JP3726034B2 - Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints - Google Patents

Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints Download PDF

Info

Publication number
JP3726034B2
JP3726034B2 JP2001157000A JP2001157000A JP3726034B2 JP 3726034 B2 JP3726034 B2 JP 3726034B2 JP 2001157000 A JP2001157000 A JP 2001157000A JP 2001157000 A JP2001157000 A JP 2001157000A JP 3726034 B2 JP3726034 B2 JP 3726034B2
Authority
JP
Japan
Prior art keywords
base material
series
welded
alloy
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001157000A
Other languages
Japanese (ja)
Other versions
JP2002348628A (en
Inventor
松本  剛
誠二 笹部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001157000A priority Critical patent/JP3726034B2/en
Publication of JP2002348628A publication Critical patent/JP2002348628A/en
Application granted granted Critical
Publication of JP3726034B2 publication Critical patent/JP3726034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、継手側辺部の溶接部底面の溶接割れを防止した、6000系アルミニウム合金溶接継手 (以下、アルミニウムを単にAlと言う) および該溶接継手用アルミニウム合金溶接母材に関するものである。
【0002】
【従来の技術】
自動車などの輸送機のパネル類、フレーム類、メンバー類などの部材には、成形したAl合金板材同士や、成形したAl合金板材とAl合金形材などを溶接接合した継手 (溶接接合部材) が用いられるようになっている。
【0003】
これらの溶接継手用のAl合金板母材としては、従来から溶接構造用Al合金として汎用されるAA乃至JIS 規格に規定される5000系や、6063、6061などの6000系 (以下、AA乃至JIS は省略) 、7N01、7003などの7000系などのAl合金圧延板 (厚板は熱延板、薄板は冷延板) が用いられる。
【0004】
この6000系 (Al-Mg-Si系) のAl合金の中でも、AA乃至JIS 規格で6061、6N01、6016、6111、6022などの、Si/Mg が1 以上の、Mg含有量に対しSiが過剰に含有されている、過剰Si型の6000系Al合金母材は、溶体化処理および焼き入れ処理 (質別記号T4) やその後の時効処理 (質別記号T6) 、過時効処理 (質別記号T7) 後の特性において特に時効硬化性に優れている。
【0005】
このため、過剰Si型6000系Al合金は、プレス成形や曲げ加工などの成形時には低耐力で成形性を確保するとともに、成形後の部材の塗装焼き付け処理などにおいて、170 ℃など比較的低温の加熱でも高耐力化して要求強度を満たせる特性を有している。また、前記5000系や7000系などのAl合金に比して、合金元素量が少ないので、スクラップを元の6000系Al合金の溶解原料として再利用できるなどのリサイクル性にも優れている。
【0006】
しかし、6000系Al合金板母材、中でも過剰Si型6000系Al合金板母材は、その優れた時効硬化性ゆえに、前記5000系や7000系などのAl合金板母材に比して、逆に溶接時には、その接合性(接合強度)が低下するという問題がある。
【0007】
そして、この接合性の問題は、特に、部材の溶接される部位の側辺部(端部乃至縁部)から溶接線までの距離 (端長さ) が短い、溶接部位 (側辺部溶接部) を溶接施工する際に顕著となる。
【0008】
即ち、隅肉溶接や突き合わせ溶接などで、少なくともいずれかのAl合金板母材を過剰Si型6000系Al合金として継手を溶接接合する際、側辺部の溶接部において、溶接部の底面(裏面)に、溶接線 (溶着線) に沿って走る、マクロな溶接割れが生じ易いという問題がある。この側辺部溶接部の底面の割れは、6000系Al合金板母材の顕著な傾向であるとともに、過剰Si型の6000系Al合金板母材において、特にその傾向が強くなる。そして、他の5000系や7000系などの、6000系以外のAl合金ではこの溶接部底面割れが発生しない乃至しにくい。
【0009】
また、この溶接部底面割れは、通常、溶接施工の際にAl合金系全般において生じやすい、溶接金属部 (溶着部) やその近傍乃至周囲の熱影響部 (以下、HAZ と言う) などの溶接接合部に生じる、ミクロな溶接割れとは、後述する発生機構を含めて全く異なる特異な現象である。
【0010】
図4 は、6000系Al合金板母材の側辺部溶接部において生じる溶接部底面の溶接割れを示している。図4 は、図5 に平面図で示す2mm 厚の過剰Si型のAA6022Al合金板母材(Si;0.9%、Mg;0.6%)試験片1aを、溶接される試験片1aの側辺部2 から溶接線3 までの距離 (以下、端長さと言う)tを種々変えて溶接した場合の、試験片底面1bの溶接状態を示している。なお、溶接法は簡易的にビードオン溶接法を用い、溶け込み深さを一定として溶接した。この図4 において、(a) は端長さが32mm、(b) は端長さが24mm、(c) は端長さが16mm、(d) は端長さが8mm の場合である。
【0011】
この図4 に示す通り、端長さが比較的長い図4(a)(b) では、溶接線3aの部分 (溶接部底面) に溶接割れは生じていない。これに対し、図4(c)(d) のように端長さが短くなるにつれて、溶接線3aの部分に沿って走る、マクロな溶接割れ4a、4bが生じている。即ち、端長さが短くなるほど、特に過剰Si型などの6000系Al合金板母材の側辺部溶接部底面1bでは、マクロな溶接割れが生じやすくなる。
【0012】
また、この6000系Al合金板母材側辺部の溶接部底面の割れ (以下、単に側辺部底面割れと言う) の傾向は、個々の溶接線がごく短い溶接接合方法では生じにくい。しかし、溶接線が比較的長い、アークなどの熱源を用いる溶融溶接方法、即ち、ティグ(TIG) 、ミグ(MIG) などの高速アーク溶接や、レーザー溶接、電子ビームなど溶接で溶接して継手を形成する際に顕著となる。更に、この傾向は、溶接接合部が比較的高温にならない接合方法である、摩擦攪拌接合(FSW) 方法においても生じる。
【0013】
そして、このような側辺部底面割れが起ると、Al合金溶接継手の強度が著しく低下し、自動車などの前記部材に適用できないという深刻な問題が生じる。
【0014】
なお、従来から、Al合金溶接継手の溶接部の前記軟化や割れに対しては、アークなどの溶接方法の側から、溶接施工条件などの種々の改善方法が行なわれてきた。例えば、▲1▼特開平11-104860 号公報などに例示される通り、極力低入熱で溶接する、あるいは冷却しながら溶接接合する方法、▲2▼溶接後の継手を焼き入れ焼き戻し処理する、あるいは特開平5-222498号公報などのように、時効硬化処理前の材料(T1 、T4材) を溶接後、時効硬化処理する、などの熱処理によって軟化を回復させる方法などがある。
【0015】
【発明が解決しようとする課題】
しかし、本発明で課題とする側辺部底面割れは、自動車などの前記部材にそれまで適用されていた、他の5000系や7000系などのAl合金では、前記した通り、発生しにくい。したがって、6000系Al合金板材が自動車などの前記溶接適用部材に使用されて新たに生じた問題であり、しかも、前記した通り、6000系Al合金板材に特有の問題でもある。
【0016】
従来から、特開昭61-23580号公報などで、Al合金材の大肉厚部材と小肉厚部材の溶接における、溶接材の肉厚差に起因する熱伝導の差 (小肉厚部材の方が熱放散少) による、両者の加熱速度の差 (大肉厚部材の方が温度上昇が遅く熱量不足になる) が生じることなどが課題として公知にはなっていた。
【0017】
しかし、これら公知技術の課題は、本発明の課題である側辺部底面割れとは異なる。また、側辺部底面割れとは、原因なり機構も異なるため、前記加熱速度格差を緩衝するため中肉厚部材を中間に設置する解決策も、側辺部底面割れ自体の解決策とはなり得ない。したがい、本発明の課題である側辺部底面割れは、これまで詳細に解明されておらず、また直接の解決策も提案されていなかった。
【0018】
本発明はこの様な事情に着目してなされたものであって、その目的は、側辺部底面割れを防止した、特に過剰Si型などの6000系アルミニウム合金継手および溶接継手用アルミニウム合金板母材を提供しようとするものである。
【0019】
【課題を解決するための手段】
この目的を達成するために、本発明6000系アルミニウム合金継手の請求項1 の要旨は、AA乃至JIS 規格に規定される6000系アルミニウム合金板母材が溶接施工されて成る溶接継手であって、継手に溶接する前に、アルミニウム合金板母材の結晶粒を、母材の圧延方向であって、溶接線方向に対して直角方向に伸長させた結晶粒とするとともに、該結晶粒のアスペクト比 (溶接線方向に対して直角方向の平均粒径r1と板厚方向の平均粒径r t との比 r1/r t ) を2 以上とし、かつ板厚方向の平均粒径r t を100 μm 以下とすることである。
【0020】
そして、同じくこの目的を達成するための、本発明6000系アルミニウム合金継手の請求項2 の要旨は、前記アルミニウム合金溶接継手が継手側辺部の溶接部を有する溶接継手であって、少なくとも前記溶接継手側辺部の溶接部底面部分のアルミニウム合金板母材の結晶粒を、継手に溶接する前に、母材の圧延方向であって、溶接線方向に対して直角方向に伸長させた結晶粒とするとともに、該結晶粒のアスペクト比 (溶接線方向に対して直角方向の平均粒径r1と板厚方向の平均粒径r t との比 r1/r t ) を2 以上とし、かつ板厚方向の平均粒径r t を100 μm 以下とすることである。
【0021】
本発明者らは、6000系Al合金板母材組織と側辺部底面割れとの関係を究明した結果、母材組織の内、特に溶接継手側辺部の溶接部底面部分の結晶粒形状と側辺部底面割れとが相関していることを知見した。
【0022】
即ち、6000系Al合金熱延板 (2mm 厚以下の薄板の場合は冷延板も使用) を溶接母材とする場合、熱延仕上げ温度が再結晶温度以上である、通常の6000系Al合金熱延板では、圧延方向と平行な板厚断面におけるアスペクト比が1 程度の等軸な (球状の) 結晶粒となっている。
【0023】
これに対し、熱延仕上げ温度が再結晶温度以下とし、更に熱延の圧下率や歪み速度を大きくした場合、6000系Al合金熱延板の結晶粒は圧延方向 (板の長手方向) に伸び、圧延方向と平行な板厚断面におけるアスペクト比が1 以上で、圧延方向の平均粒径が板厚方向の平均粒径よりも大きい、微細な偏平結晶粒となる。
【0024】
本発明者らは、この結晶粒形状について、6000系Al合金板母材が、等軸な結晶粒の場合よりも、偏平な結晶粒の場合の方が側辺部底面割れが生じにくいことを知見した。そして、この傾向は、溶接継手側辺部の溶接部底面部分の6000系Al合金板母材の結晶粒の伸長方向を、継手の溶接線方向と相関させた時に顕著になることも知見した。
【0025】
即ち、溶接継手側辺部の溶接部底面部分の6000系Al合金板母材を、溶接線方向に対して直角方向に伸長させた偏平な結晶粒とするほど、また、該偏平な結晶粒のアスペクト比 (溶接線方向に対して直角方向の平均粒径r1と板厚方向の平均粒径r t との比 r1/r t ) を2 以上とすることで、側辺部底面割れ防止効果が顕著になる。
【0026】
更に、本発明者らは、Al合金板母材の結晶粒が偏平であっても、結晶粒が粗大化した場合には、偏平な結晶粒による側辺部底面割れの抑制効果が失われ、その結晶粒粗大化の上限は、前記溶接継手側辺部の溶接部底面部分の結晶粒の板厚方向の平均粒径 rt で100 μm 程度であることも知見した。
【0027】
前記した通り、側辺部底面割れ防止のためには、溶接継手側辺部の溶接部底面部分の6000系Al合金板母材の結晶粒の伸長方向を、継手の溶接線方向と相関させることが必要である。このため、本発明における偏平な結晶粒形状の規定は、Al合金熱延板などの素材ではなく、6000系Al合金板溶接母材の組織として規定する。
【0028】
また、6000系Al合金熱延板をAl合金板母材として使用する場合、継手に溶接する前に、Al合金板の熱延条件や熱延後のT4、T6、T7などの調質処理条件によって、また、成形加工に伴う時効硬化などの熱処理条件によって、Al合金板母材としての偏平な結晶粒形状や結晶粒の大きさが変化する可能性がある。そして、これらの条件によっては、本発明におけるAl合金板母材としての偏平な結晶粒形状と粒径の規定を外れる可能性がある。このため、本発明における偏平な結晶粒形状と粒径の規定は、熱延板の状態ではなく、熱延板を成形加工や調質処理した後の6000系Al合金溶接母材の組織として規定する。
【0029】
この6000系Al合金板母材組織 (溶接継手側辺部の溶接部底面部分の結晶粒形状) と側辺部底面割れとが相関する理由は以下の通りと推考される。
【0030】
先ず、溶接部側の状況として、6000系Al合金板母材の前記端長さが短い側辺部溶接部では、端長さが充分長い他の溶接部よりも、溶接部近傍のAl合金板母材の質量が著しく少ない。このため、溶接による入熱がAl合金板母材を通じた伝熱により放熱されにくい。この結果、溶接時、側辺部溶接部底面は、他の溶接部底面よりも、550 ℃を越えるより高温側に保持されやすい傾向にある。
【0031】
一方、6000系Al合金板母材では、その時効硬化特性を発揮させるための、Al-Mg-Si系 (過剰Si型) 組成とT4、T6、T7などの調質処理との関連で、母材の段階から、粒界に元々金属間化合物が多く存在する。この結果、側辺部溶接部底面のHAZ 粒界には、必然的に未凝固部分 (未凝固の金属間化合物) が存在することとなる。そして、この未凝固部分乃至粒界の金属間化合物は過剰Si型などの6000系Al合金板母材において特に多く、側辺部底面割れの原因となり易い。
【0032】
なぜなら、側辺部溶接部底面の最高温度が前記550 ℃を越える高温側に保持された場合、前記未凝固部分乃至粒界の金属間化合物部分のみ凝固のタイミングが遅れるために、溶接部の凝固収縮途中で、前記収縮応力が作用した場合に、未凝固部分の粒界が耐えきれずにミクロな割れとなって口を開き易くなり、側辺部底面割れとなるからである。
【0033】
例えば、Al合金板母材とAl合金板母材の突き合わせ溶接の場合、溶接部の凝固に従って、溶接部 (溶融部) の収縮が起る際、溶接部を外側へ広げようとする収縮応力が溶接部に作用する。この際、側辺部溶接部底面の最高温度が前記550 ℃を越える高温側に保持された場合、6000系Al合金板母材の、特に側辺部底面のHAZ の粒界に未凝固部分で、凝固のタイミングが遅れる。このため、マトリックスの拘束力が比較的弱く、前記収縮応力の伝達や吸収が不十分となり、側辺部底面割れの発生に至りやすい。
【0034】
この傾向は、前記未凝固部分が多くなる過剰Si型6000系Al合金板母材ほど、更に、溶接時の側辺部底面の最高温度が550 ℃を越える高温となるほど、また、550 ℃を越える温度に保持される時間が長いほど、強くなる。
【0035】
ここにおいて、6000系Al合金板母材 (継手側辺部溶接部底面) の組織が通常の等軸な結晶粒の場合、板厚方向の粒界面積が大きく、粒界の方向が板厚方向に対して直線的となる。このため、マトリックスの拘束力が比較的弱くなる。この結果、溶接部の凝固収縮途中で前記収縮応力が作用した場合に生じる前記未凝固部分の粒界のミクロな割れが板厚方向に伝播しやすく、前記収縮応力の伝達や吸収が不十分となり、側辺部底面割れの発生に至りやすい。
【0036】
これに対して、溶接継手側辺部の溶接部底面部分を、本発明のような溶接線方向に対して直角方向に伸長させた微細な偏平結晶粒とするほど、板厚方向の粒界面積が小さく、しかも粒界の方向が板厚方向に対して非直線的となる。このため、マトリックスの拘束力が比較的強くなり、この結果、前記収縮応力が作用した場合に、前記未凝固部分の粒界のミクロな割れが板厚方向に伝播しにくく、前記収縮応力の伝達や吸収が十分行われ、側辺部底面割れの発生には至らないと推考される。
【0037】
この側辺部底面割れの機構からすると、側辺部底面の最高温度を550 ℃以下としてやれば側辺部底面割れが発生しないが、継手の設計条件や溶接施工の条件によっては、側辺部溶接部底面の最高温度が550 ℃を越える高温側に保持される可能性がある。
【0038】
また、側辺部底面割れのもう一方の原因である、6000系Al合金板母材の前記HAZ 粒界の未凝固部分 (母材の粒界の特定金属間化合物) を少なくすることも有効である。しかし、特に過剰Si型6000系Al合金板母材では、その時効硬化などの特性や製造上の制約から、粒界の金属間化合物を少なくできない場合も存在する。
【0039】
したがって、このような、側辺部溶接部底面の最高温度が550 ℃を越える高温側に保持される場合でも、また、側辺部底面の最高温度を550 ℃以下にできる場合でも、更に、前記未凝固部分が多くなる過剰Si型6000系Al合金板母材であっても、あるいは、前記未凝固部分を少なくした6000系Al合金板母材であっても、側辺部底面割れを確実に防止するために、本発明では、溶接継手側辺部の溶接部底面部分を、溶接線方向に対して直角方向に伸長させた微細で偏平な結晶粒組織とする。
【0040】
本発明の6000系Al合金板母材組織を、溶接線方向に対して直角方向に伸長させた微細で偏平な結晶粒組織とすることは、前記した通り、マトリックスの拘束力の強化や、溶接凝固時の収縮応力の充分な伝達や吸収につながる。そして、この点は、本発明の主たる目的の側辺部底面割れだけではなく、通常の溶接施工の際に溶接金属部やHAZ などの溶接接合部に生じる、ミクロ乃至マクロな溶接割れを抑制する効果にもつながる。
【0041】
従い、本発明では、側辺部底面割れが生じない、言い換えると、端長さが短い溶接部位 (側辺部溶接部) を有さない溶接継手の場合にも、通常の溶接施工の際に溶接金属部やHAZ などの溶接接合部に生じる、ミクロ乃至マクロな溶接割れを抑制する目的で適用できる。このため、前記本発明請求項1 では、側辺部底面割れが生じる側辺部溶接部を有さない溶接継手の場合も包含している。
【0042】
また、本発明は以上のような側辺部底面割れ抑制の優れた効果を有するため、請求項3 に記載の通り、6000系Al合金の中でも、特に側辺部底面割れの傾向が大きい、Si:0.4〜0.8% (質量% 、以下同じ) 、Mg:0.4〜0.8%を含む過剰Si型6000系Al合金材に適用されることが好ましい。
【0043】
【発明の実施の形態】
(結晶粒組織)
本発明Al合金板母材の結晶粒組織の規定を、図1 に示す突き合わせ溶接継手の例を用いて説明する。図1 において、5aは溶接継手、1 は溶接される6000系Al合金板母材、6 は同じ6000系か他のAl合金板母材、1bはAl合金板母材1 の側辺部底面、2 はAl合金母材1 の側辺部、3 は溶接部、x は側辺部2 から溶接線3aまでの端長さである。
【0044】
図1 において、本発明では、継手に用いる6000系Al合金板母材1 の、少なくとも前記溶接継手側辺部の溶接部底面1b部分の結晶粒組織を、前記した通り、溶接線3aの方向A に対して直角方向B に伸長させた結晶粒7 とするとともに、該結晶粒7 のアスペクト比 (溶接線方向に対して直角方向の平均粒径r1と板厚方向の平均粒径r t との比 r1/r t ) を2 以上とし、かつ板厚方向t の平均粒径r t を100 μm 以下とする(Lは板幅方向) 。
【0045】
溶接線3aの方向A に対して直角方向B の平均粒径r1と板厚方向t の平均粒径 rt との比 r1/ r tが2 未満であれば、前記した通常の等軸な結晶粒に近くなり、板厚方向の粒界面積が大きく、粒界の方向が板厚方向に対して直線的となる。このため、マトリックスの拘束力が比較的弱くなり、溶接部の凝固収縮途中で、図1 にZ で示す矢印方向の前記収縮応力が作用した場合に生じる前記未凝固部分の粒界のミクロな割れが板厚方向に伝播しやすく、前記収縮応力の伝達や吸収が不十分となり、側辺部底面割れの発生に至りやすい。
【0046】
また、前記板厚方向t の平均粒径 rt が100 μm を越えれば、前記未凝固部分となりうる粒界の特定金属間化合物だけではなく、結晶粒界に析出した粒界析出物自体や、結晶粒界に沿って形成された無析出物帯(PFZ:Precipitation Free Zone) 自体が大きくなる。このため、溶接部の凝固収縮途中で前記収縮応力が作用した場合に、微小な破壊の起点および破壊の伝播を助長する点として働くため、前記未凝固部分の粒界のミクロな割れを含め、粒界に沿って割れが進展し易くなり、側辺部底面割れが発生しやすくなる。
【0047】
この6000系Al合金板母材の結晶粒組織制御は、後述する通り、6000系Al合金板母材の製造のための、6000系Al合金板の熱延工程により主として行う。
【0048】
但し、本発明では、側辺部底面割れ抑制効果を阻害しない範囲で、前記アスペクト比が1 程度の等軸な再結晶粒組織が混合した、混粒組織あるいは複合組織であることを許容する。実際問題としても、熱延工程の制御により、6000系Al合金板の組織を100%純粋な微細偏平結晶粒組織とすることは難しく、また、そのように制御することも経済的ではない。この意味も含め、また微細偏平結晶粒自体のバラツキもあり、本発明では、請求項で平均粒径としている通り、溶接線方向に対して直角方向の結晶粒の粒径r1と板厚方向の粒径 rt の値 (測定値) を各々平均化している。
【0049】
なお、これら結晶粒の粒径r1と板厚方向の粒径 rt の測定は、溶接施工される前の6000系Al合金板母材の、溶接線方向に対して直角方向の板厚方向断面を電解エッチングした後、同断面を50倍の倍率の光学顕微鏡により、板厚×0.1mm の範囲を10視野観察し、その平均値を測定 (算出) する。この際、前記した通り、偏平結晶粒の中に等軸な再結晶粒が存在すれば、この等軸な再結晶粒も含めて計測して平均化する。
【0050】
(母材用Al合金)
本発明で用いる母材用Al合金は、AA乃至JIS 規格に規定される6000系(Al-Mg-Si 系) Al合金全体が対象となり、適用可能である。ただ、この6000系Al合金の中でも、特に側辺部底面割れの傾向が大きい、Si/Mg が1 以上の、Mg含有量に対しSiが過剰に含有されている、6N01、6016、6111、6022などの、過剰Si型の6000系Al合金が対象となり、また有効である。
【0051】
なお、本発明母材用Al合金の好ましい成分組成として、前記溶接構造用としての必要強度などの要求特性を満足するためには、Mg:0.2〜1.0% (質量% 、以下同じ) 、Si:0.6〜1.6%の範囲から、Siが過剰となるように選択することが好ましい。
【0052】
この他、Mn、Cr、Zr、Ti、B 、Fe、Zn、Ni、V などのその他の合金元素は、基本的には不純物元素である。しかし、6000系合金のリサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金や、その他のAl合金スクラップ材、低純度Al地金などを溶解材として使用する場合を含む。このため、これら元素が、本発明の目的とする諸特性向上効果を阻害しない範囲で、JIS 乃至AA規格内で含有されることを許容する。したがって、本発明でAA乃至JIS 規格に規定されるとは、これら規格を満足することを意味する。
【0053】
(母材の製造)
本発明におけるAl合金板母材自体は、溶解、鋳造、均質化熱処理、熱間圧延等の常法工程により、板厚が2mm 以上の熱延板として製造される。なお、Al合金板母材の板厚が2mm 以下であれば、更に、必要により中間焼鈍を施し、冷間圧延によって冷延板とされる。
【0054】
前記製造工程において、6000系Al合金熱延板の組織を、本発明で規定する微細な偏平結晶粒とするためには、熱延条件を制御する。即ち、例えば、熱延における、仕上げ温度を再結晶温度(300〜400 ℃) 以下とし、更に熱延の圧下率や歪み速度を大きくするのが好ましい。これに対し、熱延の仕上げ温度を再結晶温度以上とした場合、主として、等軸な再結晶組織が発現する。
【0055】
このようにして製造した6000系Al合金熱延板の偏平結晶粒は、板の圧延方向と平行な板厚断面における結晶粒の、母材で言う溶接線方向に対して直角方向の結晶粒の平均粒径r1に相当する圧延方向の平均粒径が、母材で言う板厚方向の平均粒径 rt に相当する板厚方向の平均粒径よりも伸長した (アスペクト比がが2 以上の) 微細な偏平結晶粒組織となる。
【0056】
このため、6000系Al合金熱延板を継手母材とするためには、種々の溶接継手における母材方向を、母材圧延方向の (伸長した) 平均粒径が、前記溶接線方向に対して直角方向の結晶粒の平均粒径r1となるように一致乃至対応させて用いる必要がある。この母材方向を変え、母材圧延方向の (伸長した) 平均粒径が、前記溶接線方向に対して平行方向となるなどして用いた場合には、溶接部の凝固収縮途中での前記収縮応力の作用方向との関係で、側辺部底面割れ抑制の効果が低下する。
【0057】
また、これらAl合金熱延板など (冷延板を含む) は、継手形状にプレス、曲げなどの適宜の成形加工後、または成形加工前に、溶体化処理および焼き入れ処理 (質別記号T4) やその後の時効処理 (質別記号T6) 、過時効処理 (質別記号T7) されて、溶接継手乃至溶接部材の母材として用いられる。
【0058】
なお、これら調質処理されるAl合金熱延板などは、本発明の結晶粒形状の組織制御以外に、粒界の組織制御として、前記側辺部底面割れにつながる、前記HAZ 粒界の特定未凝固部分と、その原因となる母材の粒界の特定金属間化合物をできるだけ抑制することが好ましい。
【0059】
このためには、前記合金成分や熱間組成加工などの製造履歴とともに、あるいは前記合金成分や製造履歴に対応して、主として前記調質処理の制御を行うことが好ましい。
【0060】
より具体的には、溶体化処理条件として、▲1▼510 ℃以上の高温で溶体化処理を行う。▲2▼溶体化処理後の焼き入れ処理の際の冷却速度を300 ℃/ 分以上に高める。このために、板材では、特に最終的な溶体化処理および焼入れ処理を、バッチ式ではなく、▲3▼コイルなどを連続的に通板して熱処理することのできる連続熱処理炉にて行うことが好ましい。バッチ式の場合、前記冷却速度が遅くなり、特に過剰過剰Si型の6000系Al合金板母材において、側辺部底面割れの主原因となる前記特定の金属間化合物形態が生じ易くなる。
【0061】
更に、前記溶体化処理後の焼入れ処理の際、単に常温まで冷却して放置するのではなく、予備的な時効処理として、▲4▼一旦常温まで焼入れた後に50〜120 ℃の温度まで再加熱保持するか、▲5▼焼入れ終了温度を50〜120 ℃の高温として、そのまま0.2 〜24時間保持するか、再加熱して50〜120 ℃の温度として0.2 〜24時間保持する (コイルの場合はそのままか再加熱して巻き取り保持する) ことが好ましい。この予備的な時効処理によって、前記特定の金属間化合物形態が生じにくくなる。
【0062】
また、溶接前に6000系Al合金板母材の時効処理を行う場合には、通常の時効処理や過時効処理条件に比して、▲6▼時効処理温度を80〜160 ℃の低温側、時効処理時間を1 〜10時間の短時間側の亜時効処理範囲とすることが好ましい。通常の時効処理や過時効処理を行った場合、特に過剰Si型の6000系Al合金板母材において、側辺部底面割れの主原因となる前記特定の金属間化合物形態が生じ易くなる傾向にあるので注意を要する。
【0063】
(溶接方法)
本発明が対象とする溶接方法は、6000系Al合金板母材の溶接であって、前記端長さが短い溶接施工部位を有し、側辺部底面割れが生じやすい、アークなどの熱源を用いる溶接線が長い溶融溶接方法である。
【0064】
6000系Al合金材の側辺部底面割れの原因乃至機構は、前記した通り、端長さが短い側辺部溶接部底面の最高温度と、溶接部凝固時のHAZ の粒界の未凝固部分との相関関係という冶金的な問題である。したがって、この冶金的な現象が共通して生じるような溶融溶接方法で、溶接方法の種類の違いによらず生起する、共通の問題である。
【0065】
このような溶接方法としては、例えば、ティグ(TIG) 、ミグ(MIG) などの高速アーク溶接やレーザー溶接、電子ビームなどの溶接方法、あるいは摩擦攪拌接合(FSW) 方法が例示される。したがって、6000系Al合金材溶接継手の側辺部底面割れが生じないような溶接方法は対象としない。
【0066】
(溶接継手)
また、本発明が対象とする溶接継手は、6000系Al合金板母材を一方乃至両方の母材として用い、前記端長さが短い溶接施工部位を有し、側辺部底面割れが生じる可能性が大きい継手であれば、図2 に示す隅肉溶接や、図3 に示す突き合わせ溶接など、種々の溶接継手に適用できる。なお、図2 、図3 において、5b、5cは溶接継手、1 は溶接される6000系Al合金板母材、6 は同じ6000系か他のAl合金板母材、1bはAl合金板母材1 の側辺部底面、2 はAl合金材母1 の側辺部、3 は溶接部、x は側辺部2 から溶接線3aまでの端長さ、7 は溶接トーチである。
【0067】
これら溶接継手において、自動車部材などの設計形状に応じて、板、形材、管等の適宜の形状が、継手の組み合わせとして選択される。また、溶接継手は、必ずしも6000系Al合金板母材や過剰Si型6000系Al合金板母材同士でなくとも、通常のAl合金継手と同様に、あるいは目的に応じて、3000系、5000系、6000系、7000系など成分や合金系の違うAl合金材を、6000系Al合金熱延板母材に対して用い接合しても良い。
【0068】
(溶接条件)
本発明溶接継手における各溶接条件は、各々の溶接方法の常法の範囲で行う。例えば、溶加材使用、開先形状、溶接姿勢、トーチ前進角、シールド条件 (Arガス流量) 、溶接電流、溶接電圧、溶接速度などの基本的な溶接条件は、各々の条件のJIS 規格や各種溶接乃至アルミニウムハンドブックに従う。
【0069】
なお、本発明溶接継手の溶接工程では、側辺部底面割れ発生の基本条件を減らす意味からは、側辺部溶接部底面の温度を550 ℃以下に制御することが好ましい。ただ、本発明溶接継手では、前記した通り、側辺部溶接部底面の温度が550 ℃を越えても側辺部底面割れを抑制できる。したがって、この側辺部溶接部底面の温度制御を含めて、何ら特別な溶接方法や条件を必要とせず、各々の溶接方法の常法の範囲で行える点が、本発明の利点でもある。
【0070】
因みに、側辺部溶接部底面の最高温度を550 ℃以下に制御する方法は、側辺部溶接部への入熱を少なくする、溶接部底面や側辺部面など、抜熱し易い部分に銅などの当て金を接触させて抜熱するなどの公知の手段が適宜選択される。
【0071】
(溶加材)
溶接に用いる溶加材 (棒) は、前記した側辺部底面割れとの相関から、Al合金溶加材自体にも前記HAZ 粒界の未凝固部分 (母材の粒界の特定金属間化合物) となることが少ない成分組成のものが好ましい。
【0072】
この点、JIS 規格に規定された5356などの5000系Al合金溶加材は、添加しても前記HAZ 粒界の未凝固部分が少なく、4000系Al合金溶加材では、前記HAZ 粒界の未凝固部分が多くなりやすい。また、特に、過剰Si型6000系Al合金板母材の溶融溶接においては、4000系Al合金溶加材は、溶接継手接合部の特性低下を招きやすい。したがって、特に、過剰Si型6000系Al合金板母材の溶接継手においては、5000系Al合金溶加材の中から選択することが好ましい。
【0073】
【実施例】
次に、本発明の実施例を説明する。まず、表1 に示すような6063、6061、6022、6111合金組成の種々の6000系Al合金熱延板(2.5mm厚) 組織を、熱延における圧下率を95% 以上と高くし、熱延の仕上げ温度を前記再結晶温度以下として、本発明規定の偏平で微細な結晶粒主体の組織とし、発明例Al合金熱延板として準備した。一方、例えば、熱延の仕上げ温度を前記再結晶温度以上として、合計の圧下率を90% として、微細等軸な再結晶主体の組織とした6000系Al合金熱延板(2mm厚) も比較例の熱延板として準備した。
【0074】
そして、これら発明例と比較例の熱延板を同じ条件でT4調質処理 (溶体化焼き入れ) を行って、前記HAZ 粒界の特定未凝固部分と、その原因となる母材の粒界の特定金属間化合物が多く存在し、前記側辺部底面割れが発生し易い、不利な継手母材条件とした。なお、調質の溶体化処理は、継手試験片サイズに切断後の母材を、硝石炉で加熱して520 〜530 ℃×60秒の溶体化処理後、ファンで空冷焼入れ処理 (冷却速度は200 ℃/ 分) して行った。
【0075】
これら調質された発明例、比較例各々の熱延板を、成形加工を模擬して3%ストレッチした後の板材を、継手母材として、前記した測定方法により、溶接線方向に対して直角方向の結晶粒の粒径r1と板厚方向の粒径 rt の測定を行った。なお、発明例においても、偏平結晶粒の中に、若干の等軸な再結晶粒が存在していたので、この等軸な再結晶粒も含めて計測して平均化した。これらの結晶組織の粒径条件を表2 に示す。
【0076】
次に、これら調質された発明例の板母材同士と、比較例の板母材同士とを、5356Al合金溶加材によって、溶接継手を製作した。
【0077】
溶接継手の溶接は、一方のAl合金板母材1 の端長さt を10mmとして、この部分で前記 3 に示す突き合わせ溶接 (溶接長さ140mm)を、MIG 溶接、TIG 溶接、CO2 レーザー溶接により行った。各々の溶接条件は表3 に示す。なお、いずれの溶接においても、側辺部溶接部底面における最高温度は、あえて不利な条件となるよう、側辺部底面割れが生じ易い550 ℃を越える温度となるようにした。
【0078】
このようにして得た溶接継手の側辺部底面割れの有無と長さ(mm)を調査した。そして、溶接継手の試験片を採取し、溶接継手の引張強度 (σB ) をJIS Z 2241に従い測定した。そして母材の引張強度から溶接継手の母材比効率 (継手効率) も算出した。これらの結果を表2 に示す。なお、T4調質処理された熱延板の耐力は、6063で190MPa、6061で255MPa、6022で225MPa、6111で280MPaである。
【0079】
表3 から明らかな通り、溶接線方向に対して直角方向の結晶粒の粒径r1と板厚方向の粒径 rt の本発明規定を満足する発明例No.1〜5 の溶接継手は、MIG 溶接、TIG 溶接、CO2 レーザー溶接などの溶接方法によらず、側辺部底面割れが発生せず、継手強度が母材比効率で95% 以上である。
【0080】
一方、これに対し、結晶粒のアスペクト比 (溶接線方向に対して直角方向の平均粒径r1と板厚方向の平均粒径r t との比 r1/r t ) が2 未満および/ または板厚方向の平均粒径r t が100 μm を越えるAl合金板母材を組み合わせて成る比較例No.6〜14の溶接継手は、MIG 溶接、TIG 溶接、CO2 レーザー溶接などの溶接方法によらず、共通して側辺部底面割れが発生しており、継手強度も母材比効率で90% 未満と著しく低い。
【0081】
以上の実施例の結果から、過剰Si型を含め、6000系Al合金溶接継手における、側辺部底面割れを防止するための、本発明規定の臨界的な意義が裏付けられる。
【0082】
【表1】

Figure 0003726034
【0083】
【表2】
Figure 0003726034
【0084】
【表3】
Figure 0003726034
【0085】
【発明の効果】
本発明によれば、側辺部底面割れを防止した6000系Al合金材継手および溶接継手用Al板母材を提供を提供することが可能となる。したがって、特性の優れた過剰Si型を含めた6000系Al合金板材の自動車用途などへの拡大を図れる点でも、工業的な価値が大きい。
【図面の簡単な説明】
【図1】本発明に係るAl合金板母材の結晶粒の規定の定義を示す説明図である。
【図2】本発明に係る隅肉溶接Al合金継ぎ手を示す説明図である。
【図3】本発明に係る突き合わせAl合金継ぎ手を示す説明図である。
【図4】過剰Si型AA6022Al合金材継手の側辺部溶接部に生じた側辺部底面割れを示す平面図である。
【図5】側辺部底面割れの試験に用いた溶接用試験片(板)を示す平面図である。
【符号の説明】
1;6000系Al合金材、2;Al合金材の側辺部、3;溶接部 (溶接線) 、
4;側辺部底面割れ、5;継手、6;Al合金材、7;溶接トーチ、[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a 6000 series aluminum alloy welded joint (hereinafter, aluminum is simply referred to as Al) and an aluminum alloy welded base material for the welded joint, which prevent weld cracks on the bottom surface of the welded portion on the side of the joint.
[0002]
[Prior art]
For members such as panels, frames, and members of transport equipment such as automobiles, there are joints (welded joint members) in which the molded Al alloy plates are welded together or the molded Al alloy plates and Al alloy profiles are welded together. It has come to be used.
[0003]
As the Al alloy plate base material for these welded joints, 5000 series stipulated in the AA to JIS standards conventionally used as Al alloys for welded structures and 6000 series such as 6063 and 6061 (hereinafter referred to as AA to JIS). 7N01, 7003 and other 7000 series Al alloy rolled plates (thick plates are hot-rolled plates, thin plates are cold-rolled plates) are used.
[0004]
Among these 6000 series (Al-Mg-Si series) Al alloys, Si / Mg is 1 or more, such as 6061, 6N01, 6016, 6111, 6022, etc. according to AA or JIS standards. Excess Si type 6000 series Al alloy base metal contained in is treated with solution treatment and quenching treatment (quality symbol T4) and subsequent aging treatment (quality symbol T6), overaging treatment (quality symbol) T7) Excellent in age-hardening properties in later properties.
[0005]
For this reason, the excess Si type 6000 series Al alloy ensures formability with low proof stress during molding such as press molding and bending, and heats at a relatively low temperature such as 170 ° C in the paint baking process of the molded parts. However, it has the characteristic that the required strength can be satisfied by increasing the yield strength. Further, since the amount of alloying elements is small as compared with the 5000 series and 7000 series Al alloys, it is excellent in recyclability such that scrap can be reused as a melting raw material of the original 6000 series Al alloy.
[0006]
However, 6000 series Al alloy sheet base material, especially excess Si type 6000 series Al alloy sheet base material, is reverse to the Al alloy sheet base material such as 5000 series and 7000 series because of its excellent age hardening. However, there is a problem that the weldability (joint strength) is lowered during welding.
[0007]
The problem of this joining property is that the distance (end length) from the side part (end to edge) of the part to be welded to the weld line is short, and the welded part (side part welded part) ) Becomes noticeable when welding.
[0008]
That is, when welding a joint with fillet welding, butt welding, etc. using at least one Al alloy plate base material as an excess Si type 6000 series Al alloy, ), There is a problem that macro weld cracks that run along the weld line (welding line) are likely to occur. The crack at the bottom of the side welded portion is a remarkable tendency of the 6000 series Al alloy sheet base material, and particularly in the excess Si type 6000 series Al alloy sheet base material. And other Al alloys other than 6000 series such as 5000 series and 7000 series do not cause or hardly cause this weld bottom crack.
[0009]
In addition, this weld bottom crack usually occurs in the entire Al alloy system during welding, and welds such as the weld metal part (welded part) and the vicinity or the surrounding heat-affected part (hereinafter referred to as HAZ). The micro weld crack generated in the joint is a peculiar phenomenon that is completely different from the generation mechanism described later.
[0010]
  FIG. 4 shows weld cracks at the bottom of the weld that occur in the side welds of the 6000 series Al alloy base metal. Fig. 4 shows a 2 mm thick excess Si type AA6022Al alloy base metal (Si; 0.9%, Mg; 0.6%) test piece 1a shown in a plan view in Fig. 5, and a side portion 2 of the test piece 1a to be welded. To the weld line 3 (hereinafter referred to as end length)tThe welding state of the bottom face 1b of the specimen is shown when welding is performed with various changes. The welding method was simply a bead-on welding method, and welding was performed with a constant penetration depth. In FIG. 4, (a) is an end length of 32 mm, (b) is an end length of 24 mm, (c) is an end length of 16 mm, and (d) is an end length of 8 mm.
[0011]
As shown in FIG. 4, in FIGS. 4 (a) and 4 (b), the end length is relatively long, no weld crack is generated at the weld line 3a (bottom of the welded portion). On the other hand, as shown in FIGS. 4 (c) and 4 (d), macro weld cracks 4a and 4b running along the weld line 3a are generated as the end length becomes shorter. That is, as the end length becomes shorter, macro weld cracks are more likely to occur particularly on the side welded portion bottom surface 1b of the excess Si type 6000 series Al alloy plate base material.
[0012]
In addition, the tendency of cracks at the bottom of the welded portion on the side of the side of the 6000 series Al alloy base metal (hereinafter simply referred to as the side of the bottom of the base) is unlikely to occur with a welding method in which individual weld lines are very short. However, the weld line has a relatively long weld line and uses a heat source such as an arc, that is, high-speed arc welding such as TIG (MIG), laser welding, electron beam welding, etc. Prominent when forming. Furthermore, this tendency also occurs in the friction stir welding (FSW) method, which is a joining method in which the weld joint does not reach a relatively high temperature.
[0013]
And when such a side part bottom crack arises, the intensity | strength of Al alloy welded joint will fall remarkably and the serious problem that it cannot apply to the said members, such as a car, will arise.
[0014]
Conventionally, various improvement methods such as welding conditions have been performed from the side of welding methods such as arcing for the softening and cracking of the welded portion of the Al alloy welded joint. For example, (1) as exemplified in Japanese Patent Application Laid-Open No. 11-104860, etc., a method of welding with low heat input as much as possible, or welding joining while cooling, (2) quenching and tempering the joint after welding Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 5-222498, there is a method of recovering softening by heat treatment, such as age hardening treatment after welding materials (T1, T4 materials) before age hardening treatment.
[0015]
[Problems to be solved by the invention]
However, as described above, the side-side bottom crack, which is the subject of the present invention, is unlikely to occur in other 5000 series and 7000 series Al alloys that have been applied to the above-mentioned members such as automobiles. Therefore, the 6000 series Al alloy sheet is a new problem caused by the use of the welding application member such as an automobile, and as described above, it is also a problem specific to the 6000 series Al alloy sheet.
[0016]
Conventionally, in Japanese Patent Application Laid-Open No. 61-23580, etc., the difference in heat conduction due to the difference in the thickness of the welded material between the large-thickness member and the small-thickness member of the Al alloy material (the smaller-thickness member It has been publicly known as a problem that there is a difference in the heating rate between the two due to low heat dissipation (a thick-walled member has a slower temperature rise and a lack of heat).
[0017]
However, the problems of these known techniques are different from the side part bottom cracks which are the problems of the present invention. In addition, since the mechanism is different from the side bottom crack, the solution that installs a medium thickness member in the middle to buffer the heating rate difference is also a solution for the side bottom crack itself. I don't get it. Therefore, the side-side bottom crack, which is the subject of the present invention, has not been elucidated in detail so far, and no direct solution has been proposed.
[0018]
The present invention has been made paying attention to such circumstances, and its purpose is to prevent side-side bottom cracks, in particular, excess Si type 6000 series aluminum alloy joints and aluminum joints for welded joints. The material is to be provided.
[0019]
[Means for Solving the Problems]
  In order to achieve this object, the gist of claim 1 of the present invention 6000 series aluminum alloy joint is a welded joint obtained by welding a 6000 series aluminum alloy sheet base material defined in AA to JIS standards,Before welding to the fitting,The crystal grain of the aluminum alloy plate base materialThe rolling direction of the base material,The crystal grains are elongated in the direction perpendicular to the weld line direction, and the aspect ratio of the crystal grains (average grain size r in the direction perpendicular to the weld line direction)1And average particle size r in the plate thickness directiontRatio r1/ rt) Is 2 or more, and the average grain size r in the thickness directiontIs 100 μm or less.
[0020]
  In order to achieve this object, the gist of claim 2 of the 6000 series aluminum alloy joint of the present invention is a welded joint in which the aluminum alloy welded joint has a welded portion on the side of the joint, and at least the welded joint The crystal grains of the base material of the aluminum alloy plate at the bottom of the welded part on the side of the joint, Before welding to the joint, the rolling direction of the base material,The crystal grains are elongated in the direction perpendicular to the weld line direction, and the aspect ratio of the crystal grains (average grain size r in the direction perpendicular to the weld line direction)1And average particle size r in the plate thickness directiontRatio r1/ rt) Is 2 or more, and the average grain size r in the thickness directiontIs 100 μm or less.
[0021]
As a result of investigating the relationship between the base material structure of the 6000 series Al alloy sheet and the side part bottom cracks, the present inventors have found that the crystal grain shape of the bottom part of the welded part in the side part of the welded joint is particularly It was found that the side-side bottom cracks are correlated.
[0022]
In other words, when a 6000 series Al alloy hot-rolled sheet (a cold-rolled sheet is also used for a thin sheet of 2 mm or less) is used as a welding base material, a normal 6000 series Al alloy whose hot-rolling finishing temperature is higher than the recrystallization temperature Hot-rolled sheets are equiaxed (spherical) grains with an aspect ratio of about 1 in the thickness section parallel to the rolling direction.
[0023]
On the other hand, when the hot rolling finish temperature is lower than the recrystallization temperature and the hot rolling reduction rate and strain rate are increased, the crystal grains of the 6000 series Al alloy hot rolled sheet extend in the rolling direction (longitudinal direction of the sheet). Further, fine flat crystal grains having an aspect ratio of 1 or more in the plate thickness section parallel to the rolling direction and an average particle size in the rolling direction larger than the average particle size in the plate thickness direction are obtained.
[0024]
The present inventors have found that the side surface bottom crack is less likely to occur in the case of a flat crystal grain than in the case of an equiaxed crystal grain in the 6000 series Al alloy plate base material. I found out. It was also found that this tendency becomes prominent when the crystal grain elongation direction of the 6000 series Al alloy sheet base material at the bottom of the weld joint on the side of the weld joint is correlated with the weld line direction of the joint.
[0025]
That is, as the 6000 series Al alloy plate base material at the bottom of the welded portion on the side of the welded joint is made into flat crystal grains elongated in a direction perpendicular to the weld line direction, the flat crystal grains Aspect ratio (average grain size r perpendicular to the weld line direction)1And average particle size r in the plate thickness directiontRatio r1/ rt) Is 2 or more, the effect of preventing cracks on the bottom face of the side portion becomes remarkable.
[0026]
Furthermore, even if the crystal grains of the Al alloy plate base material are flat, the present inventors lose the effect of suppressing the side-side bottom cracks due to the flat crystal grains, The upper limit of the grain coarsening is the average grain size r in the plate thickness direction of the crystal grains at the bottom of the weld joint side part.tIt was also found that it is about 100 μm.
[0027]
As described above, in order to prevent cracks on the bottom side of the side portion, correlate the elongation direction of the crystal grains of the base material of the 6000 series Al alloy plate in the bottom portion of the welded joint side portion with the weld line direction of the joint. is necessary. For this reason, the definition of the flat crystal grain shape in the present invention is defined not as a material such as an Al alloy hot-rolled sheet but as a structure of a 6000 series Al alloy plate welded base material.
[0028]
Also, when using 6000 series Al alloy hot-rolled sheet as the base material of Al alloy sheet, before welding to the joint, condition of hot rolling of Al alloy sheet and tempering treatment conditions such as T4, T6, T7 after hot rolling Depending on the heat treatment conditions such as age hardening accompanying the forming process, the flat crystal grain shape and crystal grain size as the Al alloy plate base material may change. Depending on these conditions, there is a possibility that the definition of the flat crystal grain shape and grain size as the Al alloy sheet base material in the present invention is not included. For this reason, the definition of the flat crystal grain shape and grain size in the present invention is not the state of the hot rolled sheet, but the structure of the 6000 series Al alloy weld base material after the hot-rolled sheet is formed or tempered. To do.
[0029]
The reason why the 6000 series Al alloy base metal structure (the crystal grain shape of the bottom portion of the welded portion on the side of the welded joint) correlates with the bottom of the side portion is thought to be as follows.
[0030]
First, as for the situation on the welded part side, in the side part welded part where the end length of the 6000 series Al alloy plate base material is short, the Al alloy plate near the welded part is longer than other welded parts with sufficiently long end lengths. The mass of the base material is extremely small. For this reason, heat input by welding is not easily dissipated by heat transfer through the Al alloy plate base material. As a result, during welding, the bottom of the side welded portion tends to be held on the higher temperature side, which exceeds 550 ° C., than the bottom of the other welded portions.
[0031]
On the other hand, in the case of 6000 series Al alloy plate base material, the base material is related to the Al-Mg-Si (excess Si type) composition and tempering treatment such as T4, T6, T7, etc. From the material stage, many intermetallic compounds are originally present at the grain boundaries. As a result, an unsolidified portion (unsolidified intermetallic compound) inevitably exists in the HAZ grain boundary at the bottom of the side weld. The intermetallic compound at the unsolidified portion or grain boundary is particularly large in the 6000 series Al alloy plate base material such as excess Si type, and is liable to cause a bottom crack at the side portion.
[0032]
This is because when the maximum temperature of the bottom surface of the side welded part is maintained on the high temperature side exceeding 550 ° C., the solidification timing is delayed only in the unsolidified part or the intermetallic compound part of the grain boundary. This is because, when the contraction stress is applied during the contraction, the grain boundary of the unsolidified portion cannot be withstood and becomes a micro crack that makes it easy to open the mouth, resulting in a side face bottom crack.
[0033]
For example, in the case of butt welding of an Al alloy plate base material and an Al alloy plate base material, when the welded portion (melted portion) shrinks as the welded portion solidifies, there is a shrinkage stress that tends to spread the welded portion outward. Acts on the weld. At this time, if the maximum temperature of the bottom of the side welded part is maintained on the high temperature side exceeding 550 ° C, the 6000 series Al alloy plate base material, particularly the HAZ grain boundary on the bottom of the side part, , The timing of solidification is delayed. For this reason, the restraint force of the matrix is relatively weak, the transmission and absorption of the contraction stress is insufficient, and the side face bottom cracks are likely to occur.
[0034]
The tendency is that the excess Si-type 6000 series Al alloy plate base material with more unsolidified parts, the higher the maximum temperature of the bottom of the side part at the time of welding exceeds 550 ° C, and the higher the temperature exceeds 550 ° C. The longer it is held at temperature, the stronger it becomes.
[0035]
Here, when the structure of the 6000 series Al alloy base metal (joint side side weld bottom) is a regular equiaxed crystal grain, the grain boundary area in the plate thickness direction is large and the grain boundary direction is in the plate thickness direction. Is linear with respect to. For this reason, the binding force of the matrix becomes relatively weak. As a result, the micro cracks at the grain boundaries of the unsolidified part that occur when the shrinkage stress acts during the solidification shrinkage of the weld are likely to propagate in the plate thickness direction, and the transmission and absorption of the shrinkage stress becomes insufficient. It tends to lead to the occurrence of cracks on the bottom of the side part.
[0036]
On the other hand, the grain interface area in the plate thickness direction is increased as the weld bottom surface portion on the side portion of the weld joint is made to be fine flat crystal grains elongated in a direction perpendicular to the weld line direction as in the present invention. And the grain boundary direction is non-linear with respect to the plate thickness direction. For this reason, the binding force of the matrix becomes relatively strong. As a result, when the shrinkage stress acts, micro cracks in the grain boundary of the unsolidified portion are difficult to propagate in the thickness direction, and the transmission of the shrinkage stress It is presumed that absorption is sufficiently performed and cracking of the bottom of the side portion does not occur.
[0037]
According to this side side bottom crack mechanism, if the maximum temperature of the side side bottom is set to 550 ℃ or less, side side bottom cracks will not occur, but depending on the joint design and welding conditions, the side There is a possibility that the maximum temperature at the bottom of the weld zone will be maintained on the high temperature side exceeding 550 ° C.
[0038]
It is also effective to reduce the unsolidified portion of the HAZ grain boundary of the 6000 series Al alloy plate base material (specific intermetallic compound at the grain boundary of the base material), which is another cause of the side face bottom crack. is there. However, especially in the case of excess Si type 6000 series Al alloy plate base material, there are cases where intermetallic compounds at the grain boundaries cannot be reduced due to characteristics such as age hardening and restrictions on production.
[0039]
Therefore, even when the maximum temperature of the bottom surface of the side-side welded part is maintained on the high temperature side exceeding 550 ° C, or even when the maximum temperature of the bottom surface of the side-side part can be 550 ° C or lower, Even if it is an excess Si type 6000 series Al alloy sheet base material with many unsolidified parts, or even a 6000 series Al alloy sheet base material with a small number of unsolidified parts, the side part bottom cracks are ensured In order to prevent this, in the present invention, the bottom surface portion of the welded portion on the side of the welded joint has a fine and flat crystal grain structure elongated in a direction perpendicular to the weld line direction.
[0040]
Making the base structure of the 6000 series Al alloy sheet of the present invention a fine and flat crystal grain structure elongated in a direction perpendicular to the welding line direction, as described above, strengthening the binding force of the matrix and welding It leads to sufficient transmission and absorption of shrinkage stress during solidification. And this point suppresses not only the side side bottom cracks of the main object of the present invention but also micro or macro weld cracks that occur in weld joints such as weld metal parts and HAZ during normal welding construction. It also leads to an effect.
[0041]
Therefore, in the present invention, the side face bottom crack does not occur, in other words, even in the case of a welded joint that does not have a welded part (side welded part) with a short end length, during normal welding construction. It can be applied for the purpose of suppressing micro or macro weld cracks that occur in welded joints such as weld metal parts and HAZ. For this reason, claim 1 of the present invention also includes the case of a welded joint that does not have a side-side weld where a side-side bottom crack occurs.
[0042]
Further, since the present invention has an excellent effect of suppressing side side bottom cracks as described above, as described in claim 3, among 6000 series Al alloys, the tendency of side side bottom cracks is particularly large. : 0.4 to 0.8% (mass%, the same applies hereinafter), Mg: It is preferably applied to an excess Si type 6000 series Al alloy material containing 0.4 to 0.8%.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
 (Grain structure)
The definition of the crystal grain structure of the Al alloy sheet base material of the present invention will be described using an example of a butt weld joint shown in FIG. In Fig. 1, 5a is a welded joint, 1 is a 6000 series Al alloy plate base material to be welded, 6 is the same 6000 series or other Al alloy plate base material, 1b is the bottom of the side edge of the Al alloy plate base material 1, 2 is a side portion of the Al alloy base material 1, 3 is a welded portion, and x is an end length from the side portion 2 to the weld line 3a.
[0044]
In FIG. 1, in the present invention, as described above, the crystal grain structure of at least the welded portion bottom surface 1b of the side portion of the welded joint of the 6000 series Al alloy plate base material 1 used for the joint is the direction A of the weld line 3a. Crystal grains 7 elongated in the direction B perpendicular to the direction of the crystal grains 7 and the aspect ratio of the grains 7 (average grain size r perpendicular to the weld line direction r1And average particle size r in the plate thickness directiontRatio r1/ rt) Is 2 or more and the average grain size r in the thickness direction ttIs 100 μm or less (L is the plate width direction).
[0045]
Average grain size r in the direction B perpendicular to the direction A of the weld line 3a1And average grain size r in the thickness direction ttRatio r1/ rtIs less than 2, it is close to the normal equiaxed crystal grains described above, the grain boundary area in the plate thickness direction is large, and the grain boundary direction is linear with respect to the plate thickness direction. For this reason, the restraining force of the matrix becomes relatively weak, and microcracking at the grain boundaries of the unsolidified part that occurs when the shrinkage stress in the direction of the arrow indicated by Z in FIG. Tends to propagate in the plate thickness direction, and the transmission and absorption of the contraction stress becomes insufficient, and the side surface bottom surface cracks are likely to occur.
[0046]
The average particle size r in the thickness direction ttIf it exceeds 100 μm, not only the specific intermetallic compound at the grain boundary that can be the unsolidified part, but also the grain boundary precipitate itself that has precipitated at the grain boundary, and the precipitate-free zone formed along the grain boundary. (PFZ: Precipitation Free Zone) itself gets bigger. For this reason, when the shrinkage stress acts in the middle of solidification shrinkage of the welded portion, it acts as a starting point of microfracture and a point that promotes propagation of fracture, including microcracking at the grain boundaries of the unsolidified part, Cracks easily develop along the grain boundaries, and side side bottom cracks are likely to occur.
[0047]
The crystal grain structure control of the 6000 series Al alloy sheet base material is mainly performed by a hot rolling process of the 6000 series Al alloy sheet for manufacturing the 6000 series Al alloy sheet base material, as will be described later.
[0048]
However, in the present invention, it is allowed to be a mixed grain structure or a composite structure in which equiaxed recrystallized grain structures having an aspect ratio of about 1 are mixed within a range that does not inhibit the side-side bottom-surface crack suppressing effect. As a matter of fact, it is difficult to make the structure of a 6000 series Al alloy sheet 100% pure fine flat grain structure by controlling the hot rolling process, and such control is not economical. In addition to this meaning, there is also a variation in the fine flat crystal grains themselves. In the present invention, as defined in the claims, the grain diameter r of the crystal grains in the direction perpendicular to the weld line direction is used.1And grain size rtEach value (measured value) is averaged.
[0049]
The grain size r of these crystal grains1And grain size rtThe measurement of the 6000 series Al alloy plate base material before welding construction, after electrolytic etching the plate thickness direction cross section perpendicular to the weld line direction, the same cross section with an optical microscope of 50 times magnification, Observe 10 fields in the range of plate thickness x 0.1mm and measure (calculate) the average value. At this time, as described above, if equiaxed recrystallized grains exist in the flat crystal grains, the equiaxed recrystallized grains are also measured and averaged.
[0050]
 (Al alloy for base material)
The Al alloy for the base material used in the present invention is applicable to all 6000 series (Al-Mg-Si series) Al alloys defined in AA or JIS standards. However, among these 6000 series Al alloys, the tendency of cracks on the bottom of the side portion is particularly large, Si / Mg is 1 or more, Si is excessively contained with respect to Mg content, 6N01, 6016, 6111, 6022 Excess Si type 6000 series Al alloy is the target and effective.
[0051]
As a preferable component composition of the Al alloy for the base material of the present invention, in order to satisfy the required properties such as the required strength for the welded structure, Mg: 0.2 to 1.0% (mass%, the same shall apply hereinafter), Si: It is preferable that Si is excessively selected from the range of 0.6 to 1.6%.
[0052]
In addition, other alloy elements such as Mn, Cr, Zr, Ti, B, Fe, Zn, Ni, and V are basically impurity elements. However, from the viewpoint of recycling 6000 series alloys, not only high-purity Al bullion but also 6000 series alloys, other Al alloy scrap materials, and low-purity Al bullion are used as melting materials. Including. For this reason, these elements are allowed to be contained within the JIS or AA standards as long as they do not impair the effect of improving various properties intended by the present invention. Therefore, in the present invention, being defined in AA to JIS standards means that these standards are satisfied.
[0053]
 (Manufacture of base materials)
The Al alloy sheet base material itself in the present invention is manufactured as a hot rolled sheet having a sheet thickness of 2 mm or more by conventional processes such as melting, casting, homogenizing heat treatment, hot rolling and the like. If the thickness of the Al alloy sheet base material is 2 mm or less, it is further subjected to intermediate annealing if necessary, and is formed into a cold-rolled sheet by cold rolling.
[0054]
In the manufacturing process, in order to make the microstructure of the 6000 series Al alloy hot-rolled sheet into fine flat crystal grains defined in the present invention, the hot-rolling conditions are controlled. That is, for example, it is preferable to set the finishing temperature in hot rolling to a recrystallization temperature (300 to 400 ° C.) or lower and further increase the rolling reduction rate and strain rate of hot rolling. On the other hand, when the finishing temperature of hot rolling is higher than the recrystallization temperature, an equiaxed recrystallization structure is mainly developed.
[0055]
The flat crystal grains of the 6000 series Al alloy hot-rolled sheet manufactured in this way are the crystal grains in the plate thickness section parallel to the rolling direction of the plate, and the crystal grains perpendicular to the weld line direction referred to in the base material. Average particle size r1The average grain size in the rolling direction corresponding totIt becomes a fine flat crystal grain structure (with an aspect ratio of 2 or more) that is longer than the average grain size in the thickness direction corresponding to.
[0056]
For this reason, in order to use a 6000 series Al alloy hot-rolled sheet as a joint base material, the base material direction in various welded joints is set so that the average grain size in the base material rolling direction is larger than the weld line direction. Average grain size r1It is necessary to use them in correspondence or correspondence so that When this base material direction is changed and the average particle diameter (extended) in the base material rolling direction is parallel to the weld line direction, etc. The effect of suppressing the side surface bottom surface cracking is reduced in relation to the direction of action of the shrinkage stress.
[0057]
In addition, these Al alloy hot-rolled sheets (including cold-rolled sheets) are subjected to solution treatment and quenching treatment (appropriate symbol T4) after or before appropriate forming processing such as pressing and bending into a joint shape. ) And subsequent aging treatment (quality symbol T6) and overaging treatment (quality symbol T7) and used as a base material for welded joints or welded parts.
[0058]
These tempered Al alloy hot-rolled plates, etc. are not limited to the grain shape structure control of the present invention, and the grain boundary structure control is not limited to the HAZ grain boundary that leads to the side-side bottom cracks. It is preferable to suppress as much as possible the specific intermetallic compounds at the unsolidified portion and the grain boundary of the base material that causes the solidified portion.
[0059]
For this purpose, it is preferable to mainly control the tempering process together with the manufacturing history of the alloy component and hot composition processing or in response to the alloy component and the manufacturing history.
[0060]
More specifically, (1) Solution treatment is performed at a high temperature of 510 ° C. or higher as solution treatment conditions. (2) Increase the cooling rate during quenching after solution treatment to 300 ° C / min or higher. For this purpose, the final solution treatment and quenching treatment should be carried out in a continuous heat treatment furnace capable of heat treatment by continuously passing a coil or the like (3) instead of a batch type. preferable. In the case of the batch type, the cooling rate is slowed down, and the specific intermetallic compound form that is the main cause of side-side bottom cracks is likely to occur particularly in excess excess Si type 6000 series Al alloy sheet base material.
[0061]
Further, in the quenching treatment after the solution treatment, it is not simply cooled to room temperature and left as it is, but as a preliminary aging treatment, (4) once quenched to room temperature and then reheated to a temperature of 50 to 120 ° C. Or 5) Hold the quenching end temperature at a high temperature of 50-120 ° C and hold it for 0.2-24 hours, or reheat and hold it at a temperature of 50-120 ° C for 0.2-24 hours. It is preferable to keep it wound up as it is or after reheating. This preliminary aging treatment makes it difficult to form the specific intermetallic compound form.
[0062]
In addition, when performing aging treatment of a 6000 series Al alloy plate base material before welding, compared with normal aging treatment and overaging treatment conditions, (6) the aging treatment temperature is set to the low temperature side of 80 to 160 ° C, It is preferable to set the aging treatment time to a sub-aging treatment range on the short side of 1 to 10 hours. When performing normal aging treatment or overaging treatment, especially in the excessive Si type 6000 series Al alloy plate base material, the above-mentioned specific intermetallic compound form that is the main cause of side side bottom cracks tends to occur. Because there is, attention is necessary.
[0063]
 (Welding method)
The welding method targeted by the present invention is welding of a 6000 series Al alloy plate base material, and has a welding construction site with a short end length, and a heat source such as an arc is liable to cause a bottom crack at the side portion. This is a fusion welding method with a long welding line.
[0064]
  As described above, the cause or mechanism of the side-side bottom surface cracking of the 6000 series Al alloy material is the maximum temperature of the bottom-side welded portion with a short end length and the unsolidified portion of the HAZ grain boundary during solidification of the welded portion. It is a metallurgical problem called correlation. Therefore, it is a common problem that occurs regardless of the type of welding method in a fusion welding method in which this metallurgical phenomenon occurs in common.
[0065]
Examples of such welding methods include high-speed arc welding such as TIG (TIG) and MIG (MIG), welding methods such as laser welding and electron beam, and friction stir welding (FSW) methods. Therefore, the welding method which does not produce the side part bottom face crack of a 6000 series Al alloy material welded joint is not considered.
[0066]
 (Welded joint)
In addition, the welded joint targeted by the present invention uses a 6000 series Al alloy plate base material as one or both base materials, has a welding construction site with a short end length, and can cause a bottom crack at the side portion. If the joint has high performance, it can be applied to various welded joints such as fillet welding shown in FIG. 2 and butt welding shown in FIG. In FIGS. 2 and 3, 5b and 5c are welded joints, 1 is a 6000 series Al alloy plate base material to be welded, 6 is the same 6000 series or other Al alloy plate base material, and 1b is an Al alloy plate base material. Reference numeral 1 denotes a bottom face of the side part, 2 denotes a side part of the Al alloy base material 1, 3 denotes a welded part, x denotes an end length from the side part 2 to the weld line 3a, and 7 denotes a welding torch.
[0067]
In these welded joints, appropriate shapes such as plates, profiles and pipes are selected as a combination of joints in accordance with the design shape of the automobile member or the like. In addition, welded joints are not necessarily 6000 series Al alloy plate base materials or excess Si type 6000 series Al alloy plate base materials, but are the same as ordinary Al alloy joints or depending on the purpose, 3000 series, 5000 series , 6000 series, 7000 series Al alloy materials with different components and alloys may be used for joining to the 6000 series Al alloy hot-rolled sheet base material.
[0068]
 (Welding conditions)
Each welding condition in the welded joint of the present invention is performed within the range of ordinary methods of each welding method. For example, basic welding conditions such as use of filler metal, groove shape, welding posture, torch advance angle, shielding conditions (Ar gas flow rate), welding current, welding voltage, welding speed, etc. Follow various welding and aluminum handbooks.
[0069]
In the welding process of the welded joint of the present invention, it is preferable to control the temperature of the bottom surface of the side-side welded portion to 550 ° C. or less from the viewpoint of reducing the basic condition for generating the side-side bottom surface cracks. However, in the welded joint of the present invention, as described above, even when the temperature of the bottom surface of the side side welded portion exceeds 550 ° C., the side surface bottom surface crack can be suppressed. Therefore, it is also an advantage of the present invention that no special welding method and conditions are required, including temperature control of the bottom surface of the side welded portion, and that it can be performed within the range of ordinary methods of each welding method.
[0070]
By the way, the method of controlling the maximum temperature of the bottom of the side welds to 550 ° C or less is to reduce the heat input to the side welds and to remove heat from the parts such as the weld bottoms and side surfaces, where heat is easily removed. A known means such as removing heat by contacting a metallurgy such as the above is appropriately selected.
[0071]
 (Fused material)
The filler material (bar) used for welding is based on the correlation with the above-mentioned side side bottom cracks, and the Al alloy filler material itself also has an unsolidified portion of the HAZ grain boundary (specific intermetallic compound at the grain boundary of the base metal). It is preferable that the composition of the component is small.
[0072]
In this regard, even if 5000 series Al alloy filler metal such as 5356 specified in JIS standard is added, the unsolidified portion of the HAZ grain boundary is small, and 4000 series Al alloy filler material has less of the HAZ grain boundary. There are many unsolidified parts. In particular, in fusion welding of an excess Si type 6000 series Al alloy sheet base material, the 4000 series Al alloy filler metal is liable to cause deterioration of the characteristics of the weld joint joint. Therefore, in particular, in the welded joint of the excess Si type 6000 series Al alloy plate base material, it is preferable to select from 5000 series Al alloy filler metal.
[0073]
【Example】
Next, examples of the present invention will be described. First, various 6000 series Al alloy hot-rolled sheets (2.5 mm thick) with 6063, 6061, 6022, and 6111 alloy compositions as shown in Table 1 have a hot rolling ratio of 95% or higher and hot rolling. The finishing temperature was set to be equal to or lower than the recrystallization temperature, and a flat and fine crystal grain-based structure defined in the present invention was prepared as an invention example Al alloy hot-rolled sheet. On the other hand, for example, a 6000 series Al alloy hot-rolled sheet (2 mm thick) with a fine equiaxed recrystallization main structure with a hot rolling finishing temperature equal to or higher than the recrystallization temperature and a total rolling reduction of 90% is also compared. Prepared as an example hot rolled sheet.
[0074]
Then, T4 tempering treatment (solution hardening) was performed on the hot-rolled sheets of the inventive examples and the comparative examples under the same conditions, and the specific unsolidified portion of the HAZ grain boundary and the grain boundary of the base material that caused it There were many specific intermetallic compounds of the above, and it was set as a disadvantageous joint base material condition in which the side face bottom cracks easily occur. The solution treatment for tempering is performed by heating the base material after cutting to a joint specimen size in a glass furnace to 520 to 530 ° C x 60 seconds, followed by air cooling and quenching with a fan (cooling rate is 200 ° C./min).
[0075]
The tempered hot rolled sheets of the inventive examples and comparative examples were each subjected to a 3% stretch by simulating the forming process, and the joint base material was used as a joint base material by the measurement method described above, and perpendicular to the weld line direction. Grain size r1And grain size rtWas measured. In the inventive examples, some equiaxed recrystallized grains existed in the flat crystal grains. Therefore, the equiaxed recrystallized grains were also measured and averaged. Table 2 shows the grain size conditions of these crystal structures.
[0076]
Next, a welded joint was manufactured by using the 5356Al alloy filler metal between the tempered plate base materials of the invention example and the comparative base plate materials.
[0077]
  The welded joint is welded with the end length t of one Al alloy plate base material 1 being 10 mm, and this portionFigure ThreeButt welding (welding length 140mm) shown in Fig. 1 is used for MIG welding, TIG welding, CO2Performed by laser welding. Each welding condition is shown in Table 3. In any welding, the maximum temperature at the bottom surface of the side welded part was set to a temperature exceeding 550 ° C. at which the side part bottom cracks are likely to occur.
[0078]
The welded joint thus obtained was examined for the presence of cracks and the length (mm) on the bottom side. Then, a specimen of the welded joint was taken and the tensile strength (σB) Was measured according to JIS Z 2241. The base metal specific efficiency (joint efficiency) of the welded joint was also calculated from the tensile strength of the base metal. These results are shown in Table 2. The proof stress of the hot-rolled sheet subjected to the T4 tempering treatment is 190 MPa at 6063, 255 MPa at 6061, 225 MPa at 6022, and 280 MPa at 6111.
[0079]
As is clear from Table 3, the grain size r of the crystal grains perpendicular to the weld line direction1And grain size rtThe welded joints of Invention Examples No. 1 to 5 satisfying the present invention provisions are MIG welding, TIG welding, CO2Regardless of the welding method such as laser welding, side side bottom cracks do not occur, and the joint strength is 95% or more in terms of the base metal specific efficiency.
[0080]
On the other hand, the aspect ratio of crystal grains (average grain size r in the direction perpendicular to the weld line direction)1And average particle size r in the plate thickness directiontRatio r1/ rt) Is less than 2 and / or the average grain size r in the thickness directiontThe welded joints of Comparative Examples Nos. 6 to 14, which are made of a combination of Al alloy plate base materials with a thickness exceeding 100 μm, are MIG welding, TIG welding,2Regardless of the welding method, such as laser welding, side side bottom cracks occur in common, and the joint strength is remarkably low at less than 90% in base metal efficiency.
[0081]
The results of the above examples support the critical significance of the present invention for preventing side side bottom cracks in 6000 series Al alloy welded joints including excess Si type.
[0082]
[Table 1]
Figure 0003726034
[0083]
[Table 2]
Figure 0003726034
[0084]
[Table 3]
Figure 0003726034
[0085]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide provision of the 6000 series Al alloy material joint which prevented the side part bottom face crack, and the Al plate base material for welded joints. Therefore, the industrial value is also great in that the 6000 series Al alloy sheet material including the excess Si type having excellent characteristics can be expanded to automobile applications.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing the definition of the definition of crystal grains of an Al alloy sheet base material according to the present invention.
FIG. 2 is an explanatory view showing a fillet welded Al alloy joint according to the present invention.
FIG. 3 is an explanatory view showing a butt Al alloy joint according to the present invention.
FIG. 4 is a plan view showing a side-side bottom crack generated in a side-side weld of an excess Si type AA6022Al alloy joint.
FIG. 5 is a plan view showing a welding test piece (plate) used for a test of a side face bottom crack.
[Explanation of symbols]
1; 6000 series Al alloy material, 2; side of Al alloy material, 3; weld (welding line),
4; side side bottom crack, 5; joint, 6; Al alloy material, 7; welding torch,

Claims (4)

AA乃至JIS 規格に規定される6000系アルミニウム合金板母材が溶接施工されて成る溶接継手であって、継手に溶接する前に、アルミニウム合金板母材の結晶粒を、母材の圧延方向であって、溶接線方向に対して直角方向に伸長させた結晶粒とするとともに、該結晶粒のアスペクト比 (溶接線方向に対して直角方向の平均粒径r1と板厚方向の平均粒径r t との比 r1/r t ) を2 以上とし、かつ板厚方向の平均粒径r t を100 μm 以下とすることを特徴とするアルミニウム合金溶接継手。A welded joint made by welding a 6000 series aluminum alloy sheet base material stipulated in AA to JIS standards. Before welding the joint to the joint, the crystal grains of the aluminum alloy sheet base material are aligned in the rolling direction of the base material. And crystal grains elongated in a direction perpendicular to the weld line direction, and the aspect ratio of the crystal grains (average grain size r 1 in the direction perpendicular to the weld line direction and average grain diameter in the plate thickness direction) aluminum alloy welded joint, characterized in that r t and the ratio r 1 / r t) is 2 or more, and an average particle size r t in the thickness direction and 100 [mu] m or less. 前記アルミニウム合金溶接継手が継手側辺部の溶接部を有する溶接継手であって、少なくとも前記溶接継手側辺部の溶接部底面部分のアルミニウム合金板母材の結晶粒を、継手に溶接する前に、母材の圧延方向であって、溶接線方向に対して直角方向に伸長させた結晶粒とするとともに、該結晶粒のアスペクト比 (溶接線方向に対して直角方向の平均粒径r1と板厚方向の平均粒径r t との比 r1/r t ) を2 以上とし、かつ板厚方向の平均粒径r t を100 μm 以下とする請求項1に記載のアルミニウム合金溶接継手。The aluminum alloy welded joint is a welded joint having a welded portion on the side portion of the joint, and at least before the crystal grains of the aluminum alloy plate base material on the bottom portion of the welded portion on the side portion of the welded joint are welded to the joint A crystal grain extending in a direction perpendicular to the weld line direction in the rolling direction of the base metal, and an aspect ratio of the crystal grain (average grain size r 1 perpendicular to the weld line direction and thickness direction of the average particle ratio r 1 / r t) of the diameter r t is 2 or more, and aluminum alloy welded joint according to claim 1, wherein the average particle diameter r t in the thickness direction and 100 [mu] m or less. 前記6000系アルミニウム合金板母材が、Si:0.4〜0.8% (質量% 、以下同じ) 、Mg:0.4〜0.8%を含む過剰Si型6000系アルミニウム合金熱延板である請求項1または2に記載のアルミニウム合金溶接継手。  The 6000 series aluminum alloy sheet base material is an excess Si type 6000 series aluminum alloy hot rolled sheet containing Si: 0.4 to 0.8% (mass%, the same shall apply hereinafter) and Mg: 0.4 to 0.8%. The aluminum alloy welded joint described. 前記請求項1乃至3のいずれか1項に記載されたアルミニウム合金溶接継手に用いられる6000系アルミニウム合金板母材。  The 6000 series aluminum alloy plate base material used for the aluminum alloy welded joint according to any one of claims 1 to 3.
JP2001157000A 2001-05-25 2001-05-25 Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints Expired - Fee Related JP3726034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157000A JP3726034B2 (en) 2001-05-25 2001-05-25 Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157000A JP3726034B2 (en) 2001-05-25 2001-05-25 Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints

Publications (2)

Publication Number Publication Date
JP2002348628A JP2002348628A (en) 2002-12-04
JP3726034B2 true JP3726034B2 (en) 2005-12-14

Family

ID=19000929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157000A Expired - Fee Related JP3726034B2 (en) 2001-05-25 2001-05-25 Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints

Country Status (1)

Country Link
JP (1) JP3726034B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128540A1 (en) * 2009-05-08 2010-11-11 トヨタ自動車株式会社 Tailor welded blank material, and method for manufacture of structural member by using the same
JP6185870B2 (en) * 2014-03-27 2017-08-23 株式会社神戸製鋼所 Aluminum alloy forging for welded structural member and method for producing the same

Also Published As

Publication number Publication date
JP2002348628A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
US10016837B2 (en) Method of joining heat-treatable aluminum alloy members by friction stir welding
US9926619B2 (en) Aluminum alloy
JP2005526901A (en) Weldable high strength Al-Mg-Si alloy
JP2015501877A5 (en)
CN112743228A (en) Laser welded joint and automobile frame part
CN107378312A (en) A kind of ER Ti43 titanium alloy welding wires and preparation method thereof
JP4789253B2 (en) Aluminum alloy bonding material excellent in formability and manufacturing method thereof
JP3726034B2 (en) Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints
EP2837704B1 (en) Aluminium alloy
JP3851519B2 (en) Welding method of aluminum alloy material
JP2004360054A (en) Jointed heat-treated aluminum alloy material excellent in ductility
JP4351025B2 (en) Method for joining heat-treatable aluminum alloy materials
JP4351024B2 (en) Friction stir welding method for heat-treatable aluminum alloy material
JP6679269B2 (en) Al alloy material for high energy beam welding
JP3726033B2 (en) Aluminum alloy welded joints and wrought aluminum alloys for welded joints
JP6679296B2 (en) Al alloy material for high energy beam welding and method for producing the same
JP2008207249A (en) Method for welding aluminum alloy material having excellent weld crack resistance, and method for evaluating weld crack resistance of aluminum alloy material
JP2002294381A (en) Aluminum alloy welded joint for forming
US6955785B2 (en) Aluminum alloy for rapidly cooled welding and welding method therefor
JP2002115019A (en) Aluminum alloy having excellent weld crack resistance
JP2002115037A (en) Aluminum alloy welded joint having high joint efficiency
JP4254583B2 (en) Cr-containing alloy with excellent strain aging resistance of welds
JP2021511218A (en) Welding electrodes for aluminum plates or steel plates and methods for obtaining them
JPH11199994A (en) Zinc phosphate treating method for aluminum alloy welded member and aluminum alloy welding member
JP2003164990A (en) Welding joint material for aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Ref document number: 3726034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees