JP4540209B2 - Self-piercing rivet bonded aluminum alloy extrusions for automobile frames - Google Patents
Self-piercing rivet bonded aluminum alloy extrusions for automobile frames Download PDFInfo
- Publication number
- JP4540209B2 JP4540209B2 JP2000314883A JP2000314883A JP4540209B2 JP 4540209 B2 JP4540209 B2 JP 4540209B2 JP 2000314883 A JP2000314883 A JP 2000314883A JP 2000314883 A JP2000314883 A JP 2000314883A JP 4540209 B2 JP4540209 B2 JP 4540209B2
- Authority
- JP
- Japan
- Prior art keywords
- self
- aluminum alloy
- piercing rivet
- extruded material
- quenching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Body Structure For Vehicles (AREA)
- Insertion Pins And Rivets (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車フレーム材としてAl−Mg−Si系アルミニウム合金押出材を用い、これをセルフピアスリベットを使用して接合する技術に関し、特にセルフピアスリベットによる接合性に優れたアルミニウム合金押出材に関する。
【0002】
【従来の技術】
自動車のフレーム構造において、軽量化のためアルミニウム合金押出材の適用が検討され、高強度アルミニウム合金の中では比較的耐食性に優れ、リサイクル性の面でも他の系のアルミニウム合金より優れているAl−Mg−Si系(JIS6000系)アルミニウム合金押出材が多く検討されている。
Al−Mg−Si系アルミニウム合金押出材を自動車フレーム材として用いる場合、中〜高強度(200N/mm2)を有することが求められる。そのため、オンラインによるプレス焼入れ又はオフラインによる溶体化・焼入れ処理を行った後、時効処理を施し強度を向上させる必要がある。
【0003】
一方、自動車フレームを接合するには、従来スポット溶接等が用いられてきたが、アルミニウム合金材の場合、表面に形成された酸化膜やプレス油等の付着による電極の汚損等により接合品質が不安定になる等の問題点があるため、スポット溶接に代わり、簡便にアルミニウム合金材を接合できるセルフピアスリベットによる接合が注目されている(特許第2958272号公報参照)。
【0004】
【発明が解決しようとする課題】
セルフピアスリベットによる接合は、図1に示すように、広がったヘッド1aと中心部が下端から円柱状にくり抜かれた軸部1bを有するセルフピアスリベット1を用い、接合すべき押出材2、3を重ね、押出材3の下面に受け金型4を配置し、押出材2の上方からポンチ5によりセルフピアスリベット1を打ち込む。セルフピアスリベット1は、その軸部1bが押出材2を打ち抜いた後、前記受け金型4の凸部4aにより押し広げられ、これにより押出材2、3が係止される。このとき、受け金型4側の押出材3はセルフピアスリベット1の拡開に合わせて流動し、特に凸部4aの肩部に接する箇所はセルフピアスリベット1との間に挟まれて大きく変形し薄肉化する。
しかし、時効処理を行って強度を上げたAl−Mg−Si系アルミニウム合金押出材の接合をこのセルフピアスリベット1を用いて行うと、受け金型4側のアルミニウム合金押出材3の薄肉化した箇所に割れが発生するという問題がある。
【0005】
ところで、Al−Mg−Si系アルミニウム合金押出材を自動車フレーム材として用いる場合、プレス焼入れを水冷で行うと、押出後再加熱する溶体化・焼入れ処理とほぼ同等の特性が比較的低コストで得られる利点があるが、押出材の断面形状や肉厚の差等に基づいて断面で冷却速度に差が生じ、冷却中に温度分布が不均一となって歪みが発生し、寸法精度が悪くかつ断面形状の薄肉化が難しくなり、また、そのような歪みの発生を防止しようとすれば、断面形状の自由度が小さくなる。一方、空冷によるプレス焼入れは、水冷によるプレス焼入れに比べさらに低コストであり、寸法精度、薄肉化及び断面形状の自由度の面でも優れている。しかし、冷却速度に限りがあるため合金組成によっては自動車フレームに要求される高い強度(特に耐力)が得られない。
【0006】
以上の点に鑑み、本発明は、寸法精度やコスト面で有利な空冷によるプレス焼入れを前提とし、時効処理後、自動車フレーム用として必要な強度(耐力)が得られ、かつセルフピアスリベット接合性に優れた、セルフピアスリベット接合用のAl−Mg−Si系アルミニウム合金押出材を得ることを目的とする。
【0007】
【課題を解決するための手段】
本発明に係るセルフピアスリベット接合される自動車フレーム用アルミニウム合金押出材は、Mg:0.30〜0.70%、Si:0.40〜0.80%、Cu:0.05〜0.40%、Mn:0.05〜0.30%、Zr:0.05〜0.20%を含み、残部Al及び不純物からなるAl−Mg−Si系アルミニウム合金押出材からなり、空冷によるプレス焼入れ後時効処理が行われ、200N/mm2以上の耐力を有し、3.5%以上の局部伸びを有することを特徴とし、セルフピアスリベット接合性に優れている。
【0008】
【発明の実施の形態】
Al−Mg−Si系アルミニウム合金には、一般にCuやMn、Cr、Zrなどの遷移元素が添加されているが、これらの元素を添加すると合金の焼入れ感受性が鋭くなる。また、Mg及びSiの量が多くなると合金の強度が向上するが、やはり焼入れ感受性が鋭くなる。水冷によるプレス焼入れや溶体化・焼入れ処理を行う場合は、多少焼入れ感受性が鋭くても問題なく焼きが入り、その後の時効処理により高い強度を得ることができる。しかし、空冷によるプレス焼入れでは、焼入れ感受性が鋭くなるとその後の時効処理を行っても高い強度が得られなくなる。つまり、強度向上を目的として合金元素を添加しても、それが逆に強度を低下させることにもなりかねない。
従って、Al−Mg−Si系アルミニウム合金押出材について、空冷によるプレス焼入れを行った後、時効処理により高い強度を得るには、上記各元素を添加することによるプラスの作用効果は必要であるが、同時に焼入れ感受性を鋭くさせないことが必須である。
【0009】
一方、Al−Mg−Si系アルミニウム合金押出材をセルフピアスリベット1により接合する場合、受け金型4側の押出材3は凸部4aとセルフピアスリベット1の間に挟まれて大きく変形し薄肉化する。本発明者らは、この箇所での変形が局部伸びの領域で行われ、局部伸びが小さい材料の場合に局部的変形能が不足して割れが発生すると考えた。なお、局部伸びとは、引張試験において最大荷重から破断までの伸びを意味する。
本発明に係るAl−Mg−Si系アルミニウム合金押出材の組成及び局部伸びの値は上記の観点から実験的に定められたもので、以下個別に説明する。
【0010】
Mg、Si
MgとSiは結合してMg2Siを形成し、合金強度を向上させる。自動車フレーム材として必要な強度を得るためには、Mgは0.30%以上の添加が必要である。しかし、0.70%を越えて添加されると焼入れ感受性が鋭くなり、空冷によるプレス焼入れで焼きが入らず、必要な強度が出なくなる。従って、Mg含有量は0.30〜0.70%とする。また、Siが0.40%より少ないと必要な強度が得られず、0.80%を越えると焼入れ感受性が鋭くなり、空冷によるプレス焼入れで焼きが入らず、必要な強度が出なくなる。従って、Si含有量は0.40〜0.80%とする。このMg量及びSi量の範囲内で、高い強度が得られ焼入れ感受性が余り鋭くならない範囲として、Mg量は0.4〜0.6%、Si量は0.5〜0.7%が望ましい。
【0011】
Cu
CuはAl−Mg−Si系アルミニウム合金押出材の強度を高め、耐応力腐食割れ性を改善する作用がある。しかし、0.05%未満では上記作用が不十分であり、0.40%を越えると焼入れ感受性が鋭くなり、空冷によるプレス焼入れで焼きが入らず、必要な強度が出なくなる。従って、Cu含有量は0.05〜0.40%とする。より望ましい範囲は0.1〜0.3%である。
【0012】
Mn、Zr
Mn及びZrはAl−Mg−Si系アルミニウム合金押出材の局部伸びを向上させる作用があり、同時に添加される。しかし、いずれかの含有量が0.05%未満では上記作用が不十分であり、必要な局部伸びを得ることができない。一方、Mn:0.30%、Zr:0.20%を越えると焼入れ感受性が鋭くなり、空冷によるプレス焼入れで焼きが入らず、必要な強度が出なくなる。従って、Mn、Zrの含有量はそれぞれ0.05〜0.30%、0.05〜0.20%とする。より望ましい範囲はMn:0.07〜0.25%、Zr:0.07〜0.18%である。
【0013】
Ti
Tiは、鋳塊組織を微細化する作用があり、適宜添加される。しかし、0.005%より少ないと微細化の効果が十分でなく、0.2%より多いと飽和して巨大化合物が発生してしまう。従って、Tiの含有量は0.005〜0.2%とする。
【0014】
不可避不純物
不可避不純物のうちFeはアルミニウム地金に最も多く含まれる不純物であり、0.35%を超えて合金中に存在すると鋳造時に粗大な金属間化合物を晶出し、合金の機械的性質を損なう。従って、Feの含有量は0.35%以下に規制する。望ましくは0.30%以下であり、さらに0.25%以下が望ましい。また、アルミニウム合金を鋳造する際には地金、添加元素の中間合金等様々な経路より不純物が混入する。混入する元素は様々であるが、Fe以外の不純物は単体で0.05%以下、総量で0.15%以下であれば合金の特性にほとんど影響を及ぼさない。従って、これらの不純物は単体で0.05%以下、総量で0.15%以下とする。なお、不純物のうちBについてはTiの添加に伴い合金中にTi含有量の1/5程度の量で混入するが、より望ましい範囲は0.02%以下、さらに0.01%以下が望ましい。
【0015】
本発明では、上記の組成を有する押出材について、空冷によるプレス焼入れ後時効処理を行う。時効処理後の強度(耐力)は自動車フレーム構造材として必要な強度である200N/mm2以上である。この強度は、上記組成の押出材であれば空冷によるプレス焼入れ後時効処理を行って出せる強度であり、そのとき同時に局部伸び3.5%以上を得ることができる。しかし、上記組成を外れるとその強度が出なくなるか、局部伸びが低下する。耐力の望ましい範囲は220N/mm2以上である。
【0016】
本発明においてAl−Mg−Si系アルミニウム合金押出材の局部伸びを3.5%以上としたことで、局部的変形能が向上し優れたセルフピアスリベット接合性を示すようになる。セルフピアスリベットによる接合においては、一般に被接合材の厚さが決まればリベットの径や長さが一義的に決まり、それに従い受け金型の形状も決まる。つまり、被接合材の肉厚が決まれば変形の形態がほぼ決まり、接合時に必要とされる局部伸びもほぼ決まる。Al−Mg−Si系アルミニウム合金押出材を自動車フレーム材とした場合に一般的に必要とされる肉厚(約1〜5mm)であれば、3.5%以上の局部伸びで優れたセルフピアスリベット接合性を示す。
なお、本発明においてセルフピアスリベット接合性とは、被接合材が貫通割れ等を発生することなくセルフピアスリベット接合され得る能力をいい、本発明では、セルフピアスリベット接合後の受け金型側の被接合材に表裏を貫通する割れが発生しないとき、その被接合材をセルフピアスリベット接合性に優れると評価する。
【0017】
【実施例】
以下、本発明の実施例について説明する。
DC鋳造により、表1に示す成分組成のAl−Mg−Si系アルミニウム合金ビレットを溶製し、470℃×4hrの均熱処理を行った。続いて、押出温度500℃、押出速度5m/分の条件で押出加工を行い、押出直後位置でファン空冷によるプレス焼入れ(冷却速度:約200℃/min)を行い、中空断面の押出材(長辺70mm、短辺54mm、肉厚2mm)を得た。ついで、この押出材に対し190℃×3時間の時効処理を施し、供試材とした。
【0018】
供試材よりJIS5号試験片を採取し、JIS Z 2241に準拠して引張試験を行った。局部伸びはこの引張試験における最大荷重から破断までの伸びである。
また、供試材の短辺同士を重ね合わせ、セルフピアスリベットを打ち込み、接合した。装置はヘンロブ社製セルフピアッシングリベットシステムを使用し、リベット材質は鋼製、リベット長さは5mm、リベット径はφ5mmとした。接合後、受け金型側の押出材に貫通割れが発生しているか否か目視で判定し、貫通割れが発生したものを×、発生しなかったものを○と評価した。
合金組成及び試験結果を図1に示す。
【0019】
【表1】
【0020】
表1に示すように、本発明の規定を満たす組成のNo.1、2は、自動車フレームに必要とされる耐力を備え、局部伸びが大きくセルフピアスリベット接合性も優れている。一方、組成が本発明の規定を満たさないNo.3は耐力が劣り、同じくNo.4は全体の伸びは大きいが局部伸びが小さく、セルフピアスリベット接合性が劣る。
【0021】
【発明の効果】
本発明によれば、Al−Mg−Si系アルミニウム合金押出材について、寸法精度やコスト面で有利な空冷によるプレス焼入れ後、時効処理を行うことにより、自動車フレーム用として必要な強度(耐力)とセルフピアスリベット接合性に優れたセルフピアスリベット接合用のアルミニウム合金押出材を得ることができる。
【図面の簡単な説明】
【図1】 セルフピアスリベットによる接合方法(a)及び接合部の構造を示す断面図(b)である。
【符号の説明】
1 セルフピアスリベット
2 ポンチ側の押出材
3 受け金型側の押出材
4 受け金型
5 ポンチ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique of using an Al-Mg-Si-based aluminum alloy extruded material as an automobile frame material and joining the extruded material using a self-piercing rivet, and more particularly to an aluminum alloy extruded material excellent in joining property by a self-piercing rivet. .
[0002]
[Prior art]
In the frame structure of automobiles, the application of aluminum alloy extruded materials has been studied for weight reduction. Among high-strength aluminum alloys, Al-corrosion is relatively superior in corrosion resistance and recyclability is superior to other aluminum alloys. Many Mg-Si (JIS6000) aluminum alloy extruded materials have been studied.
When using an Al—Mg—Si-based aluminum alloy extruded material as an automobile frame material, it is required to have medium to high strength (200 N / mm 2 ). Therefore, it is necessary to improve the strength by performing an aging treatment after performing on-line press quenching or off-line solution hardening / quenching treatment.
[0003]
On the other hand, spot welding or the like has been conventionally used for joining automobile frames. However, in the case of an aluminum alloy material, the joining quality is poor due to contamination of electrodes due to adhesion of an oxide film or press oil formed on the surface. Since there is a problem such as stability, joining by a self-piercing rivet that can easily join an aluminum alloy material is attracting attention instead of spot welding (see Japanese Patent No. 2958272).
[0004]
[Problems to be solved by the invention]
As shown in FIG. 1, the self-piercing rivet is joined by using a self-piercing rivet 1 having a widened head 1a and a shaft portion 1b in which a central portion is hollowed out in a cylindrical shape from the lower end. The receiving
However, when the self-piercing rivet 1 is used to join the Al-Mg-Si-based aluminum alloy extruded material that has been subjected to aging treatment to increase the strength, the aluminum alloy extruded
[0005]
By the way, when using an Al-Mg-Si-based aluminum alloy extruded material as an automobile frame material, if the press quenching is performed with water cooling, characteristics substantially equivalent to the solution treatment / quenching process that is reheated after extrusion can be obtained at a relatively low cost. However, there is a difference in the cooling rate in the cross section based on the cross-sectional shape and thickness difference of the extruded material, the temperature distribution becomes uneven during cooling, distortion occurs, the dimensional accuracy is poor and It is difficult to reduce the thickness of the cross-sectional shape, and the degree of freedom of the cross-sectional shape is reduced if such distortion is prevented from occurring. On the other hand, press-quenching by air cooling is lower in cost than press-quenching by water cooling, and is excellent in terms of dimensional accuracy, thinning, and freedom of cross-sectional shape. However, since the cooling rate is limited, high strength (particularly proof stress) required for an automobile frame cannot be obtained depending on the alloy composition.
[0006]
In view of the above points, the present invention is premised on press quenching by air cooling, which is advantageous in terms of dimensional accuracy and cost, and after aging treatment, the necessary strength (yield strength) for automobile frames can be obtained, and self-piercing rivet jointability An object of the present invention is to obtain an Al—Mg—Si-based aluminum alloy extruded material excellent in self-piercing rivet bonding .
[0007]
[Means for Solving the Problems]
The aluminum alloy extruded material for automobile frames to be self-pierced rivet-bonded according to the present invention is Mg: 0.30-0.70%, Si: 0.40-0.80%, Cu: 0.05-0.40. %, Mn: 0.05-0.30%, Zr: 0.05-0.20%, made of an Al-Mg-Si-based aluminum alloy extruded material consisting of the remaining Al and impurities, after press quenching by air cooling An aging treatment is performed, it has a proof stress of 200 N / mm 2 or more, has a local elongation of 3.5% or more, and has excellent self-piercing rivet bondability.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Al-Mg-Si-based aluminum alloys are generally added with transition elements such as Cu, Mn, Cr, and Zr. When these elements are added, the quenching sensitivity of the alloy becomes sharp. Moreover, although the intensity | strength of an alloy will improve if the quantity of Mg and Si increases, a quenching sensitivity will also become sharp. When performing press quenching by water cooling or solution treatment / quenching treatment, even if the quenching sensitivity is somewhat sharp, quenching occurs without any problem, and high strength can be obtained by subsequent aging treatment. However, in press quenching by air cooling, if the quenching sensitivity becomes sharp, high strength cannot be obtained even if a subsequent aging treatment is performed. That is, even if an alloy element is added for the purpose of improving the strength, it may also reduce the strength.
Therefore, for the Al-Mg-Si-based aluminum alloy extruded material, a positive working effect by adding each of the above elements is necessary to obtain high strength by aging treatment after press quenching by air cooling. At the same time, it is essential not to sharpen the quenching sensitivity.
[0009]
On the other hand, when the Al-Mg-Si-based aluminum alloy extruded material is joined by the self-piercing rivet 1, the extruded
The composition and local elongation values of the Al—Mg—Si-based aluminum alloy extruded material according to the present invention are experimentally determined from the above viewpoint, and will be described individually below.
[0010]
Mg, Si
Mg and Si combine to form Mg 2 Si, improving the alloy strength. In order to obtain the strength required as an automobile frame material, it is necessary to add 0.30% or more of Mg. However, if added over 0.70%, the quenching sensitivity becomes sharp, quenching does not occur by press quenching by air cooling, and the required strength does not appear. Therefore, the Mg content is 0.30 to 0.70%. Further, if Si is less than 0.40%, the required strength cannot be obtained, and if it exceeds 0.80%, the quenching sensitivity becomes sharp, quenching does not occur by press quenching by air cooling, and the necessary strength is not obtained. Therefore, the Si content is set to 0.40 to 0.80%. Within this range of Mg and Si, high strength is obtained and quenching sensitivity is not so sharp that Mg content is preferably 0.4 to 0.6% and Si content is preferably 0.5 to 0.7%. .
[0011]
Cu
Cu has the effect of increasing the strength of the Al—Mg—Si-based aluminum alloy extruded material and improving the stress corrosion cracking resistance. However, if it is less than 0.05%, the above-mentioned action is insufficient, and if it exceeds 0.40%, the quenching sensitivity becomes sharp, and quenching does not occur by press quenching by air cooling, and the required strength is not obtained. Therefore, the Cu content is set to 0.05 to 0.40%. A more desirable range is 0.1 to 0.3%.
[0012]
Mn, Zr
Mn and Zr have the effect of improving the local elongation of the Al—Mg—Si-based aluminum alloy extruded material, and are added simultaneously. However, if the content of any of them is less than 0.05%, the above action is insufficient, and the necessary local elongation cannot be obtained. On the other hand, when Mn: 0.30% and Zr: 0.20% are exceeded, the quenching sensitivity becomes sharp, quenching does not occur by press quenching by air cooling, and the required strength is not obtained. Therefore, the contents of Mn and Zr are 0.05 to 0.30% and 0.05 to 0.20%, respectively. More desirable ranges are Mn: 0.07 to 0.25% and Zr: 0.07 to 0.18%.
[0013]
Ti
Ti has the effect of refining the ingot structure and is added as appropriate. However, if it is less than 0.005%, the effect of miniaturization is not sufficient, and if it exceeds 0.2%, it is saturated and a giant compound is generated. Therefore, the Ti content is set to 0.005 to 0.2%.
[0014]
Inevitable impurities Among the inevitable impurities, Fe is the most abundant impurity in aluminum ingots. If it exceeds 0.35% in the alloy, coarse intermetallic compounds are crystallized at the time of casting, and the mechanical properties of the alloy are impaired. . Therefore, the Fe content is restricted to 0.35% or less. Desirably, it is 0.30% or less, and further 0.25% or less is desirable. Further, when casting an aluminum alloy, impurities are mixed from various paths such as a metal base and an intermediate alloy of an additive element. The elements to be mixed are various, but impurities other than Fe alone are 0.05% or less, and if the total amount is 0.15% or less, the characteristics of the alloy are hardly affected. Accordingly, these impurities are 0.05% or less as a single substance, and the total amount is 0.15% or less. Of the impurities, B is mixed in the alloy in an amount of about 1/5 of the Ti content with the addition of Ti, but a more desirable range is 0.02% or less, and further preferably 0.01% or less.
[0015]
In the present invention, the extruded material having the above composition is subjected to an aging treatment after press quenching by air cooling. The strength (yield strength) after the aging treatment is 200 N / mm 2 or more, which is a strength necessary for an automobile frame structural material. This strength can be obtained by performing an aging treatment after press quenching by air cooling if the extruded material has the above composition, and at the same time, a local elongation of 3.5% or more can be obtained. However, if the composition is out of the range, the strength is not obtained or the local elongation is lowered. A desirable range of proof stress is 220 N / mm 2 or more.
[0016]
In the present invention, the local elongation of the Al—Mg—Si-based aluminum alloy extruded material is set to 3.5% or more, so that the local deformability is improved and excellent self-piercing rivet bondability is exhibited. In joining by self-piercing rivets, generally, if the thickness of the material to be joined is determined, the diameter and length of the rivet are uniquely determined, and the shape of the receiving die is also determined accordingly. That is, if the thickness of the material to be joined is determined, the deformation form is almost determined, and the local elongation required at the time of joining is also substantially determined. Self-piercing with excellent local elongation of 3.5% or more if the wall thickness is generally required (about 1-5mm) when an Al-Mg-Si-based aluminum alloy extruded material is used as an automobile frame material Shows rivet bondability.
In the present invention, the self-piercing rivet bondability refers to the ability of the material to be bonded to be able to be self-pierced rivet-bonded without causing a through crack or the like. When the material to be bonded does not crack through the front and back surfaces, the material to be bonded is evaluated as having excellent self-piercing rivet bondability.
[0017]
【Example】
Examples of the present invention will be described below.
An Al—Mg—Si-based aluminum alloy billet having the component composition shown in Table 1 was melted by DC casting and subjected to soaking at 470 ° C. × 4 hr. Subsequently, extrusion is performed under conditions of an extrusion temperature of 500 ° C. and an extrusion speed of 5 m / min, and press quenching (cooling rate: about 200 ° C./min) by fan air cooling is performed immediately after the extrusion, and an extruded material having a hollow cross section (long) Side 70 mm, short side 54 mm, wall thickness 2 mm). Subsequently, this extruded material was subjected to an aging treatment at 190 ° C. for 3 hours to obtain a test material.
[0018]
A JIS No. 5 test piece was collected from the test material, and a tensile test was performed in accordance with JIS Z 2241. The local elongation is the elongation from the maximum load to fracture in this tensile test.
Moreover, the short sides of the test material were overlapped, and self-piercing rivets were driven and joined. The apparatus used was a Henrob self-piercing rivet system, the rivet material was steel, the rivet length was 5 mm, and the rivet diameter was 5 mm. After joining, it was visually determined whether or not a through crack occurred in the extruded material on the receiving mold side. The case where the through crack occurred was evaluated as x, and the case where the through crack did not occur was evaluated as ○.
The alloy composition and test results are shown in FIG.
[0019]
[Table 1]
[0020]
As shown in Table 1, No. of the composition satisfying the provisions of the present invention. Nos. 1 and 2 have the proof stress required for automobile frames, have large local elongation, and excellent self-piercing rivet bonding. On the other hand, No. whose composition does not satisfy the provisions of the present invention. No. 3 is inferior in yield strength. No. 4, the overall elongation is large, but the local elongation is small, and the self-piercing rivet bondability is poor.
[0021]
【The invention's effect】
According to the present invention, the Al-Mg-Si-based aluminum alloy extruded material has the necessary strength (yield strength) for an automobile frame by performing aging treatment after press quenching by air cooling advantageous in terms of dimensional accuracy and cost. An aluminum alloy extruded material for self-piercing rivet joining excellent in self-piercing rivet joining performance can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view (b) showing a bonding method (a) using a self-piercing rivet and the structure of a bonded portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Self-piercing rivet 2 Punch side extruded
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000314883A JP4540209B2 (en) | 2000-10-16 | 2000-10-16 | Self-piercing rivet bonded aluminum alloy extrusions for automobile frames |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000314883A JP4540209B2 (en) | 2000-10-16 | 2000-10-16 | Self-piercing rivet bonded aluminum alloy extrusions for automobile frames |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002121635A JP2002121635A (en) | 2002-04-26 |
JP4540209B2 true JP4540209B2 (en) | 2010-09-08 |
Family
ID=18794072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000314883A Expired - Fee Related JP4540209B2 (en) | 2000-10-16 | 2000-10-16 | Self-piercing rivet bonded aluminum alloy extrusions for automobile frames |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4540209B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0813883D0 (en) | 2008-07-30 | 2008-09-03 | Henrob Ltd | Joining apparatus and method |
KR101714318B1 (en) * | 2016-05-23 | 2017-03-09 | (주) 네오텍 | A manufacturing method of aluminum door frame for vehicle |
CN108893661B (en) * | 2018-07-19 | 2020-07-28 | 中铝萨帕特种铝材(重庆)有限公司 | Wide thin-wall 6-series aluminum alloy section for high-speed motor train unit and preparation method thereof |
JP7182989B2 (en) | 2018-10-12 | 2022-12-05 | 株式会社アーレスティ | Joined product manufacturing method and plate member quality control method |
WO2023167312A1 (en) | 2022-03-03 | 2023-09-07 | 日本軽金属株式会社 | Al-si alloy for casting, al-si alloy casting and al-si alloy casting joint |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1046279A (en) * | 1996-08-02 | 1998-02-17 | Kobe Steel Ltd | Aluminum alloy extruded material excellent in bendability and its production |
-
2000
- 2000-10-16 JP JP2000314883A patent/JP4540209B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1046279A (en) * | 1996-08-02 | 1998-02-17 | Kobe Steel Ltd | Aluminum alloy extruded material excellent in bendability and its production |
Also Published As
Publication number | Publication date |
---|---|
JP2002121635A (en) | 2002-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5410845B2 (en) | Al-Mg-Si aluminum alloy extruded material with excellent fatigue strength and impact fracture resistance | |
EP3384060B1 (en) | Highly rigid thin sheet metal for car body | |
KR20010110751A (en) | Brazing sheet | |
JP2000313933A (en) | Al ALLOY MATERIAL FOR WELDED STRUCTURE AND WELDED JOINT USING SAME | |
CN112654726A (en) | Aluminum alloy for heat exchanger fins | |
JP7215870B2 (en) | Method for manufacturing Al-Mg-Si-based aluminum alloy plastically worked material and Al-Mg-Si-based aluminum alloy extruded material | |
JP4540209B2 (en) | Self-piercing rivet bonded aluminum alloy extrusions for automobile frames | |
JP3772962B2 (en) | Automotive bumper reinforcement | |
WO2023167312A1 (en) | Al-si alloy for casting, al-si alloy casting and al-si alloy casting joint | |
JP4798877B2 (en) | Al-Mg aluminum alloy hollow extruded material for bulge forming | |
JP4183177B2 (en) | Heat treated aluminum alloy bonding material with excellent ductility | |
JP3349458B2 (en) | Aluminum alloy extruded material for automobile body structural member and method of manufacturing the same | |
KR20010087232A (en) | Aℓ-Mg-Si BASED ALUMINUM ALLOY EXTRUSION FOR DOOR BEAM AND DOOR BEAM | |
JP3454755B2 (en) | Shock absorbing member with excellent pressure-resistant cracking resistance | |
JP3236480B2 (en) | High strength aluminum alloy for easy porthole extrusion | |
JP5288671B2 (en) | Al-Mg-Si-based aluminum alloy extruded material with excellent press workability | |
JP4183396B2 (en) | Aluminum alloy extruded material with excellent crushing properties | |
JP4311634B2 (en) | Aluminum alloy extrusion for electromagnetic forming | |
JP3850348B2 (en) | Al-Mg aluminum alloy hollow extruded material for bulge forming | |
JP3876505B2 (en) | Al alloy fin material for heat exchangers with excellent erosion resistance | |
JP4707074B2 (en) | Al-Mg aluminum alloy hollow extruded material for bulge forming | |
JP4281609B2 (en) | Aluminum alloy extruded material excellent in formability and method for producing the same | |
JP3349457B2 (en) | Aluminum alloy extruded material for automobile body structural member and method for producing the same | |
JP2006299342A (en) | Method for manufacturing aluminum alloy material for press forming and pressed material | |
JPH11140610A (en) | Production of aluminum alloy structural material excellent in toughness and weldability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100622 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4540209 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |