JP4551015B2 - Electronic component mounting device - Google Patents

Electronic component mounting device Download PDF

Info

Publication number
JP4551015B2
JP4551015B2 JP2001100869A JP2001100869A JP4551015B2 JP 4551015 B2 JP4551015 B2 JP 4551015B2 JP 2001100869 A JP2001100869 A JP 2001100869A JP 2001100869 A JP2001100869 A JP 2001100869A JP 4551015 B2 JP4551015 B2 JP 4551015B2
Authority
JP
Japan
Prior art keywords
guide
heat
side wall
base
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001100869A
Other languages
Japanese (ja)
Other versions
JP2002299897A (en
Inventor
尚克 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Instruments Co Ltd
Original Assignee
Hitachi High Tech Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Instruments Co Ltd filed Critical Hitachi High Tech Instruments Co Ltd
Priority to JP2001100869A priority Critical patent/JP4551015B2/en
Priority to US10/108,989 priority patent/US6796022B2/en
Priority to EP02007530A priority patent/EP1246520B1/en
Publication of JP2002299897A publication Critical patent/JP2002299897A/en
Application granted granted Critical
Publication of JP4551015B2 publication Critical patent/JP4551015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駆動源により移動可能なビームにこれに沿った方向に駆動源により移動可能な装着ヘッドを設け、この装着ヘッドに設けられたノズルにより電子部品を吸着してプリント基板上に装着する電子部品装着装置に関する。
【0002】
【従来の技術】
かかる従来の電子部品装着装置は、例えば特開2000−165096号公報等に開示され、この特開2000−165096号公報には、2本のリニアモータ軸を備え、各リニアモータ軸には一対ずつ部品装着ヘッド、部品装着ヘッドを備え、これら4つの部品装着ヘッドにて、部品供給部からの電子部品の吸着動作、吸着している電子部品の認識動作、及び回路基板への装着動作を一部重複しながら行う技術が開示されている。
【0003】
【発明が解決しようとする課題】
上記従来の技術において、リニアモータ軸(ビーム)の駆動源にリニアモータを使用した場合には、電子部品装着装置の運転に伴うリニアモータの駆動時に可動子が発熱する。そして、リニアモータの駆動時、電子部品装着装置の中央部付近にてリニアモータ軸(ビーム)が頻繁に往復動作するので、可動子の熱が輻射あるいは周囲の空気を介して固定子の例えば中央部に伝わる。このため、固定子の温度が部分的に上昇し、さらに、固定子が設けられリニアモータ軸(ビーム)を案内する例えば鉄にて形成されたガイドも部分的に温度上昇し、固定子あるいはガイドに部分的に熱変形が発生して位置決め精度が低下する虞があった。
【0004】
そこで本発明は、固定子あるいはガイドの部分的な熱変形を回避した電子部品装着装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため第1の発明は、間隔を存し相対向して設けられ側壁及び底壁を備え上面を開口したガイドと、このガイドに沿って移動可能なビームと、このビームに設けられてこれに沿った方向に移動可能な装着ヘッドと、この装着ヘッドに設けられ電子部品を真空吸着してプリント基板上に装着する回転可能な吸着ノズルと、前記側壁の上面に間隔を存して設けられた左右の固定子及び前記ガイドの内側に前記左右の固定子、前記側壁及び前記底壁と間隔を存して前記ビームに取り付けられた可動子を有して前記ビームを駆動するリニアモータと、前記左右の固定子の表面及び前記側壁の表面に長手方向にわたり設けられ前記左右の固定子及び前記ガイドより熱伝導率が高い熱伝導部材とを備えたことを特徴とする。
【0007】
また第2の発明は、間隔を存し相対向して設けられ側壁及び底壁を備え上面を開口したガイドと、このガイドに沿って移動可能なビームと、このビームに設けられてこれに沿った方向に移動可能な装着ヘッドと、この装着ヘッドに設けられ電子部品を真空吸着してプリント基板上に装着する回転可能な吸着ノズルと、前記ガイドの側壁上面に設けられた固定子及び前記ガイドの内側に前記固定子、前記側壁及び前記底壁と間隔を存して設けられ、前記ビームに取り付けられた可動子を有して前記ビームを駆動するリニアモータと、前記ガイドの底壁上面に長手方向にわたりほぼ全面に設けられ、ガイドより熱伝導率が高い熱伝導部材とを備えたことを特徴とする。
【0008】
また第4の発明は、熱伝導部材は固定子あるいはガイドに長手方向にわたり設けられた板状のヒートレーンであることを特徴とする。
【0009】
【発明の実施の形態】
以下、図面に基づき実施形態につき説明する。図1は電子部品装着装置1の平面図で、図2は該装着装置1の正面図で、該装置1の基台2上の前部には種々の電子部品をその部品取出し部(部品吸着位置)に1個ずつ供給する部品供給ユニット(図示せず)が複数並設されている。そして、該装着装置1の中間部には供給コンベア3(図2及び図4においては省略)、位置決め部(図2及び図6においては省略)4及び排出コンベア5(図2においては省略)がプリント基板Pの搬送方向が左右方向となるように設けられている。供給コンベア3は上流より受けたプリント基板Pを前記位置決め部4に搬送し、位置決め部4で図示しない位置決め機構により位置決めされた該基板P上に電子部品が装着された後、排出コンベア5に搬送される。
【0010】
6はX方向に長いビームであり、リニアモータである左右一対のY軸モータ(以下Y軸リニアモータという)7、7の駆動により左右一対のガイド8、8に沿ってプリント基板Pや部品供給ユニットの部品取出し部(部品吸着位置)上方を個別にY方向に移動する。Y軸リニアモータ7、7は、それぞれ側壁10及び底壁11を備えて上面を開口したガイド8に設けられた一対の固定子12、12と、ガイド8及び固定子12、12の内側に位置してビーム6に取り付けられた例えば鉄を主体とした可動子13とを有し、ビーム6を駆動する。そして、図3(装着装置1の右側上部の断面図)に示したように各固定子12、12は、ガイド8の長手方向に間隔を存し、かつ対向して設けられ、ガイド8の側壁10の上部あるいは上端に固定されたベース14と、ベース14の内面に固定されたマグネット15とから構成されている。ここで、各マグネット15及び側壁10と可動子13の側面との間には僅かな隙間が形成されている。
【0011】
16は各ベース14に取り付けられた熱伝導部材であり、この熱伝導部材16は前後に分割されてベース14の外側面ほぼ全面にわたり設けられている。また、各熱伝導部材16はベース14及びガイド8を構成する鉄より熱伝導率が高い例えばアルミあるいは銅などの金属でシート状に形成されたヒートパイプを折って重ねたヒートレーンであり、ガイド8の表面に密着するように例えば高熱伝導性接着剤により取り付けられている。また、熱伝導部材16、16の前あるいは後の端縁には折り曲げ部17が可動子13の移動範囲外に位置して形成されている。このように熱伝導部材16を折り曲げて重ね合わせることにより、熱伝導を向上させることができる。熱伝導部材16とベース14との間に例えば高熱伝導性のグリースを挟み、夫々の間の熱伝導を良くした状態で、熱伝導部材16を例えば帯状の金属板(図示せず)にてベース14に固定しても良い。
【0012】
また、底壁11の上面には、ガイド8の長手方向にわたりほぼ全面に上記熱伝導部材16と同様に構成された熱伝導部材18が前後に分割されて例えば高熱伝導性接着剤により取り付けられている。熱伝導部材18の前端縁あるいは後端縁には図4及び図5にも示したように折り曲げ部19が可動子13の移動範囲外に位置し、膨出して左右方向に形成されている。
【0013】
20は例えばアルミニウムにより形成されビーム6の左右両端の下部に設けられたベースであり、ベース20の下面に熱絶縁部材21を介して可動子13が固定されている。そして、ベース20の線膨張係数は主に鉄にて形成された可動子13の線膨張係数より大きい。また、熱絶縁部材21は熱伝導率が小さい例えばガラス繊維を主体とした樹脂などから構成され、この熱絶縁部材21の可動子13との接触面及びベース20との接触面には長手方向に複数の溝22、23が形成されている。そして、溝22、23と可動子13の上面との間及びベース20の下面との間に空気通路24及び25が形成され、これらの空気通路24、25は熱絶縁部材21の前端から後端にわたり形成され、図5に示したように前端及び後端に空気通路24、25を流れた空気の流出口24A、25Aが形成されている。また、熱絶縁部材21のほぼ中央には、空気通路24と空気通路25とを連通する通路26が形成されている。さらに、27は空気通路24及び空気通路25に冷却用の空気を供給するためにベース20に形成された空気供給路であり、この空気供給路27に例えば部品装着装置本体に設けられた図示しない送風機あるいはポンプなどの空気供給源(空気供給手段)から例えばチューブを介して空気が送られ、各空気通路24、25に供給される。
【0014】
28は可動子13の下面ぼぼ全面に設けられた放熱部材であり、この放熱部材28は熱伝導が良好な例えばアルミニウムなどにより形成され、可動子13の長手方向(ビーム6の移動方向であるY方向)に複数のフィン29を一体に備えている。
【0015】
30はビーム6を支持し案内するリニアウェイであり、このリニアウェイ30はガイド8の側部上面に固定され、ガイド8の長手方向に延びたレール31と、このレール31に対応してベース20の下面に固定されたスライダ32とから構成されている。そして、基台2の右側上部及び左側上部のガイド8及びY軸リニアモータ7は対象に構成されている。
【0016】
以下、ビーム6の構成について、装着ヘッドを省略した図4乃至図7に基づいて詳細に説明する。33は水平方向に設けられたビーム本体レールであり、このビーム本体レール33は例えば熱伝導が良好なアルミニウムにより形成されている。また、ビーム本体レール33は上壁34、下壁35、及び上壁と下壁とを接続する垂直壁36を備え、垂直壁36より前方の前部上壁37と前部下壁38との間に後述するビーム側可動子が位置する。さらに、垂直壁36の適所には空気通路となる開口39が複数形成されている。そしてビーム本体レール33の左右両端部は金属製の支持部材40を介してベース20に支持されている。
【0017】
41は上記熱伝導部材16、18と同様に構成され、熱伝導率が高いビーム側の熱伝導部材である。これらの熱伝導部材41は前部上壁37及び前部下壁38の相対向した内側の面に左右に分割され、例えば高熱伝導性接着剤により取り付けられている。さらに、各熱伝導部材41の内側の面には後述する可動子と共にX軸リニアモータ42を構成する固定子43のベース44が例えば高熱伝導性接着剤により対向して取り付けられている。また、各熱伝導部材41の右端あるいは左端には折り曲げ部71が形成されている。ベース44の内側の面に固定子43のマグネット45、45が対向して設けられている。そして、熱伝導部材41、ベース44及びマグネット45は前部上壁41及び前部下壁38の前端より前方へ突出して設けられている。
【0018】
46は後述する装着ヘッドが取り付けられるヘッドベースであり、このヘッドベース46の背面のほぼ中央部にX軸リニアモータ42の可動子47が取り付けられている。可動子47の上面及び下面とマグネット45、45との間には僅かな隙間が形成されている。また、可動子47の背面には例えばアルミニウムにより形成され熱伝導が良好な放熱部材48が垂直壁36と対向すると共に間隔を存し、かつ背面のほぼ全幅にわたり取り付けられ、この放熱部材48の表面には長手方向(水平方向)に複数のフィン48が一体に形成されている。
【0019】
49、49はヘッドベース46を水平方向に案内するリニアウェイであり、リニアウェイ49、49はビーム本体レール33の上下の前端面に取り付けられたレール50と、ヘッドベース45の背面にレール50と対応して取り付けられたスライダ51とから構成されている。
【0020】
52はフラットケーブルであり、後述する装着ヘッドのためのケーブル53やエアチューブ54などを並列状態にして、それぞれ接着剤で固定し概ね平板状にし、ビーム本体レール33の後方に設けられている。また、55はヘッドベース45の上縁の取り付けられたヘッド天壁であり、ヘッド天壁55によりエアチューブ54の上部側が支持され、エアチューブ54の下部側がビーム本体レール33の背面に取り付けられた支持部材56に支持されている。
【0021】
以下、図8に基づいて装着ヘッドについて説明する。
【0022】
図8に示すように、前記ヘッドベース45に装着ヘッド57が各上下軸モータ58によりガイド60に沿って上下動可能に設けられている。装着ヘッド57のノズル取付体61には6本の吸着ノズル62が等間隔を存して設けられ、またノズル取付体61はθ軸モータ63により鉛直軸周りに回転可能であり、更にはノズル選択モータ64により前記6本の吸着ノズル62のうちの任意の吸着ノズル62の吸着側端部が下方に向くように選択される。
【0023】
従って、装着ヘッド57及び吸着ノズル62はX軸リニアモータ42及びY軸リニアモータの駆動によりX方向及びY方向に移動可能であり、さらに、吸着ノズル62は垂直線回りに回転可能で、かつ上下動可能となっている。そして、左右両ヘッドベース45に装着ヘッド57が取り付けられる。
【0024】
また、65、65はガイド8、8の内側にY方向に設けられたY方向フラットケーブルであり、フラットケーブル65はケーブルベア66により支持されている。
【0025】
以上の構成により、以下動作について説明する。先ず、プリント基板Pが図示しないコンベアにより上流装置より供給コンベア3を介して位置決め部4に搬送され、位置決め機構により位置決め固定される。
【0026】
次に、図示しない記憶装置に格納されたプリント基板Pの装着すべきXY座標位置、鉛直軸線回りへの回転角度位置及び各部品供給ユニットの配置番号等が指定された装着データに従い、装着順序に従い電子部品の部品種に対応した各吸着ノズル62が装着すべき電子部品を所定の部品供給ユニットから吸着して取出す。
【0027】
即ち、Y方向はY軸リニアモータ42が駆動して一対のガイド7に沿ってビーム6が移動し、X方向はX軸リニアモータ42が駆動して装着ヘッド57が衝突することなく移動し、順次装着すべき電子部品を収納する部品供給ユニット上方に位置するよう移動する。
【0028】
そして、既に所定の供給ユニットは駆動されて部品吸着位置にて部品が取出し可能状態にあるため、一方の装着ヘッド57のノズル選択モータ64により選択された吸着ノズル62が上下軸モータ58により下降して電子部品を吸着し取出し、次に吸着ノズル62は上昇すると共に他方の装着ヘッド58の吸着ノズル62が次に装着すべき電子部品を収納する部品供給ユニット上方に移動し、同じく前記吸着ノズル62が下降して電子部品を吸着し取出す。
【0029】
さらに、前述したように、装着ヘッド57を水平方向に移動させ、位置決め部4上のプリント基板P上方に移動し、各装着ヘッド57の吸着ノズル62を下降させてプリント基板P上にそれぞれ電子部品を装着する。
【0030】
この場合、各装着ヘッド57(ヘッドベース45)がX軸リニアモータ42によりガイド8に沿ってX方向に移動する際、フラットケーブル52は屈曲可能であり、またビーム6がY軸リニアモータ7によりガイド8に沿ってY方向に移動する際、Y方向フラットケーブル65を保持するケーブルベア66も屈曲可能であるから、装着ヘッド57及びビーム6は滑らかに移動できるものである。
【0031】
また、Y軸リニアモータ7の駆動により、可動子13は発熱するが、ビーム6の左右下部のベース20、20と可動子13との間に熱伝導率が小さい熱絶縁部材21が設けられているので、熱絶縁部材21を設けるという簡単な構成によりビーム6の温度上昇を防止するための構造を簡略し、かつビーム6駆動時の可動子13、13からビーム6のベース20、20への熱伝導は熱絶縁部材21により僅かに抑えられる。さらに、冷却用の空気が図示しない空気供給源から熱絶縁部材21に形成された空気供給路27へ流れ、さらにベース20側の空気通路25にその中央部から流入する。そして、空気通路25を流れて前後の流出口25Aから流出する間に周囲のベース20及び熱絶縁部材21から熱を奪う。さらに、空気供給路27から流入した空気は空気通路25の中央部及び通路26を介して空気通路24にその中央部から流入する。そして、空気通路24を流れて前後の流出口24Aから流出する間にベース20側より温度が高い周囲のベース20の可動子側部分及び熱絶縁部材21から熱を奪い外部へ放出する。
【0032】
この結果、熱絶縁部材21自体の温度上昇を小さく抑えることができ、可動子13からビーム6のベース20への熱伝導を僅かに抑えることができ、ビーム6のベース20の熱変形(線膨張)を抑えることができ、さらに、空気供給手段からの空気をベース20側の溝25から可動子13側の溝24へ流すことによって、温度の低い空気が最初にベース20側の溝に流れ、ベース20の温度を一層低く抑えることができ、ベース20の熱変形を極力抑えることができる。また、ベース20に支持部材40を介して支持されたビーム本体レール33への熱伝導も僅かに抑えることができ、ビーム本体レール33の熱変形も極力小さくすることができる。さらに、ベース20の局部的な温度上昇を防止して熱変形を回避できるので、電子部品装着時の位置決め精度を向上することができる。
【0033】
また、各ベース20及びビーム本体レール33の線膨張係数は可動子13の線膨張係数より大きいので、温度が低い各ベース20及びビーム本体レール33と温度が高い可動子13との温度差によって発生する各ベース20及びビーム本体レール33の熱変形を抑えることができる。
【0034】
また、部品装着運転に伴うY軸リニアモータ7の駆動により、可動子13が発熱してこの熱により対向した一対の固定子12、12の温度が上昇する。このとき、固定子12、12の外側の面には、熱伝導部材16、16が固定子12、12の長手方向、すなわち前後方向ほぼ全幅にわたり設けられているので、固定子12、12の熱は熱伝導部材16、16に伝わり、短時間で熱伝導率が高い熱伝導部材16、16の全体に伝わり放熱され、固定子12、12特にベース14の局部的な温度上昇、すなわち、装着装置1の運転時、ビーム6が頻繁に移動する装置中央部に対応した固定子12、12のベース14の中央部の温度上昇(部分的温度上昇)を抑制でき、固定子12、12全体をほぼ同じ温度に保つことができる。この結果、固定子12、特にベース14の部分的な熱変形を回避することができる。また、ガイド8の熱も熱伝導部材16、16に伝わり、ガイド8の部分的な温度上昇を極力防止することができ、部分的な熱変形を回避することがきる。
【0035】
特に、可動子13の左側に位置した固定子12及び側壁10が可動子13により部分的に加熱された場合にも、熱はガイド8の内側の側壁10と内側の固定子12とに下部が挟まれた内側の熱伝導部材16(図3における左側の熱伝導部材)から長手方向全体に伝わり、固定子12及び側壁10の部分的な温度上昇を回避でき、この結果、ガイド8の部分的な熱変形を防止することができ、例えば側壁10に長手方向に設けられたスケールに誤差が発生することを回避し、熱変形による電子部品装着時の位置決め精度の低下を回避することができる。
【0036】
また、固定子14からの熱伝導あるいは可動子13からの輻射などによりガイド8に伝わった熱は、ガイド8の底壁11に設けられた熱伝導部材18に伝わり、さらに、可動子13の近傍に位置した部分以外の開放されている部分も含む熱伝導部材18全体に短時間で伝わり放熱される。このため、ガイド8の局部的な温度上昇を抑制でき、ガイド8の熱変形を一層確実に回避することができる。
【0037】
また、可動子13で発生した熱は下面の放熱部材28に伝わり、この放熱部材28から放熱される。このとき、放熱部材28は複数のフィン29を一体に備えているので、放熱面積が増加して放熱量を増やすことができるのはもちろん、ビーム6のY方向の移動に伴い、フィン29の周囲を空気が流れ、放熱を一層促進することができ、この結果、可動子13の温度上昇を極力抑制することができる。
【0038】
さらに、ビーム6の移動時には、X軸リニアモータ42の駆動により、可動子47が発熱してこの熱により対向した一対の固定子43、43の温度が上昇する。このとき、固定子43、43の外側の面には、一部がビーム本体レール33との間に挟まれた熱伝導部材41、41が固定子43、43の長手方向、すなわちビーム6の左右方向ほぼ全幅にわたり設けられているので、固定子43、43の熱は熱伝導部材41、41に伝わり、短時間で熱伝導率が高い熱伝導部材41、41の全体に伝わり放熱され、固定子43、43の温度上昇を抑制できると共に、局部的な温度上昇、すなわち、装着装置1の運転時、装着ヘッド57が頻繁に移動するビーム6の中央部に対応した固定子43、43の中央部の温度上昇を抑制でき、固定子43、43全体をほぼ同じ温度に保つことができる。この結果、固定子43、43、特にベース44、44の熱変形を回避することができる。
【0039】
また、熱伝導部材41、41全体からの放熱により、ビーム本体レール33全体の温度上昇あるいは局部的な温度上昇を抑制でき、ビーム本体レール33の熱変形を回避することができる。
【0040】
また、可動子47で発生した熱は背面の放熱部材48に伝わり、この放熱部材48から放熱される。このとき、放熱部材48は複数のフィン48Fを一体に備えているので、放熱面積を増加させて放熱量を増やすことができるのはもちろん、装着ヘッド57のX方向の移動に伴い、フィン29の周囲を空気が流れ、放熱を一層促進することができ、この結果、可動子13の温度上昇を極力抑制することができる。また、フィン48F周囲の温度上昇した空気は開口39を介して外部へ流れるので、フィン48Fからの放熱が促進され、フィン48Fの放熱効果を一層向上することができる。
【0041】
その他の実施形態
図3に破線にて示したように、ガイド8の側面長手方向ほぼ全面にガイド8より熱伝導率が高い例えばアルミ、銅あるいは上記ヒートレーンなどの板状の熱伝導部材70を取り付ける。熱伝導部材70はガイド8を構成する鉄より熱伝導率が高く、ガイド8の表面に密着するように例えば高熱伝導性接着剤により取り付けられている。また、熱伝導部材70とガイド8との間に例えば高熱伝導性のグリースを挟み、夫々の間の熱伝導を良くした状態で、熱伝導部材を例えば帯状の金属板にてガイド8に固定しても良い。このようにガイド8の側面に熱伝導部材70を設けることにより、可動子13からの輻射熱あるいは周囲の温度上昇した空気によって温度上昇したガイド8の特に中央部付近から熱伝導部材70に伝わった熱は、熱伝導部材70全体に伝わり、特に熱伝導部材70にヒートレーンを用いた場合には、極短時間で熱伝導部材70全体に伝わり、放熱される。このため、ガイド8の局部的な温度上昇を抑制することができ、ガイド8の部分的な熱変形を回避することができる。なお、熱伝導部材16と熱伝導部材70とを一体に形成してもよい。
【0042】
また、図7に破線にて示したように上記ガイド8と同様に、ビーム本体レール33の上壁34の上面ほぼ全体にビーム本体レール33の熱伝導率より高い例えばヒートレーンである熱伝導部材74を取り付けた場合には、ビーム本体レール33から熱伝導部材74に伝わった熱は、熱伝導部材74の全体に極短時間で伝わり、放熱される。このため、ビーム本体レール33の局部的な温度上昇を抑制することができ、ビーム本体レール33の部分的な熱変形を一層確実に回避することができる。
【0043】
以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明はその趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。
【0045】
【発明の効果】
以上のように本願の請求項1に係る発明によれば、ガイドに設けられた左右の固定子及びビームに設けられた可動子を備えてビームを駆動するリニアモータの左右の固定子の表面及びガイドの側壁表面に固定子及びガイドより熱伝導率が高い熱伝導部材を長手方向にわたり設けたので、ビームの駆動時に、リニアモータの可動子の熱は輻射あるいは周囲の空気を介して可動子から左右の固定子あるいはガイドへ伝わり、この熱は熱伝導部材により左右の固定子及びガイドの長手方向に短時間で伝わり、左右の固定子及びガイドの局部的温度上昇を回避して左右の固定子あるいはガイドの部分的な熱変形を極力小さくすることができ、この結果、電子部品装着時の位置決め精度を向上することができる。
【0046】
また、ビームを駆動するリニアモータの可動子の下方に位置したガイドの底壁上面にガイドより熱伝導率が高い熱伝導部材を長手方向にわたりほぼ全面に設けたので、固定子からの熱伝導あるいは可動子からの輻射などによりガイドに伝わった熱は、熱伝導部材に伝わり、さらに、可動子の近傍に位置した部分以外の開放されている部分も含む熱伝導部材全体に短時間で伝わり放熱される。このため、ガイドの局部的な温度上昇を抑制でき、ガイドの局部的な熱変形を確実に回避することができる。
【図面の簡単な説明】
【図1】電子部品装着装置の平面図である。
【図2】図1に示した電子部品装着装置のA−A概略断面図である。
【図3】図2の要部拡大断面図(電子部品装着装置の右側上部の断面図)である。
【図4】図1に示した電子部品装着装置のB−B概略断面図である。
【図5】図4の要部拡大断面図である。
【図6】図1に示した電子部品装着装置のC−C概略断面図である。
【図7】図6の要部拡大断面図である。
【図8】装着ヘッドの側面図である。
【符号の説明】
1 電子部品装着装置
3 供給コンベア
5 排出コンベア
6 ビーム
7 Y軸リニアモータ
8 ガイド
12 固定子
13 可動子
16 熱伝導部材
18 熱伝導部材
20 ベース
21 熱絶縁部材
[0001]
BACKGROUND OF THE INVENTION
According to the present invention, a mounting head movable by a driving source is provided on a beam movable by a driving source, and an electronic component is sucked and mounted on a printed circuit board by a nozzle provided on the mounting head. The present invention relates to an electronic component mounting apparatus.
[0002]
[Prior art]
Such a conventional electronic component mounting apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-165096. This Japanese Patent Application Laid-Open No. 2000-165096 includes two linear motor shafts, and each linear motor shaft has a pair. A component mounting head and a component mounting head are provided, and with these four component mounting heads, the electronic component suction operation from the component supply unit, the suction electronic component recognition operation, and the mounting operation to the circuit board are partly performed. A technique to be performed while overlapping is disclosed.
[0003]
[Problems to be solved by the invention]
In the above-described conventional technique, when a linear motor is used as a drive source for the linear motor shaft (beam), the mover generates heat when the linear motor is driven along with the operation of the electronic component mounting apparatus. When the linear motor is driven, the linear motor shaft (beam) frequently reciprocates in the vicinity of the central portion of the electronic component mounting device, so that the heat of the mover is radiated or the surrounding air passes through, for example, the center of the stator. Transmitted to the club. For this reason, the temperature of the stator partially rises, and further, a guide formed of iron, for example, which is provided with a stator and guides the linear motor shaft (beam) partially rises in temperature, and the stator or guide In some cases, thermal deformation may partially occur and the positioning accuracy may be lowered.
[0004]
Therefore, an object of the present invention is to provide an electronic component mounting apparatus that avoids partial thermal deformation of a stator or a guide.
[0005]
[Means for Solving the Problems]
For this reason, the first invention provides a guide having a side wall and a bottom wall that are provided opposite to each other with an interval therebetween, a beam that is movable along the guide, a beam that is movable along the guide, and a beam that is provided on the beam. A mounting head that is movable in the direction along the surface, a rotatable suction nozzle that is mounted on the printed circuit board by vacuum-sucking electronic components provided on the mounting head, and is provided on the upper surface of the side wall with a space therebetween. A linear motor for driving the beam with left and right stators and a mover attached to the beam at an interval from the left and right stators, the side walls and the bottom wall inside the guide; A heat conducting member provided on a surface of the left and right stators and the surface of the side wall in a longitudinal direction and having a heat conductivity higher than that of the left and right stators and the guide is provided.
[0007]
Further, the second invention provides a guide having a side wall and a bottom wall provided opposite to each other with an interval therebetween, an open top surface, a beam movable along the guide, and a beam provided on the beam along the guide. A mounting head movable in a different direction, a rotatable suction nozzle provided on the mounting head to vacuum-suck electronic components and mounting them on a printed circuit board, a stator provided on the upper surface of the side wall of the guide, and the guide A linear motor that is provided at a distance from the stator, the side wall, and the bottom wall, and that has a mover attached to the beam to drive the beam, and an upper surface of the bottom wall of the guide It is provided over the entire surface in the longitudinal direction, and is provided with a heat conductive member having a higher heat conductivity than the guide.
[0008]
According to a fourth aspect of the present invention, the heat conducting member is a plate-like heat lane provided in the stator or guide over the longitudinal direction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a plan view of an electronic component mounting apparatus 1, and FIG. 2 is a front view of the mounting apparatus 1. Various electronic components are placed on a front portion of a base 2 of the apparatus 1 and a component take-out portion (component adsorption portion). A plurality of component supply units (not shown) that supply one by one to the position) are arranged side by side. In addition, a supply conveyor 3 (omitted in FIGS. 2 and 4), a positioning part (omitted in FIGS. 2 and 6) 4 and a discharge conveyor 5 (omitted in FIG. 2) are provided in the intermediate portion of the mounting device 1. The printed board P is provided so that the conveyance direction is the left-right direction. The supply conveyor 3 conveys the printed circuit board P received from the upstream to the positioning unit 4, and after the electronic components are mounted on the substrate P positioned by the positioning mechanism (not shown) by the positioning unit 4, the conveyance is conveyed to the discharge conveyor 5. Is done.
[0010]
6 is a beam that is long in the X direction, and is supplied with a printed circuit board P and components along a pair of left and right guides 8 and 8 by driving a pair of left and right Y axis motors (hereinafter referred to as Y axis linear motors) 7 and 7 that are linear motors. The unit is moved individually in the Y direction above the component take-out portion (component suction position). The Y-axis linear motors 7 and 7 are positioned inside a pair of stators 12 and 12 provided on a guide 8 having a side wall 10 and a bottom wall 11 and having an upper surface opened, respectively, and the guide 8 and the stators 12 and 12. For example, the movable element 13 mainly composed of iron attached to the beam 6 is provided to drive the beam 6. Then, as shown in FIG. 3 (a cross-sectional view of the upper right side of the mounting device 1), the stators 12, 12 are provided facing each other in the longitudinal direction of the guide 8. 10 is composed of a base 14 fixed to the upper or upper end of 10 and a magnet 15 fixed to the inner surface of the base 14. Here, a slight gap is formed between each magnet 15 and the side wall 10 and the side surface of the movable element 13.
[0011]
Reference numeral 16 denotes a heat conducting member attached to each base 14, and the heat conducting member 16 is divided into the front and rear sides and provided over almost the entire outer surface of the base 14. Each heat conducting member 16 is a heat lane in which heat pipes formed in a sheet shape with a metal such as aluminum or copper having higher thermal conductivity than iron constituting the base 14 and the guide 8 are folded and overlapped. For example, it is attached with a high thermal conductive adhesive so as to be in close contact with the surface. Further, a bent portion 17 is formed at the front or rear edge of the heat conducting members 16, 16 so as to be located outside the moving range of the mover 13. Thus, heat conduction can be improved by bending and superimposing the heat conducting member 16. For example, a high thermal conductivity grease is sandwiched between the heat conduction member 16 and the base 14 so that the heat conduction between the heat conduction member 16 and the base 14 is improved, and the heat conduction member 16 is formed on the base with a strip-shaped metal plate (not shown), for example. 14 may be fixed.
[0012]
Further, on the upper surface of the bottom wall 11, a heat conductive member 18 configured in the same manner as the heat conductive member 16 is divided in the front and rear direction over almost the entire surface in the longitudinal direction of the guide 8, and attached by, for example, a high heat conductive adhesive. Yes. As shown in FIGS. 4 and 5, the bent portion 19 is located outside the moving range of the movable element 13 and is formed in the left and right direction at the front edge or rear edge of the heat conducting member 18.
[0013]
Reference numeral 20 denotes a base formed of, for example, aluminum and provided at the lower portions of the left and right ends of the beam 6, and the movable element 13 is fixed to the lower surface of the base 20 via a heat insulating member 21. And the linear expansion coefficient of the base 20 is larger than the linear expansion coefficient of the needle | mover 13 mainly formed with iron. Further, the heat insulating member 21 is made of, for example, a resin mainly composed of glass fiber having a low thermal conductivity. The contact surface of the heat insulating member 21 with the movable element 13 and the contact surface with the base 20 are arranged in the longitudinal direction. A plurality of grooves 22 and 23 are formed. Air passages 24 and 25 are formed between the grooves 22 and 23 and the upper surface of the mover 13 and between the lower surface of the base 20, and these air passages 24 and 25 extend from the front end to the rear end of the heat insulating member 21. As shown in FIG. 5, outlets 24A and 25A for air flowing through the air passages 24 and 25 are formed at the front and rear ends. In addition, a passage 26 that connects the air passage 24 and the air passage 25 is formed substantially at the center of the heat insulating member 21. Reference numeral 27 denotes an air supply path formed in the base 20 for supplying cooling air to the air passage 24 and the air passage 25. The air supply path 27 is provided in the component mounting apparatus main body, for example, not shown. Air is sent from an air supply source (air supply means) such as a blower or a pump through a tube, for example, and supplied to the air passages 24 and 25.
[0014]
Reference numeral 28 denotes a heat radiating member provided on the entire lower surface of the mover 13. The heat radiating member 28 is made of, for example, aluminum having good heat conduction, and the longitudinal direction of the mover 13 (Y is the moving direction of the beam 6). A plurality of fins 29 are integrally provided in the direction).
[0015]
Reference numeral 30 denotes a linear way that supports and guides the beam 6. The linear way 30 is fixed to the upper surface of the side of the guide 8 and extends in the longitudinal direction of the guide 8, and a base 20 corresponding to the rail 31. The slider 32 is fixed to the lower surface of the slider. The guide 8 and the Y-axis linear motor 7 on the upper right side and the upper left side of the base 2 are configured as targets.
[0016]
Hereinafter, the configuration of the beam 6 will be described in detail with reference to FIGS. 4 to 7 in which the mounting head is omitted. Reference numeral 33 denotes a beam main body rail provided in the horizontal direction. The beam main body rail 33 is made of, for example, aluminum having good heat conduction. The beam body rail 33 includes an upper wall 34, a lower wall 35, and a vertical wall 36 that connects the upper wall and the lower wall, and between the front upper wall 37 and the front lower wall 38 in front of the vertical wall 36. A beam side movable element to be described later is located. Further, a plurality of openings 39 serving as air passages are formed at appropriate positions on the vertical wall 36. The left and right ends of the beam body rail 33 are supported by the base 20 via metal support members 40.
[0017]
Reference numeral 41 denotes a beam-side heat conduction member which is configured in the same manner as the heat conduction members 16 and 18 and has high heat conductivity. These heat conducting members 41 are divided into left and right inner faces of the front upper wall 37 and the front lower wall 38, and are attached by, for example, a high heat conductive adhesive. Furthermore, the base 44 of the stator 43 which comprises the X-axis linear motor 42 with the needle | mover which is mentioned later is attached to the inner surface of each heat conductive member 41 facing, for example with a high heat conductive adhesive. Further, a bent portion 71 is formed at the right end or the left end of each heat conducting member 41. Magnets 45, 45 of the stator 43 are provided facing the inner surface of the base 44. The heat conducting member 41, the base 44, and the magnet 45 are provided so as to protrude forward from the front ends of the front upper wall 41 and the front lower wall 38.
[0018]
Reference numeral 46 denotes a head base to which a mounting head, which will be described later, is attached. A mover 47 of an X-axis linear motor 42 is attached to a substantially central portion of the back surface of the head base 46. A slight gap is formed between the upper and lower surfaces of the mover 47 and the magnets 45, 45. Further, a heat radiating member 48 made of, for example, aluminum and having good heat conduction is attached to the back surface of the movable element 47 so as to face the vertical wall 36 and to be spaced over the entire width of the back surface. A plurality of fins 48 are integrally formed in the longitudinal direction (horizontal direction).
[0019]
Reference numerals 49 and 49 denote linear ways for guiding the head base 46 in the horizontal direction. The linear ways 49 and 49 are rails 50 attached to the upper and lower front end surfaces of the beam main body rail 33 and rails 50 on the rear surface of the head base 45. The slider 51 is attached correspondingly.
[0020]
Reference numeral 52 denotes a flat cable. A cable 53 and an air tube 54 for a mounting head, which will be described later, are arranged in a parallel state, and each is fixed with an adhesive so as to have a substantially flat plate shape. Reference numeral 55 denotes a head ceiling wall to which the upper edge of the head base 45 is attached. The upper side of the air tube 54 is supported by the head ceiling wall 55, and the lower side of the air tube 54 is attached to the back surface of the beam body rail 33. It is supported by the support member 56.
[0021]
Hereinafter, the mounting head will be described with reference to FIG.
[0022]
As shown in FIG. 8, a mounting head 57 is provided on the head base 45 so as to be vertically movable along a guide 60 by each vertical shaft motor 58. Six suction nozzles 62 are provided at equal intervals on the nozzle mounting body 61 of the mounting head 57, and the nozzle mounting body 61 can be rotated around the vertical axis by a θ-axis motor 63. The motor 64 selects the suction side end of any of the six suction nozzles 62 to face downward.
[0023]
Accordingly, the mounting head 57 and the suction nozzle 62 can be moved in the X direction and the Y direction by driving the X-axis linear motor 42 and the Y-axis linear motor, and further, the suction nozzle 62 can be rotated around the vertical line and can be moved up and down. It is possible to move. The mounting head 57 is attached to the left and right head bases 45.
[0024]
Reference numerals 65 and 65 denote Y-direction flat cables provided in the Y-direction inside the guides 8 and 8, and the flat cable 65 is supported by a cable bear 66.
[0025]
The operation will be described below with the above configuration. First, the printed circuit board P is conveyed from the upstream device to the positioning unit 4 via the supply conveyor 3 by a conveyor (not shown), and is positioned and fixed by the positioning mechanism.
[0026]
Next, according to the mounting order, the XY coordinate position to be mounted on the printed circuit board P stored in the storage device (not shown), the rotation angle position about the vertical axis, the arrangement number of each component supply unit, and the like are specified. An electronic component to be mounted by each suction nozzle 62 corresponding to the component type of the electronic component is sucked out from a predetermined component supply unit.
[0027]
That is, in the Y direction, the Y axis linear motor 42 is driven to move the beam 6 along the pair of guides 7, and in the X direction, the X axis linear motor 42 is driven to move the mounting head 57 without colliding, It moves so as to be positioned above the component supply unit for storing electronic components to be sequentially mounted.
[0028]
Since the predetermined supply unit is already driven and the component can be taken out at the component suction position, the suction nozzle 62 selected by the nozzle selection motor 64 of one mounting head 57 is lowered by the vertical shaft motor 58. Then, the suction nozzle 62 rises and the suction nozzle 62 of the other mounting head 58 moves above the component supply unit that stores the electronic component to be mounted next. Descends and picks up and picks up electronic components.
[0029]
Further, as described above, the mounting head 57 is moved in the horizontal direction, moved above the printed circuit board P on the positioning unit 4, and the suction nozzle 62 of each mounting head 57 is lowered to place the electronic components on the printed circuit board P, respectively. Wear.
[0030]
In this case, when each mounting head 57 (head base 45) moves in the X direction along the guide 8 by the X-axis linear motor 42, the flat cable 52 can be bent, and the beam 6 can be bent by the Y-axis linear motor 7. When moving along the guide 8 in the Y direction, the cable bear 66 holding the Y-direction flat cable 65 can also be bent, so that the mounting head 57 and the beam 6 can move smoothly.
[0031]
The movable element 13 generates heat by driving the Y-axis linear motor 7, but a thermal insulating member 21 having a low thermal conductivity is provided between the bases 20, 20 at the lower left and right sides of the beam 6 and the movable element 13. Therefore, the structure for preventing the temperature rise of the beam 6 is simplified by the simple configuration of providing the heat insulating member 21, and the movable elements 13, 13 when the beam 6 is driven to the bases 20, 20 of the beam 6. The heat conduction is slightly suppressed by the heat insulating member 21. Further, cooling air flows from an air supply source (not shown) to an air supply path 27 formed in the heat insulating member 21, and further flows into the air path 25 on the base 20 side from the center thereof. Then, heat flows from the surrounding base 20 and the heat insulating member 21 while flowing through the air passage 25 and flowing out from the front and rear outlets 25A. Further, the air flowing in from the air supply path 27 flows into the air passage 24 from the central portion thereof via the central portion of the air passage 25 and the passage 26. Then, while flowing through the air passage 24 and flowing out from the front and rear outlets 24A, heat is taken from the movable part side portion of the surrounding base 20 and the heat insulating member 21 whose temperature is higher than that of the base 20 side and released to the outside.
[0032]
As a result, the temperature rise of the thermal insulating member 21 itself can be suppressed to a small level, the heat conduction from the mover 13 to the base 20 of the beam 6 can be suppressed slightly, and the thermal deformation (linear expansion) of the base 20 of the beam 6 can be suppressed. In addition, by flowing the air from the air supply means from the groove 25 on the base 20 side to the groove 24 on the mover 13 side, the low temperature air first flows into the groove on the base 20 side, The temperature of the base 20 can be further reduced, and the thermal deformation of the base 20 can be suppressed as much as possible. Further, the heat conduction to the beam main body rail 33 supported by the base 20 via the support member 40 can be slightly suppressed, and the thermal deformation of the beam main body rail 33 can be minimized. Furthermore, since the local temperature rise of the base 20 can be prevented and thermal deformation can be avoided, the positioning accuracy when the electronic component is mounted can be improved.
[0033]
Further, since the linear expansion coefficient of each base 20 and the beam main body rail 33 is larger than the linear expansion coefficient of the movable element 13, the linear expansion coefficient is generated due to a temperature difference between the low temperature base 20 and beam main body rail 33 and the high temperature movable element 13. Thus, thermal deformation of each base 20 and the beam main body rail 33 can be suppressed.
[0034]
In addition, by driving the Y-axis linear motor 7 accompanying the component mounting operation, the mover 13 generates heat, and the temperature of the pair of stators 12 and 12 facing each other is increased by this heat. At this time, since the heat conducting members 16 and 16 are provided on the outer surfaces of the stators 12 and 12 over the entire length of the stators 12 and 12, that is, in the front-rear direction, the heat of the stators 12 and 12. Is transmitted to the heat conducting members 16 and 16 and is transmitted to the entire heat conducting members 16 and 16 having a high thermal conductivity in a short time to be dissipated, so that the local temperature rise of the stators 12 and 12, particularly the base 14, that is, the mounting device 1, the temperature rise (partial temperature rise) of the central portion of the base 14 of the stator 12, 12 corresponding to the central portion of the apparatus where the beam 6 frequently moves can be suppressed. Can be kept at the same temperature. As a result, partial thermal deformation of the stator 12, particularly the base 14, can be avoided. Further, the heat of the guide 8 is also transmitted to the heat conducting members 16 and 16, and a partial temperature rise of the guide 8 can be prevented as much as possible, and partial thermal deformation can be avoided.
[0035]
In particular, even when the stator 12 and the side wall 10 located on the left side of the mover 13 are partially heated by the mover 13, the heat is transferred to the inner side wall 10 and the inner stator 12 of the guide 8. From the sandwiched inner heat conducting member 16 (the left heat conducting member in FIG. 3), it is transmitted in the entire longitudinal direction, and a partial temperature rise of the stator 12 and the side wall 10 can be avoided. For example, it is possible to prevent an occurrence of an error in the scale provided in the longitudinal direction on the side wall 10, and to prevent a decrease in positioning accuracy when the electronic component is mounted due to the thermal deformation.
[0036]
Further, the heat transmitted to the guide 8 by heat conduction from the stator 14 or radiation from the movable element 13 is transmitted to the heat conducting member 18 provided on the bottom wall 11 of the guide 8, and further, in the vicinity of the movable element 13. The heat conduction member 18 including the open part other than the part located at the center is transmitted to the entire heat conduction member 18 in a short time and radiated. For this reason, the local temperature rise of the guide 8 can be suppressed, and the thermal deformation of the guide 8 can be avoided more reliably.
[0037]
Further, the heat generated by the mover 13 is transmitted to the heat radiating member 28 on the lower surface, and is radiated from the heat radiating member 28. At this time, since the heat radiation member 28 is integrally provided with a plurality of fins 29, the heat radiation area can be increased and the heat radiation amount can be increased, and of course, as the beam 6 moves in the Y direction, As a result, heat can be further promoted, and as a result, the temperature rise of the mover 13 can be suppressed as much as possible.
[0038]
Further, when the beam 6 is moved, the mover 47 generates heat by driving the X-axis linear motor 42, and the temperature of the pair of stators 43, 43 facing each other is increased by this heat. At this time, on the outer surfaces of the stators 43, 43, heat conducting members 41, 41 partially sandwiched between the beam body rails 33 are arranged in the longitudinal direction of the stators 43, 43, that is, on the left and right sides of the beam 6 Since it is provided over the entire width in the direction, the heat of the stators 43 and 43 is transmitted to the heat conducting members 41 and 41, and is transmitted to the whole heat conducting members 41 and 41 having high thermal conductivity in a short time and is dissipated. 43, 43 can suppress the temperature rise, and the local temperature rise, that is, the center portion of the stator 43, 43 corresponding to the center portion of the beam 6 where the mounting head 57 frequently moves during the operation of the mounting device 1. Thus, the stators 43 and 43 can be kept at substantially the same temperature. As a result, thermal deformation of the stators 43 and 43, particularly the bases 44 and 44, can be avoided.
[0039]
Further, the heat radiation from the entire heat conducting members 41, 41 can suppress the temperature rise or the local temperature rise of the entire beam main body rail 33, and the thermal deformation of the beam main body rail 33 can be avoided.
[0040]
Further, the heat generated by the mover 47 is transmitted to the heat radiating member 48 on the back surface and is radiated from the heat radiating member 48. At this time, since the heat radiation member 48 is integrally provided with a plurality of fins 48F, the heat radiation area can be increased and the heat radiation amount can be increased, and as the mounting head 57 moves in the X direction, the fin 29 Air can flow around and further promote heat dissipation. As a result, the temperature rise of the mover 13 can be suppressed as much as possible. In addition, since the air around the fin 48F whose temperature has increased flows to the outside through the opening 39, the heat radiation from the fin 48F is promoted, and the heat radiation effect of the fin 48F can be further improved.
[0041]
Other Embodiments As shown by broken lines in FIG. 3, a plate-like heat conduction member 70 having a higher thermal conductivity than that of the guide 8 such as aluminum, copper, or the above-mentioned heat lane is attached to almost the entire side surface in the longitudinal direction of the guide 8. . The heat conductive member 70 has a higher thermal conductivity than iron constituting the guide 8 and is attached by, for example, a high heat conductive adhesive so as to be in close contact with the surface of the guide 8. Further, for example, a high thermal conductivity grease is sandwiched between the heat conductive member 70 and the guide 8, and the heat conductive member is fixed to the guide 8 with, for example, a belt-shaped metal plate in a state in which the heat conduction between them is improved. May be. By providing the heat conducting member 70 on the side surface of the guide 8 in this manner, the heat transmitted to the heat conducting member 70 from the vicinity of the center of the guide 8 whose temperature has been increased by the radiation heat from the movable element 13 or the air whose temperature has been increased. Is transmitted to the entire heat conductive member 70, and in particular, when a heat lane is used for the heat conductive member 70, it is transmitted to the entire heat conductive member 70 and radiated in a very short time. For this reason, the local temperature rise of the guide 8 can be suppressed, and partial thermal deformation of the guide 8 can be avoided. The heat conducting member 16 and the heat conducting member 70 may be integrally formed.
[0042]
Further, as indicated by a broken line in FIG. 7, as in the case of the guide 8, a heat conduction member 74 that is, for example, a heat lane having a higher thermal conductivity than the beam body rail 33 over the entire upper surface of the upper wall 34 of the beam body rail 33. Is attached, the heat transmitted from the beam main body rail 33 to the heat conducting member 74 is transmitted to the entire heat conducting member 74 in a very short time and is dissipated. For this reason, the local temperature rise of the beam main body rail 33 can be suppressed, and the partial thermal deformation of the beam main body rail 33 can be avoided more reliably.
[0043]
Although the embodiments of the present invention have been described above, various alternatives, modifications, and variations can be made by those skilled in the art based on the above description, and the present invention is not limited to the various alternatives described above without departing from the spirit of the present invention. It includes modifications or variations.
[0045]
【The invention's effect】
As described above, according to the first aspect of the present invention, the left and right stator surfaces of the linear motor that drives the beam with the left and right stators provided on the guide and the mover provided on the beam, and Since the stator and the heat conducting member having higher heat conductivity than the guide are provided in the longitudinal direction on the side wall surface of the guide, the heat of the mover of the linear motor is emitted from the mover via radiation or ambient air when driving the beam. transmitted to the left and right stator or guide, the heat is transferred in a short time in the longitudinal direction of the stator and the guide of the right and left by the heat conduction member, the left and right stator to avoid local temperature rise of the left and right stator and guide Alternatively, partial thermal deformation of the guide can be minimized, and as a result, positioning accuracy when the electronic component is mounted can be improved.
[0046]
Further, since a heat conducting member having a higher thermal conductivity than the guide is provided on the entire upper surface of the bottom wall of the guide located below the mover of the linear motor that drives the beam, the heat conduction from the stator or The heat transferred to the guide by radiation from the mover is transferred to the heat transfer member, and further transferred to the heat transfer member in a short time including the open part other than the part located near the mover. The For this reason, the local temperature rise of a guide can be suppressed and the local thermal deformation of a guide can be avoided reliably.
[Brief description of the drawings]
FIG. 1 is a plan view of an electronic component mounting apparatus.
2 is a schematic cross-sectional view taken along line AA of the electronic component mounting apparatus shown in FIG.
3 is an enlarged cross-sectional view of a main part of FIG. 2 (a cross-sectional view of the upper right portion of the electronic component mounting apparatus).
4 is a schematic cross-sectional view taken along the line BB of the electronic component mounting apparatus shown in FIG.
5 is an enlarged cross-sectional view of a main part of FIG. 4;
6 is a schematic C-C cross-sectional view of the electronic component mounting apparatus shown in FIG.
7 is an enlarged cross-sectional view of a main part of FIG.
FIG. 8 is a side view of the mounting head.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electronic component mounting apparatus 3 Supply conveyor 5 Discharge conveyor 6 Beam 7 Y-axis linear motor 8 Guide 12 Stator 13 Movable element 16 Heat conduction member
18 heat conduction member 20 base 21 heat insulation member

Claims (2)

間隔を存し相対向して設けられ側壁及び底壁を備え上面を開口したガイドと、このガイドに沿って移動可能なビームと、このビームに設けられてこれに沿った方向に移動可能な装着ヘッドと、この装着ヘッドに設けられ電子部品を真空吸着してプリント基板上に装着する回転可能な吸着ノズルと、前記側壁の上面に間隔を存して設けられた左右の固定子及び前記ガイドの内側に前記左右の固定子、前記側壁及び前記底壁と間隔を存して前記ビームに取り付けられた可動子を有して前記ビームを駆動するリニアモータと、前記左右の固定子の表面及び前記側壁の表面に長手方向にわたり設けられ前記左右の固定子及び前記ガイドより熱伝導率が高い熱伝導部材とを備えたことを特徴とする電子部品装着装置。 A guide having a side wall and a bottom wall provided opposite each other at an interval, an open top surface, a beam movable along the guide, and a mounting provided on the beam and movable in a direction along the guide A head, a rotatable suction nozzle that is mounted on the printed circuit board by vacuum-sucking electronic components provided on the mounting head, left and right stators provided on the upper surface of the side wall, and the guide A linear motor for driving the beam having a movable element attached to the beam with an interval between the left and right stators, the side wall and the bottom wall, and surfaces of the left and right stators and the An electronic component mounting apparatus comprising: the left and right stators and a heat conductive member having a higher heat conductivity than the guides provided on a surface of a side wall in a longitudinal direction. 間隔を存し相対向して設けられ側壁及び底壁を備え上面を開口したガイドと、このガイドに沿って移動可能なビームと、このビームに設けられてこれに沿った方向に移動可能な装着ヘッドと、この装着ヘッドに設けられ電子部品を真空吸着してプリント基板上に装着する回転可能な吸着ノズルと、前記ガイドの側壁上面に設けられた固定子及び前記ガイドの内側に前記固定子、前記側壁及び前記底壁と間隔を存して設けられ、前記ビームに取り付けられた可動子を有して前記ビームを駆動するリニアモータと、前記ガイドの底壁上面に長手方向にわたりほぼ全面に設けられ、ガイドより熱伝導率が高い熱伝導部材とを備えたことを特徴とする電子部品装着装置。 A guide having a side wall and a bottom wall provided opposite each other at an interval, an open top surface, a beam movable along the guide, and a mounting provided on the beam and movable in a direction along the guide A head, a rotatable suction nozzle that is mounted on the printed circuit board by vacuum-sucking electronic components provided on the mounting head, a stator provided on the upper surface of the side wall of the guide, and the stator on the inside of the guide, A linear motor that is provided at a distance from the side wall and the bottom wall and that has a mover attached to the beam to drive the beam, and is provided on the entire top surface of the bottom wall of the guide in the longitudinal direction. And a heat conducting member having a higher heat conductivity than the guide.
JP2001100869A 2001-03-30 2001-03-30 Electronic component mounting device Expired - Fee Related JP4551015B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001100869A JP4551015B2 (en) 2001-03-30 2001-03-30 Electronic component mounting device
US10/108,989 US6796022B2 (en) 2001-03-30 2002-03-29 Electronic component mounting apparatus
EP02007530A EP1246520B1 (en) 2001-03-30 2002-04-02 Electronic component mounting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001100869A JP4551015B2 (en) 2001-03-30 2001-03-30 Electronic component mounting device

Publications (2)

Publication Number Publication Date
JP2002299897A JP2002299897A (en) 2002-10-11
JP4551015B2 true JP4551015B2 (en) 2010-09-22

Family

ID=18954266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100869A Expired - Fee Related JP4551015B2 (en) 2001-03-30 2001-03-30 Electronic component mounting device

Country Status (1)

Country Link
JP (1) JP4551015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869392B2 (en) * 2009-10-07 2012-02-08 Thk株式会社 Linear motor actuator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275489A (en) * 1995-03-29 1996-10-18 Yaskawa Electric Corp Stator of linear motor
JPH11163599A (en) * 1997-11-28 1999-06-18 Matsushita Electric Ind Co Ltd Apparatus and method of mounting electronic component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275489A (en) * 1995-03-29 1996-10-18 Yaskawa Electric Corp Stator of linear motor
JPH11163599A (en) * 1997-11-28 1999-06-18 Matsushita Electric Ind Co Ltd Apparatus and method of mounting electronic component

Also Published As

Publication number Publication date
JP2002299897A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP5355105B2 (en) Linear drive device and electronic circuit component mounting machine
JP4551014B2 (en) Electronic component mounting device
JP4551017B2 (en) Electronic component mounting device
JP4551015B2 (en) Electronic component mounting device
JP4551016B2 (en) Electronic component mounting device
US6796022B2 (en) Electronic component mounting apparatus
US6986195B2 (en) Electronic component mounting apparatus
JP5901743B2 (en) Linear motor device
JPH11114745A (en) Transfer device
JP2002185191A (en) Electronic component mounting device
JP7223695B2 (en) Parts mounting machine
KR20190035489A (en) Stage driving apparatus and drawing apparatus
JP2010045143A (en) Electronic component mounting device
JP5448251B2 (en) Linear slider
JP6126796B2 (en) Electronic component mounting device
JP2012064782A (en) Electronic component mounting device
JP4360869B2 (en) Component mounter
JP7351645B2 (en) Component mounting machine
JP3992359B2 (en) Mounting head
JP6816282B2 (en) Parts mounting machine
JP6464360B2 (en) Linear motion device and electronic component mounting device
JP2004140276A (en) Control panel
US20240181789A1 (en) Recording device
CN109845425A (en) Electronic equipment
JP2024008085A (en) Linear motor and component mounting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees