JP4183177B2 - Heat treated aluminum alloy bonding material with excellent ductility - Google Patents

Heat treated aluminum alloy bonding material with excellent ductility Download PDF

Info

Publication number
JP4183177B2
JP4183177B2 JP2003163367A JP2003163367A JP4183177B2 JP 4183177 B2 JP4183177 B2 JP 4183177B2 JP 2003163367 A JP2003163367 A JP 2003163367A JP 2003163367 A JP2003163367 A JP 2003163367A JP 4183177 B2 JP4183177 B2 JP 4183177B2
Authority
JP
Japan
Prior art keywords
heat
aluminum alloy
joint
affected zone
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003163367A
Other languages
Japanese (ja)
Other versions
JP2004360054A (en
Inventor
正 箕田
秀俊 内田
晃二 田中
直 田中
正樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2003163367A priority Critical patent/JP4183177B2/en
Publication of JP2004360054A publication Critical patent/JP2004360054A/en
Application granted granted Critical
Publication of JP4183177B2 publication Critical patent/JP4183177B2/en
Priority to US12/486,950 priority patent/US20090250144A1/en
Priority to US15/287,957 priority patent/US10016837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、延性に優れた熱処理型アルミニウム合金接合材、詳しくは、T3調質またはT4調質した後に互いに接合して形成された熱処理型アルミニウム合金接合材に関する。本発明において、熱処理型アルミニウム合金とは、2000系(Al−Cu系)、6000系(Al−Mg−Si系)および7000系(Al−Zn−Mg系)のアルミニウム合金をいう。
【0002】
【従来の技術】
通常、熱処理型アルミニウム合金は、高強度が得られるT6調質で使用されることが多いが、プレス成形や曲げ加工を行う場合には、T6調質では延性が劣るため、T6調質よりも優れた延性を与えることができるT3調質またはT4調質を行った後、成形加工を行ってT3調質またはT4調質のままで使用したり、成形加工後、さらに強度を上げるために人工時効を施して使用される。
【0003】
成形加工後の製品のほとんどは形状が複雑なため、通常、成形加工後に切削およびトリミングが行われていたが、近年、T3調質材またはT4調質材の成形加工においては、切削およびトリミングの省略による材料歩留りの向上、製造工程の簡略化のために、複数のT3調質材またはT4調質材を接合した後、プレス加工、曲げ加工などを行う方式が実用化されている。
【0004】
この場合、接合方法としては、MIG溶接、TIG溶接、レーザー溶接、摩擦攪拌接合などが適用されるが、T3調質材またはT4調質材をこれらの接合方法で接合した場合、接合部および接合部近傍の熱影響部では軟化が生じて、母材部(非接合部)より強度および延性が低下するため、成形加工時に、接合部や熱影響部が優先的に変形して、くびれなどの局部変形が生じるという問題がある。また、加工量が大きい場合には、接合部や熱影響部が破断し易いという問題もあり、そのため、成形加工における加工量に制約が生じたり、設計変更を余儀なくされていた。
【0005】
熱処理型アルミニウム合金接合材の成形加工に関連して、接合部の強度改善を目的としていくつかの提案が行われている。例えば、6000系アルミニウム合金製ホイールリムを製造する場合、溶体化処理した後、円筒状に曲げ加工し、曲げられた端部をフラッシュバット溶接してロール成形によりリム形状に仕上げた後、170〜200℃に加熱処理することにより、溶体化処理で固溶した溶質原子を析出させて高強度を得ることが提案されている(特許文献1参照)。
【0006】
6000系アルミニウム合金製ホイールの強度向上策として、特定組成のAl−Mg−Si系合金板を400℃以上の温度で溶体化処理したのち展伸加工してリムとし、これにAl−Mg−Si系合金高圧鋳造ディスクを溶接したのち、溶接部を1℃/秒以上の冷却速度で冷却し、続いて100〜200℃で5〜60分加熱処理することにより、時効硬化させてリムの強度を向上させることも提案されている(特許文献2参照)。
【0007】
摩擦攪拌接合により接合された熱処理型アルミニウム合金の継手強度を改善するために、接合直後に攪拌部を強制冷却することにより焼入れ状態としたのち、続いて行われる時効硬化処理で所定強度の継手部を得ることも提案されている(特許文献3参照)。
【0008】
同じく、摩擦攪拌接合により接合された熱処理型アルミニウム合金について、十分な継手強度を確保するために、T1材を、攪拌部以外の熱影響部が300℃以上の温度に加熱される時間を1分以内として摩擦攪拌接合する工程と、接合された部材に300℃より低温で時効処理を施すことによりT5またはT6調質材と同等の強度を確保することも提案されている(特許文献4参照)。
【0009】
また、溶接継手であって、熱影響部の最軟化部分が繊維状組織または結晶粒径100μm以下の微細等軸組織からなり、継手効率が60%以上のアルミニウム合金継手(特許文献5参照)や、過剰Si型6000系アルミニウム合金の成形用溶接継手であって、溶接後に180℃以下の温度で時効処理され、継手効率が70%以上、継手伸びが50%以上の成形用アルミニウム合金溶接継手(特許文献6参照)も提案されている。
【0010】
しかしながら、これらの提案のものにおいては、接合後の時効処理によって所定の強度は得られるが、接合部、熱影響部および母材の強度のバランスを最適化して、接合された材料の延性を高め成形性を改善することはできず、接合部付近での局部変形の問題を解消することは難しい。
【0011】
【特許文献1】
特開平5−117826号公報(請求項1)
【特許文献2】
特開平8−246116号公報(請求項1)
【特許文献3】
特開平11−104860号公報(請求項1、第5頁0040段落)
【特許文献4】
特開平2000−61663号公報(請求項1)
【特許文献5】
特開平2002−115037号公報(請求項1)
【特許文献6】
特開平2002−294381号公報(請求項1)
【0012】
【発明が解決しようとする課題】
上記にように、従来技術はいずれも、接合後の熱処理によって接合部を時効硬化させ、ピーク時効を行った時に得られる継手強度を向上させるためのものであり、接合された材料の延性や成形性を改善するための手法については検討されていない。
【0013】
発明者らは、T3調質またはT4調質した後、互いに接合して形成された熱処理型アルミニウム合金接合材の成形性を改善するために、当該接合材の延性に及ぼす要因について種々の観点から検討を行った結果、接合時の接合部および熱影響部の強度と母材の強度バランスによって延性が大きく異なること、接合部、熱影響部および母材の強度バランスを最適化することにより、成形加工時の変形が母材に集中して成形性が改善されることを見出した。
【0014】
本発明は、上記の知見に基づいてなされたものであり、その目的は、T3調質またはT4調質した後に互いに接合して形成された熱処理型アルミニウム合金接合材において、接合部、熱影響部および母材の強度バランスを最適化して、延性を向上させ成形加工性を改善した延性に優れた熱処理型アルミニウム合金接合材を提供することにある。
【0015】
【課題を解決するための手段】
上記の目的を達成するための請求項1による延性に優れた熱処理型アルミニウム合金接合材は、T3調質またはT4調質した後に互いに摩擦攪拌接合して形成された2000系、6000系または7000系の熱処理型アルミニウム合金接合材であって、母材の硬さを100としたときに、接合部および熱影響部の硬さが100以上200以下となる接合部が形成されることを特徴とする。
【0016】
請求項2による延性に優れた熱処理型アルミニウム合金接合材は、請求項1において、接合表面における接合部と熱影響部の合計幅が1mm以上100mm以下であることを特徴とする。
【0017】
請求項3による延性に優れたアルミニウム合金接合材は、請求項1または2において、前記接合部および熱影響部を平行部に含むようJIS5号引張試験片を採取して引張試験を行った場合、母材部で破断することを特徴とする。
【0018】
【発明の実施の形態】
本発明は、T3調質(溶体化処理、焼入れ、冷間加工)またはT4調質(溶体化処理、焼入れ、常温時効)後、接合し、成形加工を行う熱処理型アルミニウム合金接合材に関するもので、接合素材の製造は、所定の成分組成を有する熱処理型アルミニウム合金を、例えば、通常のDC鋳造によって造塊し、得られた鋳塊を均質化処理した後、熱間加工を行い、さらに必要に応じて中間焼鈍、冷間加工を行って所定の形状を得た後、溶体化処理、焼入れ、冷間加工によりT3調質材とし、または溶体化処理、焼入れ、常温時効によりT4調質材とすることにより行われる。熱間加工、冷間加工の形態としては、押出加工、圧延加工、鍛造加工などが挙げられ、どのような加工が行われてもよい。6000系合金においては、溶体化処理および焼入れ後、さらに常温〜120℃で48時間以内の予備時効処理を行うことにより塗装焼付硬化性を付与した材料を用いることもできる。
【0019】
本発明に適用される熱処理型アルミニウム合金は、2014合金、2017合金、2024合金などの2000系(Al−Cu系)合金、7075合金、7N01合金などの7000系(Al−Zn−Mg系)合金および6000系(Al−Mg−Si系)合金であり、6000系合金としては、6061合金、6063合金などSi含有量が少ないものでも、AA6016合金、AA6111合金などSi含有量が多い過剰Si型のものでもよい。
【0020】
接合方法として、MIG溶接、TIG溶接などの不活性ガスアーク溶接、プラズマアーク溶接、レーザー溶接、電子ビーム溶接、摩擦攪拌接合、抵抗溶接、回転摩擦圧接、超音波接合、電磁圧接、ハイブリット溶接、ろう付け、拡散接合、固相接合などが適用可能であり、このうち、レーザー溶接、回転摩擦圧接、摩擦攪拌接合は、MIG溶接、TIG溶接などのアーク溶接に比べて入熱が少ないという利点があり実施が容易である。とくに、摩擦攪拌接合は、最も入熱(発熱)が小さく、さらに延性の低下した溶融域が形成されないことから、本発明の実施には最も好ましい接合方法である。
【0022】
本発明においては、母材の硬さを100としたときに、接合部および熱影響部の硬さが100以上200以下となる接合部が形成されることを特徴とするものであるが、このような接合部を形成するためには、接合時において、必要なら接合箇所を強制冷却するなどして、接合部および熱影響部の温度が200℃以上の温度に保持されている時間が300秒以内になるように制御する。300秒以内であれば、接合部および熱影響部の温度が200℃以上になっていても、接合部および熱影響部の過時効による強度低下はほとんど生じない。300秒を越える時間保持されると、溶質原子の析出および凝集化が生じて過時効域が形成され、接合後に種々の処理を行っても前記最適な強度バランスが得られなくなる。さらに好ましい保持時間は120秒以内、最も好ましい保持時間は60秒以内である。
【0023】
上記の接合条件により、母材の硬さを100としたときに、接合部および熱影響部の硬さが100以上200以下となる接合部が形成され、延性に優れた接合材を得ることができる。接合部あるいは熱影響部のいずれかが、母材の硬さ未満(100未満)では、接合材の成形加工の際、接合部あるいは熱影響部が優先的に変形し、良好な成形加工が達成できず、接合部あるいは熱影響部のいずれかが200を越えるた場合には、接合部あるいは熱影響部の伸びが大幅に低下して、変形能が極端に劣化し、全体として良好な成形加工が困難となる。
【0024】
本発明の効果をさらに顕著なものとするために、接合前後に、以下の処理を行ってもよい。すなわち、例えば、接合部および熱影響部を母材より硬くする処理として、ショットピーニング、圧延、鍛圧などの加工硬化を利用する方法や、局部的な時効処理を行う方法があり、一方、母材側を軟らかくする処理として、局部的に軟化する方法がある。接合部および熱影響部、または母材の局部的な熱処理が困難な場合には、短時間であれば、過時効温度で全体を熱処理してもよい。
【0025】
また、前記の接合条件により、接合部および熱影響部を平行部に含むようJIS5号引張試験片を採取して引張試験を行った場合、母材部で破断する強度特性を得ることができる。母材で破断せず、接合部あるいは熱影響部で破断した場合には、局部変形によるくびれが生じ易くなり、接合後の成形加工時に接合部あるいは熱影響部が優先的に変形して、良好な成形加工が達成できないとともに、成形加工量が大きい場合は、変形部が優先的に破断に到るという難点が生じる。
【0026】
本発明においては、また、接合表面における接合部と熱影響部の合計幅が1mm以上100mm以下であることが望ましい。接合部と熱影響部の合計幅が1mm未満では接合部分の面積が小さ過ぎ、また、合計幅が100mmを越えた場合には接合部分の面積が大き過ぎ、いずれも、接合時において、接合部および熱影響部の温度が200℃以上の温度に保持されている時間が300秒以内になるように制御することが困難となる。
【0027】
【実施例】
以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらに実施例は、本発明の一実施態様であり、本発明はこれに限定されるものではない。
【0028】
実施例1
表1に示す組成のアルミニウム合金A〜Iを溶解し、半連続鋳造により造塊した後、常法に従って均質化処理、熱間圧延、冷間圧延を行い、厚さ1.0mmの板材とし、さらに溶体化処理および焼入れ後、20℃で7日間の自然時効を行ってT4調質材とした。
【0029】
T4調質された2枚の板材を圧延方向に突合せ、摩擦攪拌接合法(FSW法)により突合せ接合し、試験材とした。接合は、鋼製の回転工具を使用し、回転数1000rpm、接合速度400mm/分で工具を水平移動させる条件で実施した。なお、回転工具の端部に切削を目的として深さ1mmの溝を8か所設けた。接合時に、接合部および熱影響部の温度を接触式温度計を用いて測定した。接合時における接合部分の温度および時間を制御するために、ファンによる強制空冷を実施した。また、一部の試験材については、接合後、全体に300℃の温度で30秒の熱処理を施した。
【0030】
接合後、接合部および熱影響部の温度が200℃未満に達するまでの時間(200℃以上に保持された時間)を測定した。ビッカース硬さは、接合方向に対して直角方向に試験片を採取し、直角方向の試験片の断面を樹脂埋および研磨後、ビッカース硬さ試験機を用いて、荷重1kgfで接合部、熱影響部および母材部の硬さ測定を行った。また、引張性質は、接合方向と直角方向に、接合部および熱影響部を平行部に含むようJIS5号引張試験片を採取して、室温で引張試験を行うことにより評価した。
【0031】
測定、評価結果を表2〜3に示す。接合時、接合部および熱影響部の温度が200℃未満に達するまでの時間(200℃以上に保持された時間)が60秒以内である本発明に従う試験材はいずれも、表2にみられるように、母材部の硬さを100としたとき、接合部および熱影響部の硬さは100以上であった。また、表3にみられるように、引張性質において、高い伸びを示し、引張試験において、試験片はいずれも母材部で破断した。
【0032】
【表1】

Figure 0004183177
【0033】
【表2】
Figure 0004183177
【0034】
【表3】
Figure 0004183177
【0035】
比較例1
実施例1で作製したT4調質材を用い、接合速度を20mm/分とした以外は実施例1と同一の条件で摩擦攪拌接合を行い、接合時に200℃以上に保持された時間を、接合部および熱影響部ともに300秒を越える時間とした。ビッカース硬さの測定および引張性質の評価は実施例1と同様に行った。結果を表4〜5に示す。
【0036】
【表4】
Figure 0004183177
【0037】
【表5】
Figure 0004183177
【0038】
表4〜5に示すように、本発明の条件を外れた試験材No.10〜18はいずれも、熱影響部の硬さが母材部の硬さより低く、伸びが劣り、引張試験において熱影響部で破断した。
【0039】
【発明の効果】
本発明によれば、T3調質またはT4調質された熱処理型アルミニウム合金を互いに接合したアルミニウム合金接合材において、接合部、熱影響部および母材の強度バランスが最適化されて、接合材の延性が向上し成形加工性が改善される。さらに、成形加工後の熱処理、例えば塗装焼付けにより高強度化も可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-treatable aluminum alloy bonding material excellent in ductility, and more particularly to a heat-treatable aluminum alloy bonding material formed by bonding to each other after T3 tempering or T4 tempering. In the present invention, the heat-treatable aluminum alloy refers to 2000 series (Al-Cu series), 6000 series (Al-Mg-Si series) and 7000 series (Al-Zn-Mg series) aluminum alloys.
[0002]
[Prior art]
Usually, heat-treatable aluminum alloys are often used in T6 tempering that provides high strength. However, when performing press molding or bending, T6 tempering is inferior in ductility. After performing T3 tempering or T4 tempering that can give excellent ductility, it can be molded and used as it is with T3 tempering or T4 tempering. Used with aging.
[0003]
Since most of the molded products have complicated shapes, cutting and trimming are usually performed after the molding processing. However, in recent years, in the molding processing of T3 tempered material or T4 tempered material, cutting and trimming are performed. In order to improve the material yield by omission and simplify the manufacturing process, a system in which a plurality of T3 tempered materials or T4 tempered materials are joined and then subjected to press working, bending, etc. has been put into practical use.
[0004]
In this case, MIG welding, TIG welding, laser welding, friction stir welding, or the like is applied as a joining method. When a T3 tempered material or a T4 tempered material is joined by these joining methods, the joined portion and the joined part are joined. The heat-affected zone in the vicinity of the zone softens and the strength and ductility are lower than those of the base material (non-joined zone). There is a problem that local deformation occurs. Further, when the processing amount is large, there is a problem that the joint portion and the heat-affected zone are easily broken. For this reason, the processing amount in the forming process is restricted or the design must be changed.
[0005]
Several proposals have been made for the purpose of improving the strength of the joint in relation to the forming of the heat-treatable aluminum alloy joint material. For example, when manufacturing a wheel rim made of a 6000 series aluminum alloy, after the solution treatment, it is bent into a cylindrical shape, and the bent end is flash-butt welded and finished into a rim shape by roll molding, It has been proposed to obtain high strength by precipitating solute atoms dissolved in the solution treatment by heat treatment at 200 ° C. (see Patent Document 1).
[0006]
As a measure for improving the strength of a 6000 series aluminum alloy wheel, an Al—Mg—Si based alloy plate having a specific composition is subjected to solution treatment at a temperature of 400 ° C. or higher and then stretched to form a rim. After welding a high-pressure alloy-based alloy disk, the welded portion is cooled at a cooling rate of 1 ° C./second or more, and then heat-treated at 100 to 200 ° C. for 5 to 60 minutes to age-harden the strength of the rim. Improvement has also been proposed (see Patent Document 2).
[0007]
In order to improve the joint strength of the heat-treatable aluminum alloy joined by friction stir welding, the stir zone is forcedly cooled immediately after joining to be in a quenched state, and then the joint portion having a predetermined strength by age hardening treatment is performed. Has also been proposed (see Patent Document 3).
[0008]
Similarly, in order to ensure sufficient joint strength for the heat-treatable aluminum alloy joined by friction stir welding, the time during which the heat-affected zone other than the stirrer is heated to a temperature of 300 ° C. or higher is 1 minute. It is also proposed to secure the strength equivalent to that of the T5 or T6 tempered material by subjecting the joined members to aging at a temperature lower than 300 ° C. (see Patent Document 4). .
[0009]
Moreover, it is a welded joint, and the softest part of the heat-affected zone consists of a fibrous structure or a fine equiaxed structure having a crystal grain size of 100 μm or less, and an aluminum alloy joint (see Patent Document 5) having a joint efficiency of 60% or more. , A weld joint for molding of excess Si type 6000 series aluminum alloy, which is aged at a temperature of 180 ° C. or less after welding, and has a joint efficiency of 70% or more and a joint elongation of 50% or more. Patent Document 6) has also been proposed.
[0010]
However, in these proposals, a predetermined strength can be obtained by the aging treatment after the joining, but the balance of the strength of the joined portion, the heat affected zone and the base material is optimized to increase the ductility of the joined material. Formability cannot be improved, and it is difficult to eliminate the problem of local deformation near the joint.
[0011]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-117826 (Claim 1)
[Patent Document 2]
JP-A-8-246116 (Claim 1)
[Patent Document 3]
Japanese Patent Laid-Open No. 11-104860 (Claim 1, page 5, paragraph 0040)
[Patent Document 4]
Japanese Patent Laid-Open No. 2000-61663 (Claim 1)
[Patent Document 5]
Japanese Patent Laid-Open No. 2002-115037 (Claim 1)
[Patent Document 6]
JP-A-2002-294281 (Claim 1)
[0012]
[Problems to be solved by the invention]
As described above, all of the conventional techniques are for age-hardening the joints by heat treatment after joining, and for improving the joint strength obtained when peak aging is performed. There are no studies on methods to improve the performance.
[0013]
In order to improve the formability of the heat-treatable aluminum alloy joined material formed by joining each other after T3 tempering or T4 tempering, the inventors have various factors regarding the ductility of the joining material. As a result of the examination, the ductility varies greatly depending on the strength balance of the joint and heat-affected zone and the base material at the time of joining, and the strength balance of the joint, heat-affected zone and base material is optimized to form It was found that the deformation during processing is concentrated on the base material and the formability is improved.
[0014]
The present invention has been made on the basis of the above-mentioned knowledge, and the object thereof is a heat-treated aluminum alloy bonding material formed by bonding to each other after T3 tempering or T4 tempering. It is another object of the present invention to provide a heat-treatable aluminum alloy bonding material excellent in ductility by optimizing the strength balance of the base material, improving ductility and improving formability.
[0015]
[Means for Solving the Problems]
The heat-treatable aluminum alloy bonding material excellent in ductility according to claim 1 for achieving the above object is a 2000 series, 6000 series or 7000 series formed by T3 tempering or T4 tempering and then friction stir welding to each other. The heat treatment type aluminum alloy bonding material is characterized in that when the hardness of the base material is set to 100, a bonding portion in which the hardness of the bonding portion and the heat-affected zone is 100 or more and 200 or less is formed. .
[0016]
A heat-treatable aluminum alloy bonding material excellent in ductility according to claim 2 is characterized in that, in claim 1, the total width of the bonded portion and the heat-affected zone on the bonding surface is 1 mm or more and 100 mm or less.
[0017]
When the aluminum alloy bonding material excellent in ductility according to claim 3 is a tensile test performed by collecting a JIS No. 5 tensile test piece so as to include the joint and the heat-affected zone in a parallel portion in claim 1 or 2, It is characterized by breaking at the base metal part.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a heat-treatable aluminum alloy bonding material for joining and forming after T3 tempering (solution treatment, quenching, cold working) or T4 tempering (solution treatment, quenching, normal temperature aging). For the production of bonding materials, a heat-treatable aluminum alloy having a predetermined component composition is ingoted by, for example, ordinary DC casting, the obtained ingot is homogenized, and then hot-worked, and further required Depending on the conditions, intermediate annealing and cold working are performed to obtain a predetermined shape, and then T3 tempered material is obtained by solution treatment, quenching, and cold working, or T4 tempered material is obtained by solution treatment, quenching, and normal temperature aging. This is done. Examples of forms of hot working and cold working include extrusion, rolling, and forging, and any kind of processing may be performed. In the 6000 series alloy, a material imparted with paint bake hardenability can be used by performing preliminary aging treatment within 48 hours at room temperature to 120 ° C. after solution treatment and quenching.
[0019]
The heat treatment type aluminum alloy applied to the present invention is a 2000 series (Al-Cu series) alloy such as 2014 alloy, 2017 alloy, and 2024 alloy, and a 7000 series (Al-Zn-Mg series) alloy such as 7075 alloy and 7N01 alloy. And 6000 series alloys (Al-Mg-Si series), and the 6000 series alloys are low in Si content such as 6061 alloy and 6063 alloy, but have excessive Si type such as AA6016 alloy and AA6111 alloy. It may be a thing.
[0020]
As joining methods, inert gas arc welding such as MIG welding and TIG welding, plasma arc welding, laser welding, electron beam welding, friction stir welding, resistance welding, rotary friction welding, ultrasonic welding, electromagnetic welding, hybrid welding, brazing Diffusion bonding, solid phase bonding, etc. can be applied. Of these, laser welding, rotary friction welding, and friction stir welding have the advantage of less heat input than arc welding such as MIG welding and TIG welding. Is easy. In particular, the friction stir welding is the most preferable joining method for carrying out the present invention because it has the smallest heat input (heat generation) and does not form a melted region with reduced ductility .
[0022]
In the present invention, when the hardness of the base material is set to 100, a bonded portion where the hardness of the bonded portion and the heat-affected zone is 100 or more and 200 or less is formed. In order to form such a joint, the time during which the temperature of the joint and the heat-affected zone is maintained at a temperature of 200 ° C. or higher by forcibly cooling the joint if necessary is 300 seconds. Control to be within. If it is less than 300 seconds, even if the temperature of a junction part and a heat affected zone is 200 degreeC or more, the strength fall by the overaging of a joined part and a heat affected zone hardly arises. If the time exceeds 300 seconds, solute atoms precipitate and agglomerate to form an overaging region, and the optimum strength balance cannot be obtained even if various treatments are performed after joining. A more preferable holding time is 120 seconds or less, and a most preferable holding time is 60 seconds or less.
[0023]
According to the above-mentioned joining conditions, when the hardness of the base material is 100, a joined portion where the hardness of the joined portion and the heat-affected zone is 100 or more and 200 or less is formed, and a joining material having excellent ductility can be obtained. it can. If either the joint or the heat-affected zone is less than the hardness of the base material (less than 100), the joint or the heat-affected zone is preferentially deformed during the molding process of the joining material, and good molding is achieved. If either the joint or the heat affected zone exceeds 200, the elongation of the joint or the heat affected zone is greatly reduced, the deformability is extremely deteriorated, and the molding process is excellent as a whole. It becomes difficult.
[0024]
In order to make the effect of the present invention more remarkable, the following treatment may be performed before and after joining. That is, for example, as a process for making the joint and the heat-affected zone harder than the base material, there are a method using work hardening such as shot peening, rolling, forging pressure, and a method of performing a local aging treatment, As a process for softening the side, there is a method of softening locally. When it is difficult to locally heat the joint and the heat-affected zone or the base material, the whole may be heat-treated at an overaging temperature for a short time.
[0025]
In addition, when the JIS No. 5 tensile test piece is sampled and subjected to a tensile test so as to include the joint and the heat-affected zone in the parallel portion, the strength characteristic of breaking at the base material portion can be obtained. If the base material does not break but breaks at the joint or heat-affected zone, constriction due to local deformation is likely to occur, and the joint or heat-affected zone is preferentially deformed during the molding process after joining. When the molding process cannot be achieved and the molding process amount is large, there arises a problem that the deformed portion is preferentially broken.
[0026]
In the present invention, it is desirable that the total width of the bonded portion and the heat affected zone on the bonding surface is 1 mm or more and 100 mm or less. If the total width of the bonded portion and the heat affected zone is less than 1 mm, the area of the bonded portion is too small. If the total width exceeds 100 mm, the area of the bonded portion is too large. And it becomes difficult to control so that the time during which the temperature of the heat-affected zone is maintained at a temperature of 200 ° C. or higher is within 300 seconds.
[0027]
【Example】
Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples are one embodiment of the present invention, and the present invention is not limited thereto.
[0028]
Example 1
After melting aluminum alloys A to I having the composition shown in Table 1 and ingoting by semi-continuous casting, homogenization treatment, hot rolling, and cold rolling are performed according to a conventional method to obtain a plate material having a thickness of 1.0 mm, Further, after solution treatment and quenching, natural aging was performed at 20 ° C. for 7 days to obtain a T4 tempered material.
[0029]
Two T4 tempered plate materials were butt-matched in the rolling direction and butt-joined by a friction stir welding method (FSW method) to obtain a test material. The joining was carried out using a steel rotating tool under the condition that the tool was moved horizontally at a rotational speed of 1000 rpm and a joining speed of 400 mm / min. In addition, eight grooves having a depth of 1 mm were provided at the end of the rotary tool for the purpose of cutting. At the time of joining, the temperature of the joined part and the heat-affected part was measured using a contact thermometer. In order to control the temperature and time of the joining portion at the time of joining, forced air cooling with a fan was performed. Some test materials were subjected to a heat treatment for 30 seconds at a temperature of 300 ° C. after the joining.
[0030]
After joining, the time until the temperature of the joined part and the heat-affected zone reached below 200 ° C. (time kept at 200 ° C. or higher) was measured. For Vickers hardness, specimens are taken in a direction perpendicular to the joining direction, and the cross section of the specimen in the perpendicular direction is filled with resin and polished, and then the joint is subjected to thermal effects by using a Vickers hardness tester with a load of 1 kgf. The hardness of the part and the base material part was measured. The tensile properties were evaluated by collecting a JIS No. 5 tensile test piece in a direction perpendicular to the joining direction and including a joint and a heat-affected zone in a parallel part and conducting a tensile test at room temperature.
[0031]
The measurement and evaluation results are shown in Tables 2-3. Table 2 shows all the test materials according to the present invention in which the time until the temperature of the joint and the heat-affected zone reaches less than 200 ° C. (the time when the temperature is maintained at 200 ° C. or more) is within 60 seconds. As described above, when the hardness of the base material portion is 100, the hardness of the joint portion and the heat-affected zone is 100 or more. Moreover, as seen in Table 3, the tensile properties showed high elongation, and in the tensile test, all the test pieces were broken at the base material portion.
[0032]
[Table 1]
Figure 0004183177
[0033]
[Table 2]
Figure 0004183177
[0034]
[Table 3]
Figure 0004183177
[0035]
Comparative Example 1
Using the T4 tempered material produced in Example 1, the friction stir welding was performed under the same conditions as in Example 1 except that the joining speed was 20 mm / min. Both the part and the heat-affected part were over 300 seconds. Measurement of Vickers hardness and evaluation of tensile properties were performed in the same manner as in Example 1. The results are shown in Tables 4-5.
[0036]
[Table 4]
Figure 0004183177
[0037]
[Table 5]
Figure 0004183177
[0038]
As shown in Tables 4 to 5, test materials No. In all of Nos. 10 to 18, the hardness of the heat-affected zone was lower than the hardness of the base material, the elongation was inferior, and the tensile test was broken at the heat-affected zone.
[0039]
【The invention's effect】
According to the present invention, in the aluminum alloy bonding material obtained by bonding T3 tempered or T4 tempered heat-treatable aluminum alloy to each other, the strength balance of the bonded portion, the heat affected zone and the base material is optimized, and Ductility is improved and molding processability is improved. Furthermore, high strength can be achieved by heat treatment after molding, for example, paint baking.

Claims (3)

T3調質またはT4調質した後に互いに摩擦攪拌接合して形成された2000系、6000系または7000系の熱処理型アルミニウム合金接合材であって、母材の硬さを100としたときに、接合部および熱影響部の硬さが100以上200以下となる接合部が形成されることを特徴とする延性に優れた熱処理型アルミニウム合金接合材。A 2000-series, 6000-series, or 7000-series heat-treatable aluminum alloy joint material formed by friction stir welding after T3 tempering or T4 tempering, when the hardness of the base material is 100 A heat-treatable aluminum alloy bonding material excellent in ductility, characterized in that a bonding portion having a hardness of 100 parts or more and 200 or less is formed. 接合表面における接合部と熱影響部の合計幅が1mm以上100mm以下であることを特徴とする請求項1記載の延性に優れた熱処理型アルミニウム合金接合材。  2. The heat-treatable aluminum alloy bonding material excellent in ductility according to claim 1, wherein the total width of the bonding portion and the heat-affected zone on the bonding surface is 1 mm or more and 100 mm or less. 前記接合部および熱影響部を平行部に含むようJIS5号引張試験片を採取して引張試験を行った場合、母材部で破断することを特徴とする請求項1または2記載の延性に優れた熱処理型アルミニウム合金接合材。  The excellent ductility according to claim 1 or 2, wherein when a tensile test is performed by collecting a JIS No. 5 tensile test piece so as to include the joint portion and the heat affected zone in a parallel portion, the base material portion is broken. Heat treatment type aluminum alloy bonding material.
JP2003163367A 2003-06-09 2003-06-09 Heat treated aluminum alloy bonding material with excellent ductility Expired - Fee Related JP4183177B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003163367A JP4183177B2 (en) 2003-06-09 2003-06-09 Heat treated aluminum alloy bonding material with excellent ductility
US12/486,950 US20090250144A1 (en) 2003-06-09 2009-06-18 Method of joining heat-treatable aluminum alloy members by friction stir welding
US15/287,957 US10016837B2 (en) 2003-06-09 2016-10-07 Method of joining heat-treatable aluminum alloy members by friction stir welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163367A JP4183177B2 (en) 2003-06-09 2003-06-09 Heat treated aluminum alloy bonding material with excellent ductility

Publications (2)

Publication Number Publication Date
JP2004360054A JP2004360054A (en) 2004-12-24
JP4183177B2 true JP4183177B2 (en) 2008-11-19

Family

ID=34055206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163367A Expired - Fee Related JP4183177B2 (en) 2003-06-09 2003-06-09 Heat treated aluminum alloy bonding material with excellent ductility

Country Status (1)

Country Link
JP (1) JP4183177B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095940A1 (en) * 2011-01-10 2012-07-19 ワシ興産株式会社 Wheel and method for manufacturing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7810700B2 (en) * 2005-12-15 2010-10-12 Sumitomo Light Metal Industries, Ltd. Heat treating friction stir welded aluminum alloy members and joined product
JP4789253B2 (en) * 2006-04-24 2011-10-12 住友軽金属工業株式会社 Aluminum alloy bonding material excellent in formability and manufacturing method thereof
DE502007003011D1 (en) * 2006-04-29 2010-04-15 Oerlikon Leybold Vacuum Gmbh METHOD FOR PRODUCING ROTORS OR STATORS OF A TURBOMOLECULAR PUMP
TW200946270A (en) * 2008-02-19 2009-11-16 Nippon Steel Corp Welded joint with excellent fatigue-resistance characteristics, and method for producing same
CN105154924B (en) * 2015-07-20 2017-09-22 昆明理工大学 A kind of preparation method of low silver content Pb-Ag alloy electrode
EP3383573B1 (en) * 2015-12-04 2023-11-08 Raytheon Company Electron beam additive manufacturing
JP7035458B2 (en) * 2017-11-02 2022-03-15 日産自動車株式会社 Welded structure and manufacturing method of welded structure
US11598613B2 (en) * 2019-12-06 2023-03-07 Science Applications International Corporation Aluminum vehicle hull structure and fabrication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095940A1 (en) * 2011-01-10 2012-07-19 ワシ興産株式会社 Wheel and method for manufacturing same

Also Published As

Publication number Publication date
JP2004360054A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
US10016837B2 (en) Method of joining heat-treatable aluminum alloy members by friction stir welding
JP4101749B2 (en) Weldable high strength Al-Mg-Si alloy
RU2180930C1 (en) Aluminum-based alloy and method of manufacturing intermediate products from this alloy
JP6771456B2 (en) Aluminum alloy products and preparation methods
JP3398085B2 (en) Aluminum alloy materials for welded structures and their welded joints
US7490752B2 (en) Manufacturing method for friction welded aluminum alloy parts
JP6148923B2 (en) Aluminum alloy bus bar
JP4183177B2 (en) Heat treated aluminum alloy bonding material with excellent ductility
WO2021168064A1 (en) Control of aluminum alloy microstructure for improved corrosion resistance and bonding performance
JP4789253B2 (en) Aluminum alloy bonding material excellent in formability and manufacturing method thereof
JP4351025B2 (en) Method for joining heat-treatable aluminum alloy materials
JP4351024B2 (en) Friction stir welding method for heat-treatable aluminum alloy material
JP6148925B2 (en) Conductive Al alloy sheet
JP2006299342A (en) Method for manufacturing aluminum alloy material for press forming and pressed material
JP3804751B2 (en) Welding method for heat-treatable aluminum alloy materials
JP4323296B2 (en) Method of joining heat-treatable aluminum alloy material and joining material for press forming
JP4540209B2 (en) Self-piercing rivet bonded aluminum alloy extrusions for automobile frames
JP4707318B2 (en) Aluminum alloy material joining method and press forming joining material
JP6084083B2 (en) Aluminum alloy material for bus bar, and laser welded body of bus bar and other member using the aluminum alloy material
JP4410514B2 (en) Aluminum alloy bonding material excellent in formability and manufacturing method thereof
JP6679269B2 (en) Al alloy material for high energy beam welding
JP6679296B2 (en) Al alloy material for high energy beam welding and method for producing the same
JPH05179389A (en) Aluminum alloy material for upset butt welding
JP2002115037A (en) Aluminum alloy welded joint having high joint efficiency
JP3726033B2 (en) Aluminum alloy welded joints and wrought aluminum alloys for welded joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4183177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees