JP6084083B2 - Aluminum alloy material for bus bar, and laser welded body of bus bar and other member using the aluminum alloy material - Google Patents

Aluminum alloy material for bus bar, and laser welded body of bus bar and other member using the aluminum alloy material Download PDF

Info

Publication number
JP6084083B2
JP6084083B2 JP2013058008A JP2013058008A JP6084083B2 JP 6084083 B2 JP6084083 B2 JP 6084083B2 JP 2013058008 A JP2013058008 A JP 2013058008A JP 2013058008 A JP2013058008 A JP 2013058008A JP 6084083 B2 JP6084083 B2 JP 6084083B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy material
bus bar
present
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013058008A
Other languages
Japanese (ja)
Other versions
JP2014181395A (en
Inventor
後藤章仁
坂井一成
鈴木義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2013058008A priority Critical patent/JP6084083B2/en
Publication of JP2014181395A publication Critical patent/JP2014181395A/en
Application granted granted Critical
Publication of JP6084083B2 publication Critical patent/JP6084083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Description

本発明は、例えば電気自動車、ハイブリット車又は鉄道車両等の移動体や、配電盤や蓄電システム等の定置型の産業設備において、電池や電気機器を電気的に接続するためのバスバー用アルミニウム合金材、ならびに、これを用いたバスバーと他部材とのレーザー溶接体に関する。   The present invention is, for example, an aluminum alloy material for a bus bar for electrically connecting a battery or an electric device in a movable body such as an electric vehicle, a hybrid vehicle, or a railway vehicle, or stationary industrial equipment such as a switchboard or a power storage system, In addition, the present invention relates to a laser welded body of a bus bar and other members using the same.

一般に電池や電気機器を接続するためのバスバーは、導電率と強度のバランスから銅(Cu)合金が主に用いられているが、コスト低減(原料費として、Cuの方がアルミニウム(Al)より高価)や軽量化のため、Cu製のバスバー材をAl又はAl合金へ置き換える試みが近年活発になっている。   In general, copper (Cu) alloys are mainly used for bus bars for connecting batteries and electrical equipment because of the balance between conductivity and strength, but cost reduction (Cu is more expensive than aluminum (Al) as raw material costs) In recent years, attempts to replace the bus bar material made of Cu with Al or an Al alloy have become active.

バスバー材をCuからAlへ置き換える上で問題となるのは、強度や導電性などの材料特性と、バスバー材同士の電気的な接合性、或いは、バスバー材と電池や電気機器との電気的な接合性(接触抵抗等)である。これらバスバー材の接合に関しては、従来はボルト締めが主流であったが、Cuと比較してAlの接触抵抗が高いことを一因として、近年ではレーザー溶接が多用されるようになっている。   The problem in replacing the bus bar material from Cu to Al is that the material properties such as strength and conductivity and the electrical bondability between the bus bar materials, or the electrical connection between the bus bar material and the battery or electrical equipment. Bondability (contact resistance, etc.). With regard to the joining of these bus bar materials, bolt fastening has heretofore been the mainstream, but in recent years, laser welding has been frequently used due to the fact that the contact resistance of Al is higher than that of Cu.

特許文献1には、添加元素Fe、Siの添加量を制限したAl合金をバスバー材に適用し、レーザー溶接にてバスバー材を接合する方法が提案されている。しかしながら、添加元素量が少ないAl合金では十分な母材強度が確保されない。したがって、製品組み立て時のハンドリングや、製品として使用中の振動などで不適切に変形する可能性があり、バスバーとしての適用範囲が制限されるという問題があった。また、バスバー材の接合相手材は主にJIS規格の1000系、3000系、5000系及び6000系のアルミニウム合金が用いられるが、特に、5000系や6000系とレーザー溶接を行う場合には、割れが発生することが多いという問題があった。   Patent Document 1 proposes a method in which an Al alloy with a limited amount of additive elements Fe and Si is applied to a bus bar material, and the bus bar material is joined by laser welding. However, an Al alloy with a small amount of additive elements cannot ensure a sufficient base material strength. Therefore, there is a possibility that it may be improperly deformed due to handling during product assembly or vibration during use as a product, and there is a problem that the range of application as a bus bar is limited. In addition, the JIS standard 1000 series, 3000 series, 5000 series and 6000 series aluminum alloys are mainly used as the joining material of the bus bar material, but particularly when laser welding is performed with the 5000 series or 6000 series, cracking occurs. There was a problem that often occurred.

特開2011−171080号公報JP 2011-171080 A

本発明は、電池や電気機器を接続するためのバスバー用アルミニウム合金材であって、強度、導電率及びレーザー溶接性に優れたバスバー用アルミニウム合金材、ならびに、これを用いたバスバーと他部材とのレーザー溶接体の提供を目的とする。   The present invention is an aluminum alloy material for a bus bar for connecting a battery or an electric device, which is excellent in strength, conductivity and laser weldability, and a bus bar using the same and other members. The purpose is to provide a laser welded body.

本発明者等は鋭意研究を重ねた結果、バスバー用アルミニウム合金におけるFe含有量、ならびに、Al−Fe系金属間化合物の面密度を厳密に調整することによって、前述の問題を解決できることを見出して本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by strictly adjusting the Fe content in the aluminum alloy for busbars and the surface density of the Al—Fe intermetallic compound. The present invention has been completed.

本発明は請求項1において、Fe:0.70〜2.50mass%を含有し、残部Al及び不可避的不純物からなり、55.0%IACS以上の導電率を有し、金属組織中に円相当径1〜3μmのAl−Fe系金属間化合物が14000/mm以上存在することを特徴とするバスバー用アルミニウム合金材とした。 The present invention according to claim 1 includes Fe: 0.70 to 2.50 mass%, consists of the balance Al and inevitable impurities, has a conductivity of 55.0% IACS or more, and corresponds to a circle in the metal structure An aluminum alloy material for busbars characterized by the presence of 14000 / mm 2 or more of an Al—Fe-based intermetallic compound having a diameter of 1 to 3 μm.

本発明は請求項2では請求項1において、前記アルミニウム合金が、Ti:0.005〜0.30mass%を単独で、或いは、これに、B:0.0001〜0.05mass%及びC:0.0001〜0.002mass%の少なくとも一方を更に含有するものとした。   According to a second aspect of the present invention, in the first aspect of the present invention, in the first aspect, the aluminum alloy is Ti: 0.005 to 0.30 mass% alone, or B: 0.0001 to 0.05 mass% and C: 0. Further, at least one of 0.0001 to 0.002 mass% was further contained.

本発明は請求項3では請求項1又は2において、バスバー用アルミニウム合金材が、Xを1〜9の整数としてH1X又はH2Xに調質され、100〜210MPaの引張強度を有するものとした。   The present invention is as follows. In claim 3, the aluminum alloy material for bus bars is tempered to H1X or H2X with X being an integer of 1 to 9, and has a tensile strength of 100 to 210 MPa.

本発明は請求項4では請求項1〜3のいずれか一項において、バスバー用アルミニウム合金材が、O材に調質された際において80MPa以上の引張強度を有するものとした。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the aluminum alloy material for bus bars has a tensile strength of 80 MPa or more when tempered to O material.

本発明は請求項5において、請求項1〜4のいずれか一項に記載のアルミニウム合金材を用いたバスバーと他部材とのレーザー溶接体とした。   The present invention is the laser welded body of the bus bar using the aluminum alloy material according to any one of claims 1 to 4 and another member.

本発明により、強度、導電率及びレーザー溶接性に優れたバスバー用アルミニウム合金材、ならびに、これを用いたバスバーと他部材とのレーザー溶接体が得られる。   According to the present invention, an aluminum alloy material for a bus bar excellent in strength, electrical conductivity, and laser weldability, and a laser welded body of a bus bar using the same and other members can be obtained.

本発明に係るバスバー用アルミニウム合金材は、所定のAl合金組成と導電率を有し、更に、金属組織中に円相当径1〜3μmのAl−Fe系金属間化合物が所定の面密度で存在する。以下に、これらについて詳細に説明する。   The aluminum alloy material for busbars according to the present invention has a predetermined Al alloy composition and electrical conductivity, and an Al-Fe-based intermetallic compound having an equivalent circle diameter of 1 to 3 μm is present in the metal structure at a predetermined surface density. To do. These will be described in detail below.

1.Al合金組成
本発明に係るバスバー用アルミニウム合金材は、必須元素としてFe:0.70〜2.50mass%(以下、単に「%」と記す)を含有し、残部Al及び不可避的不純物からなる。また、選択的添加元素として、Ti:0.005〜0.30mass%を単独で、或いは、これに、B:0.0001〜0.05mass%及びC:0.0001〜0.002mass%の少なくとも一方を更に含有してもよい。
1. Al alloy composition The aluminum alloy material for bus bars according to the present invention contains Fe: 0.70 to 2.50 mass% (hereinafter, simply referred to as “%”) as an essential element, and consists of the balance Al and inevitable impurities. Further, as a selective additive element, Ti: 0.005 to 0.30 mass% alone or at least B: 0.0001 to 0.05 mass% and C: 0.0001 to 0.002 mass% One may be further contained.

Fe:0.70〜2.50%
Feは材料中にはほとんど固溶しないため、固溶による導電率低下への影響が小さく、Al−Fe系金属間化合物として、分散により強化及び溶接性に寄与する必須元素である。Feの含有量が0.70%未満では、十分な母材強度が得られない。一方、2.50%を超えると、粗大なAl−Fe系金属間化合物が形成されるために加工が困難となる。Feの好ましい含有量は、0.80〜1.50%である。
Fe: 0.70 to 2.50%
Since Fe hardly dissolves in the material, it has little influence on the decrease in conductivity due to the solid solution, and is an essential element that contributes to strengthening and weldability by dispersion as an Al—Fe intermetallic compound. If the Fe content is less than 0.70%, sufficient base material strength cannot be obtained. On the other hand, if it exceeds 2.50%, a coarse Al—Fe-based intermetallic compound is formed, which makes processing difficult. The preferable content of Fe is 0.80 to 1.50%.

Ti:0.005〜0.30%、B:0.0001〜0.050、C:0.0001〜0.002%
Tiはマトリクス中に固溶して強度向上させる他に、層状に分布して板厚方向の腐食の進展を防ぐ効果を発揮する。また、TiとBからなるTiBと、TiとCからなるTiCは、鋳塊組織の微細化材として作用する。本発明では、選択的添加元素として、Ti:0.005〜0.30mass%を単独で、或いは、これに、B:0.0001〜0.05mass%及びC:0.0001〜0.002mass%の少なくとも一方を更に含有させるのが好ましい。Tiが0.005%未満では、上記効果が十分に得られず、0.30%を超えると十分な導電率が得られない。Bが0.0001%未満では、微細化材の効果が十分に得られない場合があり、0.050%を超えるとTi−B系化合物(例えば、TiB)の粗大凝集物によってレーザー吸収の増加が起こり、溶け込み深さやビート幅が不均一となってレーザ溶接性の安定性が悪化する。また、Cが0.0001%未満では、十分な微細化効果が得られない場合があり、0.002%を超えるとTi−C系化合物(例えば、TiC)の粗大凝集物により、レーザー溶接性の安定性が悪化する。なお、Ti、B、Cの上記含有量の更に好ましい範囲は、Ti:0.01〜0.1%、B:0.0005〜0.005%、C:0.0005〜0.001%である。
Ti: 0.005 to 0.30%, B: 0.0001 to 0.050, C: 0.0001 to 0.002%
Ti is dissolved in the matrix to improve the strength, and is distributed in a layered manner to exhibit the effect of preventing the progress of corrosion in the thickness direction. Further, TiB 2 made of Ti and B and TiC made of Ti and C act as a material for refining the ingot structure. In the present invention, Ti: 0.005 to 0.30 mass% alone, or B: 0.0001 to 0.05 mass% and C: 0.0001 to 0.002 mass% as selective additive elements. It is preferable to further contain at least one of the above. If Ti is less than 0.005%, the above effect cannot be obtained sufficiently, and if it exceeds 0.30%, sufficient conductivity cannot be obtained. If B is less than 0.0001%, the effect of the refining material may not be sufficiently obtained, and if it exceeds 0.050%, the laser absorptivity is caused by coarse aggregates of Ti-B compounds (eg, TiB 2 ). An increase occurs, the penetration depth and beat width become non-uniform, and the stability of laser weldability deteriorates. Further, if C is less than 0.0001%, a sufficient effect of refining may not be obtained, and if it exceeds 0.002%, a coarse agglomerate of a Ti—C compound (for example, TiC) causes laser weldability. The stability of the deteriorated. In addition, the more preferable range of the said content of Ti, B, and C is Ti: 0.01-0.1%, B: 0.0005-0.005%, C: 0.0005-0.001%. is there.

上記Al合金の不可避的不純物として、Si、Mn、Cu、Mgについて説明する。まず、Siはアルミニウム地金に含有されるためAl合金中に含有される代表的な不可避的不純物である。Si量を0.3%以下、好ましくは0.1%以下に規制するのが好ましい。Si量が0.3%を超えるとFeとの化合物が形成され易く、粗大晶出物が生成し易くなり加工性が低下する。また、Siは溶接性も阻害するため、0.3%を超えて含有されるのは不適当である。   Si, Mn, Cu, and Mg will be described as inevitable impurities in the Al alloy. First, Si is a typical unavoidable impurity contained in an Al alloy because it is contained in an aluminum ingot. It is preferable to limit the amount of Si to 0.3% or less, preferably 0.1% or less. If the Si content exceeds 0.3%, a compound with Fe is likely to be formed, and a coarse crystallized product is likely to be produced, resulting in a decrease in workability. Moreover, since Si inhibits weldability, it is inappropriate to contain more than 0.3%.

MnはAl合金に多く固溶して導電率を低下させるため、0.05%以下、好ましくは
0.01%以下に規制するのが好ましい。CuとMgはAl合金中にあって固溶する場合は導電率を低下させる。更に、MgはAl合金中にあって溶接性を阻害し、Cuは耐食性を低下させるため、CuとMgはそれぞれ、0.05%以下、好ましくは0.01%以下に規制することが好ましい。
Since Mn is dissolved in a large amount in the Al alloy and lowers the electrical conductivity, it is preferably regulated to 0.05% or less, preferably 0.01% or less. When Cu and Mg are in the Al alloy and are dissolved, the conductivity is lowered. Furthermore, Mg is contained in the Al alloy and inhibits weldability, and Cu lowers the corrosion resistance. Therefore, Cu and Mg are preferably regulated to 0.05% or less, preferably 0.01% or less, respectively.

本発明では上記Si、Mn、Cu、Mg以外の不純物を全体で0.15%以下、更に含有していてもよい。   In the present invention, impurities other than Si, Mn, Cu and Mg may be further contained in an amount of 0.15% or less as a whole.

2.導電率
バスバー材には、高い導電性が要求される。本発明では、バスバー用アルミニウム合金材の導電率を55.0%IACS以上に規定する。IACSが55.0%未満では、バスバー材として必要な導電性が不十分となり、電力損失が増大するような障害が発生する。導電率の上限は特に規定するものではないが、材料により自ずと上限が決まる。本発明では、上限を61.0%IACSとする。
2. Conductivity The bus bar material is required to have high conductivity. In the present invention, the electrical conductivity of the aluminum alloy material for bus bars is specified to be 55.0% IACS or more. If the IACS is less than 55.0%, the conductivity required as a bus bar material becomes insufficient, and a failure that increases power loss occurs. The upper limit of the conductivity is not particularly specified, but the upper limit is naturally determined by the material. In the present invention, the upper limit is 61.0% IACS.

3.Al−Fe系金属間化合物の面密度
本発明に係るバスバー用アルミニウム合金材は、金属組織中に円相当径1〜3μmのAl−Fe系金属間化合物が14000個/mm以上存在する。Al−Fe系金属間化合物はレーザーの吸収率を増大させるため、レーザーによるアルミニウム合金の溶け込み深さを深くする。上記面密度が14000個/mm未満では、レーザー吸収率が低くアルミニウム合金の溶け込み深さが十分でなく、バスバー材の接合が困難になる。また、上記面密度が14000個/mm未満の場合にはFeの固溶量が多量となり、バスバー材として必要な導電率が55.0%IACS未満となる可能性が高くなる。金属間化合物の面密度の上限は特に規定するものではないが、組成と製造工程により自ずと上限は決まる。本発明では、上限を50000個/mmとする。なお、Al−Fe系金属間化合物とは、FeAl、FeAl、FeAl、FeAlSiなどの金属間化合物をいう。
3. Area density of Al-Fe intermetallic compound The aluminum alloy material for a bus bar according to the present invention has 14000 pieces / mm 2 or more of Al-Fe intermetallic compounds having an equivalent circle diameter of 1 to 3 µm in the metal structure. Since the Al—Fe-based intermetallic compound increases the absorption rate of the laser, the penetration depth of the aluminum alloy by the laser is increased. If the surface density is less than 14,000 pieces / mm 2 , the laser absorptivity is low and the penetration depth of the aluminum alloy is not sufficient, so that it is difficult to join the bus bar materials. Further, when the surface density is less than 14000 pieces / mm 2, the solid solution amount of Fe becomes large, and there is a high possibility that the electrical conductivity necessary for the bus bar material is less than 55.0% IACS. The upper limit of the surface density of the intermetallic compound is not particularly specified, but the upper limit is naturally determined by the composition and the manufacturing process. In the present invention, the upper limit is 50000 pieces / mm 2 . The Al—Fe-based intermetallic compound refers to an intermetallic compound such as FeAl 3 , FeAl 6 , FeAl m , and FeAlSi.

また、対象となるAl−Fe系金属間化合物の円相当径は、1〜3μmである。円相当径が1μm未満のAl−Fe系金属間化合物は、バスバー材の要求特性に悪影響を与えることがない。従って、円相当径が1μm未満のものは対象外とした。一方、円相当径が3μmを超えるAl−Fe系金属間化合物はレーザー溶接性への寄与は小さいので、これも対象外とした。なお、円相当径とは円相当直径を意味する。   Moreover, the equivalent circle diameter of the target Al—Fe-based intermetallic compound is 1 to 3 μm. An Al—Fe-based intermetallic compound having an equivalent circle diameter of less than 1 μm does not adversely affect the required characteristics of the bus bar material. Therefore, those with an equivalent circle diameter of less than 1 μm were excluded. On the other hand, Al—Fe-based intermetallic compounds having an equivalent circle diameter of more than 3 μm have a small contribution to laser weldability, so this is also excluded. The equivalent circle diameter means an equivalent circle diameter.

4.調質と引張強度
本発明に係るバスバー用アルミニウム合金材は、H1X又はH2X(Xは1〜9の整数)に調質され、100〜210MPa、好ましくは130〜170MPaの引張強度を有するのが好ましい。
4). Tempering and tensile strength The aluminum alloy material for bus bars according to the present invention is tempered to H1X or H2X (X is an integer of 1 to 9) and preferably has a tensile strength of 100 to 210 MPa, preferably 130 to 170 MPa. .

母材の上記引張強度が100MPa未満では、組み付けの際のハンドリング時や、製品としての使用時における振動で変形する可能性があるため好ましくない。また、母材の引張強度が210MPaを超える場合は、バスバー材の曲げ加工を行う際に割れが発生する可能性が高いため好ましくない。   If the tensile strength of the base material is less than 100 MPa, it is not preferable because it may be deformed by vibration during handling during assembly or when used as a product. In addition, when the tensile strength of the base material exceeds 210 MPa, it is not preferable because there is a high possibility of cracking when the bus bar material is bent.

5.O材に調質された際の引張強度
本発明に係るバスバー用アルミニウム合金材は、O材に調質された際において80MPa以上の引張強度を有するのが好ましい。溶接部及びその近傍の熱影響部では、加工ひずみによる強化は消失又は低減する。従って、調質をO材とした際の引張強度を80MPa以上とすることにより、構造用材料として溶接部において最低限の強度を確保できる。O材としたときの引張強度の上限は特に規定するものではないが、組成と製造工程により自ずと上限は決まる。本発明では、上限を170MPaとする。
5. Tensile strength when tempered to O material The aluminum alloy material for bus bars according to the present invention preferably has a tensile strength of 80 MPa or more when tempered to O material. In the welded part and the heat-affected part in the vicinity thereof, strengthening due to processing strain disappears or decreases. Therefore, by setting the tensile strength when the tempering is O material to 80 MPa or more, a minimum strength can be secured in the welded portion as a structural material. The upper limit of the tensile strength when the material is O is not particularly specified, but the upper limit is naturally determined by the composition and the manufacturing process. In the present invention, the upper limit is 170 MPa.

6.製造方法
本発明に係るバスバー用アルミニウム合金材は、鋳造工程、均質化工程、面削工程、熱間圧延の予備加熱工程、熱間圧延工程、冷間圧延工程、焼鈍工程を経て製造される。
6). Manufacturing method The aluminum alloy material for bus bars according to the present invention is manufactured through a casting process, a homogenizing process, a chamfering process, a hot heating preheating process, a hot rolling process, a cold rolling process, and an annealing process.

6−1.鋳造工程
所定の組成に調整したアルミニウム合金の溶湯を用いて、鋳造工程により鋳塊を作製する。導電率55.0%IACS以上を達成するために、鋳造方法は半連続鋳造法(DC法)を用いるのが好ましい。連続鋳造法(CC法)によって鋳塊を製造した場合には、Fe固溶量が多量となり規定の導電率を得られない場合がある。
6-1. Casting process An ingot is produced by a casting process using a molten aluminum alloy adjusted to a predetermined composition. In order to achieve an electrical conductivity of 55.0% IACS or more, it is preferable to use a semi-continuous casting method (DC method) as a casting method. When an ingot is manufactured by the continuous casting method (CC method), the Fe solid solution amount becomes large and the prescribed conductivity may not be obtained.

6−2.均質化処理工程
鋳造工程で作製された鋳塊は、均質化処理工程にかけられる。均質化処理条件は、520〜620℃の温度で4〜10時間加熱し、次いで、500℃から400℃への冷却速度を50℃/時間以下、好ましくは30℃/時間以下とする。これにより、円相当径が1〜3μmのAl−Fe系金属間化合物の面密度を14000個/m以上とすることができる。均質化処理温度を520℃未満としたり、加熱時間を4時間未満とした場合には、Al−Fe系金属間化合物を十分析出させることができない。一方、均質化処理温度が620℃を超えると、鋳塊が溶融する虞があるため好ましくない。また、加熱時間が10時間を超える場合、材料特性は問題ないが、生産性が損なわれる。また、上記冷却速度が50℃/時間を超える場合は、Al−Fe系金属間化合物の面密度は14000個/mを下回る可能性がある。
6-2. Homogenization process The ingot produced by the casting process is subjected to a homogenization process. As the homogenization treatment conditions, heating is performed at a temperature of 520 to 620 ° C. for 4 to 10 hours, and then the cooling rate from 500 ° C. to 400 ° C. is set to 50 ° C./hour or less, preferably 30 ° C./hour or less. Thereby, the surface density of the Al—Fe-based intermetallic compound having an equivalent circle diameter of 1 to 3 μm can be set to 14000 pieces / m 2 or more. When the homogenization treatment temperature is less than 520 ° C. or the heating time is less than 4 hours, the Al—Fe intermetallic compound cannot be sufficiently precipitated. On the other hand, if the homogenization temperature exceeds 620 ° C., the ingot may be melted, which is not preferable. Moreover, when heating time exceeds 10 hours, there is no problem in material characteristics, but productivity is impaired. Further, if the cooling rate exceeds 50 ° C. / time, the surface density of the Al-Fe intermetallic compound is likely to fall below 14,000 pieces / m 2.

6−3.面削工程と予備加熱工程
均質化処理工程の前又は後に鋳塊を面削工程にかけて、表面部分を除去する面削を行う。均質化処理工程前に面削工程にかける場合は、均質化処理工程が熱間圧延のための予備加熱工程を兼ねることができる。この場合には、面削した鋳塊を均質化処理温度で所定時間保持後に所定温度まで冷却した後に、熱間圧延のための予備加熱工程を経ずに直ちに熱間圧延工程を開始してもよく、或いは、熱間圧延工程の開始温度とそれより40℃高い温度との範囲内で、0.5〜4時間の熱間圧延のための予備加熱工程にかけてから熱間圧延工程を開始してもよい。
6-3. Chamfering process and preheating process The ingot is subjected to a chamfering process before or after the homogenization treatment process to perform chamfering to remove the surface portion. When the chamfering step is performed before the homogenization treatment step, the homogenization treatment step can also serve as a preheating step for hot rolling. In this case, the hot-rolling step may be started immediately without passing through the preheating step for hot rolling after the chamfered ingot is held at the homogenization temperature for a predetermined time and then cooled to a predetermined temperature. Well, or within the range of the starting temperature of the hot rolling process and a temperature higher by 40 ° C., the hot rolling process is started after the preliminary heating process for hot rolling for 0.5 to 4 hours. Also good.

均質化処理工程後に面削工程にかける場合は、面削後に熱間圧延のための予備加熱工程にかけることが必要になる。この予備加熱工程では、熱間圧延工程の開始温度とそれより40℃高い温度の範囲内で、面削した鋳塊を0.5〜4時間加熱する。   In the case of performing the chamfering process after the homogenization treatment process, it is necessary to perform a preheating process for hot rolling after the chamfering. In this preheating step, the chamfered ingot is heated for 0.5 to 4 hours within a range of the start temperature of the hot rolling step and a temperature 40 ° C. higher than that.

面削工程を均質化処理工程の前後のいずれに行った場合であっても、予備加熱工程の温度が、上記範囲を超える場合には熱間圧延開始温度に調整するために長めの時間が必要となり、生産性が損なわれ、上記範囲未満の場合には熱間圧延開始温度に届かないため、非効率である。また、予備加熱時間が0.5時間未満ではスラブ全体を十分に加熱できないため、安定した熱間圧延が困難となり、4時間を超えても材料特性は問題ないが、生産性が損なわれる。   Regardless of whether the chamfering process is performed before or after the homogenization process, if the temperature of the preheating process exceeds the above range, a longer time is required to adjust to the hot rolling start temperature. Thus, productivity is impaired, and when the temperature is less than the above range, the hot rolling start temperature is not reached, which is inefficient. Further, if the preheating time is less than 0.5 hours, the entire slab cannot be heated sufficiently, so that stable hot rolling becomes difficult, and if it exceeds 4 hours, there is no problem in material properties, but productivity is impaired.

6−4.熱間圧延工程
熱間圧延工程の開始時における鋳塊温度は特に限定されるものではないが、効率的な熱間圧延を行うためには350〜520℃とするのが好ましい。この温度が350℃未満では安定した熱間圧延が困難となり、520℃を超えると熱間圧延における再結晶粒が粗大化し、外観不良の原因となる場合がある。また、板厚が2mm以上のアルミニウム合金板をバスバー材として用いる場合には、後述の冷間圧延工程を経ないで、熱間圧延工程後のアルミニウム合金板(調質H112材又はO材)をバスバー材として用いるのが好ましい。
6-4. Hot rolling step The ingot temperature at the start of the hot rolling step is not particularly limited, but is preferably 350 to 520 ° C in order to perform efficient hot rolling. If this temperature is less than 350 ° C., stable hot rolling becomes difficult, and if it exceeds 520 ° C., the recrystallized grains in the hot rolling become coarse, which may cause poor appearance. In addition, when an aluminum alloy plate having a thickness of 2 mm or more is used as a bus bar material, an aluminum alloy plate (tempered H112 material or O material) after the hot rolling step is used without going through the cold rolling step described later. It is preferably used as a bus bar material.

6−5.冷間圧延工程と焼鈍工程
熱間圧延工程後に圧延材を冷間圧延工程にかけることによって、所定の板厚まで圧延することができる。特に、製品板厚が2mmを下回る場合は冷間圧延工程にかけるのが好ましい。また、冷間圧延工程の途中又は冷間圧延工程後に焼鈍工程を設けてもよい。これに代わって、熱間圧延工程後に冷間圧延工程を設けずに焼鈍工程を設けてもよい。冷間圧延条件と焼鈍条件は特に限定されるものではなく、製品の要求強度と成形性に応じて、両者のバランスを考慮することによって適宜決定すればよい。中間焼鈍やO材とするための最終焼鈍では、均一な再結晶組織を得るために、バッチ焼鈍炉を用いて350〜500℃で0.5〜8時間保持する条件が好適である。この焼鈍は、場合により急速に加熱冷却する連続焼鈍ラインを用いて実施してもかまわないが、その場合、370〜520℃の好適範囲で設定された所定焼鈍温度に材料温度が到達した後の保持時間を0秒(保持無しで直ちに冷却)〜60秒とするのが好ましい。また、H2X材とするための最終焼鈍は、必要とする回復度を達成するために条件を適宜選択して実施すればよいが、バッチ焼鈍炉を用いて150〜280℃で0.5〜8時間保持する条件範囲が好適である。ただし、中間焼鈍を行わない場合の冷間圧延のトータル圧下率、或いは、中間焼鈍を行う場合の中間焼鈍後の冷間圧延の圧下率が70%以上になると硬化し過ぎて曲げ性が悪化するため、70%未満とすることが好ましい。
6-5. Cold rolling step and annealing step By rolling the rolled material to the cold rolling step after the hot rolling step, it is possible to roll to a predetermined plate thickness. In particular, when the product plate thickness is less than 2 mm, it is preferable to go through a cold rolling process. Further, an annealing step may be provided during the cold rolling step or after the cold rolling step. Instead of this, an annealing step may be provided without providing the cold rolling step after the hot rolling step. Cold rolling conditions and annealing conditions are not particularly limited, and may be appropriately determined by considering the balance between the two according to the required strength and formability of the product. In the intermediate annealing or the final annealing for obtaining the O material, in order to obtain a uniform recrystallized structure, a condition of holding at 350 to 500 ° C. for 0.5 to 8 hours using a batch annealing furnace is suitable. This annealing may be performed using a continuous annealing line that is rapidly heated and cooled in some cases, but in that case, after the material temperature has reached a predetermined annealing temperature set in a suitable range of 370 to 520 ° C. The holding time is preferably 0 seconds (immediate cooling without holding) to 60 seconds. In addition, final annealing for obtaining the H2X material may be performed by appropriately selecting the conditions in order to achieve the required degree of recovery, but it is 0.5 to 8 at 150 to 280 ° C. using a batch annealing furnace. A range of conditions for holding time is preferred. However, if the total rolling reduction ratio of cold rolling without intermediate annealing or the rolling reduction ratio of cold rolling after intermediate annealing with intermediate annealing is 70% or more, it is hardened and the bendability deteriorates. Therefore, it is preferable to make it less than 70%.

7.形状
本発明に係るバスバー用アルミニウム合金材は、通常、断面が矩形の棒状をなす。棒状の厚さは、0.5〜10mmとするのが好ましい。厚さが0.5mm未満では、十分な通電性を確保することができない場合がある。一方、10mmを超えると、実用上必要なプレス成形性や曲げ加工性が得られない場合がある。なお、本発明に係るバスバー用アルミニウム合金材は、その厚さに応じて、熱間圧延板を用いてもよく、或いは、冷間圧延板を用いてもよい。
7). Shape The aluminum alloy material for bus bars according to the present invention usually has a bar shape with a rectangular cross section. The rod-like thickness is preferably 0.5 to 10 mm. If the thickness is less than 0.5 mm, sufficient electrical conductivity may not be ensured. On the other hand, if it exceeds 10 mm, press formability and bending workability necessary for practical use may not be obtained. In addition, the aluminum alloy material for bus bars according to the present invention may use a hot-rolled plate or a cold-rolled plate depending on its thickness.

8.アルミニウム合金材を用いたバスバーと他部材とのレーザー溶接体
本発明に係るアルミニウム合金材を用いたバスバーと他部材とをレーザー溶接することによってレーザー接合体が得られる。他部材としては、アルミニウム製バスバーや各種電気機器が用いられ、本発明に係るアルミニウム合金材を用いたバスバー同士、本発明に係るアルミニウム合金材を用いたバスバーと他のバスバー、或いは、本発明に係るアルミニウム合金材を用いたバスバーと各種電気機器の接合体とすることができる。用いるレーザーには、連続波とパルス波のいずれを用いてもよい。また、レーザー溶接法による接合に代えて、ボルト締めを採用することもできる。更に、本発明に係るアルミニウム合金材を用いたバスバーの一方側を他のバスバーや電気機器にレーザー溶接法を用いて接合し、他方側を他のバスバー等にボルト締めを用いて接合してもよい。
8). Laser welded body of bus bar using aluminum alloy material and other member A laser joined body is obtained by laser welding the bus bar using the aluminum alloy material according to the present invention and the other member. As other members, aluminum bus bars and various electric devices are used, bus bars using the aluminum alloy material according to the present invention, bus bars using the aluminum alloy material according to the present invention and other bus bars, or the present invention. It can be set as the joined body of the bus bar and various electric equipment using the aluminum alloy material which concerns. As the laser to be used, either continuous wave or pulse wave may be used. Moreover, it can replace with joining by a laser welding method and can also employ | adopt bolt fastening. Furthermore, even if one side of the bus bar using the aluminum alloy material according to the present invention is joined to another bus bar or an electric device using a laser welding method, the other side is joined to another bus bar or the like using bolting. Good.

本発明について、以下の実施例に基づいて説明する。なお、これらの実施例は本発明の一実施形態を示すものであり、本発明はこれらに限定されるものではない。   The present invention will be described based on the following examples. In addition, these Examples show one Embodiment of this invention, and this invention is not limited to these.

下記の5種の製造方法によって、本発明例及び比較例のバスバー用アルミニウム合金材試料を作製した。製造方法(1)と製造方法(2)は熱間圧延板の製造方法であり、(1)は調質をH112材、(2)は調質をO材としたものである。製造方法(3)と製造方法(4)は冷間圧延板の製造方法であり、(3)は調質をO材又はH2X材、(4)は調質をH1X材としたものである。なお、製造方法(1)〜(4)はいずれも半連続鋳造法(DC鋳造法)を用いたもので、同一のスラブから試料を作製した。製造方法(5)では、連続鋳造法(CC鋳造法)を用いた。   The aluminum alloy material samples for bus bars of the present invention and comparative examples were prepared by the following five kinds of manufacturing methods. Manufacturing method (1) and manufacturing method (2) are methods for manufacturing a hot-rolled sheet, in which (1) is tempered with H112 material and (2) is tempered with O material. Manufacturing method (3) and manufacturing method (4) are methods for manufacturing a cold-rolled sheet, (3) is an O material or H2X material, and (4) is an H1X material. In addition, all the manufacturing methods (1)-(4) used the semi-continuous casting method (DC casting method), and produced the sample from the same slab. In the production method (5), a continuous casting method (CC casting method) was used.

(1)DC鋳造→均質化処理→面削→熱間圧延
(2)DC鋳造→均質化処理→面削→熱間圧延→最終焼鈍
(3)DC鋳造→均質化処理→面削→熱間圧延→冷間圧延→最終焼鈍
(4)DC鋳造→(均質化処理)→面削→熱間圧延→冷間圧延(→中間焼鈍→冷間圧延)
(5)CC鋳造→均質化処理→冷間圧延(→最終焼鈍)
(1) DC casting → homogenization treatment → facing → hot rolling (2) DC casting → homogenization treatment → facing → hot rolling → final annealing (3) DC casting → homogenization treatment → facing → hot Rolling → Cold rolling → Final annealing (4) DC casting → (Homogenization treatment) → Face milling → Hot rolling → Cold rolling (→ Intermediate annealing → Cold rolling)
(5) CC casting → homogenization → cold rolling (→ final annealing)

DC鋳造法又はCC鋳造法によって、表1に示すアルミニウム合金の鋳塊を作製した。表1において、「−」は無添加であることを示す。また、表3、6、7、9に本発明例及び比較例の製造方法を示した。なお、これらの表における製造方法の番号は、上述の製造方法の番号である。要求される特性に合わせ、鋳造工程、均質化処理工程、面削工程、予備加熱工程、熱間圧延工程、冷間圧延工程、中間焼鈍工程及び最終焼鈍工程を適宜実施した。   Aluminum alloy ingots shown in Table 1 were produced by DC casting or CC casting. In Table 1, “-” indicates no addition. Tables 3, 6, 7, and 9 show the production methods of the inventive examples and the comparative examples. In addition, the numbers of the manufacturing methods in these tables are the numbers of the manufacturing methods described above. A casting process, a homogenization process, a chamfering process, a preheating process, a hot rolling process, a cold rolling process, an intermediate annealing process, and a final annealing process were appropriately performed in accordance with required characteristics.

上記のようにして作製した試料の導電率、引張強度、1〜3μmの円相当径を有するAl−Fe系金属間化合物の面密度、曲げ試験及びレーザー溶接性を以下のようにして評価した。   The electrical conductivity, tensile strength, surface density, bending test, and laser weldability of the Al—Fe intermetallic compound having a circle-equivalent diameter of 1 to 3 μm were evaluated as follows.

1.導電率
シグマテスターを用いて、渦電流法により導電率(%IACS)を測定した。
1. Conductivity Conductivity (% IACS) was measured by an eddy current method using a sigma tester.

2.引張強度
引張強度はJIS Z 2201で規定されるJIS5号試験片を試料から切り出し、JIS Z 2241準拠による引張試験により測定した。また、H112、H1X材及びH2X材については、引張試験形状のものに400℃×2時間の焼鈍を施してO材とした後に、同様にして引張強度を測定した。
2. Tensile strength Tensile strength was measured by cutting a JIS No. 5 test piece defined in JIS Z 2201 from a sample and performing a tensile test according to JIS Z 2241. Moreover, about H112, H1X material, and H2X material, the tensile strength was similarly measured after giving 400 degreeC * 2 hours annealing to the thing of a tensile test shape.

3.Al−Fe系金属間化合物の面密度
試料の金属組織中に存在する1〜3μmの円相当径を有するAl−Fe系金属間化合物の分布状態(面密度)は、試料の任意断面を光学顕微鏡にて観察し、これを画像解析ソフトによって解析して求めた。なお、比較例3〜6、12〜15はFe以外の添加元素が多く含有されており、Al−Fe系以外の金属間化合物が多く形成されているため測定から除外した。
3. Area density of Al—Fe-based intermetallic compound Distribution state (area density) of Al—Fe-based intermetallic compound having a circle equivalent diameter of 1 to 3 μm present in the metal structure of the sample is measured by an optical microscope. This was obtained by analyzing with image analysis software. Note that Comparative Examples 3 to 6 and 12 to 15 were excluded from the measurement because they contained a large amount of additive elements other than Fe and a large amount of intermetallic compounds other than Al-Fe.

4.曲げ試験
曲げ試験をJIS Z 2248に規定されるVブロック法により行った。押金具のRは板厚の1/2とし、Vブロックの角度は90°とした。目視にてクラックを確認したものは「×」(不合格)、確認できなかったものを「○」(合格)とした。
4). Bending test The bending test was performed by the V block method prescribed | regulated to JISZ2248. The R of the metal fittings was ½ of the plate thickness, and the angle of the V block was 90 °. What checked the crack visually was "x" (failed), and what was not able to be confirmed was set as "(circle)" (passed).

4.レーザー溶接性
4−1.溶け込み深さ
試料表面において、長さ100mmにわたってレーザー照射を連続的に移動させ、照射部における溶け込み深さを測定した。レーザー照射の条件は、レーザー出力を2000W、溶接速度を15m/分、集光径を0.3mmφ、連続波(CW:Continuous Wave)とし、終端部において出力を段階的に低下させる終端処理は行わなかった。全照射長さのうちの3箇所(間隔は15mm)についてその断面を光学顕微鏡によって観察し、各断面における溶け込み深さの最大値を測定した。そして、これらの算術平均値をもって溶け込み深さとした。溶け込み深さが1mm以上のものを「○」(合格)、1mm未満ものを「×」(不合格)と判定した。
4). Laser weldability 4-1. Penetration depth Laser irradiation was continuously moved over a length of 100 mm on the sample surface, and the penetration depth in the irradiated portion was measured. The laser irradiation conditions are as follows: laser output is 2000 W, welding speed is 15 m / min, condensing diameter is 0.3 mmφ, continuous wave (CW: Continuous Wave), and termination processing is performed to reduce the output stepwise at the termination part. There wasn't. The cross section was observed with an optical microscope at three places (interval of 15 mm) of the total irradiation length, and the maximum value of the penetration depth in each cross section was measured. And it was set as the penetration depth with these arithmetic mean values. Those having a penetration depth of 1 mm or more were judged as “◯” (passed), and those less than 1 mm were judged as “x” (failed).

4−2.溶接性
評価対象材である試料を相手材とレーザー溶接することによって、その溶接性を評価した。試料と接合の相手材とを幅30mm×長さ100mmの短冊形状に加工し、試料と相手材とを幅方向に沿って付き合わせて、幅方向の全長にわたってレーザー溶接を行った。相手材としては、代表的なアルミニウムのJIS合金である1100、3003、5454、6061(それぞれ表1に示した合金のc、d、e、fを試料と同じ厚さに圧延した後にO材としたもの)を用いた。これらに加えて、評価対象材である試料同士でも溶接性を評価した。溶接条件は、レーザー出力を2000W、溶接速度を5m/分、集光径を0.3mmφ、連続波(PW:Pulse Wave)とした。パルス波形はOn時間を2msec、Off時間を15msecとした。溶接性は、以下のように評価した。まず、溶接部の表面を目視によって観察し、接合部表面の割れの有無を調べた。更に、全溶接長さのうちの5箇所(間隔は5mm)についてその断面を光学顕微鏡によって観察し、各接合部断面における割れの有無を調べた。表面観察及び断面観察ともに割れが発生していないものを「○」(合格)、いずれか又は両方に割れが発生しているものを「×」(不合格)とした。
4-2. Weldability The weldability was evaluated by laser welding a sample, which is a material to be evaluated, with a counterpart material. The sample and the mating member were processed into a strip shape having a width of 30 mm and a length of 100 mm, the sample and the mating material were attached to each other along the width direction, and laser welding was performed over the entire length in the width direction. As the counterpart material, representative aluminum JIS alloys 1100, 3003, 5454, and 6061 (each of the alloys c, d, e, and f shown in Table 1 were rolled to the same thickness as the sample, Used). In addition to these, weldability was also evaluated between samples that were evaluation target materials. The welding conditions were a laser output of 2000 W, a welding speed of 5 m / min, a focused diameter of 0.3 mmφ, and a continuous wave (PW: Pulse Wave). In the pulse waveform, the On time was 2 msec and the Off time was 15 msec. Weldability was evaluated as follows. First, the surface of the welded portion was visually observed to check for the presence or absence of cracks on the surface of the joint. Furthermore, the cross section was observed with the optical microscope about five places (space | interval is 5 mm) of all the welding lengths, and the presence or absence of the crack in each junction cross section was investigated. In both surface observation and cross-sectional observation, no crack was generated, and “O” (passed), and one or both of the cracks were evaluated as “X” (failed).

評価結果を表2、4、5、8、に示す。表2には、表3に示す製造方法によって調質をO材としたものを示した。表4、5には、表6、7に示す製造方法によって調質をH1X、H2Xとしたものを示した。更に、表8には、表9に示す製造方法によって調質をH112材又はO材としたものを示した。表2、4、8に示すように、本発明例の1〜43では、本発明範囲を満たすためいずれの評価も合格であった。   The evaluation results are shown in Tables 2, 4, 5, and 8. Table 2 shows tempering materials that are O materials by the manufacturing method shown in Table 3. Tables 4 and 5 show tempering H1X and H2X by the manufacturing methods shown in Tables 6 and 7, respectively. Further, Table 8 shows tempered H112 material or O material by the manufacturing method shown in Table 9. As shown in Tables 2, 4, and 8, in Examples 1 to 43 of the present invention, all evaluations were acceptable in order to satisfy the scope of the present invention.

Figure 0006084083
Figure 0006084083

Figure 0006084083
Figure 0006084083

Figure 0006084083
Figure 0006084083

Figure 0006084083
Figure 0006084083

Figure 0006084083
Figure 0006084083

Figure 0006084083
Figure 0006084083

Figure 0006084083
Figure 0006084083

Figure 0006084083
Figure 0006084083

Figure 0006084083
Figure 0006084083

一方、表2、5、8に示すように、比較例1〜21では、本発明範囲を満たさないため、少なくともいずれかの評価が不合格となった。   On the other hand, as shown in Tables 2, 5, and 8, in Comparative Examples 1 to 21, since the scope of the present invention was not satisfied, at least one of the evaluations failed.

比較例1、10及び20では、Fe含有量が上限を超えていたため粗大なAl−Fe系金属間化合物が形成しており、導電率が低く、かつ曲げ試験時にクラックが発生した。   In Comparative Examples 1, 10, and 20, since the Fe content exceeded the upper limit, a coarse Al—Fe-based intermetallic compound was formed, the conductivity was low, and cracks occurred during the bending test.

比較例2、11及び21では、Fe含有量が下限値未満であったため、円相当径1〜3μmのAl−Fe系金属間化合物の面密度が小さかった。更に、溶接時の溶け込み深さが不合格であり、突合せ溶接において相手材が5454材と6061材では割れが発生した。   In Comparative Examples 2, 11, and 21, since the Fe content was less than the lower limit, the surface density of the Al—Fe-based intermetallic compound having an equivalent circle diameter of 1 to 3 μm was small. Furthermore, the penetration depth at the time of welding was unacceptable, and cracks occurred when the mating materials were 5454 and 6061 in butt welding.

比較例3及び12では、JIS1100合金のFe含有量が下限値未満であり、円相当径1〜3μmのAl−Fe系金属間化合物の面密度が小さいことが推定される。その結果、溶接時の溶け込み深さが不合格であった。更に、突合せ溶接において割れが発生した。   In Comparative Examples 3 and 12, it is estimated that the Fe content of the JIS 1100 alloy is less than the lower limit value, and the surface density of the Al—Fe intermetallic compound having an equivalent circle diameter of 1 to 3 μm is small. As a result, the penetration depth during welding was unacceptable. Furthermore, cracks occurred in butt welding.

比較例4及び13では、JIS3003合金のFe含有量が下限値未満であり、円相当径1〜3μmのAl−Fe系金属間化合物の面密度が小さいことが推定される。溶接時の溶け込み深さに関しては、Al−Fe系以外の金属間化合物が多く存在することにより良好であるが、Mn及びCuの含有量が上限を超えたため、導電率が低く、突合せ溶接において相手材が同種材以外で割れが発生した。   In Comparative Examples 4 and 13, it is estimated that the Fe content of the JIS3003 alloy is less than the lower limit, and the surface density of the Al—Fe intermetallic compound having an equivalent circle diameter of 1 to 3 μm is small. The penetration depth at the time of welding is good due to the presence of many intermetallic compounds other than Al-Fe, but the Mn and Cu contents exceeded the upper limit, so the conductivity is low and the counterpart in butt welding Cracks occurred when the material was other than the same type.

比較例5及び14では、JIS5454合金のFe含有量が下限値未満であり、円相当径1〜3μmのAl−Fe系金属間化合物の面密度が小さいことが推定される。溶接時の溶け込み深さに関しては、Al−Fe系以外の金属間化合物が多く存在することにより良好であるが、Mn及びMgの含有量が上限を超えたため、導電率が低く、突合せ溶接において割れが発生した。また、比較例14では、曲げ試験時にクラックが発生した。   In Comparative Examples 5 and 14, it is estimated that the Fe content of the JIS5454 alloy is less than the lower limit, and the surface density of the Al—Fe intermetallic compound having an equivalent circle diameter of 1 to 3 μm is small. The penetration depth at the time of welding is good due to the presence of many intermetallic compounds other than Al-Fe, but the Mn and Mg contents exceeded the upper limit, so the conductivity is low, and cracks occur in butt welding. There has occurred. In Comparative Example 14, cracks occurred during the bending test.

比較例6及び15では、JIS6061合金のFe含有量が下限値未満であり、円相当径1〜3μmのAl−Fe系金属間化合物の面密度が小さいことが推定される。溶接時の溶け込み深さに関しては、Al−Fe系以外の金属間化合物が多く存在することにより良好であるが、Si、Mn、Cu及びMgの含有量が上限を超えたため、導電率が低く、突合せ溶接において割れが発生した。また、比較例15では、曲げ試験時にクラックが発生した。   In Comparative Examples 6 and 15, it is estimated that the Fe content of the JIS6061 alloy is less than the lower limit, and the surface density of the Al—Fe intermetallic compound having an equivalent circle diameter of 1 to 3 μm is small. As for the penetration depth at the time of welding, it is good because there are many intermetallic compounds other than the Al-Fe system, but the content of Si, Mn, Cu and Mg exceeds the upper limit, so the conductivity is low, Cracks occurred during butt welding. In Comparative Example 15, cracks occurred during the bending test.

比較例7及び16では、鋳造後の均質化温度が480℃と低く、かつ、処理時間が2時間と短かった。さらに、冷却速度も大き過ぎた。その結果、円相当径1〜3μmのAl−Fe系金属間化合物の面密度が小さく、溶接時の溶け込み深さが不合格であった。また、比較例16では、強加工の影響で導電率が低くなった。   In Comparative Examples 7 and 16, the homogenization temperature after casting was as low as 480 ° C., and the treatment time was as short as 2 hours. Furthermore, the cooling rate was too high. As a result, the surface density of the Al—Fe intermetallic compound having an equivalent circle diameter of 1 to 3 μm was small, and the penetration depth during welding was unacceptable. In Comparative Example 16, the conductivity was lowered due to the influence of strong processing.

比較例8では、均質化処理後の500℃から400℃にかけての冷却速度を100℃/時間と大きくしたため、化合物が十分に析出せず、Al−Fe系の金属間化合物の面密度が小さくなった。その結果、溶接時の溶け込み深さも不合格であった。また、比較例17は均質化処理を行わなかったため、金属間化合物の析出工程の一つがなくなり、Al−Fe系の金属間化合物の面密度が小さくなった。これらの結果、溶接時の溶け込み深さが不合格であった。   In Comparative Example 8, since the cooling rate from 500 ° C. to 400 ° C. after the homogenization treatment was increased to 100 ° C./hour, the compound was not sufficiently precipitated, and the surface density of the Al—Fe-based intermetallic compound was decreased. It was. As a result, the penetration depth during welding was also unacceptable. Moreover, since the homogenization process was not performed in Comparative Example 17, one of the precipitation steps of the intermetallic compound was eliminated, and the surface density of the Al—Fe-based intermetallic compound was reduced. As a result, the penetration depth during welding was unacceptable.

比較例9及び19では、連続鋳造(CC法)で製造したためFeを多く固溶しており、円相当径1〜3μmのAl−Fe系金属間化合物の面密度が小さかった。その結果、導電率が低くなった。   In Comparative Examples 9 and 19, since it was produced by continuous casting (CC method), a large amount of Fe was dissolved, and the surface density of the Al—Fe intermetallic compound having an equivalent circle diameter of 1 to 3 μm was small. As a result, the conductivity was lowered.

比較例18では強加工により引張強度が210MPaを超えたため、曲げ試験にてクラックが発生し不合格であった。   In Comparative Example 18, since the tensile strength exceeded 210 MPa by strong processing, a crack was generated in the bending test, which was unacceptable.

本発明に係るバスバー用アルミニウム合金材及びこれと他部材とのレーザー溶接体は、導電率、強度、レーザー溶接性に優れた特性を有する。   The aluminum alloy material for busbars according to the present invention and the laser welded body of this and other members have characteristics excellent in conductivity, strength and laser weldability.

Claims (5)

Fe:0.70〜2.50mass%を含有し、残部Al及び不可避的不純物からなり、55.0%IACS以上の導電率を有し、金属組織中に円相当径1〜3μmのAl−Fe系金属間化合物が14000個/mm以上存在することを特徴とするバスバー用アルミニウム合金材。 Fe: 0.70 to 2.50 mass%, consisting of the balance Al and inevitable impurities, having an electric conductivity of 55.0% IACS or more, and having an equivalent circle diameter of 1 to 3 μm in the metal structure An aluminum alloy material for a bus bar, characterized in that 14000 / mm 2 or more intermetallic compounds are present. 前記アルミニウム合金材が、Ti:0.005〜0.30mass%を単独で、或いは、これに、B:0.0001〜0.05mass%及びC:0.0001〜0.002mass%の少なくとも一方を更に含有する、請求項1に記載のバスバー用アルミニウム合金材。   The aluminum alloy material is Ti: 0.005-0.30 mass% alone, or at least one of B: 0.0001-0.05 mass% and C: 0.0001-0.002 mass%. Furthermore, the aluminum alloy material for bus bars of Claim 1 which contains. Xを1〜9の整数としてH1X又はH2Xに調質され、100〜210MPaの引張強度を有する、請求項1又は2に記載のバスバー用アルミニウム合金材。   The aluminum alloy material for bus bars according to claim 1, wherein X is an integer of 1 to 9 and is tempered to H1X or H2X and has a tensile strength of 100 to 210 MPa. O材に調質され80MPa以上の引張強度を有する、請求項1〜3のいずれか一項に記載のバスバー用アルミニウム合金材。   The aluminum alloy material for bus bars according to any one of claims 1 to 3, wherein the aluminum alloy material is tempered into an O material and has a tensile strength of 80 MPa or more. 請求項1〜4のいずれか一項に記載のアルミニウム合金材を用いたバスバーと他部材とのレーザー溶接体。   A laser welded body of a bus bar using the aluminum alloy material according to any one of claims 1 to 4 and another member.
JP2013058008A 2013-03-21 2013-03-21 Aluminum alloy material for bus bar, and laser welded body of bus bar and other member using the aluminum alloy material Active JP6084083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013058008A JP6084083B2 (en) 2013-03-21 2013-03-21 Aluminum alloy material for bus bar, and laser welded body of bus bar and other member using the aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013058008A JP6084083B2 (en) 2013-03-21 2013-03-21 Aluminum alloy material for bus bar, and laser welded body of bus bar and other member using the aluminum alloy material

Publications (2)

Publication Number Publication Date
JP2014181395A JP2014181395A (en) 2014-09-29
JP6084083B2 true JP6084083B2 (en) 2017-02-22

Family

ID=51700406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013058008A Active JP6084083B2 (en) 2013-03-21 2013-03-21 Aluminum alloy material for bus bar, and laser welded body of bus bar and other member using the aluminum alloy material

Country Status (1)

Country Link
JP (1) JP6084083B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844270B1 (en) * 2016-05-18 2018-04-02 주식회사 리즈텍시스템 Bus bar and preparing method for the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910522B2 (en) * 1977-03-08 1984-03-09 住友電気工業株式会社 copper coated aluminum wire
JPS53144813A (en) * 1977-05-24 1978-12-16 Sumitomo Electric Ind Ltd Manufacture of electroconductive aluminum alloy
JP4015518B2 (en) * 2002-05-07 2007-11-28 日本製箔株式会社 Aluminum alloy foil, method for producing the same, and aluminum laminate
JP2011208229A (en) * 2010-03-30 2011-10-20 Kobe Steel Ltd Aluminum alloy sheet for battery case, and battery case

Also Published As

Publication number Publication date
JP2014181395A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
RU2413025C2 (en) Product out of deformed aluminium alloy of aa7000 series and procedure for production of said product
US9926619B2 (en) Aluminum alloy
JP6148923B2 (en) Aluminum alloy bus bar
JP6206322B2 (en) Aluminum alloy fin material for heat exchanger excellent in brazing and sag resistance and method for producing the same
JP5490594B2 (en) Cu-Zn alloy strip for battery connection tab material
US6440583B1 (en) Aluminum alloy for a welded construction and welded joint using the same
JP6807211B2 (en) Cu-Zr-Sn-Al-based copper alloy plate material, manufacturing method, and energizing member
WO2015029986A1 (en) Copper alloy sheet material and method for producing same, and current-carrying component
JP6611222B2 (en) Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same
KR101599653B1 (en) Plate-like conductor for bus bar, and bus bar comprising same
JP6087413B1 (en) Aluminum alloy plate for automobile bus bar with excellent laser weldability
JP5647665B2 (en) Aluminum alloy plate for busbar
JP6632839B2 (en) Aluminum alloy filler metal and aluminum alloy welding method
JP2014118624A (en) Aluminum alloy sheet for bus bar and its manufacturing method
JP6084083B2 (en) Aluminum alloy material for bus bar, and laser welded body of bus bar and other member using the aluminum alloy material
JP4183177B2 (en) Heat treated aluminum alloy bonding material with excellent ductility
JP6148925B2 (en) Conductive Al alloy sheet
JP6317966B2 (en) Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
JP6679296B2 (en) Al alloy material for high energy beam welding and method for producing the same
JP2017128758A (en) Aluminum alloy sheet for conductive member and production method therefor, and electric connection component
JP6679269B2 (en) Al alloy material for high energy beam welding
JP6886861B2 (en) Welding method of aluminum alloy
JP4326906B2 (en) Manufacturing method of brazing sheet
JP2009221531A (en) Al-Mg BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR COLD WORKING, AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170124

R150 Certificate of patent or registration of utility model

Ref document number: 6084083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150