JP3726033B2 - Aluminum alloy welded joints and wrought aluminum alloys for welded joints - Google Patents

Aluminum alloy welded joints and wrought aluminum alloys for welded joints Download PDF

Info

Publication number
JP3726033B2
JP3726033B2 JP2001156999A JP2001156999A JP3726033B2 JP 3726033 B2 JP3726033 B2 JP 3726033B2 JP 2001156999 A JP2001156999 A JP 2001156999A JP 2001156999 A JP2001156999 A JP 2001156999A JP 3726033 B2 JP3726033 B2 JP 3726033B2
Authority
JP
Japan
Prior art keywords
alloy
series
welding
welded
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001156999A
Other languages
Japanese (ja)
Other versions
JP2002348627A (en
Inventor
松本  剛
誠二 笹部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001156999A priority Critical patent/JP3726033B2/en
Publication of JP2002348627A publication Critical patent/JP2002348627A/en
Application granted granted Critical
Publication of JP3726033B2 publication Critical patent/JP3726033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、継手側辺部の溶接部底面の溶接割れを防止した、6000系アルミニウム合金溶接継手 (以下、アルミニウムを単にAlと言う) および該溶接継手用アルミニウム合金展伸材に関するものである。
【0002】
【従来の技術】
自動車などの輸送機のパネル類、フレーム類、メンバー類などの部材には、成形した板材や形材などのAl合金母材同士を溶接接合した継手 (溶接接合部材) が用いられるようになっている。
【0003】
これら溶接継手用Al合金としては、従来から溶接構造用Al合金として汎用されるAA乃至JIS 規格に規定される5000系や、6063、6061などの6000系 (以下、AA乃至JIS は省略) 、7N01、7003などの7000系などのAl合金展伸材 (圧延板材、押出形材、鍛造材などの総称、以下、単にAl合金材とも言う) がある。
【0004】
この6000系 (Al-Mg-Si系) のAl合金中でも、AA乃至JIS 規格で6061、6N01、6016、6111、6022などの、Si/Mg が1 以上の、Mg含有量に対しSiが過剰に含有されている、過剰Si型の6000系Al合金は、溶体化処理および焼き入れ処理 (質別記号T4) やその後の時効処理 (質別記号T6) 、過時効処理 (質別記号T7) 後の特性において特に時効硬化性に優れている。
【0005】
このため、過剰Si型6000系Al合金は、前記輸送機部材への成形時には低耐力で成形性を確保するとともに、成形後の部材の塗装焼き付け処理などにおいて、170 ℃など比較的低温の加熱でも高耐力化して要求強度を満たせる特性を有している。また、前記5000系や7000系などのAl合金に比して、合金元素量が少ないので、スクラップを元の6000系Al合金の溶解原料として再利用できるなどのリサイクル性にも優れている。
【0006】
しかし、6000系Al合金材、中でも過剰Si型6000系Al合金材は、その優れた時効硬化性ゆえに、前記5000系や7000系などのAl合金に比して、逆に溶接時には、その接合性(接合強度)が低下するという問題がある。そして、この接合性の問題は、特に、部材の溶接される部位の側辺部 (端部乃至縁部) から溶接線までの距離 (端長さ) が短い、溶接部位 (側辺部溶接部) を溶接施工する際に顕著となる。
【0007】
即ち、隅肉溶接や突き合わせ溶接などで、少なくともいずれかのAl合金材を過剰Si型6000系Al合金として継手を溶接接合する際、側辺部の溶接部において、溶接部の底面 (裏面) に、溶接線 (溶着線) に沿って走る、マクロな溶接割れが生じ易いという問題がある。この側辺部溶接部の底面の割れは、6000系Al合金材の顕著な傾向であるとともに、過剰Si型の6000系Al合金材において、特にその傾向が強くなる。そして、他の5000系や7000系などの、6000系以外のAl合金ではこの溶接部底面割れが発生しない乃至しにくい。
【0008】
また、この溶接部底面割れは、通常、溶接施工の際にAl合金系全般において生じやすい、溶接金属部 (溶着部) やその近傍乃至周囲の熱影響部 (以下、HAZ と言う) などの溶接接合部に生じる、ミクロな溶接割れとは、後述する発生機構を含めて全く異なる特異な現象である。
【0009】
図10は、6000系Al合金材の側辺部溶接部において生じる溶接部底面の溶接割れを示している。図10は、図9 に平面図で示す2mm 厚の過剰Si型のAA6022Al合金板(Si;0.9%、Mg;0.6%)試験片1aを、溶接される試験片1aの側辺部2 から溶接線3 までの距離 (以下、端長さと言う)tを種々変えて溶接した場合の、試験片底面1bの溶接状態を示している。なお、溶接法は簡易的にビードオン溶接法を用い、溶け込み深さを一定として溶接した。この図10において、(a) は端長さが32mm、(b) は端長さが24mm、(c) は端長さが16mm、(d) は端長さが 8mmの場合である。
【0010】
図10に示す通り、端長さが比較的長い図10(a)(b)では、溶接線3aの部分 (溶接部底面) に溶接割れは生じていない。これに対し、図10(c)(d)のように端長さが短くなるにつれて、溶接線3aの部分に沿って走る、マクロな溶接割れ4a、4bが生じている。即ち、端長さが短くなるほど、特に過剰Si型などの6000系Al合金材の側辺部溶接部底面では、マクロな溶接割れが生じやすくなる。
【0011】
また、この6000系Al合金材側辺部の溶接部底面の割れ (以下、単に側辺部底面割れと言う) の傾向は、スポット溶接などの個々の溶接線がごく短い溶接接合方法では生じない。しかし、溶接線が比較的長い、アークなどの熱源を用いる溶融溶接方法、即ち、ティグ(TIG) 、ミグ(MIG) などの高速アーク溶接や、レーザー溶接、電子ビームなど溶接で溶接して継手を形成する際に顕著となる。更に、この傾向は、溶接接合部が比較的高温にならない接合方法である、摩擦攪拌接合(FSW) 方法においても生じる。
【0012】
そして、このような側辺部底面割れが起ると、Al合金溶接継手の強度が著しく低下し、自動車などの前記部材に適用できないという深刻な問題が生じる。
【0013】
なお、従来から、Al合金溶接継手の溶接部の前記軟化や割れに対しては、アークなどの溶接方法の側から、溶接施工条件などの種々の改善方法が行なわれてきた。例えば、▲1▼特開平11-104860 号公報などに例示される通り、極力低入熱で溶接する、あるいは冷却しながら溶接接合する方法、▲2▼溶接後の継手を焼き入れ焼き戻し処理する、あるいは特開平5-222498号公報などのように、時効硬化処理前の材料(T1 、T4材) を溶接後、時効硬化処理する、などの熱処理によって軟化を回復させる方法などがある。
【0014】
【発明が解決しようとする課題】
しかし、本発明で課題とする側辺部底面割れは、自動車などの前記部材にそれまで適用されていた、他の5000系や7000系などのAl合金では、前記した通り、発生しにくい。したがって、6000系Al合金材が自動車などの前記溶接適用部材に使用されて新たに生じた問題であり、しかも、前記した通り、6000系Al合金材に特有の問題でもある。
【0015】
従来から、特開昭61-23580号公報などで、Al合金材の大肉厚部材と小肉厚部材の溶接における、溶接材の肉厚差に起因する熱伝導の差 (小肉厚部材の方が熱放散少) による、両者の加熱速度の差 (大肉厚部材の方が温度上昇が遅く熱量不足になる) が生じることなどが課題として公知にはなっていた。
【0016】
しかし、これら公知技術の課題は、本発明の課題である側辺部底面割れとは異なる。また、側辺部底面割れとは、原因なり機構も異なるため、前記加熱速度格差を緩衝するため中肉厚部材を中間に設置する解決策も、側辺部底面割れ自体の解決策とはなり得ない。したがい、本発明の課題である側辺部底面割れは、これまで詳細に解明されておらず、また直接の解決策も提案されていなかった。
【0017】
本発明はこの様な事情に着目してなされたものであって、その目的は、側辺部底面割れを防止した、特に過剰Si型などの6000系アルミニウム合金継手を提供しようとするものである。
【0018】
【課題を解決するための手段】
この目的を達成するために、本発明6000系アルミニウム合金継手の請求項1 の要旨は、AA乃至JIS 規格に規定される6000系アルミニウム合金母材がアルミニウム合金溶加材を用いて溶接施工されて成るとともに、該溶接施工が継手側辺部の溶接部を含む溶接継手であって、前記アルミニウム合金母材とアルミニウム合金溶加材とを、溶接施工前に、各材の凝固過程における熱的変化を示差熱分析により測定して得られた融液からの冷却曲線において、アルミニウム合金母材は530 ℃近傍における発熱ピークが、また、アルミニウム合金溶加材は550 ℃以下における発熱ピークが、それぞれ実質的に認められないものとし、前記側辺部の溶接部底面に溶接割れがないことである。
【0019】
本発明者らは、6000系Al合金母材の側辺部底面割れの原因を究明した結果、溶接部凝固時のHAZ の粒界の特定未凝固部分の存在 (挙動) と、前記端長さが短い側辺部溶接部底面の最高温度とが相関して起因していることを知見した。
【0020】
まず、6000系Al合金母材では、その時効硬化特性を発揮させるための、Al-Mg-Si系 (過剰Si型) 組成とT4、T6、T7などの調質処理との関連で、母材の段階から、粒界に元々金属間化合物が多く存在する。この結果、側辺部溶接部底面のHAZ 粒界には、必然的に未凝固部分 (未凝固の金属間化合物) が存在することとなる。そして、この未凝固部分乃至粒界の金属間化合物は過剰Si型などの6000系Al合金母材において特に多く、側辺部底面割れの主原因となる。
【0021】
側辺部底面割れの主原因が、6000系Al合金母材における粒界の金属間化合物であれば、これを減らせば良い。しかし、6000系Al合金母材における粒界の金属間化合物自体を減らすことは、冶金的に難しいし、粒内の有用な金属間化合物を含めて減らすことにつながり、6000系Al合金母材の優れた時効硬化性などの基本特性を低下させてしまう。
【0022】
この点、本発明者らは、更に検討の結果、側辺部底面割れの主原因となるのは、粒界の金属間化合物の中でも特定の金属間化合物であり、6000系Al合金母材における粒界の金属間化合物自体乃至全体を減らす必要はないことも知見した。しかも、このことは、特定の金属間化合物が生じないよう、前記T4、T6、T7などの調質処理によって、前記時効硬化性などの基本特性を低下させずに、粒界の金属間化合物の形態を制御することが可能となることも意味する。
【0023】
但し、側辺部底面割れの主原因となる、粒界の特定金属間化合物名を同定 (特定) することは分析技術上難しい。このため、本発明では、側辺部底面割れの主原因となる粒界の金属間化合物を、その側辺部底面割れに相関する性質の面から特定する。
【0024】
即ち、Al合金母材を、両材の凝固過程における熱的変化を示差熱分析により測定して得られた融液からの冷却曲線において、530 ℃近傍における発熱ピーク (示差熱分析による発熱ピーク) が実質的に認められないものとしているのはこのためであって、側辺部底面割れの主原因となる前記特定の金属間化合物のみを、前記形態制御などによって、Al合金母材から除く乃至低減しようとしている。
【0025】
前記示差熱分析による特定の発熱ピークは、Al合金母材の側辺部底面割れに相関する粒界の特定金属間化合物の溶接時の挙動、即ち、前記した、側辺部溶接部底面のHAZ 粒界の未凝固部分の挙動と良く相関している。これを側辺部底面割れの発生機構との関係で以下に説明する。
【0026】
6000系Al合金母材の前記端長さが短い側辺部溶接部では、端長さが充分長い他の溶接部よりも、溶接部近傍のAl合金材の質量が著しく少ない。このため、溶接による熱がAl合金材を通じた伝熱により放熱されにくい。この結果、溶接時、側辺部溶接部底面は、他の溶接部底面よりも、550 ℃を越えるより高温側に保持されやすい傾向にある。
【0027】
この側辺部溶接部底面の最高温度と、HAZ 粒界の未凝固部分 (粒界の特定金属間化合物) との相関を図6 を用いて説明する。図6 は側辺部溶接部の凝固過程を上から下のフェイズ1 〜3 にかけて示す模式図である。図6 の一番上の図と2 番目の図に示すように、例えば、Al合金材1 同士の突き合わせ溶接の場合、溶接部3 の凝固に従って、溶接部3 (溶融部) の収縮が起る際、矢印方向への収縮応力が溶接部3 に作用する。この際、6000系Al合金母材には、特に側辺部底面1bのHAZ 5 の粒界に未凝固部分6 が存在する。
【0028】
ここにおいて、側辺部溶接部底面の最高温度が550 ℃を越える高温側に保持された場合、この未凝固部分6 のみ凝固のタイミングが遅れるために、溶接部3 の凝固収縮途中で、前記収縮応力が作用した場合に、図6 のフェイズ2 の右側の図に示すように、未凝固部分の粒界6 が耐えきれずにミクロな割れ6aとなって口を開くことなる。このため、側辺部底面において、マトリックスの拘束力が弱まるとともに、前記収縮応力の伝達や吸収が不十分となり、図6 のフェイズ3 の右側の図に示すように、側辺部底面割れ4 の発生に至るものである。
【0029】
この傾向は、前記未凝固部分が多くなる過剰Si型6000系Al合金母材ほど、更に、溶接時の側辺部底面の最高温度が550 ℃を越える高温となるほど、また、550 ℃を越える温度に保持される時間が長いほど、強くなる。
【0030】
一方、側辺部底面の最高温度が550 ℃以下の場合、凝固過程での上記未凝固部分6 の凝固のタイミング遅れは、前記収縮応力によるミクロな割れ6aとなるほど顕著には生じない。この結果、溶接部3 の凝固収縮途中で前記収縮応力が作用した場合には、図6 のフェイズ2 の左側の図に示すように、側辺部底面におけるマトリックスの拘束力が弱まることなく、前記収縮応力の伝達や吸収も順調に行われて、粒界凝固や溶融部収縮がスムースに進行、終了する。この過程なり結果は、他のAl合金材の凝固と同様であり、図6 のフェイズ3 の左側の図に示すように、側辺部底面割れが発生しない。
【0031】
したがって、側辺部底面の最高温度を550 ℃以下としてやれば側辺部底面割れが発生しないが、継手の設計条件や溶接施工の条件によっては、側辺部溶接部底面の最高温度が550 ℃を越える高温側に保持される可能性がある。
【0032】
このような側辺部溶接部底面の最高温度が550 ℃を越える高温側に保持される場合でも、また、側辺部底面の最高温度を550 ℃以下にできる場合でも、側辺部底面割れを確実に防止するために、本発明では、側辺部底面割れのもう一方の原因である、6000系Al合金母材の前記特に側辺部底面のHAZ 5 の粒界に存在する未凝固部分6 、それも、側辺部溶接部底面の到達温度が550 ℃の近傍で未凝固となり、凝固のタイミング遅れを生じるHAZ 粒界の未凝固部分 (母材の粒界の特定金属間化合物) を少なくする。
【0033】
前記した、側辺部溶接部底面の到達温度が550 ℃の近傍で未凝固となり、凝固のタイミング遅れを生じるHAZ 粒界の未凝固部分は、前記示差熱分析による特定の発熱ピークと対応している。即ち、Al合金母材の凝固過程における熱的変化を示差熱分析により測定して得られた融液からの冷却曲線における530 ℃近傍の特定発熱ピークは、前記HAZ 粒界の未凝固部分と同様に、凝固過程における凝固のタイミング遅れを生じる成分のものである。そして、Al合金組織の冶金的な観点からは、この示差熱分析による特定の発熱ピークを生じるものと、前記HAZ 粒界の未凝固部分 (母材の粒界の特定金属間化合物) とが、同一の物質ではなくとも、少なくとも対応するものであることが分かる。
【0034】
以上の側辺部底面割れの要因と示差熱分析による特定の発熱ピークとの相関は、6000系Al合金母材とは成分組成が異なり、JIS で規格化されている 5000 系や4000系などのAl合金溶加材でも全く同様である。ただ、Al合金溶加材の場合は、前記成分組成の違いから、側辺部底面割れの要因となるHAZ 粒界の未凝固部分 (粒界の特定金属間化合物) の成分組成が違う。このため、Al合金溶加材の場合、6000系Al合金母材と違い、前記HAZ 粒界の未凝固部分は、これらAl合金溶加材の凝固過程における熱的変化を示差熱分析により測定して得られた融液からの冷却曲線において、550 ℃以下での特定発熱ピークと相関する。
【0035】
したがって、前記示差熱分析による特定の発熱ピークは、Al合金母材とAl合金溶加材の側辺部底面割れに相関する粒界の特定金属間化合物の溶接時の挙動良く相関しており、本発明では、前記示差熱分析による特定の発熱ピークが存在するか否かによって、側辺部底面割れを評価する。
また、Al合金母材とAl合金溶加材とを、前記示差熱分析による特定の発熱ピークが実質的に認められないものとすることにより、溶接施工が継手側辺部の溶接部を含む6000系Al合金溶接継手の側辺部底面割れを防止する。
【0036】
本発明は以上のような優れた効果を有するため、請求項2 に記載の通り、6000系Al合金の中でも、特に側辺部底面割れの傾向が大きい過剰Si型6000系Al合金材に適用されることが好ましい。
【0037】
【発明の実施の形態】
(示差熱分析)
本出願人は、先に、特願2000-307855 号 (出願日平成12年10月6 日) として、本発明と同じ示差熱分析による特定の発熱ピークを基準とする継手用Al合金材 (母材) の発明を出願した。具体的には、Al合金継手の前記溶着部やHAZ などの溶接接合部に生じるミクロな溶接割れの防止のために、示差熱分析による特定の発熱ピークを550 ℃以下における発熱ピークとし、これが実質的に認められないAl合金材としている。
【0038】
本発明者らは、この特願2000-307855 号で課題とする通常の溶接割れに対し、前記したように、発生機構が全く異なる側辺部底面割れ性の評価基準にも、この示差熱分析による特定の発熱ピークを適用できることを改めて知見し、本発明をなしたものである。
【0039】
示差熱分析による測定示差温度は、溶接後のAl合金材の降温過程においては、Al合金材の凝固過程における熱的変化を示す。また、溶接時のAl合金材の昇温過程においては、Al合金材の融解過程における熱的変化を示す。
また、Al合金材の降温過程における発熱反応の開始温度が液相線、終了温度が固相線を各々表わし、Al合金材の昇温過程における吸熱反応の開始温度が固相線、終了温度が液相線を各々表わす。
【0040】
このAl合金材の凝固過程における熱的変化を示差熱分析により測定して得られた融液からの冷却曲線や固相からの加熱曲線を、一般には、示差熱分析による曲線、即ち、DTA 曲線と称される (前記冷却曲線や加熱曲線を以下ではDTA 曲線と言う) 。また、同種の熱分析方法としては、示差走査熱量測定方法(DSC法) などもあるが、測定の再現性を考慮して、本発明では示差熱分析方法のみに定式化する。
【0041】
Al合金材の示差熱分析の場合、前記基準物質としては、測定対象Al合金材よりも融点の十分高い金属を選択する。そして、この基準物質の種類により、測定示差温度は大きく変化することはないものの、測定の再現性を考慮して、本発明では、基準物質として、白金を選択する。
【0042】
本発明における示差熱分析に用いる示差熱分析計は、側辺部底面割れ性の評価に必要な測定温度域の示差温度を正確かつ再現性よく測定可能であれば、市販の示差熱分析計を適宜選択することができる。
【0043】
図1 〜5 に、一例として、後述する実施例のAl合金母材およびAl合金溶加材のDTA 曲線を各々示す。図1 〜5 において、A1〜A5はAl合金母材の融液からの降温過程におけるDTA 曲線であり、630 ℃付近の最大発熱ピークがAl合金材の主たる凝固反応を示す。また、B1〜B5はAl合金材の昇温過程におけるDTA 曲線であり、660 ℃付近の最大吸熱ピークがAl合金材の主たる融解反応を示す。
また、図1 、2 は後述する表2 の発明例B 、D の6000系Al合金母材のDTA 曲線、図3 は比較例C の6000系Al合金材のDTA 曲線、図4 は発明例に使用した5356Al合金溶加材のDTA 曲線、図5 は比較例に使用した4043Al合金溶加材のDTA 曲線である。
【0044】
まず、図3(比較例C)の6000系Al合金材のDTA 曲線は、前記主たる凝固反応域 (最大発熱ピーク) 以外に、本発明で言う、530 ℃付近(532℃) での発熱ピークX1
(最終発熱ピーク) が小さいながらも認められる。
【0045】
これに対して、図1 、2 (発明例B 、D)の6000系Al合金材のDTA 曲線では、上記530 ℃付近での発熱ピーク (最終発熱ピーク) は一切認められない。
【0046】
また、図5 の4043Al合金溶加材のDTA 曲線では、前記主たる凝固反応域 (最大発熱ピーク) 以外に、本発明で言う、550 ℃以下(542℃) での大きな発熱ピークX2 (最終発熱ピーク) が認められる。
【0047】
これに対して、図4 の5356Al合金溶加材のDTA 曲線では、550 ℃以下での発熱ピーク (最終発熱ピーク) は一切認められない。
【0048】
なお、本発明では、前記図1 、2 、4 のDTA 曲線のように、前記主たる凝固反応域 (最大発熱ピーク) 以外では、曲線がなだらかに変化推移し、530 ℃付近での発熱ピーク (最終発熱ピーク) は一切認められない乃至不明瞭であり、ピーク (変曲点) の存在が特定できない場合に、これら発熱ピークが実質的に認められないものとする。
【0049】
これらの結果から、図3(比較例c)の6000系Al合金材を母材として用い、また、図5 の4043Al合金溶加材を用いて、溶接継手を製作する際、前記端長さが短い側辺部溶接部で550 ℃を越えるより高温側に保持された場合を想定すると、図1 、2 の6000系Al合金材を母材として用い、図4 の5356Al合金溶加材を用いた場合に比して、凝固過程での未凝固部分の凝固のタイミング遅れによる前記側辺部底面割れの機構が生じ易いと予測される。
【0050】
そして、後述する実施例表3 の溶接継手試験結果と対比すると、上記特定の発熱ピークが認められない図1 、2 の6000系Al合金材を母材とし、上記特定の発熱ピークが認められない図4 の5356Al合金溶加材を用いた場合には、発明例2 、4 の通り、側辺部底面割れが生じていない。一方、上記特定の発熱ピークが認められた図3 の6000系Al合金材を母材として用いた溶接継手では、図4 の5356や図5 の4043Al合金溶加材に関わらず、比較例8 、13の通り側辺部底面割れが生じている。
【0051】
したがって、これらの結果から、DTA 曲線における前記特定の発熱ピークの有無が、側辺部底面割れに相関していることが裏付けられる。また、これら発熱ピークが実質的に認められないAl合金母材およびAl合金溶加材、あるいは、これらを用いて溶接した継手は、側辺部底面割れが起らない、と評価することができる。
【0052】
(対象Al合金母材)
本発明で用いる母材Al合金は、AA乃至JIS 規格に規定される6000系(Al-Mg-Si 系) Al合金全体が対象となり、このうち、前記示差熱分析による特定の発熱ピークが実質的に認められないものが適用可能となる。6000系Al合金の中でも、特に側辺部底面割れの傾向が大きい、Si/Mg が1 以上の、Mg含有量に対しSiが過剰に含有されている、6N01、6016、6111、6022などの、過剰Si型の6000系Al合金が対象となり、また有効となる。
【0053】
ただ、本発明母材Al合金の好ましい成分組成として、前記溶接構造用としての必要強度などの要求特性を満足するためには、Mg:0.2〜1.0% (質量% 、以下同じ) 、Si:0.6〜1.6%の範囲から、Siが過剰となるように選択することが好ましい。
【0054】
この他、Mn、Cr、Zr、Ti、B 、Fe、Zn、Ni、V などのその他の合金元素は、基本的には不純物元素である。しかし、6000系合金のリサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金や、その他のAl合金スクラップ材、低純度Al地金などを溶解材として使用する場合を含む。このため、これら元素が、本発明の目的とする諸特性向上効果を阻害しない範囲で、JIS 乃至AA規格内で含有されることを許容する。したがって、本発明でAA乃至JIS 規格に規定されるとは、これら規格を満足することを意味する。
【0055】
本発明におけるAl合金母材自体は、溶解、鋳造、均質化熱処理、熱間加工 (圧延、押出、鍛造) 、必要により中間焼鈍、冷間加工 (圧延、鍛造) 圧延等の常法工程により、板材や形材 (中空断面など断面形状が長さ方向のどの位置でも本質的に同一である形材) 、鍛造材として製造される。
【0056】
これらAl合金は、溶体化処理および焼き入れ処理 (質別記号T4) やその後の時効処理 (質別記号T6) 、過時効処理 (質別記号T7) されて、溶接継手乃至溶接部材の母材として用いられる。
【0057】
但し、これら製造および調質処理されるAl合金は、側辺部底面割れにつながる前記HAZ 粒界の特定未凝固部分と、その原因となる母材の粒界の特定金属間化合物を抑制するために、前記示差熱分析による特定の発熱ピークが実質的に認められないものとする必要がある。このためには、前記合金成分や熱間組成加工などの製造履歴とともに、あるいは前記合金成分や製造履歴に対応して、主として前記調質処理の制御を行う。
【0058】
より具体的には、溶体化処理条件として、▲1▼510 ℃以上の高温で溶体化処理を行う。▲2▼溶体化処理後の焼き入れ処理の際の冷却速度を300 ℃/ 分以上に高める。このために、板材では、特に最終的な溶体化処理および焼入れ処理を、バッチ式ではなく、▲3▼コイルなどを連続的に通板して熱処理することのできる連続熱処理炉にて行うことが好ましい。バッチ式の場合、前記冷却速度が遅くなり、特に過剰過剰Si型の6000系Al合金母材において、側辺部底面割れの主原因となる前記特定の金属間化合物形態が生じ易く、示差熱分析による530 ℃近傍における発熱ピークが生じ易くなる。
【0059】
更に、前記溶体化処理後の焼入れ処理の際、単に常温まで冷却して放置するのではなく、予備的な時効処理として、▲4▼一旦常温まで焼入れた後に50〜120 ℃の温度まで再加熱保持するか、▲5▼焼入れ終了温度を50〜120 ℃の高温として、そのまま0.2 〜24時間保持するか、再加熱して50〜120 ℃の温度として0.2 〜24時間保持する (コイルの場合はそのままか再加熱して巻き取り保持する) ことが好ましい。この予備的な時効処理によって、前記特定の金属間化合物形態が生じにくくなり、示差熱分析による530 ℃近傍における発熱ピークが生じにくくなる。
【0060】
また、時効処理を行う場合には、通常の時効処理や過時効処理条件に比して、▲6▼時効処理温度を80〜160 ℃の低温側、時効処理時間を1 〜10時間の短時間側の亜時効処理範囲とすることが好ましい。通常の時効処理や過時効処理を行った場合、特に過剰過剰Si型の6000系Al合金母材において、側辺部底面割れの主原因となる前記特定の金属間化合物形態が生じ易く、示差熱分析による530 ℃近傍における発熱ピークが生じ易くなる傾向にあるので注意を要する。
【0061】
(溶接方法)
本発明が対象とする溶接方法は、6000系Al合金材の溶接であって、前記端長さが短い溶接施工部位を有し、側辺部底面割れが生じやすい、アークなどの熱源を用いる溶接線が長い溶融溶接方法である。
【0062】
6000系Al合金材の側辺部底面割れの原因乃至機構は、前記した通り、端長さが短い側辺部溶接部底面の最高温度と、溶接部凝固時のHAZ の粒界の未凝固部分との相関関係という冶金的な問題である。したがって、この冶金的な現象が共通して生じるような溶融溶接方法で、溶接方法の種類の違いによらず生起する、共通の問題である。
【0063】
このような溶接方法としては、例えば、ティグ(TIG) 、ミグ(MIG) などの高速アーク溶接やレーザー溶接、電子ビームなどの溶接方法、あるいは摩擦攪拌接合(FSW) 方法が例示される。したがって、スポット溶接などの個々の溶接線が短く、6000系Al合金材溶接継手の側辺部底面割れが生じないような溶接方法は対象としない。
【0064】
(溶接継手)
また、本発明が対象とする溶接継手は、前記端長さが短い溶接施工部位を有し、側辺部底面割れが生じる可能性が大きい継手であれば、図7 に示す板材や形材同士の隅肉溶接や、図8 に示す板材や形材同士の突き合わせ溶接など、種々の溶接継手に適用できる。なお、図7 、図8 において、1 は溶接される6000系Al合金材、7 は同じ6000系か他のAl合金材、1bはAl合金材1 の側辺部底面、2 はAl合金材1 の側辺部、3 は溶接部、t は側辺部2 から溶接線3aまでの端長さ、8 は溶接トーチである。
【0065】
これら溶接継手において、自動車部材などの設計形状に応じて、板、形材、管等の適宜の形状が、継手の組み合わせとして選択される。また、溶接継手は、必ずしも6000系Al合金材や過剰Si型6000系Al合金材同士でなくとも、通常のAl合金継手と同様に、あるいは目的に応じて、3000系、5000系、6000系、7000系など成分や合金系の違うAl合金材同士を接合しても良い。
【0066】
(溶接条件)
本発明溶接継手における各溶接条件は、各々の溶接方法の常法の範囲で行う。例えば、溶加材使用、開先形状、溶接姿勢、トーチ前進角、シールド条件 (Arガス流量) 、溶接電流、溶接電圧、溶接速度などの基本的な溶接条件は、各々の条件のJIS 規格や各種溶接乃至アルミニウムハンドブックに従う。
【0067】
但し、本発明溶接継手では、前記した通り、側辺部溶接部底面の温度が高くなっても、側辺部底面割れを抑制できるものの、側辺部底面割れ発生の条件を減らす意味で、側辺部溶接部底面の温度は550 ℃以下に制御することが好ましい。したがって、この側辺部溶接部底面の温度を含めて、何ら特別な溶接方法や条件を必要とせず、各々の溶接方法の常法の範囲で行える点が、本発明の利点でもある。
【0068】
側辺部溶接部底面の最高温度を550 ℃以下に制御する方法は、側辺部溶接部への入熱を少なくする、溶接部底面や側辺部面など、抜熱し易い部分に銅などの当て金を接触させて抜熱するなどの公知の手段が適宜選択される。言い換えると、側辺部溶接部底面の最高温度を550 ℃以下に制御する方法は、特別な手段を使わずとも、公知の手段が使用でき、溶接施工条件を大幅に変更することなく実施できる。
【0069】
また、側辺部底面割れが生じる、前記端長さが短い側辺部溶接部底面以外の溶接部は、端長さが充分長いため、溶接熱がAl合金材を通じて放熱されやすい。このため、前記側辺部溶接部底面の最高温度を550 ℃以下とする手段は基本的には不要である。
【0070】
(溶加材)
溶加材 (棒) は、前記した側辺部底面割れとの相関から、Al合金溶加材の凝固過程における熱的変化を示差熱分析により測定して得られた融液からの冷却曲線において、550 ℃以下での特定発熱ピークが認められないものとする。
【0071】
この点、JIS 規格に規定された5356などの5000系Al合金溶加材は、この特定発熱ピークが認められにくく、4000系Al合金溶加材はこの特定発熱ピークが認められやすい。また、特に、過剰Si型6000系Al合金母材の溶融溶接においては、4000系Al合金溶加材は、溶接継手接合部の特性低下を招きやすい。したがって、特に、過剰Si型6000系Al合金母材の溶接継手においては、5000系Al合金溶加材の中から、前記特定発熱ピークの無いものを選択することが好ましい。
【0072】
【実施例】
次に、本発明の実施例を説明する。まず、表1 に示すような6063、6061、6022、6111合金組成の種々の6000系Al合金板(2mm厚) と形材(2mm厚の平板状))を常法により製作した。そして、これらを表2 に示すような調質 (熱処理) を行って、示差熱分析による530 ℃近傍における発熱ピークがない、A 、 B、 C、 D、 Eの6000系Al合金母材グループと、前記特定の発熱ピークがある、a 、 b、 c、 d、 eの6000系Al合金母材グループとを作り分けた。
【0073】
なお、表2 の調質の内、溶体化処理条件は下記条件で行った。
連続処理と記入の場合、母材量産での連続処理を模擬して、試験片サイズに切断後の母材を、硝石炉で急速加熱して、520 〜530 ℃×60秒の溶体化処理および水焼入れ処理し (冷却速度は300 ℃/ 分以上) 、焼入れ終了後再加熱して温度を80〜100 ℃の高温としてそのまま2.0 時間保持した。バッチ処理と記入の場合、母材量産でのバッチ処理を模擬して、試験片サイズに切断後の母材を、硝石炉で比較低遅い速度で加熱して、510 ℃×10時間の溶体化処理およびファンで空冷焼入れ処理し (冷却速度は300 ℃/ 分未満) 、焼入れ終了後再加熱して温度を80〜100 ℃の高温としてそのまま2.0 時間保持した。
【0074】
また、選択的に行った時効処理は、各々下記条件で行った。
亜時効処理と記入の場合、130 ℃×6 時間 (加熱および冷却速度40℃/hr)の条件で亜時効処理を行った。時効処理と記入の場合、155 ℃×6 時間の条件で時効処理を行った。過時効処理と記入の場合、180 ℃×6 時間の条件で時効処理を行った。
【0075】
これら調質材 (母材) の示差熱分析による特定の発熱ピークを調査し、530 ℃近傍における発熱ピークの有無を評価した。この結果を、この発熱ピークの位置( 温度、℃) や発熱終了温度( ℃) とともに、表2 に示す。
【0076】
次に、前記示差熱分析による特定発熱ピークがない、A 、 B、 C、 D、 Eの6000系Al合金母材と、前記特定の発熱ピークがある、a 、 b、 c、 d、 eの6000系Al合金母材とを、同じ母材同士、図4 の特定発熱ピークがない5356Al合金溶加材と、図5 の特定発熱ピークがある4043Al合金溶加材とを使い分けて、溶接継手を製作した。
【0077】
溶接継手の溶接は、一方のAl合金母材1 の端長さt を10mmとして、この部分で前記図8 に示す突き合わせ溶接 (溶接長さ140mm)を、MIG 溶接、TIG 溶接、CO2 レーザー溶接により行った。各々の溶接条件は表4 に示す。なお、いずれの溶接においても、側辺部溶接部底面における最高温度は、あえて、側辺部底面割れが生じ易い、550 ℃を越える温度となるようにした。
【0078】
このようにして得た溶接継手の側辺部底面割れの有無と長さ(mm)を調査した。そして、溶接継手の試験片を採取し、溶接継手の引張強度 (σB ) をJIS Z 2241に従い測定した。そして母材の引張強度から溶接継手の母材比効率 (継手効率) も算出した。これらの結果を表3 に示す。
【0079】
表3 から明らかな通り、前記示差熱分析による特定発熱ピークがない、A 、 B、 C、 D、 Eの6000系Al合金母材と、図4 の特定発熱ピークがない5356Al合金溶加材とを組み合わせて成る発明例No.1〜5 の溶接継手は、MIG 溶接、TIG 溶接、CO2 レーザー溶接などの溶接方法によらず、側辺部底面割れが発生せず、継手強度が母材比効率で78% 以上、100%のものが得られている。
【0080】
一方、これに対し、Al合金母材か、4043Al合金溶加材かの、いずれか一方あるいは両方に前記特定の発熱ピークがある6000系Al合金母材とAl合金溶加材とを組み合わせて成る比較例No.6〜16の溶接継手は、MIG 溶接、TIG 溶接、CO2 レーザー溶接などの溶接方法によらず、共通して50mm以上の側辺部底面割れが発生しており、溶接部の保証ができない。また、継手強度も低い。
【0081】
以上の実施例の結果から、過剰Si型を含め、6000系Al合金材溶接継手における側辺部底面割れを防止するための、本発明規定の臨界的な意義が裏付けられる。
【0082】
【表1】

Figure 0003726033
【0083】
【表2】
Figure 0003726033
【0084】
【表3】
Figure 0003726033
【0085】
【表4】
Figure 0003726033
【0086】
【発明の効果】
本発明によれば、側辺部底面割れを防止した6000系Al合金材継手を提供することが可能となる。したがって、特性の優れた過剰Si型を含めた6000系Al合金展伸材の自動車用途などへの拡大を図れる点で、工業的な価値が大きい。
【図面の簡単な説明】
【図1】 6000系Al合金母材の示差熱分析によるDTA 曲線(530℃近傍における発熱ピーク無し) を示す説明図である。
【図2】 6000系Al合金母材の示差熱分析によるDTA 曲線(530℃近傍における発熱ピーク無し) を示す説明図である。
【図3】 6000系Al合金母材の示差熱分析によるDTA 曲線(530℃近傍における発熱ピーク有り) を示す説明図である。
【図4】 5356Al合金溶加材の示差熱分析によるDTA 曲線(550℃以下における発熱ピーク無し) を示す説明図である。
【図5】 4043Al合金溶加材の示差熱分析によるDTA 曲線(550℃以下における発熱ピーク有り) を示す説明図である。
【図6】継手側辺部溶接部の凝固過程を4 段階に分けて示す模式図である。
【図7】板材や形材同士の隅肉溶接を示す説明図である。
【図8】板材や形材同士の突き合わせ溶接を示す説明図である。
【図9】側辺部底面割れの試験に用いた溶接用試験片(板)を示す平面図である。
【図10】過剰Si型AA6022Al合金材継手の側辺部溶接部に生じた側辺部底面割れを示す平面図である。
【符号の説明】
1;6000系Al合金材、2;Al合金材の側辺部、3;溶接部 (溶接線) 、
4;側辺部底面割れ、5;HAZ 、6;粒界、7;Al合金材、8;溶接トーチ、
t;端長さ、X;発熱ピーク、A 、B;DTA 曲線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a 6000 series aluminum alloy welded joint (hereinafter, aluminum is simply referred to as Al) and an aluminum alloy wrought material for the welded joint, which prevent weld cracks on the bottom surface of the welded portion on the side of the joint.
[0002]
[Prior art]
Joints (welded joint members) in which Al alloy base materials such as molded plates and profiles are welded together are used for members such as panels, frames, and members of transport equipment such as automobiles. Yes.
[0003]
As these Al alloys for welded joints, 5000 series prescribed in AA to JIS standards, which are conventionally widely used as Al alloys for welded structures, and 6000 series such as 6063, 6061 (hereinafter, AA to JIS are omitted), 7N01 7000 series and other Al alloy wrought materials (generic name for rolled plate material, extruded profile, forged material, etc., hereinafter also referred to simply as Al alloy material).
[0004]
Among these 6000 series (Al-Mg-Si series) Al alloys, Si / Mg is 1 or more, such as 6061, 6N01, 6016, 6111, 6022, etc. according to AA or JIS standards. The excess Si type 6000 series Al alloy contained is subjected to solution treatment and quenching treatment (quality symbol T4), subsequent aging treatment (quality symbol T6), after overaging treatment (quality symbol T7). In particular, it has excellent age-hardening properties.
[0005]
For this reason, the excess Si type 6000 series Al alloy secures formability with low proof stress during molding on the above-mentioned transport aircraft member, and even when heated at a relatively low temperature such as 170 ° C. in the paint baking process of the molded member. It has the characteristics that it can meet the required strength by increasing the yield strength. Further, since the amount of alloying elements is small as compared with the 5000 series and 7000 series Al alloys, it is excellent in recyclability such that scrap can be reused as a melting raw material of the original 6000 series Al alloy.
[0006]
However, 6000 series Al alloy materials, especially excess Si type 6000 series Al alloy materials, have superior age-hardening properties. There is a problem that (bonding strength) is lowered. The problem of this joining property is that, particularly, the welded part (side part welded part) has a short distance (end length) from the side part (end part to edge part) of the part to be welded to the weld line. ) Becomes noticeable when welding.
[0007]
That is, when welding joints with fillet welding or butt welding, etc., using at least one of the Al alloy materials as an excess Si type 6000 series Al alloy, the bottom side (rear surface) of the welded portion There is a problem that macro weld cracks tend to occur along the weld line (welding line). The crack at the bottom of the side welded portion is a remarkable tendency of the 6000 series Al alloy material, and the tendency is particularly strong in the excess Si type 6000 series Al alloy material. And other Al alloys other than 6000 series such as 5000 series and 7000 series do not cause or hardly cause this weld bottom crack.
[0008]
In addition, this weld bottom crack usually occurs in the entire Al alloy system during welding, and welds such as the weld metal part (welded part) and the vicinity or the surrounding heat-affected part (hereinafter referred to as HAZ). The micro weld crack generated in the joint is a peculiar phenomenon that is completely different from the generation mechanism described later.
[0009]
FIG. 10 shows a weld crack at the bottom of the weld that occurs in the side weld of the 6000 series Al alloy material. FIG. 10 shows a 2 mm thick excess Si-type AA6022Al alloy plate (Si; 0.9%, Mg; 0.6%) test piece 1a shown in a plan view in FIG. 9, welded from the side part 2 of the test piece 1a to be welded. The welded state of the bottom surface 1b of the test piece when the distance to the line 3 (hereinafter referred to as the end length) t is varied and welded is shown. The welding method was simply a bead-on welding method, and welding was performed with a constant penetration depth. In FIG. 10, (a) is an end length of 32 mm, (b) is an end length of 24 mm, (c) is an end length of 16 mm, and (d) is an end length of 8 mm.
[0010]
As shown in FIG. 10, in FIGS. 10 (a) and 10 (b), which have a relatively long end length, no weld crack occurs in the portion of the weld line 3a (the bottom of the weld). On the other hand, as shown in FIGS. 10 (c) and 10 (d), as the end length becomes shorter, macro weld cracks 4a and 4b that run along the weld line 3a are generated. That is, as the end length becomes shorter, macro weld cracks are more likely to occur, particularly at the bottom of the side welded part of the 6000 series Al alloy material such as excess Si type.
[0011]
In addition, the tendency of cracks on the bottom surface of the welded part on the side part of the 6000 series Al alloy material (hereinafter simply referred to as side part bottom cracking) does not occur in welding joining methods such as spot welding where the individual weld lines are very short. . However, the weld line has a relatively long weld line and uses a heat source such as an arc, that is, high-speed arc welding such as TIG (MIG), laser welding, electron beam welding, etc. Prominent when forming. Furthermore, this tendency also occurs in the friction stir welding (FSW) method, which is a joining method in which the weld joint does not reach a relatively high temperature.
[0012]
And when such a side part bottom crack arises, the intensity | strength of Al alloy welded joint will fall remarkably and the serious problem that it cannot apply to the said members, such as a car, will arise.
[0013]
Conventionally, various improvement methods such as welding conditions have been performed from the side of welding methods such as arcing for the softening and cracking of the welded portion of the Al alloy welded joint. For example, (1) as exemplified in Japanese Patent Application Laid-Open No. 11-104860, etc., a method of welding with low heat input as much as possible, or welding joining while cooling, (2) quenching and tempering the joint after welding Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 5-222498, there is a method of recovering softening by heat treatment, such as age hardening treatment after welding materials (T1, T4 materials) before age hardening treatment.
[0014]
[Problems to be solved by the invention]
However, as described above, the side-side bottom crack, which is the subject of the present invention, is unlikely to occur in other 5000 series and 7000 series Al alloys that have been applied to the above-mentioned members such as automobiles. Therefore, the 6000 series Al alloy material is a new problem caused by being used for the welding application member such as an automobile, and as described above, it is also a problem specific to the 6000 series Al alloy material.
[0015]
Conventionally, in Japanese Patent Application Laid-Open No. 61-23580, etc., the difference in heat conduction due to the difference in the thickness of the welded material between the large-thickness member and the small-thickness member of the Al alloy material (the smaller-thickness member It has been publicly known as a problem that there is a difference in the heating rate between the two due to low heat dissipation (a thick-walled member has a slower temperature rise and a lack of heat).
[0016]
However, the problems of these known techniques are different from the side part bottom cracks which are the problems of the present invention. In addition, since the mechanism is different from the side bottom crack, the solution that installs a medium thickness member in the middle to buffer the heating rate difference is also a solution for the side bottom crack itself. I don't get it. Therefore, the side-side bottom crack, which is the subject of the present invention, has not been elucidated in detail so far, and no direct solution has been proposed.
[0017]
The present invention has been made paying attention to such circumstances, and an object of the present invention is to provide a 6000 series aluminum alloy joint such as an excess Si type in which cracking on the side face bottom surface is prevented. .
[0018]
[Means for Solving the Problems]
In order to achieve this object, the gist of claim 1 of the present invention 6000 series aluminum alloy joint is that a 6000 series aluminum alloy base material specified in AA to JIS standards is welded using an aluminum alloy filler metal. The welding construction is a welded joint including a welded portion on the side part of the joint, and the aluminum alloy base material and the aluminum alloy filler metal, Before welding In the cooling curve from the melt obtained by measuring the thermal change in the solidification process of each material by differential thermal analysis, the aluminum alloy base material has an exothermic peak near 530 ° C, and the aluminum alloy filler material has 550 Each exothermic peak at a temperature below 0 ° C. is not substantially recognized, and there is no weld crack on the bottom surface of the welded portion of the side portion.
[0019]
As a result of investigating the cause of cracks on the bottom side of the side portion of the 6000 series Al alloy base material, the present inventors have found the existence (behavior) of the specific unsolidified portion of the grain boundary of HAZ during solidification of the weld and the end length. It has been found that this is caused by a correlation with the maximum temperature of the bottom surface of the short side weld.
[0020]
First, in the case of 6000 series Al alloy base material, the base material is related to the Al-Mg-Si (excess Si type) composition and tempering treatment such as T4, T6, T7, etc. From this stage, many intermetallic compounds originally exist at the grain boundaries. As a result, an unsolidified portion (unsolidified intermetallic compound) inevitably exists in the HAZ grain boundary at the bottom of the side weld. The intermetallic compound in the unsolidified part or grain boundary is particularly large in the 6000 series Al alloy base material such as the excess Si type, which is a main cause of the side face bottom crack.
[0021]
If the main cause of the side-side bottom crack is the intermetallic compound at the grain boundary in the 6000 series Al alloy base material, it may be reduced. However, reducing the intermetallic compound itself at the grain boundary in the 6000 series Al alloy base metal is difficult in terms of metallurgy and leads to a reduction including the useful intermetallic compound in the grain. It degrades basic properties such as excellent age-hardening properties.
[0022]
In this regard, the present inventors have further studied, the main cause of the side-side bottom cracks is a specific intermetallic compound among the intermetallic compounds of the grain boundary, in the 6000 series Al alloy base material It has also been found that it is not necessary to reduce the intermetallic compound itself or the entire grain boundary. In addition, this means that the interfacial intermetallic compound at the grain boundary is not degraded by the tempering treatment such as T4, T6, T7, etc., without degrading the basic properties such as age hardening, so that a specific intermetallic compound does not occur. It also means that the form can be controlled.
[0023]
However, it is difficult to identify (specify) the name of the specific intermetallic compound at the grain boundary, which is the main cause of the side bottom cracks. For this reason, in this invention, the intermetallic compound of the grain boundary which becomes the main cause of a side part bottom face crack is specified from the surface of the property correlated with the side part bottom face crack.
[0024]
That is, in the cooling curve from the melt obtained by measuring the thermal change in the solidification process of both materials by differential thermal analysis, the exothermic peak near 530 ° C (exothermic peak by differential thermal analysis) This is the reason why it is not substantially recognized, and only the specific intermetallic compound that is the main cause of the side face bottom crack is removed from the Al alloy base material by the form control or the like. Trying to reduce.
[0025]
The specific exothermic peak by the differential thermal analysis is the behavior at the time of welding of the specific intermetallic compound at the grain boundary correlated with the side-side bottom crack of the Al alloy base material, that is, the above-described HAZ of the side-side weld bottom. It correlates well with the behavior of the unsolidified part of the grain boundary. This will be described below in relation to the generation mechanism of the side face bottom crack.
[0026]
In the side part welded portion having a short end length of the 6000 series Al alloy base material, the mass of the Al alloy material in the vicinity of the welded portion is significantly smaller than other welded portions having a sufficiently long end length. For this reason, the heat by welding is hardly dissipated by heat transfer through the Al alloy material. As a result, during welding, the bottom of the side welded portion tends to be held on the higher temperature side, which exceeds 550 ° C., than the bottom of the other welded portions.
[0027]
The correlation between the maximum temperature at the bottom of the side weld and the unsolidified portion of the HAZ grain boundary (specific intermetallic compound at the grain boundary) will be described with reference to FIG. FIG. 6 is a schematic diagram showing the solidification process of the side welded part from the top to the bottom phases 1 to 3. As shown in the uppermost figure and the second figure in FIG. 6, for example, in the case of butt welding of Al alloy materials 1, the welded part 3 (molten part) contracts as the welded part 3 solidifies. At this time, shrinkage stress in the direction of the arrow acts on the weld 3. At this time, in the 6000 series Al alloy base material, unsolidified portions 6 exist particularly at the grain boundaries of HAZ 5 on the bottom face 1b of the side portion.
[0028]
Here, when the maximum temperature of the bottom surface of the side welded part is maintained on the high temperature side exceeding 550 ° C., the solidification timing is delayed only in the unsolidified part 6, so that the shrinkage during the solidification shrinkage of the welded part 3 occurs. When stress is applied, as shown in the diagram on the right side of the phase 2 in FIG. 6, the grain boundary 6 in the unsolidified portion cannot withstand and becomes a micro crack 6a to open the mouth. For this reason, the restraining force of the matrix is weakened at the bottom surface of the side portion, and the transmission and absorption of the contraction stress is insufficient, and as shown in the right side diagram of phase 3 in FIG. It leads to outbreak.
[0029]
The tendency is that the excess Si type 6000 series Al alloy base material with more unsolidified parts, the higher the maximum temperature of the bottom of the side part during welding exceeds 550 ° C, and the temperature exceeding 550 ° C. The longer it is held, the stronger it will be.
[0030]
On the other hand, when the maximum temperature at the bottom of the side portion is 550 ° C. or less, the solidification timing delay of the unsolidified portion 6 in the solidification process does not occur so significantly that the micro crack 6a is caused by the shrinkage stress. As a result, when the shrinkage stress acts during the solidification shrinkage of the welded portion 3, as shown in the diagram on the left side of the phase 2 in FIG. 6, the restraining force of the matrix at the bottom of the side portion is not weakened. The contraction stress is transmitted and absorbed smoothly, and the grain boundary solidification and melted portion contraction proceed and finish smoothly. This process or result is the same as the solidification of other Al alloy materials, and as shown in the diagram on the left side of Phase 3 in FIG.
[0031]
Therefore, if the maximum temperature at the bottom of the side edge is set to 550 ° C or lower, cracks at the bottom of the side edge will not occur, but the maximum temperature at the bottom of the side welded portion may be 550 ° C depending on the joint design conditions and welding conditions. There is a possibility of being held on the high temperature side exceeding.
[0032]
Even when the maximum temperature of the bottom surface of the side edge welded part is maintained on the high temperature side exceeding 550 ° C, or when the maximum temperature of the bottom surface of the side edge portion can be reduced to 550 ° C or less, the side surface bottom surface cracks In order to reliably prevent the present invention, in the present invention, unsolidified portion 6 present at the grain boundary of HAZ 5 on the bottom surface of the 6000 series Al alloy base material, which is the other cause of the crack on the bottom surface of the side portion. This also reduces the unsolidified portion of HAZ grain boundaries (specific intermetallic compounds at the grain boundaries of the base metal) that become unsolidified when the temperature reached at the bottom of the side welds is near 550 ° C, causing solidification timing delays. To do.
[0033]
The above-mentioned unsolidified portion of the HAZ grain boundary that becomes unsolidified when the temperature reached the bottom of the side welded portion is near 550 ° C. and causes a delay in the solidification timing corresponds to a specific exothermic peak by the differential thermal analysis. Yes. That is, the specific exothermic peak near 530 ° C in the cooling curve from the melt obtained by measuring the thermal change in the solidification process of the Al alloy base material by differential thermal analysis is the same as the unsolidified part of the HAZ grain boundary. In addition, it is a component that causes a timing delay of solidification in the solidification process. From the metallurgical point of view of the Al alloy structure, the specific exothermic peak by the differential thermal analysis and the unsolidified portion of the HAZ grain boundary (specific intermetallic compound at the grain boundary of the base material) It turns out that even if it is not the same substance, it corresponds at least.
[0034]
The correlation between the cause of the side crack at the bottom of the side and the specific exothermic peak by differential thermal analysis is different from that of the 6000 series Al alloy base material, and the 5000 series and 4000 series, etc., which are standardized by JIS The same is true for the Al alloy filler metal. However, in the case of Al alloy filler metal, the component composition of the unsolidified portion of the HAZ grain boundary (specific intermetallic compound at the grain boundary), which causes the cracks on the bottom of the side part, is different due to the difference in the component composition. Therefore, in the case of Al alloy filler metal, unlike the 6000 series Al alloy base material, the unsolidified portion of the HAZ grain boundary is measured by differential thermal analysis for the thermal change in the solidification process of these Al alloy filler materials. In the cooling curve from the melt obtained in this way, it correlates with a specific exothermic peak below 550 ° C.
[0035]
Therefore, the specific exothermic peak by the differential thermal analysis correlates well with the behavior at the time of welding of the specific intermetallic compound at the grain boundary correlating with the side part bottom crack of the Al alloy base material and the Al alloy filler metal, In this invention, a side part bottom face crack is evaluated by whether the specific exothermic peak by the said differential thermal analysis exists.
Further, by making the Al alloy base material and the Al alloy filler material substantially free from specific heat generation peaks by the differential thermal analysis, the welding operation includes a welded portion on the side portion of the joint. Prevents cracks at the bottom of the side of the aluminum alloy welded joint.
[0036]
Since the present invention has the excellent effects as described above, as described in claim 2, among the 6000 series Al alloys, the present invention is particularly applied to excess Si type 6000 series Al alloy materials that have a large tendency to crack at the sides. It is preferable.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
(Differential thermal analysis)
The applicant must first submit Japanese Patent Application 2000- 307855 No. (Filing date: October 6, 2000) was filed for an invention of an Al alloy material (base material) for joints based on a specific exothermic peak by differential thermal analysis as in the present invention. Specifically, in order to prevent micro weld cracks that occur at welded joints such as the welds and HAZ of Al alloy joints, a specific exothermic peak by differential thermal analysis is defined as an exothermic peak at 550 ° C or lower. Al alloy material that is not accepted.
[0038]
The present inventors have made this patent application 2000- 307855 As described above, it has been found again that the specific exothermic peak by this differential thermal analysis can be applied to the evaluation criteria for the side face bottom cracking property with completely different generation mechanisms as compared with the usual weld cracking that is the subject of the issue. The present invention has been made.
[0039]
The differential temperature measured by differential thermal analysis indicates the thermal change in the solidification process of the Al alloy material during the temperature drop process of the Al alloy material after welding. Moreover, in the temperature rising process of the Al alloy material during welding, a thermal change in the melting process of the Al alloy material is shown.
Also, the start temperature of the exothermic reaction during the temperature drop process of the Al alloy material represents the liquidus and the end temperature represents the solidus line, respectively, and the start temperature of the endothermic reaction during the temperature rise process of the Al alloy material represents the solidus line and the end temperature. Each liquidus is represented.
[0040]
The cooling curve from the melt and the heating curve from the solid phase obtained by measuring the thermal change in the solidification process of this Al alloy material by the differential thermal analysis are generally the curves by the differential thermal analysis, that is, the DTA curves. (The cooling curve and the heating curve are hereinafter referred to as a DTA curve). In addition, as a thermal analysis method of the same kind, there is a differential scanning calorimetry method (DSC method), but in consideration of the reproducibility of measurement, in the present invention, it is formulated only for the differential thermal analysis method.
[0041]
In the case of differential thermal analysis of an Al alloy material, a metal having a sufficiently higher melting point than the measurement target Al alloy material is selected as the reference material. Although the measurement differential temperature does not change greatly depending on the type of the reference material, in consideration of the reproducibility of the measurement, platinum is selected as the reference material in the present invention.
[0042]
The differential thermal analyzer used for the differential thermal analysis in the present invention is a commercially available differential thermal analyzer, as long as the differential temperature in the measurement temperature range necessary for the evaluation of the side face bottom face crackability can be measured accurately and with good reproducibility. It can be selected appropriately.
[0043]
1 to 5 show, as an example, DTA curves of an Al alloy base material and an Al alloy filler material of Examples described later. 1 to 5, A1 to A5 are DTA curves in the process of cooling from the melt of the Al alloy base material, and the maximum exothermic peak near 630 ° C. indicates the main solidification reaction of the Al alloy material. B1 to B5 are DTA curves in the temperature rising process of the Al alloy material, and the maximum endothermic peak around 660 ° C. indicates the main melting reaction of the Al alloy material.
1 and 2 are DTA curves of 6000 series Al alloy base material of Example B and D of Table 2 to be described later, FIG. 3 is a DTA curve of 6000 series Al alloy material of Comparative Example C, and FIG. 4 is an example of invention. The DTA curve of the 5356Al alloy filler used is shown in FIG. 5. FIG. 5 is the DTA curve of the 4043Al alloy filler used in the comparative example.
[0044]
First, the DTA curve of the 6000 series Al alloy material in FIG. 3 (Comparative Example C) shows the exothermic peak X1 near 530 ° C. (532 ° C.) as referred to in the present invention, in addition to the main solidification reaction region (maximum exothermic peak).
Although the (final exothermic peak) is small, it is recognized.
[0045]
On the other hand, in the DTA curves of the 6000 series Al alloy materials of FIGS. 1 and 2 (Invention Examples B and D), no exothermic peak (final exothermic peak) near 530 ° C. is observed.
[0046]
In addition, in the DTA curve of the 4043Al alloy filler metal in FIG. 5, in addition to the main solidification reaction zone (maximum exothermic peak), a large exothermic peak X2 (final exothermic peak) at 550 ° C. or lower (542 ° C.) referred to in the present invention. ) Is allowed.
[0047]
On the other hand, in the DTA curve of the 5356Al alloy filler metal in FIG. 4, no exothermic peak (final exothermic peak) at 550 ° C. or lower is observed.
[0048]
In the present invention, as in the DTA curves of FIGS. 1, 2, and 4, the curve gradually changes except in the main coagulation reaction zone (maximum exothermic peak), and the exothermic peak (final end) at around 530 ° C. Exothermic peaks) are not recognized at all or are unclear, and when the existence of peaks (inflection points) cannot be specified, these exothermic peaks are not substantially recognized.
[0049]
From these results, when producing a welded joint using the 6000 series Al alloy material of FIG. 3 (Comparative Example c) as a base material and the 4043Al alloy filler material of FIG. Assuming the case where the short side welded part is held at a higher temperature than 550 ° C, the 6000 series Al alloy material in Figs. 1 and 2 was used as the base material, and the 5356 Al alloy filler material in Fig. 4 was used. As compared with the case, it is predicted that the side-side bottom crack mechanism due to the solidification timing delay of the unsolidified portion in the solidification process is likely to occur.
[0050]
And, compared with the welded joint test results in Example Table 3 described later, the above-mentioned specific exothermic peak is not recognized, using the 6000 series Al alloy material of FIGS. When the 5356Al alloy filler material of FIG. 4 is used, as shown in Invention Examples 2 and 4, the side portion bottom cracks do not occur. On the other hand, in the welded joint using the 6000 series Al alloy material of FIG. 3 in which the specific exothermic peak was recognized as a base material, regardless of 5356 of FIG. 4 or 4043 Al alloy filler material of FIG. 5, Comparative Example 8, 13 street side face bottom cracks have occurred.
[0051]
Therefore, these results confirm that the presence or absence of the specific exothermic peak in the DTA curve correlates with the side face bottom crack. In addition, it is possible to evaluate that the Al alloy base material and Al alloy filler metal in which these exothermic peaks are substantially not observed, or a joint welded using these, does not cause side-side bottom cracks. .
[0052]
(Target Al alloy base material)
The base material Al alloy used in the present invention covers all 6000 series (Al-Mg-Si series) Al alloys specified in AA to JIS standards, and among them, a specific exothermic peak by the differential thermal analysis is substantially present. Those not allowed are applicable. Among 6000 series Al alloys, especially the tendency of side-side bottom cracks is large, Si / Mg is 1 or more, Si is excessively contained with respect to Mg content, 6N01, 6016, 6111, 6022, etc. Excess Si type 6000 series Al alloy is targeted and effective.
[0053]
However, as a preferred component composition of the base material Al alloy of the present invention, in order to satisfy the required properties such as the required strength for the welded structure, Mg: 0.2 to 1.0% (mass%, the same applies hereinafter), Si: 0.6 It is preferable that Si is excessively selected from a range of ˜1.6%.
[0054]
In addition, other alloy elements such as Mn, Cr, Zr, Ti, B, Fe, Zn, Ni, and V are basically impurity elements. However, from the viewpoint of recycling 6000 series alloys, not only high-purity Al bullion but also 6000 series alloys, other Al alloy scrap materials, and low-purity Al bullion are used as melting materials. Including. For this reason, these elements are allowed to be contained within the JIS or AA standards as long as they do not impair the effect of improving various properties intended by the present invention. Therefore, in the present invention, being defined in AA to JIS standards means satisfying these standards.
[0055]
The Al alloy base material itself in the present invention is melted, cast, homogenized heat treatment, hot working (rolling, extrusion, forging), if necessary, intermediate annealing, cold working (rolling, forging) by conventional methods such as rolling, Plates and profiles (such as hollow sections whose cross-sectional shape is essentially the same at any position in the length direction) are manufactured as forgings.
[0056]
These Al alloys are subjected to solution treatment and quenching treatment (quality symbol T4), subsequent aging treatment (quality symbol T6), and overaging treatment (quality symbol T7). Used as
[0057]
However, these manufactured and tempered Al alloys suppress the specific unsolidified portion of the HAZ grain boundary that leads to the bottom cracks on the side edges and the specific intermetallic compound at the grain boundary of the base material that causes it. Furthermore, it is necessary that the specific exothermic peak by the differential thermal analysis is not substantially recognized. For this purpose, the tempering process is mainly controlled together with the manufacturing history of the alloy component and hot composition processing, or in response to the alloy component and the manufacturing history.
[0058]
More specifically, (1) Solution treatment is performed at a high temperature of 510 ° C. or higher as solution treatment conditions. (2) Increase the cooling rate during quenching after solution treatment to 300 ° C / min or higher. For this purpose, the final solution treatment and quenching treatment should be carried out in a continuous heat treatment furnace capable of heat treatment by continuously passing a coil or the like (3) instead of a batch type. preferable. In the case of the batch type, the cooling rate is slow, and particularly in the excessive excess Si type 6000 series Al alloy base material, the specific intermetallic compound form that is the main cause of side side bottom cracks is likely to occur, and differential thermal analysis. An exothermic peak near 530 ° C. is likely to occur.
[0059]
Further, in the quenching treatment after the solution treatment, as a preliminary aging treatment, instead of simply cooling to room temperature, and (4) once re-heated to a temperature of 50 to 120 ° C. after quenching to room temperature. Or 5) Hold the quenching end temperature at a high temperature of 50-120 ° C and hold it for 0.2-24 hours, or reheat and hold it at a temperature of 50-120 ° C for 0.2-24 hours. It is preferable to keep it wound up as it is or after reheating. By this preliminary aging treatment, the specific intermetallic compound form is less likely to be generated, and an exothermic peak in the vicinity of 530 ° C. by differential thermal analysis is less likely to occur.
[0060]
In addition, when aging treatment is performed, compared to normal aging treatment and overaging treatment conditions, (6) the aging treatment temperature is a low temperature of 80 to 160 ° C and the aging treatment time is a short time of 1 to 10 hours. It is preferable to make it the sub-aging treatment range of the side. When performing normal aging treatment or overaging treatment, especially in excessive excess Si type 6000 series Al alloy base material, the specific intermetallic compound form that is the main cause of side side bottom cracks is likely to occur, differential heat Care must be taken because an exothermic peak near 530 ° C. tends to occur by analysis.
[0061]
(Welding method)
The welding method targeted by the present invention is welding of a 6000 series Al alloy material, which has a welding construction site with a short end length, and easily uses a heat source such as an arc, which easily causes cracks on the bottom of the side portion. This is a fusion welding method with long wires.
[0062]
As described above, the cause or mechanism of the side-side bottom cracks of the 6000 series Al alloy material are the maximum temperature of the bottom-side welded part with a short end length and the unsolidified part of the HAZ grain boundary during solidification of the welded part. It is a metallurgical problem called correlation. Therefore, it is a common problem that occurs regardless of the type of welding method in a fusion welding method in which this metallurgical phenomenon occurs in common.
[0063]
Examples of such welding methods include high-speed arc welding such as TIG (TIG) and MIG (MIG), welding methods such as laser welding and electron beam, and friction stir welding (FSW) methods. Therefore, a welding method in which individual weld lines such as spot welding are short and the side face bottom crack of the 6000 series Al alloy material welded joint does not occur is not targeted.
[0064]
(Welded joint)
In addition, a welded joint targeted by the present invention has a welding construction site with a short end length, and is a joint that has a high possibility of causing side-side bottom cracks. It can be applied to various welded joints such as fillet welds and butt welds of plates and profiles shown in FIG. 7 and 8, 1 is a 6000 series Al alloy material to be welded, 7 is the same 6000 series or other Al alloy material, 1b is a bottom surface of the side of the Al alloy material 1, and 2 is an Al alloy material 1. , 3 is a welded portion, t is an end length from the side portion 2 to the weld line 3a, and 8 is a welding torch.
[0065]
In these welded joints, appropriate shapes such as plates, profiles and pipes are selected as a combination of joints according to the design shape of the automobile member and the like. In addition, welded joints are not necessarily 6000 series Al alloy materials or excess Si type 6000 series Al alloy materials, but in the same manner as ordinary Al alloy joints or depending on the purpose, 3000 series, 5000 series, 6000 series, Al alloy materials with different components and alloys such as 7000 series may be joined together.
[0066]
(Welding conditions)
Each welding condition in the welded joint of the present invention is performed within the range of ordinary methods of each welding method. For example, basic welding conditions such as use of filler metal, groove shape, welding posture, torch advance angle, shielding conditions (Ar gas flow rate), welding current, welding voltage, welding speed, etc. Follow various welding and aluminum handbooks.
[0067]
However, in the welded joint of the present invention, as described above, even if the temperature of the bottom surface of the side portion welded portion is increased, the side surface bottom surface cracking can be suppressed. It is preferable to control the temperature of the bottom of the side welded portion to 550 ° C. or lower. Therefore, it is also an advantage of the present invention that no special welding method or conditions are required, including the temperature of the bottom surface of the side welded portion, and the welding can be performed within the ordinary range of each welding method.
[0068]
The method of controlling the maximum temperature at the bottom of the side welded part to 550 ° C or less is to reduce the heat input to the side welded part. A well-known means such as removing heat by bringing the metal plate into contact is appropriately selected. In other words, the method for controlling the maximum temperature of the bottom of the side welded portion to 550 ° C. or lower can be carried out without using any special means and using known means without significantly changing the welding conditions.
[0069]
In addition, the welded portion other than the side welded portion bottom surface having a short end length that causes cracks on the side portion bottom surface is sufficiently long, so that the welding heat is easily radiated through the Al alloy material. For this reason, means for setting the maximum temperature of the bottom of the side-side welded portion to 550 ° C. or lower is basically unnecessary.
[0070]
(Fused material)
In the cooling curve from the melt obtained by measuring the thermal change in the solidification process of the Al alloy filler metal by differential thermal analysis based on the correlation with the side face bottom crack described above. No specific exothermic peak at 550 ° C or lower is observed.
[0071]
In this regard, the 5000 series Al alloy filler metal such as 5356 defined in JIS standards hardly recognizes this specific exothermic peak, and the 4000 series Al alloy filler metal tends to recognize this specific exothermic peak. In particular, in melt welding of an excess Si type 6000 series Al alloy base material, the 4000 series Al alloy filler metal tends to cause deterioration of the characteristics of the welded joint joint. Therefore, in particular, in the welded joint of the excess Si type 6000 series Al alloy base material, it is preferable to select one having no specific exothermic peak from among the 5000 series Al alloy filler metals.
[0072]
【Example】
Next, examples of the present invention will be described. First, various 6000 series Al alloy plates (2 mm thickness) and profiles (2 mm thickness flat plate) having 6063, 6061, 6022, and 6111 alloy compositions as shown in Table 1 were manufactured by a conventional method. These were tempered (heat-treated) as shown in Table 2, and there were no exothermic peaks near 530 ° C by differential thermal analysis. A, B, C, D, E 6000 series Al alloy matrix group A, b, c, d, e 6000 series Al alloy base material group having the specific exothermic peak was made separately.
[0073]
Of the tempering in Table 2, the solution treatment conditions were as follows.
In the case of continuous processing and entry, the base material after cutting into a test piece size is simulated in a glass stone furnace, simulating continuous processing in base material mass production, and solution treatment of 520 to 530 ° C x 60 seconds and Water quenching was performed (cooling rate was 300 ° C./min or more), and after the quenching, the sample was reheated and maintained at a high temperature of 80 to 100 ° C. for 2.0 hours. In the case of batch processing and entry, the batch processing in mass production of base material is simulated, and the base material after cutting into a test piece size is heated in a glass furnace at a relatively low speed to form a solution at 510 ° C for 10 hours. It was air-cooled and quenched with a treatment and a fan (cooling rate was less than 300 ° C./min), reheated after quenching, and maintained at a high temperature of 80 to 100 ° C. for 2.0 hours.
[0074]
In addition, the selective aging treatment was performed under the following conditions.
In the case of sub-aging treatment and entry, the sub-aging treatment was performed under the conditions of 130 ° C. × 6 hours (heating and cooling rate 40 ° C./hr). In the case of aging treatment and entry, aging treatment was performed under the condition of 155 ° C. × 6 hours. In the case of overaging treatment and entry, the aging treatment was performed under the condition of 180 ° C. × 6 hours.
[0075]
A specific exothermic peak was investigated by differential thermal analysis of these tempered materials (base materials), and the presence or absence of an exothermic peak near 530 ° C was evaluated. The results are shown in Table 2 together with the position of the exothermic peak (temperature, ° C.) and the end temperature of exotherm (° C.).
[0076]
Next, there is no specific exothermic peak by differential thermal analysis, A, B, C, D, E 6000 series Al alloy base material, and the specific exothermic peak of a, b, c, d, e Use a 6000 series Al alloy base material, the same base material, 5356Al alloy filler metal without specific exothermic peak in Fig. 4 and 4043Al alloy filler metal with specific exothermic peak in Fig. 5 to make a welded joint. Produced.
[0077]
The welded joint is welded with the end length t of one Al alloy base material 1 being 10 mm, and butt welding (welding length 140 mm) shown in FIG. 8 is used for MIG welding, TIG welding, CO 2 Performed by laser welding. Each welding condition is shown in Table 4. In any welding, the maximum temperature at the bottom face of the side-side welded part was deliberately set at a temperature exceeding 550 ° C. at which the side-side part bottom face crack was likely to occur.
[0078]
The welded joint thus obtained was examined for the presence of cracks and the length (mm) on the bottom side. Then, a specimen of the welded joint was taken and the tensile strength (σ B ) Was measured according to JIS Z 2241. The base metal specific efficiency (joint efficiency) of the welded joint was also calculated from the tensile strength of the base metal. These results are shown in Table 3.
[0079]
As is apparent from Table 3, the A, B, C, D, E 6000 series Al alloy base material without the specific exothermic peak by the differential thermal analysis, and the 5356 Al alloy filler metal without the specific exothermic peak of FIG. Welded joints of Invention Examples Nos. 1 to 5 consisting of a combination of MIG welding, TIG welding, CO 2 Regardless of the welding method such as laser welding, the side face bottom crack does not occur, and the joint strength is 78% or more and 100% in terms of the base metal specific efficiency.
[0080]
On the other hand, it consists of a combination of an Al alloy base material and a 4043 Al alloy filler material, a 6000 series Al alloy base material having the specific exothermic peak in either one or both, and an Al alloy filler material. The welded joints of Comparative Examples No. 6 to 16 are MIG welding, TIG welding, CO 2 Regardless of the welding method such as laser welding, cracks on the sides of the side part of 50mm or more are common and the welded part cannot be guaranteed. Also, the joint strength is low.
[0081]
The results of the above examples support the critical significance of the present invention for preventing side side bottom cracks in 6000 series Al alloy material welded joints, including excess Si type.
[0082]
[Table 1]
Figure 0003726033
[0083]
[Table 2]
Figure 0003726033
[0084]
[Table 3]
Figure 0003726033
[0085]
[Table 4]
Figure 0003726033
[0086]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the 6000 series Al alloy material coupling which prevented the side part bottom face crack. Therefore, the industrial value is great in that the 6000 series Al alloy wrought material including the excess Si type with excellent characteristics can be expanded to automotive applications.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a DTA curve (no exothermic peak near 530 ° C.) by differential thermal analysis of a 6000 series Al alloy base material.
FIG. 2 is an explanatory diagram showing a DTA curve (no exothermic peak near 530 ° C.) by differential thermal analysis of a 6000 series Al alloy base material.
FIG. 3 is an explanatory diagram showing a DTA curve (with an exothermic peak near 530 ° C.) by differential thermal analysis of a 6000 series Al alloy base material.
FIG. 4 is an explanatory diagram showing a DTA curve (no exothermic peak at 550 ° C. or lower) by differential thermal analysis of a 5356Al alloy filler metal.
FIG. 5 is an explanatory diagram showing a DTA curve (with an exothermic peak at 550 ° C. or lower) by differential thermal analysis of 4043Al alloy filler metal.
FIG. 6 is a schematic diagram showing the solidification process of the joint side welds in four stages.
FIG. 7 is an explanatory view showing fillet welding between plate members and shapes.
FIG. 8 is an explanatory view showing butt welding between plate members and shapes.
FIG. 9 is a plan view showing a welding test piece (plate) used for a test of a side face bottom crack.
FIG. 10 is a plan view showing a side face bottom crack generated in a side edge weld of an excess Si type AA6022Al alloy joint.
[Explanation of symbols]
1; 6000 series Al alloy material, 2; side of Al alloy material, 3; weld (welding line),
4; side side bottom crack, 5; HAZ, 6; grain boundary, 7; Al alloy material, 8; welding torch,
t; end length, X; exothermic peak, A, B; DTA curve

Claims (3)

AA乃至JIS 規格に規定される6000系アルミニウム合金母材がアルミニウム合金溶加材を用いて溶接施工されて成るとともに、該溶接施工が継手側辺部の溶接部を含む溶接継手であって、前記アルミニウム合金母材とアルミニウム合金溶加材とを、溶接施工前に、各材の凝固過程における熱的変化を示差熱分析により測定して得られた融液からの冷却曲線において、アルミニウム合金母材は530 ℃近傍における発熱ピークが、また、アルミニウム合金溶加材は550 ℃以下における発熱ピークが、それぞれ実質的に認められないものとし、前記側辺部の溶接部底面に溶接割れがないことを特徴とするアルミニウム合金溶接継手。AA to JIS standard 6000 series aluminum alloy base material is welded using an aluminum alloy filler metal, and the welding is a welded joint including a welded portion on the side of the joint, In the cooling curve from the melt obtained by measuring the thermal change in the solidification process of each aluminum alloy base material and aluminum alloy filler metal by differential thermal analysis before welding , the aluminum alloy base material No exothermic peak in the vicinity of 530 ° C, and no exothermic peak in the aluminum alloy filler metal at 550 ° C or less, and there is no weld crack on the bottom of the weld on the side. A featured aluminum alloy welded joint. 前記6000系アルミニウム合金母材が過剰Si型であり、この母材の前記発熱ピークが532 ℃近傍である請求項1に記載のアルミニウム合金溶接継手。The aluminum alloy welded joint according to claim 1, wherein the 6000 series aluminum alloy base material is an excess Si type, and the exothermic peak of the base material is around 532 ° C. 前記請求項1または2のアルミニウム合金溶接継手に用いられるAA乃至JIS 規格に規定される6000系アルミニウム合金展伸材。  A 6000 series aluminum alloy wrought material defined in AA or JIS standard used for the aluminum alloy welded joint according to claim 1 or 2.
JP2001156999A 2001-05-25 2001-05-25 Aluminum alloy welded joints and wrought aluminum alloys for welded joints Expired - Fee Related JP3726033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156999A JP3726033B2 (en) 2001-05-25 2001-05-25 Aluminum alloy welded joints and wrought aluminum alloys for welded joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156999A JP3726033B2 (en) 2001-05-25 2001-05-25 Aluminum alloy welded joints and wrought aluminum alloys for welded joints

Publications (2)

Publication Number Publication Date
JP2002348627A JP2002348627A (en) 2002-12-04
JP3726033B2 true JP3726033B2 (en) 2005-12-14

Family

ID=19000928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156999A Expired - Fee Related JP3726033B2 (en) 2001-05-25 2001-05-25 Aluminum alloy welded joints and wrought aluminum alloys for welded joints

Country Status (1)

Country Link
JP (1) JP3726033B2 (en)

Also Published As

Publication number Publication date
JP2002348627A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
US10016837B2 (en) Method of joining heat-treatable aluminum alloy members by friction stir welding
US9926619B2 (en) Aluminum alloy
JP2015501877A5 (en)
US7490752B2 (en) Manufacturing method for friction welded aluminum alloy parts
CA3005031A1 (en) Aluminum welding filler metal
JP4789253B2 (en) Aluminum alloy bonding material excellent in formability and manufacturing method thereof
JP3851519B2 (en) Welding method of aluminum alloy material
JP4183177B2 (en) Heat treated aluminum alloy bonding material with excellent ductility
JP3726033B2 (en) Aluminum alloy welded joints and wrought aluminum alloys for welded joints
EP2837704B1 (en) Aluminium alloy
JP4351025B2 (en) Method for joining heat-treatable aluminum alloy materials
JP3726034B2 (en) Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints
EP4201578A1 (en) Apparatus and method of forming countersinks and/or mouse holes in a stamped high strength aluminium sheet
JP4351024B2 (en) Friction stir welding method for heat-treatable aluminum alloy material
JP2008207249A (en) Method for welding aluminum alloy material having excellent weld crack resistance, and method for evaluating weld crack resistance of aluminum alloy material
AU2017204285A1 (en) Aluminum welding filler metal, casting and wrought metal alloy
JP6679296B2 (en) Al alloy material for high energy beam welding and method for producing the same
JP2002115019A (en) Aluminum alloy having excellent weld crack resistance
JP2002294381A (en) Aluminum alloy welded joint for forming
JP4038368B2 (en) Aluminum alloy welded joint
JP2017082254A (en) Al alloy material for high energy beam welding
JP2002115037A (en) Aluminum alloy welded joint having high joint efficiency
CN117123900A (en) Resistance welding method, assembly and vehicle
JPH11199994A (en) Zinc phosphate treating method for aluminum alloy welded member and aluminum alloy welding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Ref document number: 3726033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees