JP2002115019A - Aluminum alloy having excellent weld crack resistance - Google Patents

Aluminum alloy having excellent weld crack resistance

Info

Publication number
JP2002115019A
JP2002115019A JP2000307855A JP2000307855A JP2002115019A JP 2002115019 A JP2002115019 A JP 2002115019A JP 2000307855 A JP2000307855 A JP 2000307855A JP 2000307855 A JP2000307855 A JP 2000307855A JP 2002115019 A JP2002115019 A JP 2002115019A
Authority
JP
Japan
Prior art keywords
alloy material
alloy
welding
aluminum alloy
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000307855A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Ema
光弘 江間
Takeshi Matsumoto
松本  剛
Seiji Sasabe
誠二 笹部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000307855A priority Critical patent/JP2002115019A/en
Publication of JP2002115019A publication Critical patent/JP2002115019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy having excellent weld crack resistance in an arc welding method. SOLUTION: The aluminum alloy material in which no generation peak at <=550 deg.C can be practically seen in the cooling curve from melt obtained by measuring thermal change in the solidification process of the aluminum alloy material to be welded by means of differential thermal analysis can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アークなどの溶融
溶接される際の、耐溶接割れ性に優れたアルミニウム合
金材 (以下、アルミニウムを単にAlと言う) に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy material (hereinafter, aluminum is simply referred to as Al) having excellent resistance to weld cracking when being subjected to fusion welding of an arc or the like.

【0002】[0002]

【従来の技術】溶接構造用Al合金としては、5052、508
3、5154、5182などのAA乃至JIS 規格に規定される5000
系 (以下、AA乃至JIS は省略) や、7N01、7003などの70
00系などのAl合金展伸材 (圧延板材、押出形材、鍛造材
などの総称、以下、Al合金材とも言う) が汎用されてい
る。
2. Description of the Related Art 5052, 508 are used as Al alloys for welding structures.
5000 specified in AA to JIS standards such as 3, 5154, 5182
System (hereinafter abbreviated as AA to JIS), 70N such as 7N01, 7003
Al alloy wrought materials of the 00 series and the like (collectively referred to as rolled sheet materials, extruded materials, forged materials, etc .; hereinafter, also referred to as Al alloy materials) are widely used.

【0003】また、最近では、押出、圧延、鍛造などの
加工性や成形性、あるいは耐蝕性に優れ、また、合金元
素が少ないのでリサイクル性にも優れている、6063、6N
01、6061などのAA乃至JIS 規格に規定される6000系Al合
金材も、自動車などの輸送機用などの構造材として注目
されている。
Also, recently, excellence in workability and formability such as extrusion, rolling, forging and the like, and corrosion resistance, and excellent recyclability due to the small number of alloying elements, 6063, 6N
Also, 6000 series Al alloy materials specified in AA to JIS standards such as 01 and 6061 have been attracting attention as structural materials for transportation equipment such as automobiles.

【0004】これらAl合金材は溶接される母材として、
主としてティグ(TIG) 、ミグ(MIG)などのアーク溶接方
法によって、継手など溶接構造部材として溶接接合され
る。また、これらAl合金材のアーク溶接の際には、母材
の合金種の組み合わせに応じて、JIS Z 3604に規定され
ているように、代表的には、4043、4047、BA4145B、535
6、5183等の溶加材が適宜使用されている。
[0004] These Al alloy materials are used as a base material to be welded.
It is mainly welded and joined as a welding structural member such as a joint by an arc welding method such as TIG or MIG. In addition, at the time of arc welding of these Al alloy materials, as specified in JIS Z 3604, typically, 4043, 4047, BA4145B, 535
A filler material such as 6, 5183 is used as appropriate.

【0005】ただ、前記6000系などの構造材用Al合金材
を母材として、アーク溶接方法などにより接合した場
合、継手強度が低下するという問題が起こりうる。この
原因はこれらAl合金材を溶接した際の溶接割れが原因と
考えられる。
[0005] However, when an Al alloy material for a structural material such as the 6000 series is used as a base material and joined by an arc welding method or the like, a problem may occur in that joint strength is reduced. This is considered to be caused by welding cracks when these Al alloy materials were welded.

【0006】一般的に、溶接割れには、ビード割れ、ク
レータ割れ、微小割れ (ミクロフィッシャー) などの溶
接金属部(Depo)の割れや、継手溶接部近傍の熱影響部
(以下、HAZ と言う) に生じる割れがあるが、前記6000
系などのAl合金材の場合に問題となるのは、HAZ に生じ
る溶接割れである。
[0006] Generally, weld cracks include cracks in weld metal (Depo) such as bead cracks, crater cracks, micro cracks (microfischer), and heat affected zones near joint welds.
(Hereinafter referred to as HAZ) cracks,
A problem in the case of Al alloys, such as those based on welding, is weld cracking that occurs in HAZ.

【0007】従来から、HAZ に生じる溶接割れ (以下、
単に溶接割れと言う) に対しては、溶加材の選定、拘束
条件、隙間や開先条件、溶接速度や溶接電流の選定な
ど、主として、ティグ(TIG) 、ミグ(MIG) などの溶接施
工の側からの、溶接施工条件の改善が行なわれてきた。
例えば、「アルミニウム合金ミグ溶接部の溶接割れ防止
マニアル」 (軽金属溶接構造協会編、昭和58年発行) に
は、過少入熱や、過大入熱となる溶接施工条件を避ける
べきことが開示されている。
Conventionally, welding cracks generated in HAZ (hereinafter referred to as
Welding cracks), welding conditions such as selection of filler metal, restraint conditions, gaps and groove conditions, selection of welding speed and welding current, etc. are mainly used for welding such as TIG (TIG) and MIG (MIG). From the side, the welding conditions have been improved.
For example, the `` Manual for Preventing Weld Cracking in Aluminum Alloy MIG Welds '' (edited by The Japan Institute of Light Metal Welding Structure, published in 1983) discloses that welding conditions that result in underheat input or excessive heat input should be avoided. I have.

【0008】また、母材側からの改良も種々提案されて
いる。例えば、6000系Al合金について、特開平9-41063
号、特開平9-279280号公報などに開示されるような、過
剰Si量の抑制やScなどの高価な元素の添加など、成分や
結晶粒径からの制御が提案されている。
[0008] Various improvements from the base material side have also been proposed. For example, for 6000 series Al alloy, JP-A-9-41063
And control of the components and the crystal grain size, such as suppression of the excess Si amount and addition of expensive elements such as Sc, as disclosed in JP-A-9-279280 and the like.

【0009】更に、特開平9-168888号、特開平10-29648
3 号公報などに開示されるような、溶加材の成分の制御
なども提案されている。
Further, JP-A-9-168888, JP-A-10-29648
Control of the components of the filler metal, as disclosed in, for example, Japanese Patent Publication No. 3 (2003), has also been proposed.

【0010】[0010]

【発明が解決しようとする課題】しかし、これまでの溶
接施工側から改善は、実際に溶接した上で、溶接割れを
トライアンドエラーで防止乃至抑制してきたのが実情で
ある。しかも、母材側からの改良に比して、著しく効果
が少ないのも実情である。
However, the improvement from the welding operation side so far has been to actually prevent or suppress welding cracks by trial and error after actually welding. In addition, it is a fact that the effect is remarkably small as compared with the improvement from the base material side.

【0011】また、前記母材側からの改良も、溶接割れ
の防止にはなっても、強度やコストなどの他の基本特性
を犠牲にするため実用的ではない。また、溶加材の改良
も、母材側からの改良に比して、著しく効果が少なく、
やはり実用的ではない。
Further, the improvement from the base material side is not practical because it sacrifice other basic characteristics such as strength and cost, even if it prevents welding cracks. In addition, the improvement of the filler metal is significantly less effective than the improvement from the base metal side,
After all it is not practical.

【0012】そして、これら従来技術では、Al合金の材
質などの母材側の条件が大きく変わった場合や、継手構
造などの溶接構造部材側の条件が大きく変わった場合
に、前記溶接割れを、再現性よく抑制することが困難で
ある。また、前記トライアンドエラーによる、溶接施工
効率の低下の問題も無視できない。
According to these conventional techniques, when the condition on the base material side such as the material of the Al alloy is largely changed, or when the condition on the welded structural member side such as the joint structure is largely changed, the welding crack is reduced. It is difficult to control with good reproducibility. In addition, the problem of reduced welding efficiency due to the try and error cannot be ignored.

【0013】これに対し、Al合金母材の耐溶接割れ性が
簡便に評価、予測できれば、実際に溶接をせずとも、Al
合金母材側の耐溶接割れ性の効果的な改善や、Al合金溶
加材の適切な選択や改良、更には、前記溶接施工条件の
効果的かつ効率的な改善を行うことができる。また、Al
合金材の、Al合金母材製品としての耐溶接割れ性の品質
管理を行うこともできるようになる。
On the other hand, if the weld cracking resistance of the Al alloy base material can be easily evaluated and predicted, the Al
Effective improvement of welding crack resistance on the alloy base material side, appropriate selection and improvement of Al alloy filler material, and effective and efficient improvement of the welding conditions can be performed. Also, Al
It is also possible to perform quality control on the resistance to welding cracking of the alloy material as an Al alloy base material product.

【0014】本発明はこの様な事情に着目してなされた
ものであって、その目的は、アークなどの溶融溶接にお
ける耐溶接割れ性に優れたAl合金材を提供しようとする
ものである。
The present invention has been made in view of such circumstances, and an object thereof is to provide an Al alloy material having excellent resistance to weld cracking in fusion welding such as arc welding.

【0015】[0015]

【課題を解決するための手段】この目的を達成するため
に、本発明請求項1 の耐溶接割れ性に優れたアルミニウ
ム合金材の要旨は、溶接されるアルミニウム合金材の凝
固過程における熱的変化を示差熱分析により測定して得
られた融液からの冷却曲線において、550 ℃以下におけ
る発熱ピークが実質的に認められないことである。
In order to achieve this object, the gist of the aluminum alloy material excellent in resistance to welding cracking according to the present invention is that the thermal change during the solidification process of the aluminum alloy material to be welded. In the cooling curve from the melt obtained by the differential thermal analysis, the exothermic peak at 550 ° C. or lower is substantially not observed.

【0016】本発明者らは、Al合金材の凝固過程におけ
る熱的変化を示差熱分析により測定して得られた融液か
らの冷却曲線 (所謂DTA 曲線) の550 ℃以下における発
熱ピークの有無や、ピークの大きさ、などの発熱ピーク
の出方が、溶融溶接における耐溶接割れ性 (耐HAZ 割れ
性) に相関すること、および、同じくAl合金材の融解過
程における熱的変化を示差熱分析により測定して得られ
た固相からの加熱曲線(所謂DTA 曲線) の600 ℃以下に
おける吸熱ピークの出方が、溶融溶接における耐溶接割
れ性に相関すること、を各々知見して本発明をなしたも
のである。
The present inventors have determined the presence or absence of an exothermic peak at 550 ° C. or lower in a cooling curve (a so-called DTA curve) from a melt obtained by measuring the thermal change in the solidification process of an Al alloy material by differential thermal analysis. The appearance of exothermic peaks, such as peak size and peak size, correlates with welding cracking resistance (HAZ cracking resistance) in melt welding, and similarly, thermal changes in the melting process of Al alloy materials The inventors of the present invention found that the manner in which the endothermic peak at 600 ° C or lower in the heating curve (so-called DTA curve) from the solid phase obtained by analysis was correlated with the resistance to weld cracking in fusion welding. It was made.

【0017】ここで、示差熱分析方法はDTA 法とも略称
される公知の分析方法である。そして、その概要は、測
定温度範囲において熱的に変化しない基準物質と、測定
対象物質とを各々相等しい容器に入れ (基準物質自体を
容器とする場合もある) 、両者を、等価な条件のもとで
(周囲の温度を) 、一定速度で加熱または冷却しなが
ら、両者間の温度差 (示差温度) を連続的に測定して行
く。 そして、この温度変化の状況から、定性的定量的
な分析を行うものである。
Here, the differential thermal analysis method is a known analysis method also abbreviated as DTA method. The outline is that a reference substance that does not thermally change in the measurement temperature range and a measurement target substance are placed in the same container (the reference substance itself may be used as the container), and both are set under equivalent conditions. Originally
While heating or cooling at a constant rate (ambient temperature), the temperature difference (differential temperature) between them is continuously measured. Then, qualitative and quantitative analysis is performed based on the state of the temperature change.

【0018】本発明では、この示差熱分析の原理を用い
て、Al合金材の凝固過程 (降温過程) や融解過程 (昇温
過程) における熱的変化の状況から、耐溶接割れ性を評
価する。即ち、前記した通り、Al合金材の凝固過程にお
ける熱的変化を示差熱分析により測定して得られた融液
からの冷却曲線の550 ℃以下における発熱ピークおよび
Al合金材の融解過程における熱的変化を示差熱分析によ
り測定して得られた固相からの加熱曲線の600 ℃以下に
おける吸熱ピークが実質的に認められないものを耐溶接
割れ性に優れたAl合金材と評価する。
In the present invention, by using the principle of the differential thermal analysis, welding crack resistance is evaluated based on the state of thermal change in the solidification process (cooling process) and melting process (heating process) of an Al alloy material. . That is, as described above, the exothermic peak at 550 ° C. or lower of the cooling curve from the melt obtained by measuring the thermal change during the solidification process of the Al alloy material by differential thermal analysis,
The thermal change during the melting process of the Al alloy material was measured by differential thermal analysis, and the heating curve from the solid phase was found to have substantially no endothermic peak at 600 ° C or lower. Evaluate as Al alloy material.

【0019】但し、後述する実施例の通り、Al合金材の
耐溶接割れ性との相関は、前記冷却曲線の550 ℃以下に
おける発熱ピークの有無の方が、前記加熱曲線の600 ℃
以下における吸熱ピークの有無よりも強い。
However, as will be described later, the correlation between the Al alloy material and the weld cracking resistance is determined by the presence or absence of an exothermic peak at 550 ° C. or less in the cooling curve.
It is stronger than the presence or absence of the endothermic peak in the following.

【0020】したがって、本発明では、前記冷却曲線の
550 ℃以下における発熱ピークの有無をAl合金材が耐溶
接割れ性に優れるための必須の要件とする。そして、前
記加熱曲線の600 ℃以下における吸熱ピークの有無を、
請求項2 に記載のように、より好ましい要件とする。
Therefore, in the present invention, the cooling curve
The presence or absence of an exothermic peak at 550 ° C or lower is an essential requirement for the Al alloy material to have excellent weld cracking resistance. Then, the presence or absence of an endothermic peak at 600 ° C. or lower in the heating curve is determined by
As described in claim 2, more preferable requirements are set.

【0021】このように、本発明は、耐溶接割れ性に優
れたAl合金材を提供できるとともに耐溶接割れ性のデー
タが今だ十分に無いようなAl合金母材の耐溶接割れ性の
評価方法としても用いることができる。そして、実際に
溶接をせずとも、Al合金母材側の耐溶接割れ性の効果的
な改善や、Al合金溶加材の適切な選択や改良、更には前
記溶接施工条件の効果的かつ効率的な改善を行うことが
できる。
As described above, the present invention can provide an Al alloy material having excellent resistance to weld cracking and evaluate the weld crack resistance of an Al alloy base material for which data on the resistance to weld cracking is still insufficient. It can also be used as a method. And, without actually welding, the effective improvement of the weld cracking resistance of the Al alloy base material side, the appropriate selection and improvement of the Al alloy filler metal, and the effective and efficient Improvements can be made.

【0022】また、本発明Al合金材は、更なる応用とし
て、耐溶接割れ性に優れたAl合金材として、Al合金材の
Al合金母材製品としての耐溶接割れ性の品質管理を行う
こともできる。
Further, the Al alloy material of the present invention is further applied as an Al alloy material having excellent resistance to weld cracking.
Quality control of weld cracking resistance as an Al alloy base material product can also be performed.

【0023】本発明Al合金材は、このような優れた効果
を有するため、請求項3 の通り、耐溶接割れ性の問題が
厳しいAA乃至JIS 規格に規定される6000系Al合金に適用
されて好ましい。
Since the Al alloy material of the present invention has such an excellent effect, it is applied to a 6000 series Al alloy specified in AA or JIS standards, in which the problem of weld cracking resistance is severe, as set forth in claim 3. preferable.

【0024】[0024]

【発明の実施の形態】(示差熱分析)示差熱分析による測
定示差温度は、溶接後のAl合金材の降温過程において
は、Al合金材の凝固過程における熱的変化を示す。ま
た、溶接時のAl合金材の昇温過程においては、Al合金材
の融解過程における熱的変化を示す。また、Al合金材の
降温過程における発熱反応の開始温度が液相線、終了温
度が固相線を各々表わし、Al合金材の昇温過程における
吸熱反応の開始温度が固相線、終了温度が液相線を各々
表わす。
BEST MODE FOR CARRYING OUT THE INVENTION (Differential Thermal Analysis) The differential temperature measured by differential thermal analysis indicates a thermal change in the solidification process of the Al alloy material in the process of cooling the Al alloy material after welding. In addition, in the process of raising the temperature of the Al alloy material during welding, it shows a thermal change in the melting process of the Al alloy material. In addition, the start temperature of the exothermic reaction in the temperature decreasing process of the Al alloy material represents the liquidus line, and the end temperature represents the solidus line, respectively. The start temperature of the endothermic reaction in the temperature rising process of the Al alloy material is the solidus line, and the end temperature is the solidus line. The liquidus lines are indicated respectively.

【0025】このAl合金材の凝固過程における熱的変化
を示差熱分析により測定して得られた融液からの冷却曲
線や固相からの加熱曲線を、一般には、示差熱分析によ
る曲線、即ち、DTA 曲線と称される (前記冷却曲線や加
熱曲線を以下ではDTA 曲線と言う) 。また、同種の熱分
析方法としては、示差走査熱量測定方法(DSC法) なども
あるが、測定の再現性を考慮して、本発明では示差熱分
析方法のみに定式化する。
The cooling curve from the melt and the heating curve from the solid phase obtained by measuring the thermal change in the solidification process of this Al alloy material by differential thermal analysis are generally obtained by differential thermal analysis, DTA curve (the cooling curve and the heating curve are hereinafter referred to as a DTA curve). As the same type of thermal analysis method, there is a differential scanning calorimetry method (DSC method) and the like, but in consideration of reproducibility of measurement, the present invention formulates only the differential thermal analysis method.

【0026】Al合金材の示差熱分析の場合、前記基準物
質としては、測定対象Al合金材よりも融点の十分高い金
属を選択する。そして、この基準物質の種類により、測
定示差温度は大きく変化することはないものの、測定の
再現性を考慮して、本発明では、基準物質として、白金
を選択する。
In the case of differential thermal analysis of an Al alloy material, a metal having a sufficiently higher melting point than the Al alloy material to be measured is selected as the reference substance. Although the measurement differential temperature does not greatly change depending on the type of the reference substance, platinum is selected as the reference substance in the present invention in consideration of reproducibility of measurement.

【0027】本発明における示差熱分析に用いる示差熱
分析計は、前記耐溶接割れ性の評価に必要な測定温度域
の示差温度を正確かつ再現性よく測定可能な、市販の示
差熱分析計を適宜選択することができる。
The differential thermal analyzer used for the differential thermal analysis in the present invention is a commercially available differential thermal analyzer capable of accurately and reproducibly measuring the differential temperature in the measurement temperature range required for the evaluation of the resistance to welding cracking. It can be selected as appropriate.

【0028】図1 、2 に、一例として、後述する実施例
の内のNo.8の比較例の6000系Al合金押出材の測定したDT
A 曲線を各々示す。図1 はAl合金材の融液からの降温過
程におけるDTA 曲線であり、630 ℃付近の最大発熱ピー
クがAl合金材の主たる凝固反応を示す。また、図2 はAl
合金材の昇温過程におけるDTA 曲線であり、660 ℃付近
の最大吸熱ピークがAl合金材の主たる融解反応を示す。
FIGS. 1 and 2 show, as an example, the measured DT of a 6000 series Al alloy extruded material of No. 8 comparative example in the examples described later.
Each A curve is shown. FIG. 1 is a DTA curve of the Al alloy material during the cooling process from the melt. The maximum exothermic peak around 630 ° C. indicates the main solidification reaction of the Al alloy material. Figure 2 shows Al
It is a DTA curve in the process of raising the temperature of the alloy material. The maximum endothermic peak near 660 ° C. indicates a main melting reaction of the Al alloy material.

【0029】まず、図1 から明らかな通り、No.8の6000
系Al合金材のDTA 曲線は、前記主たる凝固反応域 (最大
発熱ピーク) 以外に、本発明で言う、550 ℃以下におけ
る、530 ℃付近での発熱ピーク (最終発熱ピーク) が小
さいながらも認められる。
First, as is clear from FIG.
In addition to the main solidification reaction zone (maximum exothermic peak), the DTA curve of the system-based Al alloy material can be recognized even though the exothermic peak (final exothermic peak) around 530 ° C. below 550 ° C. referred to in the present invention is small. .

【0030】また、図2 においても、No.8の6000系Al合
金材のDTA 曲線は、前記主たる融解反応域 (最大吸熱ピ
ーク) の660 ℃以外に、本発明で言う、600 ℃以下にお
ける、570 〜580 ℃付近での吸熱ピーク (最初の吸熱ピ
ーク) が認められる。
Also, in FIG. 2, the DTA curve of the 6000 series Al alloy material of No. 8 shows that, besides the main melting reaction zone (maximum endothermic peak) of 660 ° C., An endothermic peak around 570-580 ° C (first endothermic peak) is observed.

【0031】No.8の6000系Al合金材の実際の溶接時を想
定すると、前記図1 の結果からは、Al合金材のHAZ が一
旦溶融した後に再凝固するに際し、HAZ では630 ℃付近
だけで凝固が完了せず、部分的に溶融状態 (未凝固部
分) が残存し、550 ℃以下の領域の、530 ℃付近で再
度、未凝固部分 (合金成分の化合物) が凝固するものと
考えられる。
Assuming that the No. 8 6000 series Al alloy material is actually welded, the results of FIG. 1 show that when the HAZ of the Al alloy material is once melted and then re-solidified, the HAZ is only around 630 ° C. The solidification state is not completed, the molten state (unsolidified part) remains partially, and the unsolidified part (alloy component compound) is solidified again at around 530 ° C in the region below 550 ° C. .

【0032】この結果、No.8の6000系Al合金材では、溶
接金属部(Depo)の凝固が完了しても、HAZ の部分の凝固
が完了しない凝固遅れが生じ、HAZ の部分に溶接割れが
生じ易くなると言える。
As a result, in the No. 8 6000 series Al alloy material, even if the solidification of the weld metal part (Depo) is completed, the solidification delay in which the solidification of the HAZ part is not completed occurs, and the welding crack is generated in the HAZ part. Can easily be said to occur.

【0033】また、前記図2 の結果からも、No.8の6000
系Al合金材の溶接部が、前記主たる溶解域の660 ℃以外
に、本発明で言う、600 ℃以下における570 〜580 ℃付
近での吸熱ピークが認められ、この570 〜580 ℃付近
で、融点の低い合金成分の化合物の一部が一旦溶融した
後に、再度、660 ℃付近で主たる溶解が生じるものと考
えられる。
Further, from the results shown in FIG.
In addition to the main melting range of 660 ° C., the welded portion of the Al alloy material has an endothermic peak at about 570 to 580 ° C. at 600 ° C. or lower, which is referred to in the present invention. It is considered that the main melting occurs again at around 660 ° C. after a part of the low alloy component compound is once melted.

【0034】したがって、この結果からも、前記図1 と
同様に、溶接金属部において、No.8の6000系Al合金材で
は、溶接金属部(Depo)の凝固が完了しても、HAZ で凝固
が完了しない、凝固遅れが生じ、HAZ の部分に溶接割れ
が生じ易くなると言える。
Therefore, from this result, as in FIG. 1, even in the case of No. 8 6000 series Al alloy material, the solidification of the weld metal (Depo) is completed even with the HAZ in the same manner as in FIG. Is not completed, solidification delay occurs, and it can be said that welding cracks are likely to occur in the HAZ.

【0035】これに対し、前記図1 、2 のDTA 曲線にお
いて、550 ℃以下における発熱ピークや600 ℃以下にお
ける吸熱ピークが実質的に認められない場合、前記した
ような凝固遅れは生じず (凝固遅れを生じるような合金
成分の化合物が無く) 、HAZの部分に溶接割れは生じな
くなると言える。
On the other hand, when substantially no exothermic peak at 550 ° C. or an endothermic peak at 600 ° C. or less is observed in the DTA curves of FIGS. It can be said that there is no alloy component compound that causes a delay), and that no weld cracks occur in the HAZ portion.

【0036】なお、本発明では、前記図1 、2 のDTA 曲
線において、550 ℃以下および600℃以下における曲線
がなだらかに変化推移し、550 ℃以下における発熱ピー
クおよび600 ℃以下における吸熱ピークが不明瞭であ
り、ピーク (変曲点) の存在が特定できない場合に、こ
れらピークが実質的に認められないものとする。
In the present invention, in the DTA curves of FIGS. 1 and 2, the curves at 550 ° C. or lower and 600 ° C. or lower gradually change, and the exothermic peak at 550 ° C. or lower and the endothermic peak at 600 ° C. or lower do not change. If it is clear and the presence of peaks (inflection points) cannot be specified, these peaks shall not be recognized substantially.

【0037】後述する実施例の通り、このNo.8の6000系
Al合金材をMIG 溶接試験し、溶接割れを確認した結果と
比較すると、DTA 曲線における、550 ℃以下および600
℃以下のピークとHAZ 溶接割れとの関係が明確になる。
即ち、DTA 曲線における、550 ℃以下および600 ℃以下
のピークが認められたこのNo.8の6000系Al合金材は溶接
割れが生じている。これに対し、前記ピークが実質的に
認められない発明例には溶接割れが生じていなかった。
As will be described later, the No. 8 6000 series
Compared to the results of MIG welding test of Al alloy material and confirmation of weld cracking, the DTA curve
The relationship between the peak below ℃ and the HAZ weld crack becomes clear.
That is, in the DTA curve, peaks at 550 ° C. or lower and 600 ° C. or lower were observed, and this No. 8 6000 series Al alloy material had weld cracks. On the other hand, in the invention examples in which the peak was not substantially observed, no weld crack was generated.

【0038】したがって、これらの結果から、DTA 曲線
における、550 ℃以下および600 ℃以下のピークの有無
が、前記耐溶接割れ性に相関していることが裏付けられ
る。また、これらピークが実質的に認められないAl合金
材は、耐溶接割れに優れた材料と評価することができ
る。
Therefore, these results support that the presence or absence of peaks at 550 ° C. or lower and 600 ° C. or lower in the DTA curve correlates with the above-mentioned weld cracking resistance. Further, an Al alloy material in which these peaks are not substantially observed can be evaluated as a material excellent in welding crack resistance.

【0039】本発明Al合金材は、特に、通常の継手溶接
に汎用されるTIG 、MIG 、アークスポットなどのアーク
溶接方法や、レーザ、電子ビーム、プラズマなど、種々
の溶融溶接方法に適用される。また、溶接される継手
は、通常のAl合金継手と同様に、同じAl合金材同士、あ
るいは目的に応じて、後述する成分の違うAl合金材同士
を接合しても良い。
The Al alloy material of the present invention is particularly applicable to various welding methods, such as TIG, MIG, and arc spot, which are commonly used for ordinary joint welding, and laser, electron beam, and plasma welding methods. . Further, the joint to be welded may be the same Al alloy material, or may be an Al alloy material having a different component, which will be described later, according to the purpose, similarly to a normal Al alloy joint.

【0040】(Al合金母材の改善)Al合金母材の耐溶接割
れ性の改善のためには、前記Al合金母材HAZ の凝固遅れ
を低減すべく、Al合金母材の合金元素量を制御すること
が好ましい。
(Improvement of Al alloy base material) In order to improve the weld cracking resistance of the Al alloy base material, the amount of alloying elements in the Al alloy base material should be reduced in order to reduce the solidification delay of the Al alloy base material HAZ. It is preferable to control.

【0041】最も効果的な一例としては、Fe、Mn、Crな
どの遷移元素を含有させる。これらの元素は、均質化熱
処理時およびその後の押出や圧延などの熱間加工時に分
散粒子を生成する。これらの分散粒子は再結晶後の粒界
移動を妨げる効果があるため、微細な結晶粒を得ること
ができる。添加する場合のこれらの元素量は、各々、F
e:0.2〜1.0%、Mn:0.2〜1.0%、Cr:0.01 〜1.0%の範囲で
調整する。
As one of the most effective examples, a transition element such as Fe, Mn, or Cr is contained. These elements form dispersed particles during homogenizing heat treatment and subsequent hot working, such as extrusion or rolling. Since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, fine crystal grains can be obtained. The amounts of these elements when added are F
e: Adjust within the range of 0.2 to 1.0%, Mn: 0.2 to 1.0%, Cr: 0.01 to 1.0%.

【0042】また、各Al合金材の主要元素、例えば、60
00系Al合金母材の場合には、強度などの溶接構造材とし
ての要求特性を阻害しない範囲内で、主要元素であるS
i、Mg含有量を調整する。特に、過剰 Si 型の6000系Al
合金母材の場合には、溶接割れ感受性が高まるので、Si
含有量を規格範囲内で下げる、Mg含有量を上げる等の調
整を行う。
The main elements of each Al alloy material, for example, 60
In the case of the base Al alloy base material, the main element S is selected within a range that does not impair the required properties of the welded structural material such as strength.
Adjust i and Mg content. In particular, excess Si type 6000 series Al
In the case of an alloy base material, the susceptibility to weld cracking increases,
Adjustments such as lowering the content within the specified range and increasing the Mg content are made.

【0043】但し、これらAl合金材の合金元素量の制御
によっても、言い換えると、Al合金材の合金元素量が同
じであっても、Al合金材の製造条件の違いにより、Al合
金材の組織が大きく異なれば、DTA 曲線における550 ℃
以下における発熱ピークや600 ℃以下における吸熱ピー
クが大きく異なる場合がある。このため、製品Al合金材
の耐溶接割れ性については、本発明で規定するDTA 曲線
における550 ℃以下における発熱ピークや600 ℃以下に
おける吸熱ピークにより、品質を管理する必要がある。
However, even when the amount of alloying elements in the Al alloy material is controlled, in other words, even when the amount of alloying elements in the Al alloy material is the same, the structure of the Al alloy material is changed due to the difference in the manufacturing conditions of the Al alloy material. 550 ° C in the DTA curve if
The exothermic peak below or the endothermic peak below 600 ° C. may differ significantly. Therefore, the quality of the weld crack resistance of the product Al alloy material needs to be controlled by the exothermic peak at 550 ° C. or lower and the endothermic peak at 600 ° C. or lower in the DTA curve specified in the present invention.

【0044】更に、本発明では、Al合金母材の耐溶接割
れ性を改善しているので、溶接施工条件の側は改善しな
くて良く、溶接速度などの溶接効率をより高めることも
可能である。ただ、必要により、入熱量や抜熱量の制御
など溶接施工条件の側を改善してもよい。更に、継手の
仕様において、突き合わせ継手やT 継手の際の開先形状
も、I 形、V 形、X 形、U 形、H 形、J 形、K 形、すみ
肉などから、ルート面や間隔開先角度などを含めて、最
適な形状を適宜選択することができる。
Further, in the present invention, since the welding crack resistance of the Al alloy base material is improved, there is no need to improve the welding conditions, and the welding efficiency such as the welding speed can be further increased. is there. However, if necessary, the welding operation conditions such as the control of the amount of heat input and the amount of heat removal may be improved. Furthermore, in the joint specifications, the groove shape for butt joints and T joints can be changed from I, V, X, U, H, J, K, fillet, etc. An optimum shape including a groove angle and the like can be appropriately selected.

【0045】(適用Al合金材)本発明で用いるAl合金材
は、溶接継手としての強度や、高い接合強度 (継手効
率) 、耐食性などの諸要求特性を満足する必要がある。
この点、AA乃至JIS 規格に規定される5000系や6000系、
7000系などの、溶接構造用の公知のAl合金材が好適に使
用可能である。
(Applicable Al Alloy Material) The Al alloy material used in the present invention must satisfy various required characteristics such as the strength as a welded joint, high joint strength (joint efficiency), and corrosion resistance.
In this regard, 5000 series and 6000 series specified in AA to JIS standards,
Known Al alloy materials for welding structures, such as 7000 series, can be suitably used.

【0046】ただ、合金量が少ないなどリサイクル性の
観点からは、溶接構造用の6000系Al合金の成分規格 (60
82、6061、6N01、6151、6063など) に相当するものとし
て、基本的な組成をMg:0.2〜1.0% (質量% 、以下同じ)
、Si:0.3〜1.6%とした、6000系Al合金材を適用するの
が好ましい。以下、代表的な元素について含有量の説明
をしておく。
However, from the viewpoint of recyclability, such as a small amount of alloy, the component standard of 6000 series Al alloy for welded structures (60
82, 6061, 6N01, 6151, 6063 etc.), the basic composition is Mg: 0.2-1.0% (mass%, the same applies hereinafter)
, Si: 0.3 to 1.6%, and it is preferable to apply a 6000 series Al alloy material. Hereinafter, the content of typical elements will be described.

【0047】Mg:0.2〜1.0%。 Mgは人工時効時、Siとともに化合物相(Mg2 Si など) を
形成して、また、Cu含有組成では更にCu、Alと化合物相
を形成して、使用時の高強度 (耐力) を付与するために
必須の元素である。Mgの0.2%未満の含有では高強度 (耐
力) が得られない。一方、1.0%を越えて含有されると、
Al合金母材の鋳造時および焼き入れ時に、粗大な粒子が
晶出乃至析出して加工性などを阻害する。したがって、
Mgの含有量は0.2 〜1.0%の範囲とする。
Mg: 0.2-1.0%. Mg forms a compound phase (Mg 2 Si, etc.) with Si during artificial aging, and further forms a compound phase with Cu and Al in a Cu-containing composition to provide high strength (proof stress) during use It is an indispensable element for. If the content of Mg is less than 0.2%, high strength (proof stress) cannot be obtained. On the other hand, if the content exceeds 1.0%,
At the time of casting and quenching of the Al alloy base material, coarse particles are crystallized or precipitated to impair workability and the like. Therefore,
The content of Mg is in the range of 0.2 to 1.0%.

【0048】Si:0.3〜1.6%。 SiもMgとともに、人工時効処理により、化合物相(Mg2 S
i など) を形成して、使用時の高強度 (耐力) を付与す
るために必須の元素である。0.3%未満のSiの含有では十
分な強度が得られない。一方、1.6%を越えて含有される
と、Mgと同様に加工性を阻害する。したがって、Siの含
有量は0.3 〜1.6%の範囲とする。
Si: 0.3 to 1.6%. Si is also compounded with Mg by compound aging (Mg 2 S
i) are essential elements for imparting high strength (proof stress) during use. If the content of Si is less than 0.3%, sufficient strength cannot be obtained. On the other hand, when the content exceeds 1.6%, the workability is inhibited as in the case of Mg. Therefore, the content of Si is set in the range of 0.3 to 1.6%.

【0049】次に、Fe、Mn、Cr、Ti、B などを、各々目
的に応じて、選択的に含有され手も良い。
Next, Fe, Mn, Cr, Ti, B, etc. are selectively contained depending on the purpose, and may be used.

【0050】例えば、Fe:0.2〜1.0%、Mn:0.2〜1.0%、C
r:0.01 〜1.0%について、これらの遷移元素は、Al合金
母材の均質化熱処理時およびその後の押出や圧延などの
熱間加工時に分散粒子を生成する。これらの分散粒子は
再結晶後の粒界移動を妨げる効果があるため、微細な結
晶粒を得ることができる。各々の下限未満の含有量で
は、この効果が得られず、一方、過剰な (上限を越え
る) 含有は溶解、鋳造時に粗大な金属間化合物を生成し
やすく、加工時の破壊の起点となる。このため、含有す
る場合のこれらの元素量は各々、Fe:0.2〜1.0%、Mn:0.2
〜1.0%、Cr:0.01 〜1.0%の範囲とする。
For example, Fe: 0.2-1.0%, Mn: 0.2-1.0%, C
For r: 0.01 to 1.0%, these transition elements form dispersed particles during the homogenizing heat treatment of the Al alloy base material and during subsequent hot working such as extrusion or rolling. Since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, fine crystal grains can be obtained. If the content is less than each of the lower limits, this effect cannot be obtained. On the other hand, if the content is excessive (exceeding the upper limit), a coarse intermetallic compound is easily formed at the time of melting and casting, and becomes a starting point of breakage during processing. Therefore, the content of these elements when contained, respectively: Fe: 0.2-1.0%, Mn: 0.2
To 1.0%, Cr: 0.01 to 1.0%.

【0051】Ti:0.0001 〜0.1%。Tiは鋳塊の結晶粒を微
細化する元素である。しかし、Tiの0.001%未満の含有で
は、この効果が得られず、一方、Tiを0.1%を越えて含有
すると、粗大な晶出物を形成し、加工性を低下させる。
したがって、含有する場合のTi量は0.0001〜0.1%の範囲
とすることが好ましい。
Ti: 0.0001 to 0.1%. Ti is an element that refines the crystal grains of the ingot. However, if the content of Ti is less than 0.001%, this effect cannot be obtained. On the other hand, if the content of Ti exceeds 0.1%, coarse crystals are formed and the workability is reduced.
Therefore, it is preferable that the amount of Ti when it is contained is in the range of 0.0001 to 0.1%.

【0052】B:1 〜300ppm。B はTiと同様、鋳塊の結晶
粒を微細化させるために添加する元素である。しかし、
B の1ppm未満の含有では、この効果が得られず、一方、
300ppmを越えて含有されると、やはり粗大な晶出物を形
成し、加工性を低下させる。したがって、含有する場合
のB 量は1 〜300ppmの範囲とすることが好ましい。
B: 1 to 300 ppm. B, like Ti, is an element added for refining the crystal grains of the ingot. But,
If the content of B is less than 1 ppm, this effect cannot be obtained.
When the content exceeds 300 ppm, a coarse crystallized product is also formed and the processability is reduced. Therefore, when B is contained, the amount of B is preferably in the range of 1 to 300 ppm.

【0053】更に、本発明で使用するAl合金材 (母材)
は、常法による圧延加工、あるいは常法による押出加工
等によって、板材や形材 (中空断面など断面形状が長さ
方向のどの位置でも本質的に同一である形材) として製
造される。即ち、成分規格範囲内に溶解調整されたAl合
金溶湯を、例えば、連続鋳造圧延法、半連続鋳造法(D
C鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造す
る。次いで、このAl合金鋳塊に均質化熱処理を施し、熱
間圧延−調質処理 (溶体化および焼き入れ処理や時効硬
化処理) 、押出加工−調質処理、熱間鍛造−調質処理、
あるいはこれらの組み合わせにより、板材、形材、鍛造
材等の所望の断面形状のAl合金材とする。
Further, the Al alloy material (base material) used in the present invention
Is manufactured as a plate material or a shape material (a shape material whose cross-sectional shape such as a hollow cross-section is essentially the same at any position in the length direction) by a rolling process or an extrusion process by a conventional method. That is, the molten Al alloy melt-adjusted within the component specification range is subjected to, for example, a continuous casting rolling method, a semi-continuous casting method (D
C), and a normal melting casting method such as C is appropriately selected for casting. Next, this Al alloy ingot is subjected to a homogenizing heat treatment, hot rolling-tempering treatment (solution treatment and quenching treatment and age hardening treatment), extrusion processing-tempering treatment, hot forging-tempering treatment,
Alternatively, an Al alloy material having a desired cross-sectional shape such as a plate material, a shape material, a forged material, or the like is obtained by a combination thereof.

【0054】[0054]

【実施例】(実施例1)次に、本発明の実施例を説明す
る。表1 に示す、No.1〜10までのAl合金組成の鋳塊をDC
鋳造法により溶製後、均質化熱処理を施し、押出によ
り、厚さ1.8 〜3.5mm の平板状押出材を作成した。
(Embodiment 1) Next, an embodiment of the present invention will be described. The ingots of Al alloy compositions No. 1 to 10 shown in Table 1 were
After being melted by a casting method, a homogenizing heat treatment was performed, and a flat extruded material having a thickness of 1.8 to 3.5 mm was formed by extrusion.

【0055】これらAl合金材を各々前記条件で示差熱分
析して、DTA 曲線を求め、550 ℃以下における発熱ピー
クおよび600 ℃以下における吸熱ピークと、ピーク発生
温度を求めた。これらの結果を表3 に示す。
Each of these Al alloy materials was subjected to differential thermal analysis under the above conditions to determine a DTA curve, and an exothermic peak at 550 ° C. or less, an endothermic peak at 600 ° C. or less, and a peak generation temperature were determined. Table 3 shows the results.

【0056】一方、同じAl合金材同士を、各々表2 に示
す条件で、溶加材を用いるアーク溶接方法であるMIG 自
動溶接法により突き合わせ溶接して継手を製作した。そ
して、これら継手のHAZ 部分の断面を100 倍の光学顕微
鏡により観察し、溶接割れの有無と大きさを調査した。
On the other hand, the same Al alloy materials were butt-welded under the conditions shown in Table 2 by the MIG automatic welding method, which is an arc welding method using a filler metal, to produce joints. Then, the cross section of the HAZ portion of these joints was observed with a 100-fold optical microscope, and the presence and size of weld cracks were investigated.

【0057】また、Al合金材と継手の機械的性質 (強
度) を、各々JIS 法に従い測定し、継手効率を算出し
た。これらの結果を表4 に示す。
The mechanical properties (strength) of the Al alloy material and the joint were measured in accordance with the JIS method to calculate the joint efficiency. Table 4 shows the results.

【0058】表3 から明らかな通り、DTA 曲線の、550
℃以下における発熱ピークおよび600 ℃以下における吸
熱ピークが認められない、発明例No.1〜5 は、HAZ に溶
接割れはない。更に、表4 から明らかな通り、発明例N
o.1〜5 は、継手強度が高く、継手効率も70% 以上と高
く、優れている。
As is apparent from Table 3, the DTA curve of 550
In the inventive examples Nos. 1 to 5, in which no exothermic peak at a temperature of not more than 600 ° C and an endothermic peak at a temperature of not more than 600 ° C are not observed, the HAZ has no weld crack. Further, as is clear from Table 4, Invention Example N
o.1 to 5 are excellent with high joint strength and high joint efficiency of 70% or more.

【0059】一方、これに対し、DTA 曲線の、550 ℃以
下における発熱ピークおよび600 ℃以下における吸熱ピ
ークが認められる、比較例No.8、9 、10は、微小な割れ
や大きな割れを含めて、HAZ に溶接割れが生じている。
この内、HAZ に大きな溶接割れが生じている比較例No.
9、10は特に継手効率が35〜41% と著しく低い。また、
継手効率が67〜69% ある比較例No.7、8 も、微小でも溶
接割れが生じている以上、継ぎ手としての信頼性に著し
く欠ける。
On the other hand, in Comparative Examples Nos. 8, 9, and 10, in which the exothermic peak at 550 ° C. or less and the endothermic peak at 600 ° C. or less were observed in the DTA curves, the comparative examples No. 8, 9, and 10 And HAZ have weld cracks.
Among them, Comparative Example No.
9 and 10 have particularly low joint efficiencies of 35 to 41%. Also,
Comparative Examples Nos. 7 and 8 having a joint efficiency of 67 to 69% also have a remarkably lacking reliability as a joint because even small weld cracks occur.

【0060】また、表3 から明らかな通り、発明例No.6
は、DTA 曲線の、550 ℃以下における発熱ピークが認め
られないものの、600 ℃以下における吸熱ピークが認め
られる。この結果、HAZ の溶接割れはないものの、特に
継手効率が60% と、他の発明例に比して低くなってい
る。そして、比較例No.8は、発明例No.6と反対に、DTA
曲線の、600 ℃以下における吸熱ピークが認められない
ものの、550 ℃以下における発熱ピークが認められる。
この結果、比較例No.8は、微小な割れがHAZ に生じてお
り、継ぎ手としての信頼性に著しく欠ける。
As is clear from Table 3, Invention Example No. 6
In the DTA curve, an exothermic peak at 550 ° C or lower is not observed, but an endothermic peak at 600 ° C or lower is observed. As a result, although there was no weld cracking of the HAZ, the joint efficiency was particularly low at 60%, as compared with the other invention examples. Then, Comparative Example No. 8 was DTA
Although no endothermic peak is observed below 600 ° C. in the curve, an exothermic peak is observed below 550 ° C.
As a result, in Comparative Example No. 8, micro cracks were generated in the HAZ, and the reliability as a joint was significantly lacking.

【0061】これらの結果から、Al合金材の耐溶接割れ
性との相関は、DTA 曲線の550 ℃以下における発熱ピー
クの有無の方が、DTA 曲線の600 ℃以下における吸熱ピ
ークの有無よりも強いことが裏付けられる。また、Al合
金材の耐溶接割れ性を評価、予測するための、そして、
耐溶接割れ性に優れたAl合金材としての、本発明要件の
臨界的的な意義が裏付けられる。
From these results, the correlation with the welding crack resistance of the Al alloy material is stronger in the presence or absence of an exothermic peak at 550 ° C. or lower in the DTA curve than in the endothermic peak in 600 ° C. or lower in the DTA curve. This is supported. Also, to evaluate and predict the weld crack resistance of Al alloy materials, and
The critical significance of the requirements of the present invention as an Al alloy material having excellent weld cracking resistance is supported.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 [Table 3]

【0065】[0065]

【表4】 [Table 4]

【0066】[0066]

【発明の効果】本発明によれば、耐溶接割れ性に優れた
Al合金材を提供することができる。また、個々のAl合金
材のAl合金母材としての耐溶接割れ性の評価を行うこと
もできる。即ち、実際に溶接をせずとも、Al合金母材側
の耐溶接割れ性の効果的な改善を行うことができる。し
たがって、Al合金展伸材の構造材用途への適用拡大を促
進できる点で、工業的な価値が大きい。
According to the present invention, excellent weld cracking resistance is obtained.
Al alloy material can be provided. In addition, it is also possible to evaluate the weld crack resistance of each Al alloy material as an Al alloy base material. That is, it is possible to effectively improve the welding crack resistance on the Al alloy base material side without actually performing welding. Therefore, the industrial value is large in that the expansion of the application of the wrought aluminum alloy to the structural material can be promoted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の示差熱分析によるDTA 曲線の550 ℃以
下における発熱ピークを示す説明図である。
FIG. 1 is an explanatory diagram showing an exothermic peak at 550 ° C. or lower of a DTA curve by differential thermal analysis of the present invention.

【図2】本発明の示差熱分析によるDTA 曲線の600 ℃以
下における吸熱ピークを示す説明図である。
FIG. 2 is an explanatory diagram showing an endothermic peak at 600 ° C. or lower of a DTA curve by differential thermal analysis of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶接されるアルミニウム合金材の凝固過
程における熱的変化を示差熱分析により測定して得られ
た融液からの冷却曲線において、550 ℃以下における発
熱ピークが実質的に認められない耐溶接割れ性に優れた
アルミニウム合金材。
1. In a cooling curve from a melt obtained by measuring a thermal change in a solidification process of an aluminum alloy material to be welded by differential thermal analysis, an exothermic peak at 550 ° C. or less is substantially not observed. Aluminum alloy material with excellent weld cracking resistance.
【請求項2】 前記溶接されるアルミニウム合金材の融
解過程における熱的変化を示差熱分析により測定して得
られた固相からの加熱曲線において、600 ℃以下におけ
る吸熱ピークが実質的に認められない請求項1に記載の
耐溶接割れ性に優れたアルミニウム合金材。
2. In a heating curve from a solid phase obtained by measuring a thermal change in a melting process of the aluminum alloy material to be welded by differential thermal analysis, an endothermic peak at 600 ° C. or less is substantially recognized. The aluminum alloy material having excellent weld cracking resistance according to claim 1.
【請求項3】 前記アルミニウム合金材が、AA乃至JIS
規格に規定される6000系アルミニウム合金である請求項
1または2に記載の耐溶接割れ性に優れたアルミニウム
合金材。
3. The method according to claim 1, wherein the aluminum alloy material is AA to JIS.
The aluminum alloy material excellent in weld crack resistance according to claim 1 or 2, which is a 6000 series aluminum alloy specified in a standard.
JP2000307855A 2000-10-06 2000-10-06 Aluminum alloy having excellent weld crack resistance Pending JP2002115019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000307855A JP2002115019A (en) 2000-10-06 2000-10-06 Aluminum alloy having excellent weld crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000307855A JP2002115019A (en) 2000-10-06 2000-10-06 Aluminum alloy having excellent weld crack resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008076140A Division JP2008207249A (en) 2008-03-24 2008-03-24 Method for welding aluminum alloy material having excellent weld crack resistance, and method for evaluating weld crack resistance of aluminum alloy material

Publications (1)

Publication Number Publication Date
JP2002115019A true JP2002115019A (en) 2002-04-19

Family

ID=18788289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000307855A Pending JP2002115019A (en) 2000-10-06 2000-10-06 Aluminum alloy having excellent weld crack resistance

Country Status (1)

Country Link
JP (1) JP2002115019A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279983A (en) * 2009-06-05 2010-12-16 Sumitomo Light Metal Ind Ltd Al ALLOY WELDED JOINT
JP2010279982A (en) * 2009-06-05 2010-12-16 Sumitomo Light Metal Ind Ltd Al ALLOY FILLER METAL
JP2010279981A (en) * 2009-06-05 2010-12-16 Sumitomo Light Metal Ind Ltd METHOD FOR WELDING Al MATERIAL
JP2016524045A (en) * 2013-06-19 2016-08-12 リオ ティント アルカン インターナショナル リミテッドRio Tinto Alcan International Limited Aluminum alloy composites with improved high temperature mechanical properties

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279983A (en) * 2009-06-05 2010-12-16 Sumitomo Light Metal Ind Ltd Al ALLOY WELDED JOINT
JP2010279982A (en) * 2009-06-05 2010-12-16 Sumitomo Light Metal Ind Ltd Al ALLOY FILLER METAL
JP2010279981A (en) * 2009-06-05 2010-12-16 Sumitomo Light Metal Ind Ltd METHOD FOR WELDING Al MATERIAL
JP2016524045A (en) * 2013-06-19 2016-08-12 リオ ティント アルカン インターナショナル リミテッドRio Tinto Alcan International Limited Aluminum alloy composites with improved high temperature mechanical properties
JP2019123941A (en) * 2013-06-19 2019-07-25 リオ ティント アルカン インターナショナル リミテッドRio Tinto Alcan International Limited Aluminum alloy composite with improved elevated temperature mechanical properties
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties

Similar Documents

Publication Publication Date Title
AU2011216017B2 (en) Aluminum alloy welding wire
US9926619B2 (en) Aluminum alloy
US8263233B2 (en) Frame member for use in two-wheeled vehicle and all-terrain vehicle, and method for producing the same
JP2015501877A5 (en)
EP3265264B1 (en) Process for manufacturing welded parts comprising arc-welded wrought components made of 6xxx series aluminium alloy using a 5xxx series aluminium filler wire
US7490752B2 (en) Manufacturing method for friction welded aluminum alloy parts
JP2000317676A (en) Filler metal for welding of al-zn-mg-cu base alloy and heat treatment of welding material using the filler metal
JPH05169290A (en) Aluminum alloy filler material and its production
JP2002115019A (en) Aluminum alloy having excellent weld crack resistance
JP2008207249A (en) Method for welding aluminum alloy material having excellent weld crack resistance, and method for evaluating weld crack resistance of aluminum alloy material
EP2837704B1 (en) Aluminium alloy
CN114393343A (en) Aluminum alloy welding consumable and method of metallurgical bonding
JP3851519B2 (en) Welding method of aluminum alloy material
JP6679269B2 (en) Al alloy material for high energy beam welding
JP6679296B2 (en) Al alloy material for high energy beam welding and method for producing the same
JP3726033B2 (en) Aluminum alloy welded joints and wrought aluminum alloys for welded joints
JP3726034B2 (en) Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints
JP3242726B2 (en) Aluminum alloy material for resistance spot welding
JP3182603B2 (en) Aluminum alloy joining method and aluminum alloy vacuum vessel
JPH07118783A (en) Al alloy casting excellent in laser weldability, modifying method of al alloy casting joint made therefrom and of al alloy casting structural member made therefrom
JP2002115037A (en) Aluminum alloy welded joint having high joint efficiency
JP2000144293A (en) Bending and arc welding-use automotive frame structural material consisting of aluminum-magnesium- silicon alloy extruded material
JP2018199854A (en) Aluminum alloy plate for welding and method for producing aluminum alloy plate for welding
JP2005034896A (en) Filler metal for welding aluminum alloy and method for welding aluminum alloy material using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122