、脱バインダ処理において、圧電体層前駆体に含まれる酸化物、例えばPbOが還元されることを考慮する必要がある。例えば導電材料としてCuを用いた場合、CuとCuOの平衡酸素分圧およびPbとPbOの平衡酸素分圧に基づいて、いかなる還元性雰囲気を脱バインダ処理に適用するか設定することが好ましい。
Next, the binder removal process is performed on the green chip (step S109).
In the binder removal process, the atmosphere needs to be determined by the conductive material in the internal electrode precursor. When a noble metal is used as the conductive material, it may be performed in the atmosphere, an atmosphere having a higher oxygen partial pressure than the atmosphere, or a pure oxygen atmosphere. However, when using Cu or Ni as the conductive material, it is necessary to consider oxidation, and heating in a low oxygen reducing atmosphere should be employed. On the other hand, it is necessary to consider that an oxide contained in the piezoelectric layer precursor, such as PbO, is reduced in the binder removal process. For example, when Cu is used as the conductive material, it is preferable to set what reducing atmosphere is applied to the debinding process based on the equilibrium oxygen partial pressure of Cu and Cu 2 O and the equilibrium oxygen partial pressure of Pb and PbO. .

脱バインダ処理の温度は300℃〜650℃とし、脱バインダ処理の時間は、温度および雰囲気によって定める必要があるが、0.5〜50時間の範囲で選定することができる。さらに、脱バインダ処理は、焼成と別個に独立して行うことができるし、焼成と連続的に行うことができる。焼成と連続的に行う場合には、焼成の昇温過程で脱バインダ処理を実行すればよい。   The temperature of the binder removal treatment is 300 ° C. to 650 ° C., and the time of the binder removal treatment needs to be determined depending on the temperature and atmosphere, but can be selected in the range of 0.5 to 50 hours. Further, the binder removal treatment can be performed independently of the firing and can be performed continuously with the firing. In the case where the firing is continuously performed, the binder removal process may be performed in the firing temperature increasing process.

脱バインダ処理の後に、焼成(ステップS110)を行う。
Cuを導電材料として用いる場合には低酸素還元性雰囲気で焼成する。貴金属、例えばAg−Pd合金を導電材料として用いる場合には大気中で焼成すればよい。
本発明の場合、焼成温度を800〜1050℃とすることができる。焼成温度が800℃未満では本発明の圧電磁器組成物であっても焼成が十分に進行せず、また1050℃を超えると導電材料の溶融が懸念される。好ましい焼成温度は850〜1000℃、さらに好ましい焼成温度は900〜950℃である。本発明の圧電磁器組成物は、900〜950℃の温度でも十分に緻密な焼成体を得ることができる。
低酸素還元性雰囲気としては、酸素分圧を1×10−10〜1×10−6気圧とするのが好ましい。酸素分圧が1×10−10気圧未満では圧電体層前駆体に含まれる酸化物、例えばPbOが還元されて金属Pbとして析出し、最終的に得られる焼成体の圧電特性を低下させる恐れがあり、また1×10−6気圧を超えると電極材料としてCuを用いた場合、その酸化が懸念される。さらに好ましい酸素分圧は1×10−8〜1×10−7気圧である。
After the binder removal process, firing (step S110) is performed.
When using Cu as a conductive material, firing is performed in a low oxygen reducing atmosphere. When a noble metal such as an Ag—Pd alloy is used as the conductive material, it may be fired in the atmosphere.
In the case of the present invention, the firing temperature can be 800-1050 ° C. When the firing temperature is less than 800 ° C., the piezoelectric ceramic composition of the present invention is not sufficiently fired, and when it exceeds 1050 ° C., there is a concern about melting of the conductive material. A preferable baking temperature is 850 to 1000 ° C, and a more preferable baking temperature is 900 to 950 ° C. The piezoelectric ceramic composition of the present invention can obtain a sufficiently dense fired body even at a temperature of 900 to 950 ° C.
As the low oxygen reducing atmosphere, the oxygen partial pressure is preferably 1 × 10 −10 to 1 × 10 −6 atm. If the oxygen partial pressure is less than 1 × 10 −10 atm, an oxide contained in the piezoelectric layer precursor, such as PbO, may be reduced and deposited as metal Pb, which may lower the piezoelectric properties of the finally obtained fired body. In addition, when Cu exceeds 1 × 10 −6 atm, there is a concern about oxidation when Cu is used as the electrode material. A more preferable oxygen partial pressure is 1 × 10 −8 to 1 × 10 −7 atm.

以上の工程を経て作製された積層体10は、例えばバレル研磨やサンドブラストなどにより端面研磨を施し、前述した端子電極用ペーストを印刷または焼き付けることにより端子電極21、22を形成する(ステップS111)。なお、印刷または焼き付けの他に、スパッタリングすることにより端子電極21、22を形成することもできる。
以上により、図4に示した積層型圧電素子1を得ることができる。
The laminated body 10 manufactured through the above steps is subjected to end face polishing by, for example, barrel polishing or sand blasting, and the terminal electrodes 21 and 22 are formed by printing or baking the terminal electrode paste described above (step S111). In addition to printing or baking, the terminal electrodes 21 and 22 can also be formed by sputtering.
Thus, the multilayer piezoelectric element 1 shown in FIG. 4 can be obtained.

本実施例では、下記の主成分に対して、第1副成分としてのCuをCuOとして、また第2副成分としてのCoをCoOとして表1に示す量となるように添加し、その効果を調べた。なお、第3副成分を下記の通り添加した。 In this example, Cu as the first subcomponent is added as Cu 2 O and Co as the second subcomponent is added as CoO to the following main components so as to have the amounts shown in Table 1, The effect was investigated. The third subcomponent was added as follows.

主成分:(Pb0.965Sr0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第3副成分:WO 0.2質量%
Main component: (Pb 0.965 Sr 0.03 ) [(Zn 1/3 Nb 2/3 ) 0.02 Ti 0.46 Zr 0.52 ] O 3
Third subcomponent: WO 3 0.2 wt%

圧電磁器組成物は、次のようにして作製した。先ず、主成分の原料として、PbO粉末、SrCO粉末、ZnO粉末、Nb粉末、TiO粉末、ZrO粉末を用意し、上記主成分の組成となるように秤量した。第1副成分〜第3副成分の添加種として、CuO粉末、CoO粉末およびWO粉末を用意し、表1(第1副成分、第2副成分)および上記に示す量となるように主成分の母組成に添加した。
次に、ボールミルを用いてこれら原料を16時間湿式混合し、大気中において700〜900℃で2時間仮焼した。
得られた仮焼物を微粉砕した後、ボールミルを用いて16時間湿式粉砕した。これを乾燥した後、バインダとしてアクリル系樹脂を加えて造粒し、1軸プレス成形機を用いて約445MPaの圧力で直径17mm、厚さ1mmの円板状に成形した。
The piezoelectric ceramic composition was produced as follows. First, PbO powder, SrCO 3 powder, ZnO powder, Nb 2 O 5 powder, TiO 2 powder, and ZrO 2 powder were prepared as raw materials for the main component, and weighed so as to have the composition of the main component. Cu 2 O powder, CoO powder, and WO 3 powder are prepared as additive species of the first subcomponent to the third subcomponent so that the amounts are as shown in Table 1 (first subcomponent, second subcomponent) and above. To the mother composition of the main component.
Next, these raw materials were wet-mixed for 16 hours using a ball mill, and calcined at 700 to 900 ° C. for 2 hours in the air.
The obtained calcined product was finely pulverized and then wet pulverized for 16 hours using a ball mill. After drying this, an acrylic resin was added as a binder for granulation, and it was formed into a disk shape having a diameter of 17 mm and a thickness of 1 mm using a uniaxial press molding machine at a pressure of about 445 MPa.

得られた成形体を低酸素還元性雰囲気中(酸素分圧1×10−10〜1×10−6気圧)において950℃で8時間焼成した。
また、得られた焼結体をスライス加工およびラップ加工により厚さ0.6mmの円板状とし、圧電定数d33の評価が可能な形状に加工した。得られたサンプルの両面に銀ペーストを印刷して350℃で焼き付け、120℃のシリコーンオイル中で3kVの電界を15分間印加し、分極処理を行った。
作製した試料について、1.7kV/mmの電圧を印加したときの変位をレーザードップラー変位計により測定し、圧電定数d33を求めた。なお、圧電定数d33は電極面に垂直(厚さ)方向の歪みに基づくものである。その結果を表1に示す。
The obtained molded body was fired at 950 ° C. for 8 hours in a low oxygen reducing atmosphere (oxygen partial pressure 1 × 10 −10 to 1 × 10 −6 atm).
Further, the obtained sintered body was formed into a disk shape having a thickness of 0.6 mm by slicing and lapping, and processed into a shape capable of evaluating the piezoelectric constant d33. A silver paste was printed on both surfaces of the obtained sample and baked at 350 ° C., and an electric field of 3 kV was applied in 120 ° C. silicone oil for 15 minutes to carry out polarization treatment.
About the produced sample, the displacement when the voltage of 1.7 kV / mm was applied was measured with the laser Doppler displacement meter, and the piezoelectric constant d33 was calculated | required. The piezoelectric constant d33 is based on strain in the direction perpendicular to the electrode surface (thickness). The results are shown in Table 1.

Figure 0004793579
Figure 0004793579

表1に示すように、上記主成分のみでは、分極時に割れが生じて、圧電定数d33を評価することができなかった。第1副成分〜第3副成分を含有することにより、950℃の焼成においても、高電圧下で優れた圧電定数d33を得ることができる。ただし、第1副成分(CuO)の含有量が0.5質量%を超えると圧電定数d33が690pC/N以下に低下する。また、第2副成分(CoO)を含まないと圧電定数d33が650pC/N程度と低いのに対して、CoOを添加することにより、700pC/Nを超える圧電定数d33が得られる。
なお、焼成後に、第1副成分〜第3副成分の含有量を測定したところ、添加量と一致していた。以下の実施例も同様である。
As shown in Table 1, with only the main component, cracking occurred during polarization, and the piezoelectric constant d33 could not be evaluated. By containing the first subcomponent to the third subcomponent, an excellent piezoelectric constant d33 can be obtained even at 950 ° C. under high voltage. However, when the content of the first subcomponent (Cu 2 O) exceeds 0.5 mass%, the piezoelectric constant d33 decreases to 690 pC / N or less. Further, when the second subcomponent (CoO) is not included, the piezoelectric constant d33 is as low as about 650 pC / N, but by adding CoO, the piezoelectric constant d33 exceeding 700 pC / N can be obtained.
In addition, when content of the 1st subcomponent-the 3rd subcomponent was measured after baking, it was in agreement with the addition amount. The same applies to the following embodiments.

下記の主成分に対して、aを表2に示すように、また、第1副成分〜第3副成分を下記に示すように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様にして圧電定数d33を求めた。その結果を表2に示す。
表2に示すように、aが0.96〜1.03の範囲内において、高電圧下における圧電特性向上の効果を享受することができる。
A sample was prepared in the same manner as in Example 1 except that a was prepared as shown in Table 2 for the following main components, and the raw materials were adjusted as shown below for the first to third subcomponents. Produced. For the obtained sample, the piezoelectric constant d33 was obtained in the same manner as in Example 1. The results are shown in Table 2.
As shown in Table 2, when a is in the range of 0.96 to 1.03, the effect of improving the piezoelectric characteristics under high voltage can be enjoyed.

主成分:(Pba−0.03Sr0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
第2副成分:CoO 0.05質量%
第3副成分:WO 0.2質量%
Main component: (Pb a -0.03 Sr 0.03 ) [(Zn 1/3 Nb 2/3 ) 0.02 Ti 0.46 Zr 0.52 ] O 3
First subcomponent: 0.05% by mass of Cu 2 O
Second subcomponent: CoO 0.05 mass%
Third subcomponent: WO 3 0.2 wt%

Figure 0004793579
Figure 0004793579

下記の主成分に対して、bを表3に示すように、また、第1副成分〜第3副成分を下記に示すように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様にして圧電定数d33を求めた。その結果を表3に示す。
表3に示すように、bが0〜0.1の範囲内において、高電圧下における圧電特性向上の効果を享受することができる。
Samples were prepared in the same manner as in Example 1 except that the raw materials were adjusted as shown in Table 3 for the following main components and as shown below for the first to third subcomponents. Produced. For the obtained sample, the piezoelectric constant d33 was obtained in the same manner as in Example 1. The results are shown in Table 3.
As shown in Table 3, when b is in the range of 0 to 0.1, the effect of improving the piezoelectric characteristics under a high voltage can be enjoyed.

主成分:(Pb0.995−bSr)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
第2副成分:CoO 0.05質量%
第3副成分:WO 0.2質量%
Main component: (Pb 0.995-b Sr b ) [(Zn 1/3 Nb 2/3 ) 0.02 Ti 0.46 Zr 0.52 ] O 3
First subcomponent: 0.05% by mass of Cu 2 O
Second subcomponent: CoO 0.05 mass%
Third subcomponent: WO 3 0.2 wt%

Figure 0004793579
Figure 0004793579

下記の主成分に対して、Meを表4に示す元素とし、かつ第1副成分〜第3副成分を下記に示すように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様に圧電定数d33を求めた。その結果を表4に示す。
表4に示すように、Pbの置換元素としてCaまたはBaを用いた場合にも、Srと同様に高電圧下における圧電特性向上の効果を享受することができる。
A sample is prepared in the same manner as in Example 1 except that Me is an element shown in Table 4 with respect to the following main components, and the raw materials are adjusted as shown below for the first to third subcomponents. did. For the obtained sample, the piezoelectric constant d33 was obtained in the same manner as in Example 1. The results are shown in Table 4.
As shown in Table 4, even when Ca or Ba is used as a substitution element for Pb, the effect of improving the piezoelectric characteristics under a high voltage can be enjoyed similarly to Sr.

主成分:(Pb0.965Me0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
第2副成分:CoO 0.05質量%
第3副成分:WO 0.2質量%
Main component: (Pb 0.965 Me 0.03 ) [(Zn 1/3 Nb 2/3 ) 0.02 Ti 0.46 Zr 0.52 ] O 3
First subcomponent: 0.05% by mass of Cu 2 O
Second subcomponent: CoO 0.05 mass%
Third subcomponent: WO 3 0.2 wt%

Figure 0004793579
Figure 0004793579

下記の主成分に対して、x、yおよびzを表5に示す値とし、かつ第1副成分〜第3副成分を下記に示すように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様に圧電定数d33を求めた。その結果を表5に示す。
表5から明らかなように、Bサイト元素のx、y、zが各々0.005≦x≦0.047、0.42≦y≦0.53、0.45≦z≦0.56の範囲において、高電圧下における圧電特性向上の効果を享受することができる。
The same as in Example 1 except that x, y, and z are values shown in Table 5 and the raw materials are adjusted as shown below for the first to third subcomponents with respect to the following main components. A sample was prepared. For the obtained sample, the piezoelectric constant d33 was obtained in the same manner as in Example 1. The results are shown in Table 5.
As apparent from Table 5, the x-, y-, and z-values of the B site element are in the range of 0.005 ≦ x ≦ 0.047, 0.42 ≦ y ≦ 0.53, and 0.45 ≦ z ≦ 0.56, respectively. Therefore, the effect of improving the piezoelectric characteristics under high voltage can be enjoyed.

主成分:(Pb0.965Sr0.03)[(Zn1/3Nb2/3TiZr]O
第1副成分:CuO 0.05質量%
第2副成分:CoO 0.05質量%
第3副成分:WO 0.2質量%
Main component: (Pb 0.965 Sr 0.03 ) [(Zn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3
First subcomponent: 0.05% by mass of Cu 2 O
Second subcomponent: CoO 0.05 mass%
Third subcomponent: WO 3 0.2 wt%

Figure 0004793579
Figure 0004793579

下記の主成分に対して、第3副成分を表6に示す種類、量とし、また第1副成分および第2副成分を下記に示す種類、量となるように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様に圧電定数d33を求めた。その結果を表6に示す。
表6に示すように、第3副成分を添加することにより、高電圧下における圧電特性向上の効果を享受することができる。
主成分:(Pb0.965Sr0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
第2副成分:CoO 0.05質量%
For the following main components, except that the third subcomponent is the type and amount shown in Table 6, and the raw material is adjusted so that the first subcomponent and the second subcomponent are the type and amount shown below, A sample was prepared in the same manner as in Example 1. For the obtained sample, the piezoelectric constant d33 was obtained in the same manner as in Example 1. The results are shown in Table 6.
As shown in Table 6, the effect of improving the piezoelectric characteristics under high voltage can be enjoyed by adding the third subcomponent.
Main component: (Pb 0.965 Sr 0.03 ) [(Zn 1/3 Nb 2/3 ) 0.02 Ti 0.46 Zr 0.52 ] O 3
First subcomponent: 0.05% by mass of Cu 2 O
Second subcomponent: CoO 0.05 mass%

Figure 0004793579
Figure 0004793579

下記の主成分に対して、第2副成分および第3副成分を表7に示す種類、量とし、また第1副成分を下記に示す種類、量となるように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様に圧電定数d33を求めた。その結果を表7に示す。
表7に示すように、第2副成分として、Coの他に、Ni、Mg、Gaも有効であることがわかる。また、第3副成分として、Wの他に、Nb、Ta、Sbも有効であることがわかる。
主成分:(Pb0.965Sr0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
For the following main components, except that the second subcomponent and the third subcomponent are the types and amounts shown in Table 7, and the raw materials are adjusted so that the first subcomponent has the types and amounts shown below, A sample was prepared in the same manner as in Example 1. For the obtained sample, the piezoelectric constant d33 was obtained in the same manner as in Example 1. The results are shown in Table 7.
As shown in Table 7, it can be seen that Ni, Mg, and Ga are also effective as the second subcomponent in addition to Co. In addition to W, Nb, Ta, and Sb are also effective as the third subcomponent.
Main component: (Pb 0.965 Sr 0.03 ) [(Zn 1/3 Nb 2/3 ) 0.02 Ti 0.46 Zr 0.52 ] O 3
First subcomponent: 0.05% by mass of Cu 2 O

Figure 0004793579
Figure 0004793579

実施例8は、積層型圧電素子を作製した例を示す。
積層型圧電素子の製造に際しては、先ず、CuOを含まない以外は実施例1の実施例1−3と同様にして得られた圧電磁器組成物粉末にビヒクルを加え、混練して圧電体層用ペーストを作製した。それとともに、導電材料であるCu粉末をビヒクルと混練し、内部電極用ペーストを作製した。続いて、圧電体層用ペーストおよび内部電極用ペーストを用いて、印刷法により積層体の前駆体であるグリーンチップを作製した。圧電体層用ペーストの積層数は300とした。
次に、脱バインダ処理を行い、還元焼成条件で焼成し、積層型圧電素子を得た。還元焼成条件としては、低酸素還元性雰囲気(酸素分圧1×10−10〜1×10−6気圧)下、焼成温度950℃で8時間焼成を行った。得られた積層型圧電素子について、圧電体層のCu含有量を測定した。
Example 8 shows an example in which a multilayer piezoelectric element was produced.
In the production of the multilayer piezoelectric element, first, a vehicle is added to the piezoelectric ceramic composition powder obtained in the same manner as in Example 1-3 of Example 1 except that Cu 2 O is not included, and the piezoelectric material is kneaded. A layer paste was prepared. At the same time, Cu powder as a conductive material was kneaded with a vehicle to produce an internal electrode paste. Subsequently, a green chip, which is a precursor of the multilayer body, was produced by a printing method using the piezoelectric layer paste and the internal electrode paste. The number of stacked piezoelectric layer pastes was 300.
Next, a binder removal treatment was performed, and firing was performed under reducing firing conditions to obtain a multilayer piezoelectric element. As reducing firing conditions, firing was performed at a firing temperature of 950 ° C. for 8 hours in a low oxygen reducing atmosphere (oxygen partial pressure of 1 × 10 −10 to 1 × 10 −6 atm). With respect to the obtained multilayer piezoelectric element, the Cu content of the piezoelectric layer was measured.

Cu含有量の測定はICP分析により行った。ICP用サンプルは、先ず、分析を行う試料0.1gにLiを1g加え、1050℃で15分間溶融させた。得られた融解物に(COOH)を0.2g、HClを10ml加え、加熱溶解させ、100mlに定容した。測定は、ICP−AES(島津製作所(株)製、商品名ICPS−8000)を用いて行った。 The Cu content was measured by ICP analysis. First, 1 g of Li 2 B 2 O 7 was added to 0.1 g of the sample to be analyzed, and the ICP sample was melted at 1050 ° C. for 15 minutes. To the obtained melt, 0.2 g of (COOH) 2 and 10 ml of HCl were added, dissolved by heating, and the volume was adjusted to 100 ml. The measurement was performed using ICP-AES (manufactured by Shimadzu Corporation, trade name ICPS-8000).

その結果、圧電体層にはCuがCuO換算で0.05質量%程度含まれていた。このCuは、圧電磁器組成物の原料にCuが含まれていないことから、内部電極用ペーストから焼成過程で拡散したものと認められる。得られた積層型圧電素子について、実施例1と同様に圧電定数d33を測定した。また、得られた積層型圧電素子について、高温加速寿命を測定した。その結果を表8(積層体)に示す。高温加速寿命は、温度250℃において電界強度が8kV/mmになるように試料に電圧を印加し、その絶縁抵抗の経時変化を求めた。ここでは、各試料の絶縁抵抗が試験開始直後の値を基準として1桁低下するまでの時間を寿命時間として計測し、高温加速寿命とした。なお、比較のため、実施例1−3による試料についても同様の測定を行った。結果を表8(バルク)に示す。表8に示すように、圧電定数d33は同等であるが、高温加速寿命は圧電体層にCuが拡散した積層体の方が優れる結果となった。 As a result, the piezoelectric layer contained about 0.05 mass% of Cu in terms of Cu 2 O. Since this Cu does not contain Cu in the raw material of the piezoelectric ceramic composition, it is recognized that it diffused from the internal electrode paste during the firing process. For the obtained multilayer piezoelectric element, the piezoelectric constant d33 was measured in the same manner as in Example 1. Moreover, the high temperature accelerated lifetime was measured about the obtained laminated piezoelectric element. The results are shown in Table 8 (laminate). For the high temperature accelerated life, a voltage was applied to the sample so that the electric field strength was 8 kV / mm at a temperature of 250 ° C., and the change over time in the insulation resistance was determined. Here, the time until the insulation resistance of each sample decreased by an order of magnitude on the basis of the value immediately after the start of the test was measured as the lifetime, and was defined as the high temperature accelerated lifetime. For comparison, the same measurement was performed on the sample according to Example 1-3. The results are shown in Table 8 (bulk). As shown in Table 8, the piezoelectric constant d33 was the same, but the high temperature accelerated life was superior in the laminate in which Cu was diffused in the piezoelectric layer.

Figure 0004793579
Figure 0004793579

Cuペースト印刷をして得られた焼結体のEPMAによる元素マッピング像である。It is an element mapping image by EPMA of the sintered compact obtained by printing Cu paste. CuO粉末を添加して得られた焼結体のEPMAによる元素マッピング像である。By addition of Cu 2 O powder is an element mapping images by EPMA of the sintered body obtained. CuO粉末を添加して得られた焼結体のTEM像である。Is a TEM image of the sintered body obtained by adding Cu 2 O powder. 本実施の形態における積層型圧電素子の一構成例を示す図である。It is a figure which shows one structural example of the lamination type piezoelectric element in this Embodiment. 本実施の形態における積層型圧電素子の製造手順を示すフローチャートである。It is a flowchart which shows the manufacture procedure of the lamination type piezoelectric element in this Embodiment.

符号の説明Explanation of symbols

1…積層型圧電素子、10…積層体、11…圧電体層、12…内部電極、21、22…端子電極   DESCRIPTION OF SYMBOLS 1 ... Laminated piezoelectric element, 10 ... Laminated body, 11 ... Piezoelectric layer, 12 ... Internal electrode, 21, 22 ... Terminal electrode

Claims (3)

下記の組成式(1)または(2)で示される複合酸化物を主成分とし、
前記主成分に対し、
第1副成分として、CuをCuO換算量αで0<α≦0.5質量%、
第2副成分として、Co、Ni、GaおよびMgから選ばれる少なくとも1種を、Co、NiおよびGaは酸化物換算量β、Mgは炭酸物換算量βで0<β≦0.2質量%、
第3副成分として、Ta、Nb、WおよびSbから選ばれる少なくとも1種を酸化物換算量γで0<γ≦0.6質量%、を含むことを特徴とする圧電磁器組成物。
組成式(1):Pb[(Zn1/3Nb2/3TiZr]O
組成式(1)のa、x、yおよびzが、
0.96≦a≦1.03、
0.005≦x≦0.047、
0.42≦y≦0.53、
0.45≦z≦0.56、
x+y+z=1を満足する。
組成式(2):(Pba−bMe)[(Zn1/3Nb2/3TiZr]O
組成式(2)のa、b、x、yおよびzが、
0.96≦a≦1.03、
0<b≦0.1、
0.005≦x≦0.047、
0.42≦y≦0.53、
0.45≦z≦0.56、
x+y+z=1を満足するとともに、
組成式(2)中のMeは、Sr、CaおよびBaから選ばれる少なくとも1種を表す。
The main component is a complex oxide represented by the following composition formula (1) or (2),
For the main component,
As a first subcomponent, Cu is 0 <α ≦ 0.5 mass% in terms of Cu 2 O conversion amount α,
As the second subcomponent, at least one selected from Co, Ni, Ga and Mg, Co, Ni and Ga are oxide equivalent amounts β, and Mg is carbonate equivalent amount β 0 <β ≦ 0.2 mass% ,
A piezoelectric ceramic composition comprising, as a third subcomponent, at least one selected from Ta, Nb, W and Sb in an oxide equivalent amount γ of 0 <γ ≦ 0.6 mass%.
Composition formula (1): Pb a [(Zn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3
A, x, y and z in the composition formula (1) are
0.96 ≦ a ≦ 1.03,
0.005 ≦ x ≦ 0.047,
0.42 ≦ y ≦ 0.53,
0.45 ≦ z ≦ 0.56,
x + y + z = 1 is satisfied.
Composition formula (2): (Pb ab Me b ) [(Zn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3
A, b, x, y and z in the composition formula (2) are
0.96 ≦ a ≦ 1.03,
0 <b ≦ 0.1,
0.005 ≦ x ≦ 0.047,
0.42 ≦ y ≦ 0.53,
0.45 ≦ z ≦ 0.56,
While satisfying x + y + z = 1,
Me in the composition formula (2) represents at least one selected from Sr, Ca, and Ba.
請求項1に記載の前記圧電磁器組成物から構成される複数の圧電体層と、
前記圧電体層間に挿入される複数の内部電極と、
を備えることを特徴とする積層型圧電素子。
A plurality of piezoelectric layers composed of the piezoelectric ceramic composition according to claim 1;
A plurality of internal electrodes inserted between the piezoelectric layers;
A multilayer piezoelectric element comprising:
前記内部電極はCuを含有し、前記第1副成分のCuは、前記内部電極に含有されるCuの一部が前記圧電体層に拡散したものであることを特徴とする請求項2に記載の積層型圧電素子。   The internal electrode contains Cu, and the first subcomponent Cu is a part of Cu contained in the internal electrode diffused in the piezoelectric layer. Multilayer piezoelectric element.
JP2006324772A 2006-11-30 2006-11-30 Piezoelectric ceramic composition and multilayer piezoelectric element Active JP4793579B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006324772A JP4793579B2 (en) 2006-11-30 2006-11-30 Piezoelectric ceramic composition and multilayer piezoelectric element
US11/944,808 US7528531B2 (en) 2006-11-30 2007-11-26 Piezoelectric ceramic composition and laminated piezoelectric element
DE102007057474A DE102007057474B4 (en) 2006-11-30 2007-11-29 Piezoelectric ceramic composition and laminated piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324772A JP4793579B2 (en) 2006-11-30 2006-11-30 Piezoelectric ceramic composition and multilayer piezoelectric element

Publications (3)

Publication Number Publication Date
JP2008137834A JP2008137834A (en) 2008-06-19
JP2008137834A5 JP2008137834A5 (en) 2009-07-23
JP4793579B2 true JP4793579B2 (en) 2011-10-12

Family

ID=39599705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324772A Active JP4793579B2 (en) 2006-11-30 2006-11-30 Piezoelectric ceramic composition and multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JP4793579B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112008B4 (en) * 2011-08-30 2018-01-11 Epcos Ag Piezoelectric component and method for producing a piezoelectric component

Also Published As

Publication number Publication date
JP2008137834A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4129931B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP4238271B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
KR100594859B1 (en) Method for manufacturing piezoelectric ceramic and piezoelectric element
EP2181976B1 (en) Piezoelectric ceramic composition and laminated piezoelectric element
US7528531B2 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP4640092B2 (en) Multilayer piezoelectric element and method for manufacturing the same
JP2007258301A (en) Laminated piezoelectric element, and its manufacturing method
JP5196124B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP3923064B2 (en) Multilayer piezoelectric element and method for manufacturing the same
JP2007230839A (en) Piezoelectric ceramic composition, multilayer piezoelectric element and method of manufacturing the same
JP4462438B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element
JP3971779B1 (en) Piezoelectric ceramic composition
JP4390082B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP4793579B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP4735837B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP4930676B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element
JP2006096626A (en) Method of manufacturing piezoelectric ceramic, method of manufacturing piezoelectric element, and piezoelectric element
JP4711083B2 (en) Multilayer piezoelectric element
JP5115356B2 (en) Piezoelectric ceramic and piezoelectric element
JP2007238355A (en) Manufacturing methods for piezoelectric ceramic composition and laminated piezoelectric element
JP3966882B2 (en) Method for producing piezoelectric ceramic composition
JP5035076B2 (en) Piezoelectric ceramic and laminated piezoelectric element using the same
JP2007189164A (en) Stacked piezoelectric element, process for fabrication thereof, and conductor paste
JP2010018469A (en) Piezoelectric ceramic and piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4793579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3