JP4544745B2 - 統計的識別特性を利用した適応性断面積計算方法 - Google Patents

統計的識別特性を利用した適応性断面積計算方法 Download PDF

Info

Publication number
JP4544745B2
JP4544745B2 JP2000573266A JP2000573266A JP4544745B2 JP 4544745 B2 JP4544745 B2 JP 4544745B2 JP 2000573266 A JP2000573266 A JP 2000573266A JP 2000573266 A JP2000573266 A JP 2000573266A JP 4544745 B2 JP4544745 B2 JP 4544745B2
Authority
JP
Japan
Prior art keywords
area
frames
image
parameters
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000573266A
Other languages
English (en)
Other versions
JP2002526141A (ja
Inventor
ソリン グランウォルド,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Limited
Original Assignee
Boston Scientific Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Limited filed Critical Boston Scientific Limited
Publication of JP2002526141A publication Critical patent/JP2002526141A/ja
Application granted granted Critical
Publication of JP4544745B2 publication Critical patent/JP4544745B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【0001】
(発明の背景)
本発明は、血管内超音波画像化処理における、物体の境界の自動検出のような、物体の自動特性付けおよび自動確認に関するものである。
【0002】
超音波画像化処理の価値は、インビボ環境下の超音波物体の諸特性を正確に相関付けるモデルが開発され得る場合に、向上させることができる。これまでのところ、インビボの超音波物体の限定および確認の分野では、自動化されたアプローチはほとんどなかった。過去に提案されたアプローチは2つのカテゴリーに分類することができる。第1に、検出された境界により包囲される領域として物体を規定することである。境界の検出は、次に、境界の局所特性と挙動に基づく。第2に、インビボの研究について有効と認知された超音波物体についての理論モデルを開発することである。
【0003】
第1のカテゴリーに従って、各種アプローチがオランダのロッテルダムのThoraxcenterとアイオワ大学で既に開発されているが、これらアプローチは境界検出用の特性抽出技術を採用している。このようなアプローチでは、物体は、検出された境界により包囲された領域と規定され、使用されるアルゴリズムは可能な最良の境界を設けるように最適化される。アルゴリズムが観察下の物体の特性を記述するパラメータについての情報をほとんど提供しないので、上記のようなアプローチは制約を受ける。アルゴリズムはフレームごとの物体特性の変動に従ってパラメータの挙動を適応させることもできない。更に、アルゴリズムは、その体積の各フレームにおいて物体境界を完全に計算しなければならないので、計算論的であり、断面領域の計算に時間を集約している。
【0004】
第2のカテゴリーのアプローチでは、例えば、Stanford Center for Cardiac Interventionsやテキサス大学などにおいて、データパターンを所定のモデルと比較するために、組織モデル化技術が開発されている。これらのタイプの技術では、モデル化され得る一貫した組織の挙動が想定される。モデルは、物体を確認するために使用することができる物体の内的特性を記述している。しかし、このようなモデルは、本来、かかるモデルが患者ごとに異なる、それどころか、フレームごとに異なる物体特性の変動を適応させ得ないという点で、本質的に制約を受ける。「Modeling the Ultrasound Backscattered Signal Using α−Stable Distributions」と題する1996年版IEEE超音波シンポジウム103頁掲載のPetropuluら著の論文は、モデルに基づくアプローチの代表である。この論文では、理論的な統計学上の挙動についてのある仮定がなされ、これら仮定を利用してインビボの実例研究において物体を確認している。この制約されたアプローチは有意な誤差を被るが、それは、このアプローチが物体の挙動を部分的にのみ記述し、事例ごとの変動を考慮していないモデルを生じるからである。
【0005】
物体境界検出の最も公知の技術は境界のトレース処理に純粋に手作業の方法を採用しており、これは、物体の境界を単に描くことによってのみ行われる。この手順は速度が遅く、使用者ごとの誤差や変動を被る。更に、この方法は境界内の物体の特徴付けを斟酌していない。
【0006】
異なるアプローチの組み合わせた1つの公知の解説として、Spencerら著の「Characterisation of Atherosclerotic Plaque by Spectral Analysis of 30 MHz Intravascular Ultrasound Radio Frequency Data」と題する1996年版IEEE超音波シンポジウム1073頁の論文があるが、この論文中で、統計的モデルはインビトロ研究から開発されて、インビボの事例に適用されている。このようなアプローチはインビトロ条件とインビボ条件との間の差異と、インビボの各種事例間の差異との両方により制約される。
【0007】
必要なのは、境界検出のためのより良好な技術と、物体と超音波画像化処理の特性とを確認し、特徴づけるためのより良好な技術である。
【0008】
(発明の要旨)
本発明は、超音波画像内に位置する物体を評価するための具体的なシステムおよび方法を提供する。1つの具体的な方法によれば、インビボの超音波画像データが得られ、このデータから少なくとも1つの物体を含んでいる画像が構成される。物体内の選択された位置についてのデータから、少なくとも2種のパラメータが算出される。これらのパラメータは物体の強度と、物体の空間構造とを表している。
【0009】
収集されたデータは時間領域データであるのが好ましい。このデータは周波数領域データに変換されて、圧縮される。2種のパラメータは、圧縮された周波数領域データのゼロ周波数マグニチュードと、圧縮された周波数領域データの周波数マグニチュードの和とを含んでいるのが好ましい。これら2種のパラメータの使用は、これらパラメータを使用して患者体内の物理的物体を特徴づけることができるという点で、特に有利である。例えば、圧縮された周波数領域データのゼロ周波数マグニチュードは、物理的物体の物理的組成(例えば、硬度)を表し、そして圧縮された周波数領域データの周波数マグニチュードの和は、物理的物体の構造を表している。このため、本発明は、インビボプロセスにおける患者の特定パラメータを得るための方法を提示している。更に、これらパラメータは、処理がより注意深く調整され得るようにするために、評価中の物体の多様な物理的特性を表している。更に、このようなパラメータは患者の病歴の一部として格納および保存することが可能であり、物体を1つ以上処理した後で算出されたパラメータと比較できるようにしている。
【0010】
別な具体的方法では、インビボの超音波画像データが複数のフレームで提供される。興味の対象となる領域を同一画像内の異なる位置へ移動させて、その異なる位置における物体確認パラメータを評価した結果として、それらパラメータが物体を表示している容認可能な範囲に入るかどうかを決定することにより、物体が各画像内で確認される。次に、容認可能な範囲に入るパラメータを有している位置の面積に基づいて、フレームの各々の内部にある物体の面積が計算される。次いで、2つの互いに隣接するフレームの面積が比較されて、2つの面積の間の差が所定の量を超過しているかどうかを決定する。超過していれば、異なる基準を用いて、互いに隣接するフレームの一方の面積が再度算出される。
【0011】
例えば、容認可能な物体確認パラメータの範囲は、隣接するフレームの一方の面積を計算し直すと、変動することがある。別な例として、興味の対象となる領域の開始位置は、隣接するフレームの一方の面積を計算し直すと、変動することがある。また別な例として、興味の対象となる領域の寸法は、隣接するフレームの一方の面積を計算し直すと、変動することがある。再度算出された面積と、それに隣接するフレームにおける物体の面積との間の差がそれでも所定量を超過している場合には、不一致を表示するメッセージが生成され得る。
【0012】
1つの特定の実施態様では、時間領域データから構成される超音波画像内の物体を評価するための方法が提示される。この方法によれば、物体内の興味の対象となる領域が選択されて観察に付される。選択された興味の対象となる領域では、時間領域データの変換は周波数領域データを得るために実施される。次に、周波数領域データは圧縮され、あるいは、フィルタ処理され、物体確認パラメータが圧縮された周波数領域データから得られる。ここで、選択された興味の対象となる領域の部分集合である、限定された興味の対象となる領域が複数限定される。興味の対象となる限定領域は選択された興味の対象となる領域に形状が比例しており、選択された興味の対象となる領域内の別な位置に置かれるのが好ましい。次に、興味の対象となる限定領域を限定する時間領域データの変換が実施されて、興味の対照である限定領域を表している周波数領域データを獲得する。このデータから、容認可能な物体確認パラメータの範囲が得られる。
【0013】
一旦、この範囲が決定されると、興味の対象となる限定領域が超音波画像の選択された位置に置かれて、時間領域データの変換が実施された結果、超音波画像中の興味の対象となる限定領域を表す周波数領域データを獲得する。次に、この周波数領域データに由来する物体確認パラメータが得られる。続いて、これら物体確認パラメータが評価され、これらが先に算出された容認可能な物体確認パラメータの範囲内にあるかどうかを決定する。続いて、容認可能な範囲に入る物体確認パラメータを有している超音波画像の選択された興味の対象となる限定領域がマーキングされ、あるいは、フラッグを付されて、フラッグを付した興味の対象となる限定領域の周囲で物体境界を構築することができるようにする。一旦、境界が構築されると、物体の面積は容易に算出することが可能である。
【0014】
1つの特定の局面では、選択されたわずかな閾値よりも低いスペクトルパワー含有量を有しているデータだけを評価することにより、データが圧縮される。別な局面では、物体境界と物体とが表示されて(表示スクリーン上などに)、物体境界が認容可能に物体を拘束しているかどうかをユーザが示せるようにする。構築された境界が不正確であったり、別な様式で容認できないものである場合には、新しい境界が2通りの方法のうちの一方で構築され得る。一方の方法では、ユーザは別な興味の対象となる領域を選択することができるが(例えば、マウスを使って興味の対象となる領域を表示された物体上の別な位置に移動させることによって行われる)、新しい興味の対象となる領域を用いてこの方法の工程を反復させることができる。代替例として、データは異なる態様で圧縮され、あるいは、フィルタ処理され、その後、この方法の工程を反復させることができる。
【0015】
通常は、超音波画像は時間領域データの複数フレームにより限定され、物体境界は複数フレームのうちの1つで構築される(複数フレームのうちの第1フレームと称するのが便利である)。複数フレームのうちの別なものが、続いて選択されて、物体境界が第2フレームの物体の周囲で構築され、面積が算出される。このプロセスは、物体を有している各フレームごとに反復される。このため、本発明の1つの利点は、後続フレームの物体の面積の計算が本質的にユーザの介入がないままに進行し得る点である。一旦、これらの面積が算出されると、フレーム中の物体の面積とフレーム間の距離とに基づいて、物体の体積を計算することができる。
【0016】
ある局面では、第1フレーム(または先行フレーム)から決定されたような物体の質量の中心に興味の対象となる限定領域を置いて、容認可能な物体確認パラメータの範囲の決定の後で行われる工程を反復することにより、第2フレームとその後続フレームにおける物体の周囲の物体境界が構築される。
【0017】
ある特定の好ましい局面では、第1フレームおよび第2フレームにおける物体の面積が比較されて、それらの面積が所定の量を越える分だけ互いに異なっているかどうかを決定する。所定量を超えて異なっていれば、変更した基準を利用して、第2フレームにおける物体の面積が計算し直される。例えば、第2フレームの物体における興味の対象となる限定領域の開始点を調整することが可能となる。代替例として、興味の対象となる限定領域の寸法は変更することができる。更に、容認可能な物体確認パラメータの範囲も変更することができる。
【0018】
本発明は、添付の図面に関連付けて後述の詳細な説明を参照することにより、より良好に理解されるだろう。
【0019】
(具体的な実施態様の説明)
本発明は、超音波画像内の物体を評価するための具体的なシステムおよび方法を提供する。評価されるべき物体は、解剖学の範囲に入る多様な物理的特性を表しているのが好ましい。単なる具体例にすぎないが、かかる特性としては組織、プラク、血液などが挙げられ得る。
【0020】
本発明は、物体の面積が容易に算出できるように、その物体の周囲に境界を構築する際に特に有用である。重要なことには、本発明が、物体の多様な物理的特長を表しているパラメータを利用して、物体をモデル化することができるという点でも有用である。これらパラメータはインビボの画像データから得られる。1具体例として、物理的物体が少なくとも部分的にプラクから構築されている場合は、本発明により生成されるパラメータは、硬度、均質性などの、プラクの本質に関する情報を保有している。このようにして、パラメータを使用して、所定の治療をより適切に規定することができる。更に、パラメータは保存することが可能で、患者が評価されるたびごとに、保存されたパラメータ値が比較されて、経時変化を測定することができるようにしている。
【0021】
本発明によれば、インビボの物体パラメータと超音波画像化データ内のパラメータの変動性とを考慮することにより、物体が特徴づけられる。特に、各物体は統計的特性(または、物体確認パラメータ)に関連して限定することができるものと想定されるが、これらパラメータは環境の特性とは一貫して異なっている。かかる特性は物体の識別特性と称する。統計的特性は、画像内の選択された位置で計算されて、特性が物体を表している値の所定の範囲に入るかどうかを決定する。範囲内にある場合は、位置がマーキングされ、それらの位置が物体内に置かれたことを示す。次に、境界を物体の付近に描き、面積を算出することができる。
【0022】
境界が正確に描かれていない場合は、この方法はある基準を調整してから、収斂が達成されるまで、このプロセスを反復することが可能である。超音波データは通常は複数(連続している可能性が高い)フレームに保存されるので、各フレームにおける物体の面積が算出される必要がある。後続フレームにおける物体の面積を算出すると、先行フレームとの比較が行われて、物体の面積の変動性が大きすぎないかどうかを決定する。大きすぎる場合は、本発明はユーザがある基準を調整できるようにするか、そうでなければ、ある基準を自動調整して、より良好な結果が得られ得るかどうかを見る。一旦、各フレームにおける面積が決まると、物体の体積を計算することができる。
【0023】
ここで図1を参照しながら、本発明に従った超音波システム8を説明してゆく。システム8は、超音波エネルギー16を利用して興味の対象となる領域(ROI)14を励振させるための励振装置10により駆動されるトランスデューサー12(当該技術で公知のような画像化カテーテル内に配置されるのが普通である)を備えている。フレーム期間中に受信装置20で超音波エネルギーの反射18が観察される。信号処理装置22の信号処理技術がこれら反射を分析する。抽出された情報を利用して、現在のフレームおよび/または後続のフレームについての励振および観察を精密にし、また、物体モデルとしてのフレームの特徴付けを精密にする。図示されていないが、システム8はデータの各フレームを表示するための表示スクリーンをも備えていることが好ましいが、これは、通常は画像の断面である。キーボード、ポインティング装置、マウスなどの多様な入力装置を設けて、ユーザがシステムと対話できるようにするのが好ましい。本発明と共に使用することができる具体的なプロセッサは、Boston Scientific Corporationから購入可能なGalaxy医療画像化システム内に設けられている。
【0024】
図2は、システム8の表示スクリーン上に生成され、受信装置20により収集されたデータのフレームを表している画像28内の典型的なIVUS物体26(プラクのような)を例示している。後でより詳細に記載するように、2つの異なる矩形の興味の対象となる領域(ROI)14、14’が標的物体26上に描かれている。ROI 14、14’は、先に説明したようなシステムの入力装置のうちの1つを利用して、物体26上に置くことができる。更に、矩形であるように示されているが、ROI 14、14’はどのような寸法または幾何学的形状を備えていてもよいものと認識される。さらに、どのような数のROIが採用されてもよい。
【0025】
血管壁31により包囲された管腔30は、プラク26がどのように管腔30を占有しているかを例示している。当該技術で公知のように、異なる物体は、異なるように表示された視覚強度、ならびに画像の均質性によって
特徴づけられる。後述するが、ROI 14、14’からの反射はどのような周囲物体のスペクトルとも異なっているスペクトルを提示するのが好ましい。
【0026】
図3A、図3Bを参照すると、本発明の具体的なプロセスのフローチャートが例示されている。興味の対象となる時間サンプルごとの観察された反射信号を含んでいる基準フレームを選択することにより、プロセスは開始される(ステップA)。ユーザが基準フレームを選択できるようにするのが好ましい。選択されたフレームは、物体26(図2を参照のこと)を最良に示しているフレームであるのが好ましい。ROI 14(図2を参照のこと)は、本質的にどのような寸法またはどのような幾何学的形状であってもよいが、ここで、所望の物体26の上に置かれる(ステップB)。これは、例えば、マウスを使用して表示スクリーン上でROI 14の輪郭を描くことにより、達成され得る。
【0027】
2次元高速フーリエ変換(FFT)がROI 14の観察された時間領域データから計算されて、周波数領域データ、すなわち、実測データのスペクトルをxおよびyとして獲得する(ステップC)。次に、このデータが、ROI 14を表しているスペクトル成分の百分率のみを維持することにより、圧縮される(ステップD)。かかるプロセスは、図4に図式的に例示されている。図4の具体例に示されているように、foとfcとの間のスペクトル成分が維持される。値fc、すなわち、所望の圧縮の量は、図4の曲線の下の領域の、例えば90%に維持されるのが望ましい圧縮データの元の面積の百分率に基づいて選択される。この値は、後述するように、この方法の結果を改善するために変更することができる。
【0028】
データの圧縮は、例えば、低域通過フィルタを利用することにより達成することができる。しかし、多様な他の圧縮スキームを採用することができるものと認識される。例えば、この方法は高域通過フィルタ、帯域通過フィルタ、選択的フィルタなどを採用することができる。次いで、圧縮されたスペクトル成分を使用して、2つの要の物体確認パラメータを算出する(ステップE)。図4を参照すると、これら2つのパラメータはゼロ周波数マグニチュードAVGo、すなわち、f0における周波数の大きさ(ゼロ周波数の振幅とも称する)と、周波数マグニチュードの和SA、すなわち、スペクトル振幅密度曲線の下の領域(スペクトル振幅分布とも称する)である。この領域は、図4の曲線の下の網罫領域により図式的に表わされている。後で説明するように、これら2つのパラメータは、パラメータを利用して患者の体内の物体の多様な物理的特性を特徴づけることができるという点で、特に有利である。
【0029】
次に、「限定」ROIが計算される。限定ROIは、最初に選択されたROIの部分集合であるとともに、容認可能な物体確認パラメータの範囲を獲得するために利用される。限定ROIは、元のROIと類似する幾何学的形状を有しているが寸法が小さくなるように選択されるのが好ましい。具体例にすぎないが、最初に選択されたROIが矩形であり、かつfoからfmaxまでの成分の数が256個であり、foからfcまでの成分の数が64(256の2乗根である)である場合には、限定ROIの寸法は64(すなわち、8掛ける8)の成分の2乗根となり得る。後で説明されるように、圧縮の量は、必要ならば、この方法の結果を向上させるために変更することが可能である。一旦、限定ROIの寸法が決まると、限定ROIが圧縮されたスペクトルデータから時間領域において再構築される(ステップF)。
【0030】
次に、限定ROIは、最初に選択された興味の対象となる領域を通って固有の位置へ移動させられる。各々の固有の位置では(ピクセルからピクセルまでの距離と同程度に緊密であってもよい)、FFTが限定ROIについて実施され、2つの物体確認パラメータが最初に選択されたROIに類似する態様で計算される。次に、これらの値を使用して、物体確認パラメータの容認可能な範囲を決定するが(ステップG)、これは、限定パラメータの各々が最初に観察されたROIに属しているからである。この範囲が図5に図式的に例示されている。
【0031】
元の画像に戻ると、限定ROIは画像の選択された位置へと移動させられ、時間領域データのFFTが実施されて、元の画像における限定ROIの各位置ごとに周波数領域データを獲得する。このデータから、2つの物体確認パラメータが抽出され、評価されて、これらパラメータが図5の範囲に入るかどうかを見る。範囲に入っている場合には、各位置がマーキングされるか、あるいは、フラッグを付されて、これらの位置が最初に選択されたROIを有している物体の一部であることを示す。
【0032】
一旦、これらの位置の全部が評価されると、プロセッサにより、フラッグを付された位置の付近に物体の境界が「描かれる」(ステップH)。この物体の面積は、フラッグを付された位置の面積を加算するだけで、容易に算出することができる。
【0033】
次に、ユーザに結果が提示され(表示スクリーン上に境界を有する画像を表示することにより)、提示されたような境界が正確であるか、あるいは、容認可能であるかどうかを示すようにユーザに求める(ステップI)。例えば、ウインドウが表示スクリーン上に生成されて、境界が容認可能であるかどうかをユーザに問うことができる。境界の確認は、物体限定が正確であることの確認である。境界が正確であると確認されなかった場合は、ROIを最適化する(ステップK)か、または、別なROI(ROI 14’のような)を追加する(ステップL)という選択がユーザに与えられる(ステップJ)。各追加のROIについて、全プロセス(ステップBからステップHまで)が反復される。ROIが最適化されるべきである場合には、プロセスの一部(ステップDからステップHまで)が反復される。ROIを最適化するために、圧縮の量と圧縮のタイプは変更することができる。また、容認可能な物体確認パラメータの範囲も変更することができる。
【0034】
先行プロセス(ステップLで始まる)は、複雑な物体の境界を確認し、従って、複雑な物体の規定を確認するために利用される。複雑な物体は、図6に示されているような、個々の規定ごとに検出される各個々の物体の、組み合わさった境界により限定される。
【0035】
(ステップIで)境界が確認された場合は、プロセスは次のフレームに進み、まず、さらなるフレームが存在しているかどうかを決定する(ステップM)。フレームがそれ以上無い場合には、プロセスは終了する(ステップN)。まだフレームが残っている場合には、プロセスは次のフレームへと進む(ステップO)。
【0036】
図3Bを参照すると、後続のフレームについての処理を進めて、物体の質量中心(先行フレームにおける物体から近似される)に限定ROI(先に算出された同一の限定ROIであるのが好ましい)を置く処理を行う(ステップP)。次に、物体限定パラメータを計算して(ステップR)から、物体限定パラメータを確認する(ステップS)ために、先に使用されたのと同一技術を利用して、時間領域データに関して2次元高速フーリエ変換(FFT)が計算される(ステップQ)。パラメータが吟味されて、先に計算されたように、容認可能な範囲内にパラメータが入るかどうかを決定する。範囲内にある場合には、限定ROIの位置には、物体に属している面積を規定しながら、フラッグが付される。未処理の限定ROIが存在している限り(ステップT)、ステップPからステップSまでのプロセスが全ての限定ROIについて反復される。全ての限定ROIを考慮した後で、最終物体の境界を決定し、そこに含まれる面積が先に説明したものと同様の態様で算出される(ステップU)。
【0037】
新しい面積値は先行フレームについて算出された面積値と比較され、その値が容認可能な範囲内にあるかどうかを決定する(ステップV)。範囲内であれば、プロセスは次のフレームへと移行する(ステップM、図3Aを参照のこと)。範囲内でなければ、プロセスは適応性ループに入り(ステップW)、容認可能な範囲内の面積値を得るために、限定ROIの位置および寸法を変化させながら、あるいは、容認可能なパラメータの範囲を変化させながら、ステップPからステプUを反復する。
【0038】
比較した2つの面積が互いにかなり異なっている場合には、両面積のうちの一方が不正確に算出された強い可能性が存在する。ステップPからステップUのループが適応方法を提供して、そのような不一致を補償する。より詳しく説明すると、fcの値(図2を参照のこと)は変更することができる(あるいは、どのような方法であれ、データを圧縮することができる)。更に、限定ROIの開始点は質量中心から離れる方に移動させられ得る。また更に、容認可能な物体確認パラメータの範囲も変更することができる。収斂が得られない場合には、システムが、結果が規定と一致していなかったことを示すメッセージを生成し得る。
【0039】
図4は、平均周波数f0から最大観察周波数fmaxを越える周波数までの、1つのROI 14のスペクトル図である。値fcは圧縮された値のスペクトルの上限を示している。先に説明したように、物体限定を発生させるために使用される2種のパラメータとは、1)ゼロ周波数マグニチュードAVG、すなわち、f0における振幅と、2)スペクトル領域SA、すなわち、軸線、圧縮区分、および振幅−周波数プロット30により境界区分された面積である。このプロットは、ゼロ周波数マグニチュードAVGが振幅32と振幅32’とで異なっているのと丁度同じように、プロット30’により表示されるように、各々の限定ROIとは異なっている。
【0040】
図5はスペクトル領域SAとゼロ周波数マグニチュードAVGとの間の関係を描いており、特に、ステップGにおいて算出されたような(図3A)物体限定範囲を示している。物体範囲内では、パラメータAVGが最小値34と最大値36の間で変動する可能性があり、パラメータSAは最小値38と最大値40の間で変動する可能性があり、従って、物体の標識特性を規定するために、許容できるパラメータ変動42を確立している。従って、この範囲内に見られるパラメータは物体と同一視することができる。
【0041】
図6を参照すると、図3Aおよび図3Bに関連して概略を述べたような物体限定アルゴリズムは、例示のために2つの物体50、52から成る、プラクなどの物体限定48を生成する。物体境界54は、物体を限定している2つのROIを処理した結果として生じる境界56、58を結合させる。
【0042】
物体面積は、本文に開示されているような適応性物体確認アルゴリズムのためのフィードバックパラメータとしてその後も利用可能である。基準フレーム(ステップA)以外のフレームにおける物体確認アルゴリズムは先行フレームの結果を利用して、物体を確認する。かかるフレームにおける物体面積が容認された分を越える程も先行フレームと異なっている場合には、結果として生じた新しい面積が先行フレームにおける面積の容認されたわずかな部分の範囲に入るまで、限定ROIの位置および寸法を適応性機構が変更する。最適化プロセスに解が無い場合には(すなわち、解が収斂しない)、最も有効な近似値を解として選択することが可能であり、境界面積は未確定と示されることがある。
【0043】
図7を参照すると、興味の対象となる領域のスペクトル図の一例が、物体、すなわち、患者体内の物体の物理的特長と物体確認パラメータがどのように関連するかを示している。本例では、超音波画像はプラクの領域を有している血管内部で撮像されている。AVG軸線は超音波画像の強度を表している。次いで、これは、硬度のような現実の物理的画像の物理的組成に対応している。f軸線は超音波画像の空間構造を表している。次いで、これは、物理的物体の、均質性などの空間的構造に対応している。具体例として、領域60では、現実の物理的物体は脂肪プラクから成る。領域62では、物理的物体は混合プラクから成る。領域64では、物理的物体は血液から成り、領域66では、物理的物体は、組織へと遷移していく強石灰化プラクから成る。
【0044】
このように、f0値およびSA値を物体確認パラメータとして利用することにより、物体の現実の物理的本質を特徴づけることができる。このようにして、本発明の方法は患者ごとに特有であり、患者ごとに異なっている。更に、各パラメータは保存することができるとともに、治療が有効かどうかを決定するために、後で算出されるパラメータと比較することもできる。
【0045】
本発明を特定の実施態様に言及しながら説明してきた。当業者には上記以外の実施態様も明白である。それ故に、添付の特許請求の範囲に示されているような場合を除いて、本発明を限定する意図は無い。
【図面の簡単な説明】
【図1】 図1は、本発明の環境のブロック図である。
【図2】 図2は、本発明に従って興味の対象となる領域を示す、インビボの事例の描画である。
【図3A】 図3Aは、物体識別特性の適応性計算のための、本発明に従ったプロセスのフローチャートである。
【図3B】 図3Bは、物体識別特性の適応性計算のための、本発明に従ったプロセスのフローチャートである。
【図4】 図4は、興味の対象となる領域のスペクトル図である。
【図5】 図5は、物体範囲の変動のグラフである。
【図6】 図6は、本発明に従った物体限定の描画である。
【図7】 図7は、物体確認パラメータがどのように患者体内の物体の物理的特徴を表しているかを示す、興味の対象となる領域のスペクトル図である。

Claims (5)

  1. 超音波画像内の物体の評価のための医療機器の作動方法であって、
    該方法は、
    複数のフレームにおけるインビボの超音波画像データを獲得することと、
    該データの該複数のフレームの少なくとも一部から画像を構築することであって、該画像は、少なくとも1つの物体を含む、ことと、
    興味の対象となる領域を該画像内の異なる位置に移動させるとともに、該異なる位置における物体確認パラメータを評価して、該物体を示している物体確認パラメータの容認可能な範囲に該パラメータが入るかどうかを決定することにより、各画像において該物体を確認することと、
    該容認可能な範囲に入るパラメータを有する位置に基づいて、該複数のフレームの各々における該物体の面積を計算することと、
    該複数のフレームのうちの2つの互いに時間的に隣接するフレームにおける該物体の面積を比較することと、
    該比較された面積の差が所定の量を超える場合に、異なる範囲の物体確認パラメータを用いて該2つの互いに時間的に隣接するフレームのうちの1つのフレームにおける該物体の面積を再計算することと
    を包含する、方法。
  2. 前記興味の対象となる領域の開始位置を変更して、前記時間的に隣接するフレームのうちの1つのフレームにおける該物体の面積を再計算することを更に包含する、請求項1に記載の方法。
  3. 前記興味の対象となる領域の寸法を変更して、前記時間的に隣接するフレームのうちの1つのフレームにおける該物体の面積を再計算することを更に包含する、請求項1に記載の方法。
  4. 前記異なる範囲の物体確認パラメータを用いて前記2つの互いに時間的に隣接するフレームのうちの1つのフレームにおける該物体の面積を再計算した後に、前記比較された面積の差が前記所定の量を依然として超える場合に、メッセージを生成することを更に包含する、請求項1に記載の方法。
  5. 超音波画像化システムであって、
    該システムは、
    プロセッサと、
    複数のフレームにおけるインビボの超音波画像データを保存するためのメモリと、
    該プロセッサに接続された表示スクリーンであって、該データの各フレームからの画像を表示する表示スクリーンと
    を備え、
    各画像は、少なくとも1つの物体を含み、
    該プロセッサは、
    興味の対象となる領域を該画像内の異なる位置に移動させるとともに、該異なる位置における物体確認パラメータを評価して、該物体を示している物体確認パラメータの容認可能な範囲に該パラメータが入るかどうかを決定することにより、各画像において該物体を確認することと、
    該容認可能な範囲に入るパラメータを有する位置に基づいて、該複数のフレームのうちの2つの互いに時間的に隣接するフレームにおける該物体の面積を計算することと、
    該2つの互いに時間的に隣接するフレームにおける該物体の面積を比較することと、
    該2つの比較された面積の差が所定の量を超える場合に、異なる範囲の物体確認パラメータを用いて該時間的に隣接するフレームのうちの1つのフレームにおける該物体の面積を再計算することと
    を実行する、システム。
JP2000573266A 1998-10-02 1999-09-13 統計的識別特性を利用した適応性断面積計算方法 Expired - Fee Related JP4544745B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/165,670 US6120445A (en) 1998-10-02 1998-10-02 Method and apparatus for adaptive cross-sectional area computation of IVUS objects using their statistical signatures
US09/165,670 1998-10-02
PCT/IB1999/001541 WO2000019903A1 (en) 1998-10-02 1999-09-13 Adaptive cross-sectional area computation using statistical signatures

Publications (2)

Publication Number Publication Date
JP2002526141A JP2002526141A (ja) 2002-08-20
JP4544745B2 true JP4544745B2 (ja) 2010-09-15

Family

ID=22599936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000573266A Expired - Fee Related JP4544745B2 (ja) 1998-10-02 1999-09-13 統計的識別特性を利用した適応性断面積計算方法

Country Status (6)

Country Link
US (4) US6120445A (ja)
EP (1) EP1117331B1 (ja)
JP (1) JP4544745B2 (ja)
CA (1) CA2340247C (ja)
DE (1) DE69925139T2 (ja)
WO (1) WO2000019903A1 (ja)

Families Citing this family (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120445A (en) * 1998-10-02 2000-09-19 Scimed Life Systems, Inc. Method and apparatus for adaptive cross-sectional area computation of IVUS objects using their statistical signatures
JP4101392B2 (ja) * 1999-04-08 2008-06-18 富士フイルム株式会社 画像定量方法および装置
US6200268B1 (en) * 1999-09-10 2001-03-13 The Cleveland Clinic Foundation Vascular plaque characterization
AU2002216667A1 (en) * 2000-11-24 2002-06-03 U-Systems, Inc. Method and system for instant biopsy specimen analysis
AU2002322085A1 (en) * 2001-06-13 2002-12-23 Cardiovascular Innovations, Inc. Apparatus and method for ultrasonically identifying vulnerable plaque
NL1019612C2 (nl) * 2001-12-19 2003-06-20 Gemeente Amsterdam Stoomoververhitter.
US6776760B2 (en) * 2002-03-06 2004-08-17 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Multi-mode processing for ultrasonic imaging
US6817982B2 (en) * 2002-04-19 2004-11-16 Sonosite, Inc. Method, apparatus, and product for accurately determining the intima-media thickness of a blood vessel
US7359554B2 (en) * 2002-08-26 2008-04-15 Cleveland Clinic Foundation System and method for identifying a vascular border
US7927275B2 (en) * 2002-08-26 2011-04-19 The Cleveland Clinic Foundation System and method of aquiring blood-vessel data
US7074188B2 (en) 2002-08-26 2006-07-11 The Cleveland Clinic Foundation System and method of characterizing vascular tissue
JP4933045B2 (ja) * 2002-08-26 2012-05-16 ザ クリーブランド クリニック ファウンデーション 血管組織を特徴付けするシステムおよび方法
US6835177B2 (en) * 2002-11-06 2004-12-28 Sonosite, Inc. Ultrasonic blood vessel measurement apparatus and method
US7998073B2 (en) * 2003-08-04 2011-08-16 Imacor Inc. Ultrasound imaging with reduced noise
JP4685633B2 (ja) * 2003-09-12 2011-05-18 株式会社日立メディコ 超音波診断装置
US20050070796A1 (en) * 2003-09-30 2005-03-31 Fuji Photo Film Co., Ltd. Ultrasonic diagnosing apparatus
KR100601933B1 (ko) * 2003-11-18 2006-07-14 삼성전자주식회사 사람검출방법 및 장치와 이를 이용한 사생활 보호방법 및 시스템
AU2004294945B2 (en) * 2003-11-26 2011-05-26 Imacor Inc. Transesophageal ultrasound using a narrow probe
JP3867080B2 (ja) * 2003-12-11 2007-01-10 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
US7874990B2 (en) * 2004-01-14 2011-01-25 The Cleveland Clinic Foundation System and method for determining a transfer function
US7215802B2 (en) * 2004-03-04 2007-05-08 The Cleveland Clinic Foundation System and method for vascular border detection
KR100686289B1 (ko) * 2004-04-01 2007-02-23 주식회사 메디슨 대상체 영상의 윤곽내 볼륨 데이터를 이용하는 3차원초음파 영상 형성 장치 및 방법
US7460716B2 (en) * 2004-09-13 2008-12-02 Boston Scientific Scimed, Inc. Systems and methods for producing a dynamic classified image
JP4575737B2 (ja) * 2004-09-29 2010-11-04 富士フイルム株式会社 超音波撮像装置
US7713206B2 (en) * 2004-09-29 2010-05-11 Fujifilm Corporation Ultrasonic imaging apparatus
JP4575738B2 (ja) * 2004-09-29 2010-11-04 富士フイルム株式会社 超音波画像境界抽出方法及び超音波画像境界抽出装置、並びに、超音波撮像装置
US8287455B2 (en) * 2004-10-30 2012-10-16 Sonowise, Inc. Synchronized power supply for medical imaging
US8016758B2 (en) * 2004-10-30 2011-09-13 Sonowise, Inc. User interface for medical imaging including improved pan-zoom control
US7771355B2 (en) * 2004-10-30 2010-08-10 Sonowise, Inc. System and method for medical imaging with robust mode switching via serial channel
US7708691B2 (en) * 2005-03-03 2010-05-04 Sonowise, Inc. Apparatus and method for real time 3D body object scanning without touching or applying pressure to the body object
US20090118612A1 (en) 2005-05-06 2009-05-07 Sorin Grunwald Apparatus and Method for Vascular Access
EP1887940B1 (en) * 2005-05-06 2013-06-26 Vasonova, Inc. Apparatus for endovascular device guiding and positioning
US7831081B2 (en) * 2005-08-15 2010-11-09 Boston Scientific Scimed, Inc. Border detection in medical image analysis
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US20070083110A1 (en) * 2005-10-09 2007-04-12 Sonowise, Inc. Programmable phase velocity in an ultrasonic imaging system
US20070238991A1 (en) * 2006-01-25 2007-10-11 Jaltec Biomedical Inc. Ultrasound method and apparatus for characterizing and identifying biological tissues
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US20080119735A1 (en) * 2006-11-20 2008-05-22 Sonowise, Inc. Ultrasound imaging system and method with offset alternate-mode line
EP2170162B1 (en) 2007-06-26 2017-08-23 Vasonova, Inc. Apparatus for endovascular device guiding and positioning using physiological parameters
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US10219780B2 (en) 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
EP2178442B1 (en) 2007-07-12 2017-09-06 Volcano Corporation Catheter for in vivo imaging
ES2651898T3 (es) 2007-11-26 2018-01-30 C.R. Bard Inc. Sistema integrado para la colocación intravascular de un catéter
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US9451929B2 (en) 2008-04-17 2016-09-27 Boston Scientific Scimed, Inc. Degassing intravascular ultrasound imaging systems with sealed catheters filled with an acoustically-favorable medium and methods of making and using
US20090270731A1 (en) * 2008-04-24 2009-10-29 Boston Scientific Scimed, Inc Methods, systems, and devices for tissue characterization by spectral similarity of intravascular ultrasound signals
US9549713B2 (en) 2008-04-24 2017-01-24 Boston Scientific Scimed, Inc. Methods, systems, and devices for tissue characterization and quantification using intravascular ultrasound signals
US8206308B2 (en) * 2008-05-05 2012-06-26 Boston Scientific Scimed, Inc. Shielding for intravascular ultrasound imaging systems and methods of making and using
US8197413B2 (en) * 2008-06-06 2012-06-12 Boston Scientific Scimed, Inc. Transducers, devices and systems containing the transducers, and methods of manufacture
WO2010018513A2 (en) * 2008-08-12 2010-02-18 Koninklijke Philips Electronics N.V. Method of meshing and calculating a volume in an ultrasound imaging system
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
EP2169415A1 (en) * 2008-09-30 2010-03-31 Siemens Schweiz AG Method for automatic quality control of in-vivo human brain MRI images
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US20100168582A1 (en) * 2008-12-29 2010-07-01 Boston Scientific Scimed, Inc. High frequency transducers and methods of making the transducers
US20100179434A1 (en) * 2009-01-09 2010-07-15 Boston Scientific Scimed, Inc. Systems and methods for making and using intravascular ultrasound systems with photo-acoustic imaging capabilities
US20100179432A1 (en) * 2009-01-09 2010-07-15 Boston Scientific Scimed, Inc. Systems and methods for making and using intravascular ultrasound systems with photo-acoustic imaging capabilities
JP5693471B2 (ja) 2009-02-11 2015-04-01 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 絶縁された切除カテーテルデバイスおよびその使用法
US8647281B2 (en) 2009-03-31 2014-02-11 Boston Scientific Scimed, Inc. Systems and methods for making and using an imaging core of an intravascular ultrasound imaging system
US20100249588A1 (en) 2009-03-31 2010-09-30 Boston Scientific Scimed, Inc. Systems and methods for making and using intravascular imaging systems with multiple pullback rates
US20100249604A1 (en) 2009-03-31 2010-09-30 Boston Scientific Corporation Systems and methods for making and using a motor distally-positioned within a catheter of an intravascular ultrasound imaging system
US8298149B2 (en) 2009-03-31 2012-10-30 Boston Scientific Scimed, Inc. Systems and methods for making and using a motor distally-positioned within a catheter of an intravascular ultrasound imaging system
US8545412B2 (en) * 2009-05-29 2013-10-01 Boston Scientific Scimed, Inc. Systems and methods for making and using image-guided intravascular and endocardial therapy systems
US20100305442A1 (en) * 2009-05-29 2010-12-02 Boston Scientific Scimed, Inc. Systems and methods for implementing a data management system for catheter-based imaging systems
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
JP5795576B2 (ja) 2009-06-12 2015-10-14 バード・アクセス・システムズ,インコーポレーテッド 心電図(ecg)信号を使用して心臓内またはその近くに血管内デバイスを位置決めするコンピュータベースの医療機器の作動方法
WO2011008444A1 (en) 2009-06-30 2011-01-20 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US20110071400A1 (en) 2009-09-23 2011-03-24 Boston Scientific Scimed, Inc. Systems and methods for making and using intravascular ultrasound imaging systems with sealed imaging cores
US20110071401A1 (en) * 2009-09-24 2011-03-24 Boston Scientific Scimed, Inc. Systems and methods for making and using a stepper motor for an intravascular ultrasound imaging system
AU2010300677B2 (en) 2009-09-29 2014-09-04 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
WO2011044421A1 (en) 2009-10-08 2011-04-14 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8396276B2 (en) * 2009-10-26 2013-03-12 Boston Scientific Scimed, Inc. Systems and methods for performing an image-based gating procedure during an IVUS imaging procedure
US20110098573A1 (en) * 2009-10-27 2011-04-28 Boston Scientific Scimed, Inc. Systems and methods for coupling a transducer to a control module of an intravascular ultrasound imaging system
US8523778B2 (en) * 2009-11-25 2013-09-03 Boston Scientific Scimed, Inc. Systems and methods for flushing air from a catheter of an intravascular ultrasound imaging system
US9179827B2 (en) * 2009-12-15 2015-11-10 Boston Scientific Scimed, Inc. Systems and methods for determining the position and orientation of medical devices inserted into a patient
JP5754022B2 (ja) 2009-12-29 2015-07-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 血管内超音波撮像システムを用いた患者組織の多重周波数撮像のためのシステム
BR112012019354B1 (pt) 2010-02-02 2021-09-08 C.R.Bard, Inc Método para localização de um dispositivo médico implantável
ES2864665T3 (es) 2010-05-28 2021-10-14 Bard Inc C R Aparato para su uso con sistema de guiado de inserción de aguja
WO2011150376A1 (en) 2010-05-28 2011-12-01 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
JP2013535301A (ja) 2010-08-09 2013-09-12 シー・アール・バード・インコーポレーテッド 超音波プローブヘッド用支持・カバー構造
JP5845260B2 (ja) 2010-08-20 2016-01-20 シー・アール・バード・インコーポレーテッドC R Bard Incorporated Ecg支援カテーテル先端配置の再確認
US8427483B1 (en) 2010-08-30 2013-04-23 Disney Enterprises. Inc. Drawing figures in computer-based drawing applications
US8487932B1 (en) * 2010-08-30 2013-07-16 Disney Enterprises, Inc. Drawing figures in computer-based drawing applications
US20120065506A1 (en) 2010-09-10 2012-03-15 Scott Smith Mechanical, Electromechanical, and/or Elastographic Assessment for Renal Nerve Ablation
EP2632338B1 (en) 2010-10-28 2015-07-01 Boston Scientific Scimed, Inc. Systems and methods for reducing non-uniform rotation distortion in ultrasound images
WO2012058461A1 (en) 2010-10-29 2012-05-03 C.R.Bard, Inc. Bioimpedance-assisted placement of a medical device
US9119551B2 (en) 2010-11-08 2015-09-01 Vasonova, Inc. Endovascular navigation system and method
US8591421B2 (en) 2010-11-12 2013-11-26 Boston Scientific Scimed, Inc. Systems and methods for making and using rotational transducers for concurrently imaging blood flow and tissue
WO2012071109A1 (en) 2010-11-24 2012-05-31 Boston Scientific Scimed, Inc. Systems and methods for concurrently displaying a plurality of images using an intra vascular ultrasound imaging system
JP5944917B2 (ja) 2010-11-24 2016-07-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 身体内腔分岐を検出及び表示するためのコンピュータ可読媒体及び同コンピュータ可読媒体を含むシステム
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US20120172698A1 (en) 2010-12-30 2012-07-05 Boston Scientific Scimed, Inc. Imaging system
US9089340B2 (en) 2010-12-30 2015-07-28 Boston Scientific Scimed, Inc. Ultrasound guided tissue ablation
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US20120253197A1 (en) 2011-03-30 2012-10-04 Boston Scientific Scimed, Inc. Systems and methods for flushing bubbles from a catheter of an intravascular ultrasound imaging system
US20120283569A1 (en) * 2011-05-04 2012-11-08 Boston Scientific Scimed, Inc. Systems and methods for navigating and visualizing intravascular ultrasound sequences
JP2014516723A (ja) 2011-06-01 2014-07-17 ボストン サイエンティフィック サイムド,インコーポレイテッド 超音波映像性能を備えた切除プローブ
RU2609203C2 (ru) 2011-07-06 2017-01-30 Си.Ар. Бард, Инк. Определение и калибровка длины иглы для системы наведения иглы
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
WO2013033489A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical rotary joint and methods of use
JP6117209B2 (ja) 2011-09-14 2017-04-19 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 複数のアブレーションモードを備えたアブレーション装置及び同アブレーション装置を含むシステム
US9603659B2 (en) 2011-09-14 2017-03-28 Boston Scientific Scimed Inc. Ablation device with ionically conductive balloon
US9271696B2 (en) 2011-09-22 2016-03-01 Boston Scientific Scimed, Inc. Ultrasound imaging systems with bias circuitry and methods of making and using
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
JP2015506209A (ja) 2011-12-28 2015-03-02 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. アブレーションプローブならびにアブレーションおよび超音波撮像システム
WO2013106557A1 (en) 2012-01-10 2013-07-18 Boston Scientific Scimed, Inc. Electrophysiology system
US8945015B2 (en) 2012-01-31 2015-02-03 Koninklijke Philips N.V. Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging and treatment
JP6185048B2 (ja) 2012-05-07 2017-08-23 バソノバ・インコーポレイテッドVasonova, Inc. 上大静脈区域及び大静脈心房接合部の検出のためのシステム及び方法
EP2861153A4 (en) 2012-06-15 2016-10-19 Bard Inc C R APPARATUS AND METHODS FOR DETECTION OF A REMOVABLE CAP ON AN ULTRASONIC PROBE
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
WO2014055880A2 (en) 2012-10-05 2014-04-10 David Welford Systems and methods for amplifying light
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
CA2894403A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
JP2016504589A (ja) 2012-12-20 2016-02-12 ナサニエル ジェイ. ケンプ, 異なる撮像モード間で再構成可能な光コヒーレンストモグラフィシステム
CA2895502A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
EP2934282B1 (en) 2012-12-20 2020-04-29 Volcano Corporation Locating intravascular images
EP2934280B1 (en) 2012-12-21 2022-10-19 Mai, Jerome Ultrasound imaging with variable line density
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10420530B2 (en) 2012-12-21 2019-09-24 Volcano Corporation System and method for multipath processing of image signals
EP2936241B1 (en) 2012-12-21 2020-10-21 Nathaniel J. Kemp Power-efficient optical buffering using a polarisation-maintaining active optical switch
WO2014100530A1 (en) 2012-12-21 2014-06-26 Whiseant Chester System and method for catheter steering and operation
EP2936626A4 (en) 2012-12-21 2016-08-17 David Welford SYSTEMS AND METHODS FOR REDUCING LIGHT WAVE LENGTH TRANSMISSION
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
CA2895769A1 (en) 2012-12-21 2014-06-26 Douglas Meyer Rotational ultrasound imaging catheter with extended catheter body telescope
US10332228B2 (en) 2012-12-21 2019-06-25 Volcano Corporation System and method for graphical processing of medical data
WO2014134318A2 (en) 2013-02-28 2014-09-04 Boston Scientific Scimed, Inc. Imaging devices with an array of transducers and methods of manufacture and use
JP6154031B2 (ja) 2013-03-01 2017-06-28 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 血管内超音波シーケンスにおける管腔境界検出のためのシステム及び非一時的コンピュータ可読媒体
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
CN105103163A (zh) 2013-03-07 2015-11-25 火山公司 血管内图像中的多模态分割
EP3895604A1 (en) 2013-03-12 2021-10-20 Collins, Donna Systems and methods for diagnosing coronary microvascular disease
US20140276923A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Vibrating catheter and methods of use
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
WO2014159819A1 (en) 2013-03-13 2014-10-02 Jinhyoung Park System and methods for producing an image from a rotational intravascular ultrasound device
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US20160030151A1 (en) 2013-03-14 2016-02-04 Volcano Corporation Filters with echogenic characteristics
US10716536B2 (en) 2013-07-17 2020-07-21 Tissue Differentiation Intelligence, Llc Identifying anatomical structures
US10154826B2 (en) 2013-07-17 2018-12-18 Tissue Differentiation Intelligence, Llc Device and method for identifying anatomical structures
JP6192846B2 (ja) 2013-09-11 2017-09-06 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 血管内超音波撮像システムを使用して画像を選択し表示するためのシステム
WO2015120256A2 (en) 2014-02-06 2015-08-13 C.R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
CN106793968A (zh) 2014-10-13 2017-05-31 波士顿科学医学有限公司 使用微电极的组织诊断和治疗
US10603105B2 (en) 2014-10-24 2020-03-31 Boston Scientific Scimed Inc Medical devices with a flexible electrode assembly coupled to an ablation tip
CN106999080B (zh) 2014-12-18 2020-08-18 波士顿科学医学有限公司 针对病变评估的实时形态分析
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10456105B2 (en) 2015-05-05 2019-10-29 Boston Scientific Scimed, Inc. Systems and methods with a swellable material disposed over a transducer of an ultrasound imaging system
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
US20170164925A1 (en) 2015-10-09 2017-06-15 Boston Scientific Scimed, Inc. Intravascular ultrasound systems, catheters, and methods with a manual pullback arrangement
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US11986341B1 (en) 2016-05-26 2024-05-21 Tissue Differentiation Intelligence, Llc Methods for accessing spinal column using B-mode imaging to determine a trajectory without penetrating the the patient's anatomy
US11701086B1 (en) 2016-06-21 2023-07-18 Tissue Differentiation Intelligence, Llc Methods and systems for improved nerve detection
WO2019067457A1 (en) 2017-09-28 2019-04-04 Boston Scientific Scimed, Inc. SYSTEMS AND METHODS FOR REALIZING FREQUENCY-BASED SETTING OF SIGNAL PATHWAYS ALONG ULTRASONIC INTRAVASCULAR IMAGING SYSTEMS
EP3852622A1 (en) 2018-10-16 2021-07-28 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
WO2021062006A1 (en) 2019-09-26 2021-04-01 Boston Scientific Scimed, Inc. Intravascular ultrasound imaging and calcium detection methods
US20230056254A1 (en) 2021-08-17 2023-02-23 Boston Scientific Scimed, Inc. Intravascular imaging system with automated calcium analysis and treatment guidance
WO2023146976A1 (en) 2022-01-26 2023-08-03 Boston Scientific Scimed, Inc. Reducing catheter rotation motor pwm interference with intravascular ultrasound imaging
US20230380806A1 (en) 2022-05-27 2023-11-30 Boston Scientific Scimed, Inc. Systems and methods for intravascular visualization
WO2024059136A1 (en) 2022-09-14 2024-03-21 Boston Scientific Scimed, Inc. Graphical user interface for intravascular ultrasound stent display
WO2024059141A1 (en) 2022-09-14 2024-03-21 Boston Scientific Scimed, Inc. Graphical user interface for intravascular ultrasound automated lesion assessment system
US20240081782A1 (en) 2022-09-14 2024-03-14 Boston Scientific Scimed, Inc. Graphical user interface for intravascular ultrasound calcium display
US20240081785A1 (en) 2022-09-14 2024-03-14 Boston Scientific Scimed, Inc. Key frame identification for intravascular ultrasound based on plaque burden
WO2024059663A1 (en) 2022-09-14 2024-03-21 Boston Scientific Scimed Inc. Intravascular ultrasound co-registration with angiographic images

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063549A (en) * 1975-12-22 1977-12-20 Technicon Instruments Corporation Ultrasonic method and apparatus for imaging and characterization of bodies
US4350917A (en) * 1980-06-09 1982-09-21 Riverside Research Institute Frequency-controlled scanning of ultrasonic beams
US4484569A (en) * 1981-03-13 1984-11-27 Riverside Research Institute Ultrasonic diagnostic and therapeutic transducer assembly and method for using
US4561019A (en) * 1983-05-16 1985-12-24 Riverside Research Institute Frequency diversity for image enhancement
US4858124A (en) * 1984-08-15 1989-08-15 Riverside Research Institute Method for enhancement of ultrasonic image data
US4982339A (en) * 1985-11-18 1991-01-01 The United States Of America As Represented By Department Of Health And Human Service High speed texture discriminator for ultrasonic imaging
US4817015A (en) * 1985-11-18 1989-03-28 The United States Government As Represented By The Secretary Of The Health And Human Services High speed texture discriminator for ultrasonic imaging
US4932414A (en) * 1987-11-02 1990-06-12 Cornell Research Foundation, Inc. System of therapeutic ultrasound and real-time ultrasonic scanning
US4945478A (en) * 1987-11-06 1990-07-31 Center For Innovative Technology Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
US4855911A (en) * 1987-11-16 1989-08-08 Massachusetts Institute Of Technology Ultrasonic tissue characterization
US5016615A (en) * 1990-02-20 1991-05-21 Riverside Research Institute Local application of medication with ultrasound
JPH0435653A (ja) * 1990-05-31 1992-02-06 Fujitsu Ltd 超音波診断装置
US5335184A (en) 1990-07-16 1994-08-02 Battelle Memorial Institute Nondestructive ultrasonic testing of materials
US5193546A (en) 1991-05-15 1993-03-16 Alexander Shaknovich Coronary intravascular ultrasound imaging method and apparatus
WO1994023652A1 (en) * 1993-04-19 1994-10-27 Commonwealth Scientific And Industrial Research Organisation Tissue characterisation using intravascular echoscopy
US5293871A (en) * 1993-05-05 1994-03-15 Cornell Research Foundation Inc. System for ultrasonically determining corneal layer thicknesses and shape
US5417215A (en) * 1994-02-04 1995-05-23 Long Island Jewish Medical Center Method of tissue characterization by ultrasound
US5734739A (en) * 1994-05-31 1998-03-31 University Of Washington Method for determining the contour of an in vivo organ using multiple image frames of the organ
GB9504751D0 (en) 1995-03-09 1995-04-26 Quality Medical Imaging Ltd Apparatus for ultrasonic tissue investigation
US5782766A (en) * 1995-03-31 1998-07-21 Siemens Medical Systems, Inc. Method and apparatus for generating and displaying panoramic ultrasound images
US6154560A (en) * 1996-08-30 2000-11-28 The Cleveland Clinic Foundation System and method for staging regional lymph nodes using quantitative analysis of endoscopic ultrasound images
GB2319841A (en) * 1996-11-29 1998-06-03 Imperial College Ultrasound scanning of tissue
US6095976A (en) * 1997-06-19 2000-08-01 Medinol Ltd. Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen
US6106465A (en) * 1997-08-22 2000-08-22 Acuson Corporation Ultrasonic method and system for boundary detection of an object of interest in an ultrasound image
US6039689A (en) * 1998-03-11 2000-03-21 Riverside Research Institute Stripe electrode transducer for use with therapeutic ultrasonic radiation treatment
US6186951B1 (en) * 1998-05-26 2001-02-13 Riverside Research Institute Ultrasonic systems and methods for fluid perfusion and flow rate measurement
US6238342B1 (en) * 1998-05-26 2001-05-29 Riverside Research Institute Ultrasonic tissue-type classification and imaging methods and apparatus
US6162174A (en) * 1998-09-16 2000-12-19 Siemens Medical Systems, Inc. Method for compensating for object movement in ultrasound images
US6120445A (en) * 1998-10-02 2000-09-19 Scimed Life Systems, Inc. Method and apparatus for adaptive cross-sectional area computation of IVUS objects using their statistical signatures
US6217520B1 (en) * 1998-12-02 2001-04-17 Acuson Corporation Diagnostic medical ultrasound system and method for object of interest extraction

Also Published As

Publication number Publication date
US20010014774A1 (en) 2001-08-16
US20030092993A1 (en) 2003-05-15
DE69925139T2 (de) 2006-01-26
JP2002526141A (ja) 2002-08-20
DE69925139D1 (de) 2005-06-09
US6287259B1 (en) 2001-09-11
US6514202B2 (en) 2003-02-04
CA2340247C (en) 2009-05-12
CA2340247A1 (en) 2000-04-13
US6945938B2 (en) 2005-09-20
US6120445A (en) 2000-09-19
EP1117331B1 (en) 2005-05-04
WO2000019903A1 (en) 2000-04-13
EP1117331A1 (en) 2001-07-25

Similar Documents

Publication Publication Date Title
JP4544745B2 (ja) 統計的識別特性を利用した適応性断面積計算方法
Aysal et al. Rayleigh-maximum-likelihood filtering for speckle reduction of ultrasound images
CN108230261A (zh) 基于自动器官识别的全自动图像优化
US8170642B2 (en) Method and system for lymph node detection using multiple MR sequences
US7024027B1 (en) Method and apparatus for three-dimensional filtering of angiographic volume data
US20030174890A1 (en) Image processing device and ultrasonic diagnostic device
KR102432115B1 (ko) 상이한 조직 유형의 고급 초음파 검출
Aarnink et al. A practical clinical method for contour determination in ultrasonographic prostate images
WO2012130132A1 (zh) 脊柱椎体和椎间盘分割方法、装置、磁共振成像系统
JP2016531709A (ja) 疾患を診断するための画像解析技術
WO2001089386A1 (en) Automatic segmentation of prostate, rectum and urethra in ultrasound imaging
US20080130964A1 (en) Methods and Apparatus for Analysing Ultrasound Images
JP2006204912A (ja) 超音波映像処理方法
US10832405B2 (en) Medical image processing apparatus with awareness of type of subject pattern
MacGillivray et al. The resolution integral: visual and computational approaches to characterizing ultrasound images
Maggio et al. Predictive deconvolution and hybrid feature selection for computer-aided detection of prostate cancer
Soylu et al. Calibrating data mismatches in deep learning-based quantitative ultrasound using setting transfer functions
Barva et al. Automatic localization of curvilinear object in 3D ultrasound images
KR101036370B1 (ko) 방사선 사진 상에서 서로 다른 구조물의 식별력을향상시키기 위한 방법 및 장치
Liu et al. Automatic segmentation of prostate boundaries in transrectal ultrasound (TRUS) imaging
Belohlavek et al. Detection of cardiac boundaries in echocardiographic images using a customized order statistics filter
CN112294361A (zh) 一种超声成像设备、盆底的切面图像生成方法
CN112438751A (zh) 用于剪切波弹性成像的方法和系统以及存储有对应程序的介质
Dilna et al. A novel framework for segmentation of uterus fibroids in ultrasound images using machine learning models
CN118134902A (zh) 一种基于小波分解的超声图像缺陷检测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees