JP4549546B2 - スピンバルブ構造,磁気抵抗効果素子および薄膜磁気ヘッド - Google Patents

スピンバルブ構造,磁気抵抗効果素子および薄膜磁気ヘッド Download PDF

Info

Publication number
JP4549546B2
JP4549546B2 JP2001016436A JP2001016436A JP4549546B2 JP 4549546 B2 JP4549546 B2 JP 4549546B2 JP 2001016436 A JP2001016436 A JP 2001016436A JP 2001016436 A JP2001016436 A JP 2001016436A JP 4549546 B2 JP4549546 B2 JP 4549546B2
Authority
JP
Japan
Prior art keywords
layer
thickness
range
magnetization direction
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001016436A
Other languages
English (en)
Other versions
JP2001274479A (ja
Inventor
李 民
廖 煥中
洪 成宗
鄭 幼鳳
童 茹瑛
朱 克▲強▼
Original Assignee
ヘッドウェイテクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘッドウェイテクノロジーズ インコーポレイテッド filed Critical ヘッドウェイテクノロジーズ インコーポレイテッド
Publication of JP2001274479A publication Critical patent/JP2001274479A/ja
Application granted granted Critical
Publication of JP4549546B2 publication Critical patent/JP4549546B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3967Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3295Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1121Multilayer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12465All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、磁気抵抗効果を利用した再生ヘッドを備えた磁気ディスクシステム用ヘッドに係り、特に、再生ヘッドに用いられるスピンバルブ構造,磁気抵抗効果素子および薄膜磁気ヘッドに関する。
【0002】
【従来の技術】
近年、例えばHDD(Hard Disk Drive )に搭載され、薄膜プロセスを用いて形成される薄膜磁気ヘッドなどの磁気ディスクシステム用記録・再生ヘッドはめざましい進歩を遂げている。特に、薄膜磁気ヘッドの構成は、単一のデバイス(記録兼再生ヘッド)により記録および再生の双方の機能を実行する旧態の態様から、記録および再生の機能をそれぞれ異なるデバイス(記録ヘッド,再生ヘッド)により別途実行する態様へと移行している。図1は、従来の薄膜磁気ヘッドにおける要部の構成例を表すものである。なお、図1では、薄膜磁気ヘッドのうち、記録媒体15と対向する側と反対側の部分の図示を省略している。この薄膜磁気ヘッドは、再生用の磁気抵抗効果(MR;magneto-resistive)素子20と、このMR素子20を周囲から磁気的に分離する下部シールド層11および上部シールド層兼上部磁極(以下、単に「下部磁極」という。)12とを含んで構成された再生ヘッド部と、下部磁極12と、この下部磁極14と対向配置された上部磁極13と、下部磁極12と上部磁極13との間に図示しない絶縁層を介して埋設された渦巻状の巻線構造を有するコイル14とを含んで構成された記録ヘッド部とを備えている。なお、図1では、コイル14のうち、2個の巻線のみを図示している。下部磁極12および上部磁極13のうち、記録媒体15と対向する側におけるそれぞれの一端部はギャップ16を介して隔てられ、互いに同一の微小幅を有し。一方、記録媒体15と対向する側と反対側におけるそれぞれの他端部(図示せず)は互いに連結されている。コイル14により発生した磁束は、下部磁極12および上部磁極13の内部を伝播して記録媒体15に近い側に到達し、ギャップ16近傍において漏れ磁束として外部に放出される。この漏れ磁束により、記録媒体15の表面が順次磁化され、情報が記録される。
【0003】
MR素子20は、例えば、薄膜を積層した構造を有するものであり、磁界中における物質(以下、単に「磁化物質」という)の抵抗変化を検出することにより再生機能を実行する。すなわち、多くの磁性材料は、外部磁界により容易に磁化可能な所定の方向性(容易軸)を有し、異方性を示す。磁気抵抗効果は、容易軸に対して直交する方向に物質が磁化されたときには抵抗の増加として表れる。一方、容易軸と平行に磁化されたときには、抵抗は増えない。これにより、抵抗変化を通じて、磁化物質の磁化方向を変化させることとなる磁界(ディスクに書き込まれた磁気信号等)を検出することが可能となる(磁気抵抗効果)。以下では、上記した異方性にともなう抵抗の最大増加量を「AMR(異方性磁気抵抗;Anisotropic Magneto-Resistance)」と呼ぶこととする。
【0004】
磁気抵抗効果は、例えば、「スピンバルブ」と呼ばれる構造をMR素子20に適用することにより顕著に向上する。スピンバルブ構造では、磁化物質全体の磁化方向に対して、その磁化物質中における電子自身のスピンに起因する磁気ベクトルが平行(方向が反対の場合を除く)になると、結晶格子により電子が極めて散乱されにくくなるという現象を利用している。スピンバルブ構造を適用したMR素子20における抵抗の最大増加量は、上記したAMRに対して、「GMR(巨大磁気抵抗;Giant Magneto-Resistance)」と呼ばれている。
【0005】
図2は、スピンバルブ構造を含むMR素子20における要部の断面構成例を表すものである。このMR素子20は、基体21と、シード層22と、外部磁界により磁化方向が自由に変化するフリー層23と、フリー層23を周辺から磁気的に分離するスペーサ層24と、磁化方向が固定されたピンド層25と、ピンド層25の磁化方向を固定するピンニング層26と、保護層27とをこの順に積層した構造をなしている。フリー層23,スペーサ層24,ピンド層25およびピンニング層26は、例えば、それぞれ磁性材料,非磁性材料,磁性材料および反強磁性層(AFM;Antiferromagnetic Material)により構成されている。一般に、スピンバルブ構造とは、例えば、上記したMR素子20における一連の構成要素のうち、フリー層23,スペーサ層24,ピンド層25およびピンニング層26により構成された積層部分を指す。スペーサ層24の厚みは、例えば、フリー層23とピンド層25とを互いに交換結合が生じない程度(原子レベルにおいて互いの磁気特性に影響を及ぼし合わない程度)に離間させ、かつフリー層23〜ピンド層25間の距離が伝導電子の平均自由行程以内となるような厚みになっている。例えば、磁化方向が互いに反対になるように磁化されたフリー層23およびピンド層25の内部を磁化方向(図中の矢印28の方向)に沿って電流が流れるとすると、フリー層23およびピンド層25の内部を流れる半数の電子が散乱現象に寄与し、残りの半数の電子は散乱現象に寄与しないこととなる。そして、散乱現象に寄与しない電子のみが、高い確率でフリー層23からピンド層25(またはピンド層25からフリー層23)へ移行可能な平均自由行程を有することとなる。しかしながら、これらの電子は、一旦移動方向を変えると直ちに散乱現象に寄与し、移動方向が元の方向に戻らなくなってしまい、結果として全体として抵抗が大きく増加することとなる。
【0006】
スピンバルブ構造では、例えば、ピンド層25の磁化方向が固定される。ピンド層25の磁化方向を固定する際には、例えば、まず、磁界中において成膜処理を行うことにより薄膜を磁化(ピンド層25を成膜)したのち、ピンド層25を覆うように、反強磁性層(AFM)よりなるピンニング層26を形成する。フリー層23の磁化方向は、例えば磁気ディスクなどの記録媒体15の表面のビットに起因して生じる磁界により容易に変化可能となっている。
【0007】
図2に示したスピンバルブ構造は、特に、ピンド層25が、フリー層23を挟んで基体21から遠い側(図中の上側)に位置している構成に基づき、「上部スピンバルブ構造」と呼ばれる。これに対して、基体21,シード層22,ピンニング層26,ピンド層25,スペーサ層24,フリー層23,保護層27がこの順に積層され、ピンド層25がフリー層23よりも基体21に近い側に位置する構成は「下部スピンバルブ構造」と呼ばれる。
【0008】
理論上では、薄膜磁気ヘッドの稼動時においてフリー層23にバイアスが印加されると、フリー層23の磁化方向は、ピンニング層26の磁化方向と、この方向と直交する方向との間の方向となる。この場合、磁気抵抗効果(GMR)が生じることとなるが、このときの効果は十分なものではない。記録媒体15の表面のビットに起因して生じた磁界によりフリー層23の磁化方向が変化したとすると、このときのMR素子の抵抗は、ビットに起因して生じた磁界の磁化方向に応じて増加するか、あるいは減少するかのいずれかである。信号の線形性やトラック横断時の非対称性を向上させるためには、印加バイアスをゼロに近づけることが必要である。この場合には、フリー層23において生じる磁気抵抗効果(AMR)によりピーク間における信号の非対称性が劣化する。また、AMR/GMR比が大きくなると、信号の非対称性が大きく変動する。
【0009】
スピンバルブ構造を有するMR素子20の抵抗値Rと、フリー層23の磁化方向(角度θf)とピンド層25の磁化方向(角度θp)との間の角度(θf−θp)との関係は、下記の(1)式に示した通りである。
【0010】
R=Rs[1+0.5×GMR×{1−cos(θf−θp)}+AMR×{cosθf}2 ・・・(A)
式中、Rsは飽和抵抗を示す。
【0011】
式(A)から、抵抗RはAMRの値に大きく影響されることが判る。スピンバルブ構造を有するMR素子20を搭載した薄膜磁気ヘッドにおいて、優れた再生特性を確保するためには、GMRを十分に確保しつつAMRを小さくする(AMR/GMR比を小さくする)ことにより、抵抗Rをできるだけ小さくする必要がある。
【0012】
なお、AMRおよびAMR/GMR比を減少させ、優れた再生特性を確保することを目的としたスピンバルブ構造としては、例えば、下記のような先行技術が既に提案されている。
【0013】
(1)例えば、米国特許第5898549号では、Gillにより、互いに離間された3つの層によりピンド層を構成する手法が開示されている。このスピンバルブ構造では、3つのピンド層のうち、第1のピンド層と、例えばニッケル鉄クロムなどの高抵抗特性を有する材料により構成された第2のピンド層とがピンニング層上に形成されており、第1のピンド層と第2のピンド層とは、互いに平行でかつ反対向きの磁化方向を有する層を介して離間されている。第3のピンド層は、例えばコバルトなどの低抵抗特性を有する材料により構成されている。
【0014】
(2)また、Gillは、例えば、米国特許第5920446号において、伝導性を有する非磁性のスペーサ層を挟んで2つの強磁性層を積層させた積層型のフリー層を有するスピンバルブ構造についても開示している。このスピンバルブ構造の特徴は、2つの強磁性層におけるそれぞれの磁化方向が互いに平行で、かつ反対になっていることである。このような構成を有することにより、ピンド層を設けずに、MR素子において再生機能を実行することが可能になる。
【0015】
(3)また、例えば、米国特許第5764056号では、Maoにより、伝導性を有する非磁性の層を挟んで2つの強磁性層を積層させた積層型のピンド層の代わりに、ニッケルマンガン(NiMn)により構成されたピンニング層を用いる手法が開示されている。
【0016】
【発明が解決しようとする課題】
しかしながら、従来は、AMR/GMR比を減少させることは困難であると考えられていた。なぜなら、例えば、シード層22を種々変更させたり、フリー層23を薄くするなどしてAMRを減少させると、結果としてGMRも減少してしまうという問題点が指摘されていたからである。このため、上記したような数々の具体的な手法が提案されているにもかかわらず、再生特性は未だ十分なものとはいえないという問題があった。
【0017】
本発明はかかる問題点に鑑みてなされたもので、その目的は、再生特性を向上させることが可能なスピンバルブ構造,磁気抵抗効果素子および薄膜磁気ヘッドを提供することにある。
【0018】
【課題を解決するための手段】
本発明のスピンバルブ構造は、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、フリー層の他の一部をなす第2の部分層と、スペーサ層と、磁化方向が固定された被固定層とをこの順に積層した積層体を含むようにしたものである。
【0019】
本発明のスピンバルブ構造では、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層を挟んで、フリー層の一部をなす第1の部分層および他の一部をなす第2の部分層が積層される。これにより、GMRは僅かしか減少しない一方、AMRはほぼ半分まで減少する。これにより、スピンバルブ構造全体の抵抗が小さくなる。
【0021】
また、本発明のスピンバルブ構造では、挿入層が0.3nm以上1.5nm以下の範囲内の厚みを有するようにするのが好適である。
【0022】
本発明の第1の観点に係る磁気抵抗効果素子は、基体と、シード層と、ニッケル鉄を含んで2.0nm以上5.5nm以下の範囲内の厚みを有し、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、ニッケル鉄を含む層とコバルト鉄を含み1nm以下の厚みを有する層とがこの順に積層されて全体として2.0nm以上5.0nm以下の範囲内の厚みを有し、フリー層の他の一部をなす第2の部分層と、スペーサ層と、磁化方向が固定された被固定層と、反強磁性材料を含んで構成され、被固定層の磁化方向を固定する固定作用層と、保護層とをこの順に積層した積層体を含むようにしたものである。
【0023】
本発明の第1の観点に係る磁気抵抗効果素子では、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層を挟んで、ニッケル鉄を含んで2.0nm以上5.5nm以下の範囲内の厚みを有する第1の部分層と、ニッケル鉄を含む層とコバルト鉄を含み1nm以下の厚みを有する層とがこの順に積層されて全体として2.0nm以上5.0nm以下の範囲内の厚みを有する第2の部分層とが積層される。これにより、GMRは僅かしか減少しない一方、AMRはほぼ半分まで減少する。これにより、磁気抵抗効果素子全体の抵抗が小さくなる。
【0025】
また、本発明の第1の観点に係る磁気抵抗効果素子では、スペーサ層が、銅を含む層を有し、この銅を含んで構成された層の厚みが1.8nm以上3.0nm以下の範囲内となるようにしてもよい。
【0026】
本発明の第2の観点に係る磁気抵抗効果素子は、基体と、シード層と、ニッケル鉄を含んで2.0nm以上5.5nm以下の範囲内の厚みを有し、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、フリー層の他の一部をなす第2の部分層と、スペーサ層と、磁化方向が固定された被固定層と、反強磁性材料を含んで構成され、被固定層の磁化方向を固定する固定作用層と、保護層とをこの順に積層した積層体を含むようにしたものである。
【0027】
本発明の第2の観点に係る磁気抵抗効果素子では、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層を挟んで、ニッケル鉄を含んで2.0nm以上5.5nm以下の範囲内の厚みを有る第1の部分層と、ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有る第2の部分層とが積層される。
【0029】
また、本発明の第2の観点に係る磁気抵抗効果素子では、スペーサ層が、銅を含む層を有し、この銅を含んで構成された層の厚みが1.8nm以上3.0nm以下の範囲内となるようにしてもよい。
【0030】
また、本発明の第2の観点に係る磁気抵抗効果素子では、被固定層が、1.8nmの厚みを有しコバルト鉄を含む層と、0.75nmの厚みを有しルテニウムを含む層と、2.3の厚みを有しコバルト鉄を含む層とがこの順に積層されてなるようにしてもよい。
【0031】
本発明の第3の観点に係る磁気抵抗効果素子は、基体と、シード層と、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、フリー層の他の一部をなす第2の部分層と、スペーサ層と、磁化方向が固定された被固定層と、反強磁性材料を含んで構成され、被固定層の磁化方向を固定する固定作用層と、保護層とをこの順に積層した積層体を含むようにしたものである。
【0032】
本発明の第3の観点に係る磁気抵抗効果素子では、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層を挟んで、第1の部分層と、ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有る第2の部分層とが積層される。
【0034】
また、本発明の第3の観点に係る磁気抵抗効果素子では、スペーサ層が、銅を含む層を有し、この銅を含んで構成された層の厚みが1.8nm以上3.0nm以下の範囲内となるようにしてもよい。
【0035】
また、本発明の第3の観点に係る磁気抵抗効果素子では、被固定層が、1.8nmの厚みを有しコバルト鉄を含む層と、0.75nmの厚みを有しルテニウムを含む層と、2.3nmの厚みを有しコバルト鉄を含む層とがこの順に積層されてなるようにしてもよい。
【0036】
また、本発明の第3の観点に係る磁気抵抗効果素子では、第1の部分層が、0.5nm以上3.0nm以下の範囲内の厚みを有すると共に銅またはニッケル鉄のいずれかにより構成された伝導層と、2.0nm以上5.0nm以下の範囲内の厚みを有しニッケル鉄を含む層とがこの順に積層されてなるようにしてもよい。
【0037】
本発明の第4の観点に係る磁気抵抗効果素子は、基体と、シード層と、反強磁性材料を含んで構成された固定作用層と、コバルト鉄含んで2.0nmの厚みを有し、磁化方向が固定された被固定層と、スペーサ層と、ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、ニッケル鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、フリー層の他の一部をなす第2の部分層と、保護層とをこの順に積層した積層体を含むようにしたものである。
【0038】
本発明の第4の観点に係る磁気抵抗効果素子では、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層を挟んで、ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有する第1の部分層と、ニッケル鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有する第2の部分層とが積層される。
【0040】
また、本発明の第4の観点に係る磁気抵抗効果素子では、スペーサ層が銅を含んで構成され、その厚みが1.8nm以上3.0nm以下の範囲内となるようにしてもよい。
【0041】
本発明の第5の観点に係る磁気抵抗効果素子は、基体と、シード層と、反強磁性材料を含んで構成された固定作用層と、磁化方向が固定された被固定層と、スペーサ層と、ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、ニッケル鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、フリー層の他の一部をなす第2の部分層と、保護層とをこの順に積層した積層体を含むようにしたものである。
【0042】
本発明の第5の観点に係る磁気抵抗効果素子では、0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層を挟んで、ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有する第1の部分層と、ニッケル鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有する第2の部分層とが積層される。
【0044】
また、本発明の第5の観点に係る磁気抵抗効果素子では、スペーサ層が銅を含んで構成され、その厚みが1.8nm以上3.0nm以下の範囲内となるようにするのが好適である。
【0045】
また、本発明の第5の観点に係る磁気抵抗効果素子では、固定作用層が、2.3nmの厚みを有しコバルト鉄を含む層と、0.75nmの厚みを有しルテニウムを含む層と、1.8nmの厚みを有しコバルト鉄を含む層とをこの順に積層してなるようにしてもよい。
【0046】
本発明の薄膜磁気ヘッドは、記録媒体に対向して配置された磁気抵抗効果素子を備えたものであり、磁気抵抗効果素子が、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、フリー層の他の一部をなす第2の部分層と、スペーサ層と、磁化方向が固定された被固定層とをこの順に積層した積層体を含むようにしたものである。
【0047】
本発明の薄膜磁気ヘッドでは、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層を挟んで、部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層およびフリー層の他の一部をなす第2の部分層が積層されることにより磁気抵抗効果素子が構成される。これにより、磁気抵抗効果素子において、GMRは僅かしか減少しない一方、AMRはほぼ半分まで減少するため、薄膜磁気ヘッドの再生特性が向上する。
【0049】
また、本発明の薄膜磁気ヘッドでは、挿入層が0.3nm以上1.5nm以下の範囲内の厚みを有するようにするのが好適である。
【0050】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0051】
[第1の実施の形態]
<スピンバルブ構造の構成>
まず、図3および図4を参照して、本発明の第1の実施の形態に係るスピンバルブ構造の概略構成例について説明する。図3はピンド層がフリー層を挟んで基体から遠い側に位置する場合(上部スピンバルブ構造),図4はピンド層がフリー層よりも基体に近い側に位置する場合(下部スピンバルブ構造)におけるスピンバルブ構造の断面構成をそれぞれ示している。これらのスピンバルブ構造は、記録媒体に記録された信号磁界を検出することにより情報の再生を行う各種の磁気ヘッド、例えば薄膜磁気ヘッドにおけるMR素子に適用可能である。なお、図3および図4において、上記「従来の技術」の項において説明した従来のスピンバルブ構造の構成要素と同一の部分には同一の符号を付すものとする。
【0052】
上部スピンバルブ構造(図3参照)は、基体21と、シード層22と、磁性材料により構成され、外部磁界により磁化方向が自由に変化するフリー層の一部をなすフリー層A(第1の部分層)32と、挿入層33と、フリー層の他の一部をなすフリー層B(第2の部分層)31と、非磁性材料により構成され、フリー層A32,B31を周辺から磁気的に分離するスペーサ層24と、磁性材料により構成され、磁化方向が固定されたピンド層(被固定層)25と、反強磁性材料により構成され、ピンド層25の磁化方向を固定するピンニング層(固定作用層)26と、保護層27とをこの順に積層した積層体を含んで構成されている。このスピンバルブ構造において、上記した「従来の技術」の項において説明した従来のスピンバルブ構造(図2参照)と異なる点は、挿入層33によりフリー層が2層(フリー層A32,B31)に分割されている点である。
【0053】
一方、下部スピンバルブ構造(図4参照)は、基体21と、シード層22と、ピンニング層26と、ピンド層25と、スペーサ層24と、フリー層A32と、挿入層33と、フリー層B31と、保護層27とこの順に積層した積層体を含んで構成される。
【0054】
挿入層33は、比較的高い抵抗を有する材料、例えばニッケル鉄クロム(NiFeCr)やニッケルクロム(NiCr)などや、下層および上層(例えば上部スピンバルブ構造ではそれぞれフリー層A32およびフリー層B31)との双方の界面において電子を反射させることが可能な絶縁性材料、例えばタンタル,酸化タンタル(TaO),酸化ニッケル(NiO),酸化クロム(CrOx )などを含んで構成されており、その厚みは0.3nm〜1.5nmの範囲内である。
挿入層33を挟んでフリー層A32およびフリー層B31が設けられた構成を有するスピンバルブ構造におけるAMR効果は、単一のフリー層23を含んで構成された従来のスピンバルブ構造(図2参照)におけるAMR効果よりも顕著に小さくなる。これは、フリー層の厚みの減少に応じてAMR効果が減少するという特性があること、および挿入層33によってフリー層が2層に分割されることにより、各フリー層(A32,B31)の厚みが単一のフリー層23の厚みよりも小さくなること、という理由による。
【0055】
<スピンバルブ構造に関する実験結果>
上記したスピンバルブ構造におけるAMRの減少は、表1に示した実験結果から明らかである。表1は、本実施の形態に係るスピンバルブ構造(下段;挿入層33有,上部スピンバルブ構造)および従来のスピンバルブ構造(上段;挿入層33無)のそれぞれにおけるAMRの比較結果を表すものである。なお、表中における括弧内の数値は各層の厚み(nm)を表している。表1に示した従来のスピンバルブ構造では、例えば、シード層としてニッケルクロム(例えばNi60Cr40;以下、特に、上記の組成を有するニッケルクロムを「ニッケルクロムZ」と表記する,約5.5nm厚),フリー層としてニッケル鉄(約6.0nm厚)およびコバルト鉄(CoFe;約0.3nm厚)の積層物,スペーサ層として銅(約1.9nm厚),保護層としてニッケルクロムZ(約5.0nm厚)をそれぞれ構成材料として用いた。一方、本実施の形態のスピンバルブ構造では、例えば、シード層としてニッケルクロムZ(約4.5nm厚),フリー層A32としてニッケル鉄(約3.0nm厚),挿入層33としてニッケルクロムZ(約5.0nm厚),フリー層B31としてニッケル鉄(約3.0nm厚)およびコバルト鉄(約0.3nm厚)の積層物,スペーサ層24として銅(約2.1nm厚),保護層27としてニッケルクロムZ(約5.0nm厚)をそれぞれ構成材料として用いた。上記の構成および厚み寸法を有する2つのスピンバルブ構造についてAMRに関する比較実験を行ったところ、表1に示した結果が得られた。
【0056】
【表1】
Figure 0004549546
【0057】
表1の結果から、本実施の形態に係るスピンバルブ構造では、従来のスピンバルブ構造におけるAMR値(1.21)のほぼ半分に相当するAMR値(0.66)が得られることが判った。
【0058】
<本実施の形態の作用および効果>
以上のことから、本実施の形態に係るスピンバルブ構造では、挿入層33を挟んでフリー層A32およびフリー層B31を設けるようにしたので、各フリー層(A32,B31)の厚みは、従来の単一のフリー層の場合よりも小さくなる。
したがって、各フリー層(A32,B31)の厚みの減少に応じて各フリー層におけるAMRがより小さくなり、フリー層全体でのAMRをより小さくすることができる。なお、上記したAMRの減少に係る効果は、図3において説明した上部スピンバルブ構造の場合に限らず、下部スピンバルブ構造(図4参照)においても同様に得られる。
【0059】
さらに、本実施の形態では、上記したAMRの減少に係る効果に応じて、磁気抵抗効果(AMR)に起因して生じるピーク間信号の非対称性が良好に確保されることにより、信号の線形性およびトラック横断の非対称性を改善することができる。
【0060】
また、本実施の形態では、フリー層A32,挿入層33,フリー層B31をこの順に積層させる際に、従来から利用されていた製造技術(成膜技術等)以外に何ら特別な製造技術を要することはない。このため、スピンバルブ構造の形成に係る既存の製造技術を用いて、本実施の形態のスピンバルブ構造を簡便に製造することができる。
【0061】
また、本実施の形態では、挿入層33の厚みを適正化(0.3nm〜1.5nmの範囲内)しているので、挿入層33の導入にともなう不具合の発生が抑制され、上記したAMRの減少に係る効果を確実に得ることができる。具体的に、挿入層33の導入にともない生じる可能性がある不具合としては、例えば、挿入層33の厚みが0.3nmより小さくなると、成膜安定性が不安定になり、挿入層33中にピンホールなどの欠陥が生じてしまい、一方、1.5nmより大きくなると、フリー層A32〜B31間が離れすぎて、両フリー層中の磁化方向を揃えることが困難となる。
【0062】
[第2の実施の形態]
次に、表2および表3を参照して、本発明の第2の実施の形態に係る磁気抵抗効果素子について説明する。本実施の形態に係る磁気抵抗効果素子は、上記第1の実施の形態において説明したスピンバルブ構造を含むものであり、例えば薄膜磁気ヘッドにおけるMR素子(図1参照)として使用されるものである。なお、本発明の薄膜磁気ヘッドは、本実施の形態に係る磁気抵抗効果素子を搭載して構成可能であるので、以下併せて説明する。なお、以下では、磁気抵抗効果素子について説明する際に、上記第1の実施の形態において説明したスピンバルブ構造の各構成要素およびその符号を用いることとする。
【0063】
<磁気抵抗効果素子の構成>
表2および表3は、磁気抵抗効果素子の構成に関する5つの具体的な構成例(S1〜S5)を表すものである。表2は磁気抵抗効果素子を構成する各構成要素の材質,表3は表2に示した各構成要素の好適な厚み範囲のをそれぞれ示している。なお、表2および表3において、構成例S1〜S3は上部スピンバルブ構造(図3参照),構成例S4,S5は下部スピンバルブ構造をそれぞれ含んで構成されている。
【0064】
【表2】
Figure 0004549546
【表3】
Figure 0004549546
【0065】
フリー層A32は、ニッケル鉄(約2.0nm〜5.5nm厚、;構成例S1,S2),銅またはニッケル鉄を含み、比較的高い伝導性を示す層(表3中、HCL(High Conductivity Layer )と表記,約0.5nm〜3.0nm厚)上にニッケル鉄(約2.0nm〜5.0nm厚)を積層させた積層物(構成例S3),またはコバルト鉄(約0nm〜1.0nm厚)およびニッケル鉄(約3.0nm〜5.0nm厚)の積層物(全体として約2.0nm〜5.0nm厚;構成例S4,S5)のいずれかにより構成されている。フリー層B31は、ニッケル鉄(約2.0nm〜5.0nm厚)およびコバルト鉄(約0nm〜1.0nm厚)積層させた積層物(全体として約2.0nm〜5.0nm厚;構成例S1〜S3),またはニッケル鉄(約2.0nm〜5.0nm厚、より好ましくは約3.0nm〜5.0nm厚;構成例S4,S5)のいずれかにより構成されている。
【0066】
挿入層33の材質および厚み等は構成例S1〜S5について共通であり、その詳細は上記第1の実施の形態において説明した場合と同様であるので省略する。
【0067】
スペーサ層24は、構成例S1〜S5において共通して銅(約1.8nm〜3.0nm厚、構成例S1〜S3についてより好ましくは約1.8nm〜2.0nm厚)により構成されており、ピンニング層26も同様に構成例S1〜S5に共通してマンガン白金(MnPt),マンガン白金パラジウム(MnPtPd),マンガンニッケル(MnNi),またはイリジウムマンガン(IrMn)などのAFM(反強磁性材料;約10.0nm〜20.0nm厚)により構成されている。ピンド層25は、コバルト鉄(約1.5nm〜2.0nm、より好ましくは約2.0nm;構成例S1,S4),またはコバルト鉄(約1.5nm〜2.5nm厚),ルテニウム(Ru;約0.3nm〜0.9nm)およびコバルト鉄(約1.5nm〜2.5nm)の3層をこの順に積層した積層物(構成例S2,S3,S5)により構成されている。なお、特に、構成例S2,S3については、スペーサ層24に近い側のコバルト鉄を約1.8nm,遠い側のコバルト鉄を約2.3nmとし、一方、構成例S5については、上記した構成例S2,S3における各コバルト鉄の厚みを逆転させ、スペーサ層24に近い側のコバルト鉄を約2.3nm,近い側のコバルト鉄を約1.8nmとするのがより好ましい。
【0068】
なお、上記した構成要素以外の構成要素(基体21,シード層22,保護層27)は、構成例S1〜S5に共通して含まれている。基体21は、例えば酸化アルミニウム(Al23)を含む材料により構成されており、保護層27は、例えばタンタル,ニッケル鉄クロムおよびニッケルクロム(例えばニッケルクロムZ)を含む材料により構成されている。また、シード層22は、例えば、構成例S1〜S3についてはタンタル,ニッケル鉄クロムおよびニッケルクロム(例えばニッケルクロムZ)の混合物を含む材料,構成例S4,S5についてはニッケル鉄クロムまたはニッケルクロム(例えばニッケルクロムZ)を含む材料によりそれぞれ構成されている。
【0069】
表2および表3に示した構成を有する本実施の形態に係る磁気抵抗効果素子では、挿入層33を挟んでフリー層A32およびフリー層B31が設けられたスピンバルブ構造を含んでいるので、上記第1の実施の形態においてスピンバルブ構造について説明した場合と同様の作用により、単一のフリー層を含む従来のMR素子のAMR値よりも小さいAMR値を得ることができる。特に、本実施の形態に係る磁気抵抗効果素子では、従来の場合と比較してAMR値が大幅に減少する一方、GMRは僅かしか減少しないため、GMRに係る磁気抵抗効果を適正に確保しつつ、磁気抵抗効果素子全体の抵抗を減少させることが可能となる。
【0070】
<磁気抵抗効果素子に関する実験結果>
上記した磁気抵抗効果素子におけるAMRの減少およびGMRの確保は、表4および表5に示した実験結果から明らかである。表4は本実施の形態に係る磁気抵抗効果素子に関する4つの構成例(T1〜T4),表5は本実施の形態に係る磁気抵抗効果素子(構成例T1〜T4)および従来の磁気抵抗効果素子(先行技術(1)〜(3);「従来の技術」の項参照)のそれぞれにおけるAMRおよびGMRに関する比較結果を表すものである。なお、表4中における数値は各層の厚み(nm)を表している。表4に示した一連の構成例のうち、構成例T1,T2は表2および表3に示した構成例S2,構成例T3は構成例S1,構成例T4は構成例S3にそれぞれ対応している。なお、先行技術(1)〜(3)の磁気抵抗効果素子はいずれも挿入層33を含まない点で共通しており、この点以外の構造は、先行技術(1)については構成例T1,T2,先行技術(2)については構成例T3,先行技術(3)については構成例T4の構成とそれぞれ類似している。上記の構成および厚み寸法を有する各磁気抵抗効果素子についてAMRおよびGMRに関する比較実験を行ったところ、表5に示した結果が得られた。
【0071】
【表4】
Figure 0004549546
【表5】
Figure 0004549546
【0072】
表5の結果から、本実施の形態に係る磁気抵抗効果素子では、構成例T1〜T4のいずれの場合においても、GMR値が先行技術の場合の約8割以上に確保されると共に、AMRが先行技術の場合のほぼ半分となることが判った。
【0073】
<本実施の形態の作用および効果>
以上のことから、本実施の形態に係る磁気抵抗効果素子では、上記第1の実施の形態のスピンバルブ構造を含んで構成されているので、GMRを適正に確保しつつAMRを大幅に減少させることが可能となる。したがって、上記「従来の技術」の項において説明した式(A)から、磁気抵抗効果特性を良好に確保しつつ素子全体の抵抗Rを減少させ、磁気抵抗効果素子の再生特性を向上させることができる。もちろん、上記した再生特性に係る効果は、本実施の形態に係る磁気抵抗効果素子を搭載した薄膜磁気ヘッドにおいても同様に得られる。この薄膜磁気ヘッドの構成としては、例えば、「従来の技術」の項において説明した従来の薄膜磁気ヘッドの構成(図1参照)と同様とすることが可能である。
【0074】
なお、本実施の形態における上記以外の構成,作用,効果等は、上記第1の実施の形態の場合と同様である。
【0075】
以上、いくつかの実施の形態を挙げて本発明を説明したが、本発明は上記各実施の形態に限定されるものではなく、種々変形可能である。例えば、上記各実施の形態において説明したスピンバルブ構造,磁気抵抗効果素子,薄膜磁気ヘッドの構成(材質,厚み等)は、必ずしも上記各実施の形態において説明したものに限られるものではなく、挿入層33を挟んでフリー層A32およびフリー層B31を設け、GMRを適正に維持しつつAMRを大幅に減少させることが可能な限り、自由に変形可能である。このような場合においても、上記各実施の形態の場合と同様の効果を得ることができる。
【0076】
また、上記各実施の形態では、AMRを減少させるための挿入層33を挟んでフリー層A32およびフリー層B31が積層された積層部分がスピンバルブ構造や磁気抵抗効果素子に1つのみ含まれるようにしたが、必ずしもこれに限られるものではなく、上記の積層部分が複数含まれるようにしてもよい。
【0077】
また、上記各実施の形態では、スピンバルブ構造をHDDに搭載される薄膜磁気ヘッドに適用する場合について説明したが、必ずしもこれに限られるものではなく、HDD以外の磁気ヘッド、例えばビデオヘッドなどに適用することも可能である。
【0078】
【発明の効果】
以上説明したように、本発明のスピンバルブ構造によれば、フリー層の一部をなす第1の部分層,ニッケル鉄クロムまたはニッケルクロムを含む挿入層,フリー層の他の一部をなす第2の部分層がこの順に積層された積層体を含むようにしたので、単一のフリー層を含む従来のスピンバルブ構造の場合よりもAMRを小さくすることができる。
【0079】
特に、本発明のスピンバルブ構造によれば、挿入層が0.3nm以上1.5nm以下の範囲内の厚みを有するようにしたので、挿入層の導入にともなう不具合の発生が抑制され、AMRの減少に係る効果を確実に得ることができる。
【0080】
また、本発明の磁気抵抗効果素子によれば、フリー層の一部をなす第1の部分層,ニッケル鉄クロムまたはニッケルクロムを含む挿入層,フリー層の他の一部をなす第2の部分層がこの順に積層された積層体を含むようにしたので、挿入層の導入にともなう不具合の発生が抑制されると共に、GMRを適正に確保しつつAMRを大幅に減少させることが可能となる。したがって、良好な磁気抵抗効果特性を確保しつつ素子全体の抵抗を減少させ、磁気抵抗効果素子の再生特性を向上させることができる。
【0081】
また、本発明の薄膜磁気ヘッドによれば、フリー層の一部をなす第1の部分層,ニッケル鉄クロムまたはニッケルクロムを含む挿入層,フリー層の他の一部をなす第2の部分層がこの順に積層された積層体を含んで磁気抵抗効果素子が構成されるようにしたので、良好な磁気抵抗効果特性を確保しつつ磁気抵抗効果素子全体の抵抗を減少させることが可能となる。このため、薄膜磁気ヘッドの再生特性を向上させることができる。
【0082】
また、請求項25記載の薄膜磁気ヘッドによれば、挿入層が0.3nm以上1.5nm以下の範囲内の厚みを有するようにしたので、挿入層の導入にともなう不具合の発生が抑制され、AMRの減少に係る効果を確実に得ることができる。
【図面の簡単な説明】
【図1】従来の薄膜磁気ヘッドにおける要部の構成を表す図である
【図2】MR素子の要部の断面構成を表す断面図である。
【図3】本発明の第1の実施の形態に係るスピンバルブ構造(上部スピンバルブ構造)の断面構成を表す断面図である。
【図4】本発明の第1の実施の形態に係る他のスピンバルブ構造(下部スピンバルブ構造)の断面構成を表す断面図である。
【符号の説明】
11…下部シールド層、12…下部磁極、13…上部磁極、14…コイル、15…記録媒体、16…ギャップ、20…MR素子、21…基体、22…シード層、23…フリー層、24…スペーサ層、25…ピンド層、26…ピンニング層、27…保護層、31…フリー層B、32…フリー層A、33…挿入層。

Claims (18)

  1. 外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、
    異方性磁気抵抗効果を減少させると共にニッケル鉄クロム(NiFeCr)またはニッケルクロム(NiCr)を含む挿入層と、
    前記フリー層の他の一部をなす第2の部分層と、
    スペーサ層と、
    磁化方向が固定された被固定層と
    をこの順に積層した積層体を含むことを特徴とするスピンバルブ構造。
  2. 記挿入層は、0.3nm以上1.5nm以下の範囲内の厚みを有する
    ことを特徴とする請求項1記載のスピンバルブ構造。
  3. 基体と、
    シード層と、
    ニッケル鉄を含んで2.0nm以上5.5nm以下の範囲内の厚みを有し、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、
    0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、
    ニッケル鉄(NiFe)を含む層とコバルト鉄(CoFe)を含んで1nm以下の厚みを有する層とがこの順に積層されて全体として2.0nm以上5.0nm以下の範囲内の厚みを有し、前記フリー層の他の一部をなす第2の部分層と、
    スペーサ層と、
    磁化方向が固定された被固定層と、
    反強磁性材料を含んで構成され、前記被固定層の磁化方向を固定する固定作用層と、
    保護層と
    をこの順に積層した積層体を含むことを特徴とする磁気抵抗効果素子。
  4. 前記スペーサ層は、銅(Cu)を含む層を有し、この銅を含んで構成された層の厚みは1.8nm以上3.0nm以下の範囲内である
    ことを特徴とする請求項記載の磁気抵抗効果素子。
  5. 基体と、
    シード層と、
    ニッケル鉄を含んで2.0nm以上5.5nm以下の範囲内の厚みを有し、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、
    0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、
    ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、前記フリー層の他の一部をなす第2の部分層と、
    スペーサ層と、
    磁化方向が固定された被固定層と、
    反強磁性材料を含んで構成され、前記被固定層の磁化方向を固定する固定作用層と、
    保護層と
    をこの順に積層した積層体を含むことを特徴とする磁気抵抗効果素子。
  6. 前記スペーサ層は、銅を含む層を有し、この銅を含んで構成された層の厚みは1.8nm以上3.0nm以下の範囲内である
    ことを特徴とする請求項記載の磁気抵抗効果素子。
  7. 前記被固定層は、1.8nmの厚みを有しコバルト鉄を含む層と、0.75nmの厚みを有しルテニウム(Ru)を含む層と、2.3nmの厚みを有しコバルト鉄を含む層とをこの順に積層してなる
    ことを特徴とする請求項記載の磁気抵抗効果素子。
  8. 基体と、
    シード層と、
    外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、
    0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、
    ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、前記フリー層の他の一部をなす第2の部分層と、
    スペーサ層と、
    磁化方向が固定された被固定層と、
    反強磁性材料を含んで構成され、前記被固定層の磁化方向を固定する固定作用層と、
    保護層と
    をこの順に積層した積層体を含むことを特徴とする磁気抵抗効果素子。
  9. 前記スペーサ層は、銅を含む層を有し、この銅を含んで構成された層の厚みは1.8nm以上3.0nm以下の範囲内である
    ことを特徴とする請求項記載の磁気抵抗効果素子。
  10. 前記被固定層は、1.8nmの厚みを有しコバルト鉄を含む層と、0.75nmの厚みを有しルテニウムを含む層と、2.3nmの厚みを有しコバルト鉄を含む層とをこの順に積層してなる
    ことを特徴とする請求項記載の磁気抵抗効果素子。
  11. 前記第1の部分層は、0.5nm以上3.0nm以下の範囲内の厚みを有すると共に銅またはニッケル鉄(NiFe)のいずれかにより構成された伝導層と、2.0nm以上5.0nm以下の範囲内の厚みを有しニッケル鉄を含む層とをこの順に積層してな
    ことを特徴とする請求項記載の磁気抵抗効果素子。
  12. 基体と、
    シード層と、
    反強磁性材料を含んで構成された固定作用層と、
    コバルト鉄含んで2.0nmの厚みを有し、磁化方向が固定された被固定層と、
    スペーサ層と、
    ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、
    0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、
    ニッケル鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、前記フリー層の他の一部をなす第2の部分層と、
    保護層と
    をこの順に積層した積層体を含むことを特徴とする磁気抵抗効果素子。
  13. 前記スペーサ層は銅を含んで構成され、その厚みは1.8nm以上3.0nm以下の範囲内である
    ことを特徴とする請求項12記載の磁気抵抗効果素子。
  14. 基体と、
    シード層と、
    反強磁性材料を含んで構成された固定作用層と、
    磁化方向が固定された被固定層と、
    スペーサ層と、
    ニッケル鉄およびコバルト鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、
    0.3nm以上1.5nm以下の範囲内の厚みを有し、異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、
    ニッケル鉄を含んで2.0nm以上5.0nm以下の範囲内の厚みを有し、前記フリー層の他の一部をなす第2の部分層と、
    保護層と
    をこの順に積層した積層体を含むことを特徴とする磁気抵抗効果素子。
  15. 前記スペーサ層は銅を含んで構成され、その厚みは1.8nm以上3.0nm以下の範囲内である
    ことを特徴とする請求項14記載の磁気抵抗効果素子。
  16. 前記被固定層は、2.3nmの厚みを有しコバルト鉄を含む層と、0.75nmの厚みを有しルテニウムを含む層と、1.8nmの厚みを有しコバルト鉄を含む層とをこの順に積層してなる
    ことを特徴とする請求項14記載の磁気抵抗効果素子。
  17. 記録媒体に対向して配置された磁気抵抗効果素子を備えた薄膜磁気ヘッドであって、
    前記磁気抵抗効果素子が、
    外部磁界により磁化方向が自由に変化するフリー層の一部をなす第1の部分層と、
    異方性磁気抵抗効果を減少させると共にニッケル鉄クロムまたはニッケルクロムを含む挿入層と、
    前記フリー層の他の一部をなす第2の部分層と、
    スペーサ層と、
    磁化方向が固定された被固定層と
    をこの順に積層した積層体を含むことを特徴とする薄膜磁気ヘッド。
  18. 記挿入層は、0.3nm以上1.5nm以下の範囲内の厚みを有する
    ことを特徴とする請求項17記載の薄膜磁気ヘッド。
JP2001016436A 2000-01-24 2001-01-24 スピンバルブ構造,磁気抵抗効果素子および薄膜磁気ヘッド Expired - Fee Related JP4549546B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/489973 2000-01-24
US09/489,973 US6392853B1 (en) 2000-01-24 2000-01-24 Spin valve structure design with laminated free layer

Publications (2)

Publication Number Publication Date
JP2001274479A JP2001274479A (ja) 2001-10-05
JP4549546B2 true JP4549546B2 (ja) 2010-09-22

Family

ID=23946051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001016436A Expired - Fee Related JP4549546B2 (ja) 2000-01-24 2001-01-24 スピンバルブ構造,磁気抵抗効果素子および薄膜磁気ヘッド

Country Status (2)

Country Link
US (1) US6392853B1 (ja)
JP (1) JP4549546B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118217A (ja) * 1999-10-14 2001-04-27 Alps Electric Co Ltd スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
US6693775B1 (en) * 2000-03-21 2004-02-17 International Business Machines Corporation GMR coefficient enhancement for spin valve structures
US6548186B1 (en) * 2000-05-19 2003-04-15 International Business Machines Corporation High resistivity films for AP layers in spin valves
US6760266B2 (en) * 2002-06-28 2004-07-06 Freescale Semiconductor, Inc. Sense amplifier and method for performing a read operation in a MRAM
US6744663B2 (en) 2002-06-28 2004-06-01 Motorola, Inc. Circuit and method for reading a toggle memory cell
US20050237676A1 (en) * 2004-04-26 2005-10-27 Hitachi Global Storage Technologies Fe seeded self-pinned sensor
US7382585B1 (en) * 2005-09-30 2008-06-03 Storage Technology Corporation Magnetic head having AMR reader, writer, and GMR reader
US7639005B2 (en) * 2007-06-15 2009-12-29 Advanced Microsensors, Inc. Giant magnetoresistive resistor and sensor apparatus and method
US8259420B2 (en) * 2010-02-01 2012-09-04 Headway Technologies, Inc. TMR device with novel free layer structure
US10971176B2 (en) * 2019-02-21 2021-04-06 International Business Machines Corporation Tunnel magnetoresistive sensor with adjacent gap having chromium alloy seed layer and refractory material layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326374A (ja) * 1993-03-15 1994-11-25 Toshiba Corp 磁気抵抗効果素子および磁気記録装置
JPH118424A (ja) * 1996-11-28 1999-01-12 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子及び磁気抵抗効果型ヘッド
JP2000252548A (ja) * 1998-12-28 2000-09-14 Toshiba Corp 磁気抵抗効果素子及び磁気記録装置
JP2001118219A (ja) * 1999-08-12 2001-04-27 Tdk Corp 磁気変換素子および薄膜磁気ヘッド
WO2001031357A1 (en) * 1999-10-28 2001-05-03 Seagate Technology Llc Spin-valve sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408377A (en) * 1993-10-15 1995-04-18 International Business Machines Corporation Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor
US5764056A (en) 1996-05-16 1998-06-09 Seagate Technology, Inc. Nickel-manganese as a pinning layer in spin valve/GMR magnetic sensors
US5751521A (en) * 1996-09-23 1998-05-12 International Business Machines Corporation Differential spin valve sensor structure
JPH10154311A (ja) * 1996-11-21 1998-06-09 Nec Corp 磁気抵抗効果素子およびシールド型磁気抵抗効果センサ
US5898549A (en) 1997-10-27 1999-04-27 International Business Machines Corporation Anti-parallel-pinned spin valve sensor with minimal pinned layer shunting
US5920446A (en) * 1998-01-06 1999-07-06 International Business Machines Corporation Ultra high density GMR sensor
US6175476B1 (en) * 1998-08-18 2001-01-16 Read-Rite Corporation Synthetic spin-valve device having high resistivity anti parallel coupling layer
US6201673B1 (en) * 1999-04-02 2001-03-13 Read-Rite Corporation System for biasing a synthetic free layer in a magnetoresistance sensor
US6259586B1 (en) * 1999-09-02 2001-07-10 International Business Machines Corporation Magnetic tunnel junction sensor with AP-coupled free layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326374A (ja) * 1993-03-15 1994-11-25 Toshiba Corp 磁気抵抗効果素子および磁気記録装置
JPH118424A (ja) * 1996-11-28 1999-01-12 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子及び磁気抵抗効果型ヘッド
JP2000252548A (ja) * 1998-12-28 2000-09-14 Toshiba Corp 磁気抵抗効果素子及び磁気記録装置
JP2001118219A (ja) * 1999-08-12 2001-04-27 Tdk Corp 磁気変換素子および薄膜磁気ヘッド
WO2001031357A1 (en) * 1999-10-28 2001-05-03 Seagate Technology Llc Spin-valve sensor

Also Published As

Publication number Publication date
US6392853B1 (en) 2002-05-21
JP2001274479A (ja) 2001-10-05

Similar Documents

Publication Publication Date Title
US8638530B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor having a top shield with an antiparallel structure
US8514525B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with reference layer integrated in magnetic shield
US7130168B2 (en) Synthetic free layer for CPP GMR
US7808748B2 (en) Magnetoresistive element including heusler alloy layer
JPH11316918A (ja) 磁気抵抗センサ、磁気ディスクシステム、及び読出し/書込みヘッドアセンブリ
JP4603864B2 (ja) 膜面直交電流型巨大磁気抵抗効果センサおよびその製造方法
US7898775B2 (en) Magnetoresistive device having bias magnetic field applying layer that includes two magnetic layers antiferromagnetically coupled to each other through intermediate layer
US20090080125A1 (en) Magnetic head
JP4371983B2 (ja) Cpp型磁気抵抗効果素子、cpp型磁気再生ヘッド、cpp型磁気抵抗効果素子の形成方法、cpp型磁気再生ヘッドの製造方法
JP4549546B2 (ja) スピンバルブ構造,磁気抵抗効果素子および薄膜磁気ヘッド
US7123451B2 (en) Thin-film magnetic head for reading magnetic information on a hard disk by utilizing a magnetoresistance effect
JP2001118217A (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
US7782576B2 (en) Exchange-coupling film incorporating stacked antiferromagnetic layer and pinned layer, and magnetoresistive element including the exchange-coupling film
KR100635316B1 (ko) 자기 저항 효과막과 이것을 이용한 자기 저항 효과 헤드
JP2000215421A (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
JP2000315305A (ja) 磁気再生ヘッド、磁気ヘッド組立体および磁気ディスク駆動装置並びに磁気ヘッド組立体の製造方法
JP2006134388A (ja) 薄膜磁気ヘッド
JP2000293823A (ja) 磁気抵抗効果素子およびその製造方法、磁気抵抗効果ヘッド並びに磁気記録再生装置
JP3683577B1 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよび磁気ディスク装置
US7274540B2 (en) Magnetoresistive head having an MR element between a pair of shields and including first and second underlayers
US7372675B2 (en) Magnetoresistive element, thin-film magnetic head, head gimbal assembly, head arm assembly and magnetic disk drive
JPH06325329A (ja) 薄膜磁気ヘッド
JP2000340857A (ja) 磁気抵抗効果膜及び磁気抵抗効果素子
JP2010062191A (ja) 磁気抵抗効果素子、磁気ヘッド、情報記憶装置、および磁気メモリ
US8724264B2 (en) Thin film magnetic head, magnetic head slider, head gimbal assembly, head arm assembly, magnetic disk device and method of manufacturing thin film magnetic head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090918

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091015

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees