JP2000317676A - Filler metal for welding of al-zn-mg-cu base alloy and heat treatment of welding material using the filler metal - Google Patents
Filler metal for welding of al-zn-mg-cu base alloy and heat treatment of welding material using the filler metalInfo
- Publication number
- JP2000317676A JP2000317676A JP11132040A JP13204099A JP2000317676A JP 2000317676 A JP2000317676 A JP 2000317676A JP 11132040 A JP11132040 A JP 11132040A JP 13204099 A JP13204099 A JP 13204099A JP 2000317676 A JP2000317676 A JP 2000317676A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- tensile strength
- filler metal
- alloy
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、引張強さが500
N/mm2 以上のAl−Zn−Mg−Cu系(JIS7
000系)合金の溶接に適した溶加材および前記溶加材
を用いて溶接された溶接材の熱処理方法に関し、その溶
接継手(溶接ビード部)は、耐溶接割れ性、耐応力腐食
割れ性、靱性に優れ、余盛り付き溶接継手の継手効率が
80%以上(引張強さが400N/mm2 以上)になる
ものである。[0001] The present invention relates to a method for producing a steel sheet having a tensile strength of 500.
N / mm 2 or more Al-Zn-Mg-Cu (JIS7
000 series) and a heat treatment method for a weld material welded using the filler material, the welded joint (weld bead portion) having a weld crack resistance and a stress corrosion crack resistance. It is excellent in toughness, and the joint efficiency of the welded joint with overfilling is 80% or more (the tensile strength is 400 N / mm 2 or more).
【0002】[0002]
【従来の技術】アルミニウムは、軽量、良電気熱伝導
性、非磁性、高耐食性、合金化により高強度が得られる
等の特性を有し、土木、建築、車両、船舶、航空機等の
幅広い分野で需要が伸びている。アルミニウムおよびア
ルミニウム合金はJISで次のように分類されている。 A1000番台…純アルミニウム(非熱処理型) A2000番台…Al−Cu系合金(熱処理型) A3000番台…Al−Mn系合金(非熱処理型) A4000番台…Al−Si系合金(非熱処理型) A5000番台…Al−Mg系合金(非熱処理型) A6000番台…Al−Mg−Si系合金(熱処理型) A7000番台…Al−Zn−Mg−(Cu)系合金
(熱処理型)2. Description of the Related Art Aluminum has properties such as light weight, good electrical heat conductivity, non-magnetic properties, high corrosion resistance, and high strength obtained by alloying. Aluminum is used in a wide range of fields such as civil engineering, construction, vehicles, ships, and aircraft. Demand is growing. Aluminum and aluminum alloys are classified as follows in JIS. A1000 series: pure aluminum (non-heat treated type) A2000 series: Al-Cu based alloy (heat treated type) A3000 series: Al-Mn based alloy (non heat treated type) A4000 series: Al-Si based alloy (non heat treated type) A5000 series ... Al-Mg based alloy (non-heat treatment type) A6000 series ... Al-Mg-Si based alloy (heat treatment type) A7000 series ... Al-Zn-Mg- (Cu) based alloy (heat treatment type)
【0003】これら合金のうち、Al−Mg系合金(例
えばA5052合金、A5083合金)、Al−Mg−
Si系合金(例えばA6063合金、A6061合
金)、Al−Zn−Mg系合金(例えばA7N01合
金、A7003合金)は溶接可能な材料で、引張強さも
400N/mm2 近くあることから溶接構造材として多
用されている。そして、これら材料の溶接には、JIS
Z3232「アルミニウム溶接施工標準」の母材と溶加
材の選定指針に基づいて、通常、A5356合金、A5
183合金等のAl−Mg系合金溶加材が用いられてい
る。Among these alloys, Al-Mg based alloys (for example, A5052 alloy, A5083 alloy), Al-Mg-
Si alloy (e.g. A6063 alloy, A6061 alloy), Al-Zn-Mg-based alloy (e.g. A7N01 alloy, A7003 alloy) In the weldable material, often used as a welded construction material since there tensile strength even 400 N / mm 2 near Have been. And, for welding these materials, JIS
Based on the selection guideline of base material and filler metal of Z3232 "Aluminum welding standard", A5356 alloy, A5
An Al-Mg based alloy filler such as 183 alloy is used.
【0004】しかし、前記Al−Mg系合金溶加材は非
熱処理型合金のため、母材が非熱処理型合金の場合は勿
論のこと、母材が熱処理型合金(A7N01合金等)で
溶接後熱処理する場合でも溶接強度の大幅な改善は望め
ず溶接継手の引張強さは全て400N/mm2 未満であ
る。However, since the Al-Mg alloy filler metal is a non-heat-treatable alloy, it is not limited to the case where the base material is a non-heat-treatable alloy, but also after the base metal is welded with a heat-treatable alloy (A7N01 alloy or the like). Even in the case of heat treatment, no significant improvement in welding strength can be expected, and the tensile strength of all welded joints is less than 400 N / mm 2 .
【0005】7000系(Al−Zn−Mg系)合金用
溶加材には、かってJISZ3232−1969の中で
A7N01合金用にA7N11合金溶加材が登録されて
いたが、前記溶加材は溶接性(特に耐溶接割れ性)がA
l−Mg系合金溶加材より劣り、溶接継手の引張強さも
Al−Mg系合金溶加材と変わらないため、その後登録
が抹消され現在は7000系合金用溶加材はJISには
ない。[0005] A7N11 alloy filler material for A7N01 alloy was previously registered in JISZ3232-1969 as a filler material for 7000 series (Al-Zn-Mg) alloys. A (especially weld cracking resistance) is A
Since it is inferior to the l-Mg alloy filler metal and the tensile strength of the welded joint is not different from that of the Al-Mg alloy filler metal, the registration was deleted and the 7000 alloy filler metal is not present in JIS.
【0006】Al−Zn−Mg−Cu系合金は引張強さ
が500N/mm2 以上あるので、80%以上の継手効
率が得られれば、継手の引張強さは400N/mm2 以
上になるため、その用途は大きく広がる。しかしAl−
Zn−Mg−Cu系合金は耐溶接割れ性に劣るうえ、も
し割れずに溶接ができても高い継手強度は望めない。即
ちAl−Zn−Mg−Cu系合金を前記A7N11合金
溶加材を用いて溶接し、溶接材に標準的なA7075−
T6処理(480℃加熱後水冷、その後125℃で24
時間時効硬化処理)を施しても継手の引張強さは350
N/mm2 程度にしかならない。このためAl−Zn−
Mg−Cu系合金構造物は一般にリベットやボルトを用
いて組立てられている。Since the Al—Zn—Mg—Cu alloy has a tensile strength of 500 N / mm 2 or more, if a joint efficiency of 80% or more is obtained, the tensile strength of the joint will be 400 N / mm 2 or more. , Its use is greatly expanded. However, Al-
A Zn-Mg-Cu-based alloy is inferior in welding crack resistance, and high joint strength cannot be expected even if welding can be performed without cracking. That is, an Al-Zn-Mg-Cu alloy is welded using the A7N11 alloy filler material, and a standard A7075-
T6 treatment (heating at 480 ° C and water cooling, then 24 hours at 125 ° C)
The joint has a tensile strength of 350
It is only about N / mm 2 . Therefore, Al-Zn-
Mg-Cu based alloy structures are generally assembled using rivets and bolts.
【0007】なお、Al−Zn−Mg−Cu系合金用溶
加材が、特開昭63−157792号公報および特開平
5−208295号公報に開示されているが、これらは
成形金型の補修用であり、肉盛り溶接が主体である。こ
のため溶接継手の硬さが母材に近いこと、型磨きや絞り
加工のエッチング性がビード部と母材部で変わらないこ
と、耐溶接割れ性、溶接継手のフォトエッチング性、応
力腐食割れ性、加工性に優れることが重視され、継手の
強度や靱性等は要求されず、溶接後の熱処理も行われて
いない。Incidentally, filler metals for Al-Zn-Mg-Cu alloys are disclosed in JP-A-63-157792 and JP-A-5-208295, but they are used for repairing a molding die. It is mainly used for overlay welding. Therefore, the hardness of the welded joint is close to that of the base metal, the etching properties of mold polishing and drawing are the same between the bead and the base material, weld cracking resistance, photo-etching properties of welded joints, stress corrosion cracking resistance It is important to have excellent workability, and the joint is not required to have strength or toughness, and no heat treatment is performed after welding.
【0008】また特表平10−505282号公報に
は、Scを含む7000系合金母材をAl−Sc−Zr
合金、Al−Mg−Sc−Ti合金、Al−Cu−Sc
−Zr合金等の溶加材で溶接する方法が開示されている
が、Al−Zn−Cu−Mg系合金母材および溶加材に
ついては記載されていない。Japanese Patent Publication No. Hei 10-505282 discloses that a 7000 series alloy base material containing Sc is made of Al-Sc-Zr.
Alloy, Al-Mg-Sc-Ti alloy, Al-Cu-Sc
Although a method of welding with a filler material such as a -Zr alloy is disclosed, there is no description about an Al-Zn-Cu-Mg-based alloy base material and a filler material.
【0009】[0009]
【発明が解決しようとする課題】このように、Al−Z
n−Mg−Cu系合金母材を80%以上の継手効率で溶
接する技術はこれまで実現されてなく、このため、本発
明者等は、引張強さ500N/mm2 以上のAl−Zn
−Mg−Cu系合金溶接用溶加材の開発に向け鋭意研究
を行った。その結果Al−Zn−Mg−Cu系合金にS
cを添加することにより継手効率を大幅に改善し得るこ
とを知見し、さらに研究を重ねて本発明を完成させるに
至った。本発明は、引張強さが500N/mm2 以上の
Cuを含む7000系アルミニウム合金を母材に用いた
ときの余盛り付き溶接継手の継手効率(〔継手の引張強
さ/母材の引張強さ〕×100%)が80%以上(引張
強さ400N/mm2 以上)であり、かつ靱性、耐溶接
割れ性、耐応力腐食割れ性に優れる溶接継手が得られる
溶加材と、前記溶加材を用いた溶接材の熱処理方法の提
供を目的とする。As described above, Al-Z
A technique for welding an n-Mg-Cu alloy base material with a joint efficiency of 80% or more has not been realized so far. Therefore, the present inventors have developed Al-Zn having a tensile strength of 500 N / mm 2 or more.
-Diligent research was conducted on the development of filler metal for welding Mg-Cu alloys. As a result, Al-Zn-Mg-Cu alloy
The inventors have found that the joint efficiency can be greatly improved by adding c, and have conducted further studies to complete the present invention. The present invention relates to a joint efficiency ([tensile strength of joint / tensile strength of base material]) of a welded joint with extra build when a 7000 series aluminum alloy containing Cu having a tensile strength of 500 N / mm 2 or more is used as a base material. ) × 100%) is 80% or more (tensile strength is 400 N / mm 2 or more), and a welded material capable of obtaining a welded joint excellent in toughness, weld cracking resistance and stress corrosion cracking resistance is obtained. An object of the present invention is to provide a heat treatment method for a welding material using an additive.
【0010】[0010]
【課題を解決するための手段】請求項1記載の発明は、
Zn5〜8wt%、Mg1〜3wt%、Cu2〜4wt%、S
c0.03〜3.0wt%、Cr0.05〜0.2wt%、
V0.01〜0.5wt%、Ti0.005〜0.2wt
%、Ag0.03〜2wt%を含み、残部Alおよび不可
避不純物からなることを特徴とするAl−Zn−Mg−
Cu系合金溶接用溶加材である。According to the first aspect of the present invention,
Zn5 ~ 8wt%, Mg1 ~ 3wt%, Cu2 ~ 4wt%, S
c 0.03-3.0 wt%, Cr 0.05-0.2 wt%,
V0.01-0.5wt%, Ti0.005-0.2wt
%, 0.03 to 2 wt% of Ag, and the balance being Al and unavoidable impurities.
It is a filler metal for Cu-based alloy welding.
【0011】請求項2記載の発明は、Zn5〜8wt%、
Mg1〜3wt%、Cu2〜4wt%、Sc0.03〜3.
0wt%、Cr0.05〜0.2wt%、V0.01〜0.
5wt%、Ti0.005〜0.2wt%、Ag0.03〜
2wt%を含み、更にNi0.03〜1.0wt%、Zr
0.01〜0.3wt%の群から選ばれる少なくとも1
種、またはB0.0001〜0.08wt%、C0.00
02〜0.1wt%の群から選ばれる少なくとも1種、ま
たはNi0.03〜1.0wt%、Zr0.01〜0.3
wt%の群から選ばれる少なくとも1種およびB0.00
01〜0.08wt%、C0.0002〜0.1wt%の群
から選ばれる少なくとも1種を含み、残部Alおよび不
可避不純物からなることを特徴とするAl−Zn−Mg
−Cu系合金溶接用溶加材である。The invention according to claim 2 is characterized in that Zn 5 to 8 wt%,
Mg 1-3 wt%, Cu 2-4 wt%, Sc 0.03-3.
0 wt%, Cr 0.05-0.2 wt%, V0.01-0.
5 wt%, Ti 0.005 to 0.2 wt%, Ag 0.03 to
2wt%, Ni 0.03-1.0wt%, Zr
At least one selected from the group of 0.01 to 0.3 wt%
Seed, or B 0.0001 to 0.08 wt%, C0.00
At least one selected from the group of 02 to 0.1 wt%, or Ni 0.03 to 1.0 wt%, Zr 0.01 to 0.3
at least one selected from the group of wt% and B0.00
Al-Zn-Mg containing at least one member selected from the group consisting of 01 to 0.08 wt% and C 0.0002 to 0.1 wt%, the balance being Al and unavoidable impurities.
-A filler metal for welding Cu-based alloys.
【0012】請求項3記載の発明は、Zn5〜8wt%、
Mg1〜3wt%、Cu2〜4wt%、Sc0.03〜3.
0wt%、Cr0.05〜0.2wt%、V0.01〜0.
5wt%、Ti0.005〜0.2wt%を含み、更にNi
0.03〜1.0wt%、Zr0.01〜0.3wt%の群
から選ばれる少なくとも1種、またはB0.0001〜
0.08wt%、C0.0002〜0.1wt%の群から選
ばれる少なくとも1種、またはNi0.03〜1.0wt
%、Zr0.01〜0.3wt%の群から選ばれる少なく
とも1種およびB0.0001〜0.08wt%、C0.
0002〜0.1wt%の群から選ばれる少なくとも1種
を含み、残部Alおよび不可避不純物からなることを特
徴とするAl−Zn−Mg−Cu系合金溶接用溶加材で
ある。According to a third aspect of the present invention, there is provided the method according to the third aspect, wherein
Mg 1-3 wt%, Cu 2-4 wt%, Sc 0.03-3.
0 wt%, Cr 0.05-0.2 wt%, V0.01-0.
5wt%, 0.005 ~ 0.2wt% Ti, Ni
At least one selected from the group consisting of 0.03 to 1.0 wt% and Zr 0.01 to 0.3 wt%, or B0.0001 to
At least one member selected from the group consisting of 0.08 wt% and C 0.0002 to 0.1 wt%, or Ni 0.03 to 1.0 wt%
%, At least one member selected from the group consisting of 0.01 to 0.3 wt% of Zr and 0.0001 to 0.08 wt% of Br, C0.
An Al-Zn-Mg-Cu alloy welding filler metal comprising at least one selected from the group of 0002 to 0.1 wt%, the balance being Al and unavoidable impurities.
【0013】請求項4記載の発明は、引張強さが500
N/mm2 以上のAl−Zn−Mg−Cu系合金母材
を、請求項1〜3に記載した溶加材のいずれかを用いて
溶接した溶接材の熱処理方法であって、前記溶接材を4
50〜490℃の温度で1分以上保持して溶体化処理
し、次いで250〜400℃/秒の冷却速度で焼入し、
次いで10〜50℃の温度に24時間以上保持後、11
0〜180℃の温度に5〜72時間保持して人工時効処
理することを特徴とする前記溶加材を用いた溶接材の熱
処理方法である。According to a fourth aspect of the present invention, the tensile strength is 500
The N / mm 2 or more Al-Zn-Mg-Cu-based alloy matrix, a heat treatment method of welding weld material using any filler material according to claim 1, wherein the weld material 4
Solution treatment by holding at a temperature of 50 to 490 ° C. for 1 minute or more, and then quenching at a cooling rate of 250 to 400 ° C./sec.
Then, after maintaining at a temperature of 10 to 50 ° C. for 24 hours or more, 11
A heat treatment method for a welding material using the filler material, wherein the welding material is maintained at a temperature of 0 to 180 ° C. for 5 to 72 hours to perform an artificial aging treatment.
【0014】請求項5記載の発明は、引張強さが500
N/mm2 以上のAl−Zn−Mg−Cu系合金母材
を、請求項1〜3に記載したいずれかの溶加材を用いて
溶接した溶接材の熱処理方法であって、前記溶接材を4
50〜490℃の温度で1分以上保持して溶体化処理
し、次いで250〜400℃/秒の冷却速度で焼入し、
次いで10〜50℃の温度で24時間以上保持後、80
〜100℃の温度で5〜20時間保持し、更に130〜
150℃の温度で8〜72時間保持して人工時効処理す
ることを特徴とする前記溶加材を用いた溶接材の熱処理
方法である。According to a fifth aspect of the present invention, the tensile strength is 500
The N / mm 2 or more Al-Zn-Mg-Cu-based alloy matrix, a heat treatment method of welding weld material using any filler material according to claim 1, wherein the weld material 4
Solution treatment by holding at a temperature of 50 to 490 ° C. for 1 minute or more, and then quenching at a cooling rate of 250 to 400 ° C./sec.
Then, after holding at a temperature of 10 to 50 ° C. for 24 hours or more, 80
Hold at a temperature of 100100 ° C. for 5-20 hours, and further
A heat treatment method for a welding material using the filler metal, wherein the artificial aging treatment is performed at a temperature of 150 ° C. for 8 to 72 hours.
【0015】[0015]
【発明の実施の形態】以下に本発明溶加材の合金組成に
ついて説明する。ZnおよびMgは、溶接継手の引張強
さ、耐溶接割れ性、耐応力腐食割れ性を改善する。Zn
およびMgの含有量をそれぞれ5〜8wt%、1〜3wt%
に規定する理由は、Znが5wt%未満、Mgが1wt%未
満では、目標とする引張強さが得られず、Znが8wt%
を超えて含有されても引張強さ改善効果が飽和するう
え、耐溶接割れ性、耐応力腐食割れ性、加工性が低下
し、Mgが3wt%を超えて含有されると耐溶接割れ性、
加工性、耐応力腐食割れ性が低下するためである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The alloy composition of the filler metal of the present invention will be described below. Zn and Mg improve the tensile strength, weld cracking resistance and stress corrosion cracking resistance of the welded joint. Zn
And Mg content of 5 to 8 wt% and 1 to 3 wt%, respectively
If Zn is less than 5 wt% and Mg is less than 1 wt%, the target tensile strength cannot be obtained, and Zn is less than 8 wt%.
, The effect of improving the tensile strength saturates even if it is contained in excess, the weld cracking resistance, stress corrosion cracking resistance, and workability are reduced.
This is because workability and stress corrosion cracking resistance are reduced.
【0016】Cuは、溶接継手の引張強さおよび耐応力
腐食割れ性を改善する。Cuの含有量を2〜4wt%に規
定する理由は、2wt%未満でも4wt%を超えてもその効
果が十分に得られないためで、4wt%を超えた場合は靱
性も低下する。ところで、Cuは従来より耐溶接割れ性
を害する元素とみなされ、溶加材には添加しないことが
常識であったが、本発明者等は、種々検討を行い、溶加
材へのCuの適量添加は、Al−Zn−Mg−Cu系合
金母材に対しては、溶接継手の引張強さおよび耐溶接割
れ性の改善に有用なことを見いだしたのである。[0016] Cu improves the tensile strength and stress corrosion cracking resistance of the welded joint. The reason for limiting the Cu content to 2 to 4 wt% is that the effect is not sufficiently obtained if the content is less than 2 wt% or more than 4 wt%, and if it exceeds 4 wt%, the toughness also decreases. By the way, Cu has conventionally been regarded as an element that impairs the resistance to welding cracking, and it was common knowledge that it was not added to the filler metal. It has been found that the addition of an appropriate amount is useful for improving the tensile strength and weld cracking resistance of a welded joint with respect to an Al-Zn-Mg-Cu alloy base material.
【0017】Scは、溶接継手の結晶粒を極めて微細に
し、引張強さ(特に耐力)、靱性、および耐溶接割れ性
を改善する。前記効果はZr又はNiにも見られ、Sc
にZr、Niを同時添加するとその効果が一段と向上す
る。Sc、Zr、Niの含有量を、それぞれ0.03〜
3.0wt%、0.01〜0.3wt%、0.03〜1.0
wt%に規定する理由は、前記規定値未満ではいずれもそ
の効果が十分に得られず、規定値を超えるといずれも溶
接継手が脆くなり引張強さが低下するためである。Sc makes the crystal grains of the welded joint extremely fine, and improves tensile strength (particularly proof stress), toughness, and weld crack resistance. The effect is also seen in Zr or Ni, and Sc
When Zr and Ni are simultaneously added to the alloy, the effect is further improved. Each of the contents of Sc, Zr, and Ni is set to 0.03 to
3.0 wt%, 0.01-0.3 wt%, 0.03-1.0
The reason for specifying the wt% is that if the value is less than the specified value, the effect cannot be sufficiently obtained, and if the value exceeds the specified value, the welded joint becomes brittle and the tensile strength decreases.
【0018】Crは、溶接継手の耐応力腐食割れ性を改
善する。Crの含有量を0.05〜0.2wt%に規定す
る理由は、0.05wt%未満ではその効果が十分に得ら
れず、0.2wt%を超えると巨大化合物が生成して引張
強さおよび靱性が低下するためである。[0018] Cr improves the stress corrosion cracking resistance of the welded joint. The reason for limiting the Cr content to 0.05 to 0.2 wt% is that if the content is less than 0.05 wt%, the effect cannot be sufficiently obtained, and if it exceeds 0.2 wt%, a giant compound is formed and the tensile strength is increased. And toughness is reduced.
【0019】Vは、溶接継手の結晶粒を微細にして靱性
を改善する。Vの含有量を0.01〜0.5wt%に規定
する理由は、0.01wt%未満ではその効果が十分に得
られず、0.5wt%を超えると引張強さおよび靱性が低
下するためであるV refines the crystal grains of the welded joint to improve toughness. The reason why the content of V is defined to be 0.01 to 0.5 wt% is that if the content is less than 0.01 wt%, the effect cannot be sufficiently obtained, and if it exceeds 0.5 wt%, the tensile strength and toughness decrease. Is
【0020】Agは、溶接継手の引張強さ、耐応力腐食
割れ性、および靱性を改善する。Agの含有量を0.0
3〜2wt%に規定する理由は、0.03wt%未満ではそ
の効果が十分に得られず、2wt%を超えるとその効果が
飽和してコスト高となるばかりでなく、靱性が低下し、
それにより加工性も低下するためである。Ag improves the tensile strength, stress corrosion cracking resistance, and toughness of the welded joint. Ag content of 0.0
The reason for defining the content to be 3 to 2 wt% is that if the content is less than 0.03 wt%, the effect cannot be sufficiently obtained. If the content exceeds 2 wt%, not only the effect is saturated and the cost is increased, but also the toughness is reduced.
Thereby, workability is also reduced.
【0021】Ti、B、およびCは、溶接継手の結晶粒
を微細化して溶接継手の割れを防止する。Ti単独より
はTiとB又はTiとCの組合せで添加するとその効果
が一段と向上する。Ti、B、およびCの含有量をそれ
ぞれ0.005〜0.2wt%、0.0001〜0.08
wt%、0.0002〜0.1wt%に規定する理由は、前
記規定値未満では、いずれもその効果が十分に得られ
ず、前記規定値を超えるといずれも巨大化合物が生成し
て引張強さおよび靱性が低下するためである。TiとB
又はTiとCの組合せで添加する場合、Tiの方を多く
含有させると前記効果がより効率良く発現される。Ti, B, and C refine the crystal grains of the welded joint to prevent cracking of the welded joint. The effect is further improved when Ti and B or a combination of Ti and C are added rather than Ti alone. The contents of Ti, B, and C are respectively 0.005 to 0.2 wt%, 0.0001 to 0.08.
The reason for defining the wt% and 0.0002 to 0.1 wt% is that if the value is less than the specified value, the effect is not sufficiently obtained, and if the value exceeds the specified value, a huge compound is formed and the tensile strength is increased. This is because the hardness and the toughness decrease. Ti and B
Alternatively, when adding in a combination of Ti and C, the above effect is more efficiently exhibited if a larger amount of Ti is contained.
【0022】次に、請求項4記載発明の熱処理方法につ
いて説明する。前記熱処理方法は、溶接継手の凝固組織
を均質にし合金元素を固溶させるための溶体化処理工程
と、前記溶体化処理状態を室温に持ち来す焼入れ工程
と、固溶元素を析出させる人工時効処理工程からなり、
この熱処理により溶接継手の引張強さ、耐溶接割れ性、
耐応力腐食割れ性、靱性等が向上する。この発明におい
て、前記溶体化処理工程を450〜490℃で1分以上
保持して施し、前記焼入れ工程を250〜400℃/秒
の冷却速度で施し、前記人工時効処理工程を10〜50
℃の温度に24時間以上保持後、110〜180℃の温
度に5〜72時間保持して施す理由は、前記規定値のい
ずれが下限値を下回ってもその効果が十分に得られず、
また上限値を超えると溶体化処理工程では結晶粒界に存
在する低融点化合物が融解する恐れがあり、人工時効処
理工程では過時効状態になって目標とする80%以上の
継手効率が得られなくなり、また靱性も低下するためで
ある。なお、焼入れ工程では400℃/秒を超える焼入
れは実際には困難である。Next, the heat treatment method according to the present invention will be described. The heat treatment method includes a solution treatment step for homogenizing the solidified structure of the welded joint and dissolving the alloy element, a quenching step for bringing the solution treatment state to room temperature, and an artificial aging for precipitating the solid solution element. Consists of processing steps,
By this heat treatment, the tensile strength of the welded joint, weld crack resistance,
Improved stress corrosion cracking resistance, toughness, etc. In the present invention, the solution treatment step is performed at 450 to 490 ° C. for 1 minute or more, the quenching step is performed at a cooling rate of 250 to 400 ° C./sec, and the artificial aging step is performed at 10 to 50 ° C.
After holding at a temperature of at least 24 hours at a temperature of 110 to 180 ° C. for 5 to 72 hours, the effect is not sufficiently obtained even if any of the above specified values is below the lower limit,
If the upper limit value is exceeded, the low melting point compound present at the crystal grain boundaries may be melted in the solution treatment step, and in the artificial aging step, it becomes overaged and the target joint efficiency of 80% or more can be obtained. This is because the toughness also decreases and the toughness decreases. In the quenching step, quenching exceeding 400 ° C./sec is actually difficult.
【0023】請求項5記載発明は、人工時効処理工程を
10〜50℃の温度に24時間以上保持後、80〜10
0℃の温度で5〜20時間保持し、更に130〜150
℃の温度で8〜72時間保持して施す以外は請求項4記
載発明と同じであり、前記人工時効処理工程における条
件の規定理由も請求項4記載発明の場合と同じである。The invention according to claim 5 is characterized in that the artificial aging treatment step is maintained at a temperature of 10 to 50 ° C. for 24 hours or more, and thereafter,
Hold at a temperature of 0 ° C. for 5-20 hours, and then 130-150
The invention is the same as the invention of claim 4 except that the treatment is carried out at a temperature of ° C. for 8 to 72 hours, and the reason for defining the conditions in the artificial aging treatment step is also the same as that of the invention of claim 4.
【0024】[0024]
【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1、2に示す本発明規定組成の直径3.
2mmの丸棒状溶加材 (No.1〜49)と、表5に示す組成
(No.1)の厚さ3mmのAl−Zn−Mg−Cu系合金
(A7075P−T6処理材、引張強さ575N/m
m2)平板(母材)を用いて、フィッシュボーン形割れ
試験を行って耐溶接割れ性を調べた。また前記組成の直
径1.2mmの線状溶加材を用いて前記Al合金平板
(但し厚さ5mm)をミグ溶接(突き合わせ溶接)し、
得られた溶接材の溶接継手について耐応力腐食割れ
性、引張強さ、靱性(UPE,Unit Propagation En
ergy)を調べた。更に溶加材の溶接用ワイヤへの加工
性を調べた。The present invention will be described below in detail with reference to examples. (Example 1) The diameter of the composition specified in the present invention shown in Tables 1 and 2.
2mm round bar filler metal (No.1 ~ 49) and composition shown in Table 5
(No.1) 3mm thick Al-Zn-Mg-Cu alloy
(A7075P-T6 treated material, tensile strength 575 N / m
m 2 ) Using a flat plate (base material), a fishbone crack test was performed to examine weld cracking resistance. Further, the Al alloy flat plate (but 5 mm thick) was subjected to MIG welding (butt welding) using a linear filler material having a diameter of 1.2 mm having the above composition,
Regarding the welded joint of the obtained welding material, stress corrosion cracking resistance, tensile strength, toughness (UPE, Unit Propagation En
ergy). Further, the workability of the filler material into a welding wire was examined.
【0025】(比較例1)表3に示す本発明規定外組成
の溶加材(No.50〜73) を用いた他は、実施例1と同じ方
法により前記〜の調査を行った。(Comparative Example 1) Investigations (1) and (2) were carried out in the same manner as in Example 1 except that the fillers (Nos. 50 to 73) having a composition not specified in the present invention shown in Table 3 were used.
【0026】(比較例2)表4に示す従来の溶加材(No.
74〜82) を用いた他は、実施例1と同じ方法により前記
〜の調査を行った。(Comparative Example 2) A conventional filler material (No.
74 to 82) were conducted in the same manner as in Example 1, except that the above-mentioned investigations were carried out.
【0027】フィッシュボーン形割れ試験は、前記合
金板を用いて種々長さの切欠き1を入れたフィッシュボ
ーン試験片2を作製し、この試験片の中央に矢印の方向
にティグ溶接してビード3を形成し、溶接後に生じた割
れ長さ4を測定して行った。前記ティグ溶接は、電極棒
に直径3.2mmのセリウム入りW棒を用い、溶接電流
120A、アーク電圧16V、溶接速度60cm/分、
アルゴンガス流量10リットル/分の条件で行った。フ
ィッシュボーン形割れ試験は5回行い、図1に示す割れ
長さ4をノギスで測定して平均値を求めた。割れ長さ4
の平均値が70mm以下のとき耐溶接割れ性良好
(○)、70mmを超えるとき不良(×)と判定した。In the fishbone type cracking test, a fishbone test piece 2 having notches 1 of various lengths was prepared using the above-mentioned alloy plate, and TIG welding was performed at the center of the test piece in the direction of the arrow to bead. 3 was formed, and the crack length 4 generated after welding was measured. The TIG welding uses a cerium-containing W rod having a diameter of 3.2 mm as an electrode rod, a welding current of 120 A, an arc voltage of 16 V, a welding speed of 60 cm / min,
The test was performed under the condition of an argon gas flow rate of 10 liter / min. The fishbone type crack test was performed five times, and the crack length 4 shown in FIG. 1 was measured with a vernier caliper to obtain an average value. Crack length 4
Was determined to be good (○) when the average value was 70 mm or less, and poor (X) when the average value exceeded 70 mm.
【0028】耐応力腐食割れ性、引張強さ、靱性
(UPE)は、図2に示す前記Al−Zn−Mg−Cu
系合金平板6を2枚突合わせてミグ溶接し、これを熱処
理した溶接材(以下ミグ溶接材と称する)を用いて調査
した。図2で、5は溶加材(溶接ワイヤ)、7は溶接ト
ーチ、9はアーク、10は裏当て金(銅製)、11はア
ルゴンシールドガスである。前記ミグ溶接は、溶接電流
200A、アーク電圧24V、溶接速度60cm/分、
アルゴンガス流量20リットル/分の条件で行った。前
記熱処理は、470℃で1時間保持して溶体化処理後、
冷却速度300℃/秒で水焼入れし、次いで20℃で2
00時間保持後、120℃で24時間保持して人工時効
処理する条件で施した。The stress corrosion cracking resistance, tensile strength, and toughness (UPE) were measured for the Al-Zn-Mg-Cu shown in FIG.
MIG welding was performed by butt-joining two system alloy flat plates 6, and an examination was conducted using a heat-treated welding material (hereinafter referred to as a MIG welding material). In FIG. 2, 5 is a filler material (welding wire), 7 is a welding torch, 9 is an arc, 10 is a backing metal (made of copper), and 11 is an argon shielding gas. In the MIG welding, a welding current of 200 A, an arc voltage of 24 V, a welding speed of 60 cm / min,
The test was performed under the condition of an argon gas flow rate of 20 liter / min. The heat treatment is performed at 470 ° C. for 1 hour, after the solution treatment,
Water quenching at a cooling rate of 300 ° C./sec.
After holding for 00 hours, the coating was held at 120 ° C. for 24 hours under conditions of artificial aging.
【0029】耐応力腐食割れ性は、前記ミグ溶接材を
図3(イ)に示す余盛りを削除した短冊状試験片12に
加工し、この試験片12を図3(ロ)に示すように応力
付与治具13に反らせて取付け、試験片12表面に耐力
の75%の応力を負荷させ、この状態で沸騰する腐食液
中に30分間浸漬し、浸漬後の試験片12について割れ
の有無を調べた。割れ無しのものは耐応力腐食割れ性良
好(○)、割れ有りのものは不良(×)と判定した。図
3(イ)(ロ)で14は余盛りを削除した溶接継手であ
る。試験片の反り量C(mm)は、C=(FL2 )/6
Etの式により求めた。式中、Fは試験片表面に負荷さ
れる応力 (試験片の耐力の75%、N/mm2)、Lは両
端支点間距離(mm)、Eは試験片の弾性定数 (N/m
m2)、tは試験片の厚さ(mm)である。前記腐食液に
は水1リットルに三酸化クロムを36g、重クロム酸カ
リウムを30g、塩化ナトリウムを3g溶解させたもの
を用いた。The resistance to stress corrosion cracking can be determined by machining the MIG welding material into a strip-shaped test piece 12 shown in FIG. The test piece 12 was warped and attached to a stress applying jig 13 to apply a stress of 75% of the proof stress to the surface of the test piece 12, immersed in a boiling corrosive liquid for 30 minutes in this state, and checked for cracks in the immersed test piece 12. Examined. Those without cracks were judged as having good stress corrosion cracking resistance (○), and those with cracks were judged as poor (x). In FIGS. 3 (a) and (b), reference numeral 14 denotes a welded joint from which an extra bank is removed. The amount of warpage C (mm) of the test piece was C = (FL 2 ) / 6.
It was determined by the equation of Et. In the formula, F is the stress applied to the surface of the test piece (75% of the proof stress of the test piece, N / mm 2 ), L is the distance between the fulcrums at both ends (mm), and E is the elastic constant of the test piece (N / m 2 ).
m 2 ) and t are the thickness (mm) of the test piece. A solution prepared by dissolving 36 g of chromium trioxide, 30 g of potassium dichromate, and 3 g of sodium chloride in 1 liter of water was used as the above-mentioned corrosion liquid.
【0030】引張強さは、前記ミグ溶接材からJIS
Z2201の5号試験片を、溶接継手部(余盛り付き)
が中央に位置するように切出し、これをアムスラー万能
試験機によりJISZ2241に基づき引張試験して調
べた。引張強さ460N/mm2 以上(継手効率80%
以上)のものを良好(○)、引張強さ460N/mm 2
未満(継手効率80%未満)のものを不良(×)と判定
した。The tensile strength was determined according to JIS from the above MIG welding material.
No. 5 test piece of Z2201 was welded joint part (with extra height)
Cut out so that it is located in the center, and this is Amsler universal
Perform a tensile test using a testing machine based on JISZ2241
Solid. Tensile strength 460N / mmTwo(Joint efficiency 80%
Above) is good (○), tensile strength is 460 N / mm Two
Less than (joint efficiency less than 80%) is judged as defective (x)
did.
【0031】靱性は、前記ミグ溶接材から図4に示す
形状の試験片15を切出し、前記試験片をアムスラー万
能試験機により矢印方向に引張って図5に示す応力ー変
位曲線を求め、そこからUPE(図5に示す斜線部分の
面積)を求めた。UPEが30N・mm/mm2 以上を
良好(○)、UPEが30N・mm/mm2 未満を不良
(×)と判定した。図4で、16は溶接継手、17は切
欠き、18はチャックを掛けるピン穴である。The toughness was determined by cutting out a test piece 15 having the shape shown in FIG. 4 from the MIG welding material, and pulling the test piece in the direction of the arrow with an Amsler universal testing machine to obtain a stress-displacement curve shown in FIG. UPE (the area of the hatched portion shown in FIG. 5) was determined. A UPE of 30 N · mm / mm 2 or more was judged as good (○), and a UPE of less than 30 N · mm / mm 2 was judged as poor (×). In FIG. 4, 16 is a welded joint, 17 is a notch, and 18 is a pin hole for hooking a chuck.
【0032】ワイヤ加工性は、所定成分になるように
配合した原料を半連続鋳造法により直径219mmのビ
レットに鋳造し、このビレットに、鋳塊のひずみを除去
するための1段目加熱(昇温速度50℃/時間で徐々に
加熱し232℃で2時間保持)と鋳塊中の成分偏析をな
くすための2段目加熱(460℃で16時間保持)を施
し、次いで400℃で熱間押出して直径9mmの棒材と
し、この棒材を線引加工して直径1.2mmの線材とし
た。線引加工途中の直径4.8mmと2.4mmの線材
に360℃で1時間の焼鈍処理を施した。線引加工中に
断線しなかったものを加工性良好(○)、断線したもの
を不良(×)と評価した。結果を表6〜9に示す。As for wire workability, a raw material blended so as to have a predetermined component is cast into a billet having a diameter of 219 mm by a semi-continuous casting method, and the billet is subjected to a first-stage heating (raising) for removing distortion of an ingot. Heat at a rate of 50 ° C./hour gradually and hold at 232 ° C. for 2 hours) and perform second-stage heating (holding at 460 ° C. for 16 hours) to eliminate segregation of components in the ingot, The rod was extruded into a rod having a diameter of 9 mm, and the rod was drawn into a rod having a diameter of 1.2 mm. The wire having a diameter of 4.8 mm and 2.4 mm in the middle of drawing was subjected to an annealing treatment at 360 ° C. for 1 hour. Those that did not break during wire drawing were evaluated as having good workability (O), and those that did break were evaluated as poor (x). The results are shown in Tables 6-9.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】[0035]
【表3】 [Table 3]
【0036】[0036]
【表4】 [Table 4]
【0037】[0037]
【表5】 [Table 5]
【0038】[0038]
【表6】 [Table 6]
【0039】[0039]
【表7】 [Table 7]
【0040】[0040]
【表8】 [Table 8]
【0041】[0041]
【表9】 [Table 9]
【0042】表6〜9より明らかなように、本発明例の
No.1〜53はいずれも、溶接割れおよび応力腐食割れが生
じず、継手の引張強さが高く、靱性に富み、ワイヤ加工
性が良好で、総合的に優れた。これに対し、比較例の N
o.54〜77、従来溶加材の No.78〜86はいずれかの特性が
劣り、総合的に劣った。As is clear from Tables 6 to 9, the present invention
In Nos. 1 to 53, weld cracking and stress corrosion cracking did not occur, and the joint had high tensile strength, rich toughness, good wire workability, and was excellent overall. On the other hand, N
o. 54 to 77, and No. 78 to 86 of the conventional filler metal were inferior in any of the properties, and were generally inferior.
【0043】(実施例2)表1に示す本発明規定組成の
直径1.2mmの線状溶加材(No.3)を用いて、表5に示
すNo.2の組成 (防衛庁規格NDSH4001BのBA6
0)の厚さ5mmのAl合金平板(母材)を突き合わせ
ミグ溶接し、この溶接材を表10に示す本発明で規定す
る条件により熱処理し、その後の溶接継手について、耐
応力腐食割れ性、引張強さ、靱性(UPE)を実施例1
の場合と同様にして調べた。但し、引張強さの判定は4
72N/mm2 以上(継手効率80%以上)のものを良
好(○)、引張強さ472N/mm2 未満(継手効率8
0%未満)のものを不良(×)と判定した。(Example 2) The composition of No. 2 shown in Table 5 (Defense Agency Standard NDSH4001B) was prepared using a linear filler material (No. 3) having a diameter of 1.2 mm and having the composition specified in the present invention shown in Table 1. BA6
0) 5 mm thick Al alloy flat plate (base metal) is butt-mig-welded, and this welded material is heat-treated under the conditions specified in the present invention shown in Table 10; Example 1 for tensile strength and toughness (UPE)
The investigation was performed in the same manner as described above. However, the judgment of tensile strength is 4
Those with 72 N / mm 2 or more (joint efficiency 80% or more) are good ((), and the tensile strength is less than 472 N / mm 2 (joint efficiency 8
(Less than 0%) was determined to be defective (x).
【0044】(比較例3)溶接材を表11に示す本発明
規定外の、比較の熱処理条件で熱処理した他は、実施例
2と同じ方法により、耐応力腐食割れ性、引張強さ、靱
性(UPE)を調べた。Comparative Example 3 The stress corrosion cracking resistance, tensile strength, and toughness were obtained in the same manner as in Example 2 except that the welded material was heat-treated under comparative heat treatment conditions not specified in the present invention shown in Table 11. (UPE) was examined.
【0045】(比較例4)溶接材を表11に示す従来の
条件で熱処理した他は、実施例2と同じ方法により耐応
力腐食割れ性、引張強さ、靱性(UPE)を調べた。結
果を表12、13に示す。Comparative Example 4 Stress corrosion cracking resistance, tensile strength, and toughness (UPE) were examined in the same manner as in Example 2 except that the welded material was heat-treated under the conventional conditions shown in Table 11. The results are shown in Tables 12 and 13.
【0046】[0046]
【表10】 [Table 10]
【0047】[0047]
【表11】 [Table 11]
【0048】[0048]
【表12】 [Table 12]
【0049】[0049]
【表13】 [Table 13]
【0050】表12、13より明らかなように、本発明
例の No.87〜105 はいずれも、応力腐食割れが生じず、
引張強さが高く(継手効率80%以上)、靱性(UP
E)に富み、総合的に優れた。これに対し、比較例のN
o.106〜121 はいずれも、応力腐食割れが生じるか、引
張強さが低いか、靱性(UPE)が劣るかした。また従
来条件で熱処理したNo.122,123はいずれも継手の引張強
さが低かった。従って総合的に劣った。As is clear from Tables 12 and 13, all of Nos. 87 to 105 of the present invention have no stress corrosion cracking.
High tensile strength (80% or more joint efficiency), toughness (UP
E) Rich and excellent overall. On the other hand, N
In all of O.106 to 121, stress corrosion cracking occurred, tensile strength was low, or toughness (UPE) was poor. In addition, in each of Nos. 122 and 123 heat-treated under the conventional conditions, the tensile strength of the joint was low. Therefore, it was inferior overall.
【0051】(実施例3)表1に示す本発明規定組成の
直径1.2mmの線状溶加材(No.20) を用いて、表5に
示すNo.3組成 (Al−Zn−Mg−Cu合金)の厚さ5
mmのAl合金平板(母材)を突き合わせミグ溶接し、
この溶接材を表14に示す本発明で規定する条件により
熱処理し、熱処理後の溶接継手の耐応力腐食割れ性、引
張強さ、靱性(UPE)を実施例1の場合と同じように
して調べた。但し、引張強さの判定は460N/mm2
以上(継手効率80%以上)のものを良好(○)、引張
強さ460N/mm2 未満(継手効率80%未満)のも
のを不良(×)と判定した。(Example 3) Using a linear filler material (No. 20) having a diameter of 1.2 mm and a composition specified in the present invention shown in Table 1, a No. 3 composition (Al-Zn-Mg) shown in Table 5 was used. -Cu alloy) thickness 5
butt welded aluminum alloy flat plate (base material)
This welded material was heat-treated under the conditions specified in the present invention shown in Table 14, and the stress-corrosion cracking resistance, tensile strength, and toughness (UPE) of the welded joint after the heat treatment were examined in the same manner as in Example 1. Was. However, the determination of the tensile strength was 460 N / mm 2
Those having the above (joint efficiency of 80% or more) were judged as good ((), and those having a tensile strength of less than 460 N / mm 2 (joint efficiency of less than 80%) were judged as poor (×).
【0052】(比較例6)溶接材を表15に示す本発明
規定外の、比較の熱処理条件で熱処理した他は、実施例
3と同じ方法により耐応力腐食割れ性、引張強さ、靱性
(UPE)を調べた。Comparative Example 6 The stress corrosion cracking resistance, tensile strength and toughness were determined in the same manner as in Example 3 except that the welded material was heat-treated under comparative heat treatment conditions outside the range specified in the present invention shown in Table 15. UPE).
【0053】(比較例7)溶接材を表15に示す従来条
件で熱処理した他は、実施例3と同じ方法により耐応力
腐食割れ性、引張強さ、靱性(UPE)を調べた。結果
を表16、17に示す。Comparative Example 7 Stress corrosion cracking resistance, tensile strength, and toughness (UPE) were examined in the same manner as in Example 3 except that the welded material was heat-treated under the conventional conditions shown in Table 15. The results are shown in Tables 16 and 17.
【0054】[0054]
【表14】 [Table 14]
【0055】[0055]
【表15】 [Table 15]
【0056】[0056]
【表16】 [Table 16]
【0057】[0057]
【表17】 [Table 17]
【0058】表16、17より明らかなように、本発明
例のNo.124〜152 はいずれも、応力腐食割れが生じず、
引張強さが高く、靱性に富み、総合的に優れた。これに
対し、比較例のNo.153〜176 および従来材のNo.177,178
はいずれも継手の引張強さが低く、総合的に劣った。As is clear from Tables 16 and 17, all of Nos. 124 to 152 of the present invention did not cause stress corrosion cracking.
High tensile strength, high toughness, and excellent overall. In contrast, Nos. 153 to 176 of the comparative examples and Nos. 177 and 178 of the conventional materials
In each case, the tensile strength of the joint was low, and overall was inferior.
【0059】[0059]
【発明の効果】以上に述べたように、本発明によれば、
引張強さが500N/mm2 以上のCuを含む7000
系アルミニウム合金(Al−Zn−Mg−Cu系合金)
を母材に用いたときの余盛り付き溶接継手の継手効率が
80%以上であり、かつ耐溶接割れ性、耐応力腐食割れ
性、靱性に優れる溶接継手が得られ、工業上顕著な効果
を奏する。As described above, according to the present invention,
7000 including Cu with a tensile strength of 500 N / mm 2 or more
Aluminum alloy (Al-Zn-Mg-Cu alloy)
The joint efficiency of a welded joint with extra swelling when using as a base metal is 80% or more, and a welded joint excellent in weld cracking resistance, stress corrosion cracking resistance, and toughness is obtained. Play.
【図1】フィッシュボーン形割れ試験の説明図である。FIG. 1 is an explanatory diagram of a fishbone type crack test.
【図2】突き合わせ溶接の説明図である。FIG. 2 is an explanatory diagram of butt welding.
【図3】(イ)は耐応力腐食割れ試験片の斜視説明図、
(ロ)は耐応力腐食割れ試験の説明図である。FIG. 3A is an explanatory perspective view of a stress corrosion cracking test piece,
(B) is an explanatory view of a stress corrosion cracking resistance test.
【図4】靱性試験用試験片の斜視説明図である。FIG. 4 is a perspective view of a toughness test specimen.
【図5】応力ー変位曲線から靱性の指標となるUPEを
求める方法の説明図である。FIG. 5 is an explanatory diagram of a method for obtaining UPE as an index of toughness from a stress-displacement curve.
1 切欠き 2 フィッシュボーン試験片 3 ビード 4 割れ長さ 5 溶加材(溶接ワイヤ) 6 耐応力腐食割れ性試験用平板(母材) 7 溶接トーチ 9 アーク 10 裏当て金(銅製) 11 アルゴンシールドガス 12 耐溶接割れ性試験用試験片 13 応力付与治具 14 余盛りを削除した溶接継手部 15 靱性試験用試験片 16 切欠きを入れた溶接継手部 17 切欠き 18 チャックを掛けるピン穴 DESCRIPTION OF SYMBOLS 1 Notch 2 Fishbone test piece 3 Bead 4 Cracking length 5 Filler material (welding wire) 6 Flat plate for stress corrosion cracking test (base material) 7 Welding torch 9 Arc 10 Backing metal (copper) 11 Argon shield Gas 12 Test piece for weld cracking resistance test 13 Stress applying jig 14 Welded joint part with extra slack removed 15 Test piece for toughness test 16 Welded joint part with notch 17 Notch 18 Pin hole for chucking
Claims (5)
2〜4wt%、Sc0.03〜3.0wt%、Cr0.05
〜0.2wt%、V0.01〜0.5wt%、Ti0.00
5〜0.2wt%、Ag0.03〜2wt%を含み、残部A
lおよび不可避不純物からなることを特徴とするAl−
Zn−Mg−Cu系合金溶接用溶加材。1-5 wt% of Zn, 1-3 wt% of Mg, Cu
2-4 wt%, Sc 0.03-3.0 wt%, Cr0.05
~ 0.2wt%, V0.01 ~ 0.5wt%, Ti0.00
5 to 0.2 wt%, Ag 0.03 to 2 wt%, the balance A
and Al and unavoidable impurities.
A filler metal for welding Zn-Mg-Cu alloys.
2〜4wt%、Sc0.03〜3.0wt%、Cr0.05
〜0.2wt%、V0.01〜0.5wt%、Ti0.00
5〜0.2wt%、Ag0.03〜2wt%を含み、更にN
i0.03〜1.0wt%、Zr0.01〜0.3wt%の
群から選ばれる少なくとも1種、またはB0.0001
〜0.08wt%、C0.0002〜0.1wt%の群から
選ばれる少なくとも1種、またはNi0.03〜1.0
wt%、Zr0.01〜0.3wt%の群から選ばれる少な
くとも1種およびB0.0001〜0.08wt%、C
0.0002〜0.1wt%の群から選ばれる少なくとも
1種を含み、残部Alおよび不可避不純物からなること
を特徴とするAl−Zn−Mg−Cu系合金溶接用溶加
材。2. 5 to 8 wt% of Zn, 1 to 3 wt% of Mg, Cu
2-4 wt%, Sc 0.03-3.0 wt%, Cr0.05
~ 0.2wt%, V0.01 ~ 0.5wt%, Ti0.00
5 to 0.2 wt%, Ag 0.03 to 2 wt%
i at least one selected from the group consisting of 0.03 to 1.0 wt% and Zr 0.01 to 0.3 wt%, or B0.0001
At least one member selected from the group consisting of Ni, 0.03 wt.
wt%, at least one selected from the group consisting of Zr 0.01-0.3 wt%, and B0.0001-0.08 wt%, C
A filler metal for welding Al-Zn-Mg-Cu alloys, comprising at least one selected from the group of 0.0002 to 0.1 wt%, the balance being Al and unavoidable impurities.
2〜4wt%、Sc0.03〜3.0wt%、Cr0.05
〜0.2wt%、V0.01〜0.5wt%、Ti0.00
5〜0.2wt%を含み、更にNi0.03〜1.0wt
%、Zr0.01〜0.3wt%の群から選ばれる少なく
とも1種、またはB0.0001〜0.08wt%、C
0.0002〜0.1wt%の群から選ばれる少なくとも
1種、またはNi0.03〜1.0wt%、Zr0.01
〜0.3wt%の群から選ばれる少なくとも1種およびB
0.0001〜0.08wt%、C0.0002〜0.1
wt%の群から選ばれる少なくとも1種を含み、残部Al
および不可避不純物からなることを特徴とするAl−Z
n−Mg−Cu系合金溶接用溶加材。3. 5 to 8 wt% of Zn, 1 to 3 wt% of Mg, Cu
2-4 wt%, Sc 0.03-3.0 wt%, Cr0.05
~ 0.2wt%, V0.01 ~ 0.5wt%, Ti0.00
5 to 0.2 wt%, Ni 0.03 to 1.0 wt%
%, At least one selected from the group consisting of Zr 0.01 to 0.3 wt%, or B 0.0001 to 0.08 wt%, C
At least one selected from the group of 0.0002 to 0.1 wt%, or Ni 0.03 to 1.0 wt%, Zr0.01
At least one member selected from the group consisting of
0.0001 to 0.08 wt%, C 0.0002 to 0.1
at least one selected from the group of wt%, with the balance being Al
And Al-Z, comprising unavoidable impurities
A filler metal for welding n-Mg-Cu alloys.
−Zn−Mg−Cu系合金母材を、請求項1〜3に記載
した溶加材のいずれかを用いて溶接した溶接材の熱処理
方法であって、前記溶接材を450〜490℃の温度で
1分以上保持して溶体化処理し、次いで250〜400
℃/秒の冷却速度で焼入し、次いで10〜50℃の温度
に24時間以上保持後、110〜180℃の温度に5〜
72時間保持して人工時効処理することを特徴とする前
記溶加材を用いた溶接材の熱処理方法。4. Al having a tensile strength of 500 N / mm 2 or more.
A method for heat treating a welded material obtained by welding a Zn-Mg-Cu-based alloy base material using any one of the filler materials according to claim 1, wherein the welded material is heated to a temperature of 450 to 490 ° C. For 1 minute or more for solution treatment, then 250-400
Quenching at a cooling rate of 10 ° C./sec, and then holding at a temperature of 10 to 50 ° C. for 24 hours or more,
A heat treatment method for a welded material using the filler metal, wherein the heat treatment is performed for 72 hours and an artificial aging treatment is performed.
−Zn−Mg−Cu系合金母材を、請求項1〜3に記載
したいずれかの溶加材を用いて溶接した溶接材の熱処理
方法であって、前記溶接材を450〜490℃の温度で
1分以上保持して溶体化処理し、次いで250〜400
℃/秒の冷却速度で焼入し、次いで10〜50℃の温度
で24時間以上保持後、80〜100℃の温度で5〜2
0時間保持し、更に130〜150℃の温度で8〜72
時間保持して人工時効処理することを特徴とする前記溶
加材を用いた溶接材の熱処理方法。5. Al having a tensile strength of 500 N / mm 2 or more.
A method for heat-treating a welded material obtained by welding a Zn-Mg-Cu-based alloy base material using any one of the filler materials according to claims 1 to 3, wherein the welded material is heated to a temperature of 450 to 490C. For 1 minute or more for solution treatment, then 250-400
Quenching at a cooling rate of 10 ° C./sec, and then holding at a temperature of 10 to 50 ° C. for 24 hours or more,
Hold for 0 hours, and then at a temperature of 130-150 ° C. for 8-72
A heat treatment method for a welded material using the filler material, wherein the heat treatment is performed for artificial aging treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13204099A JP3446947B2 (en) | 1999-05-12 | 1999-05-12 | Heat treatment method for welding material using filler metal for welding Al-Zn-Mg-Cu alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13204099A JP3446947B2 (en) | 1999-05-12 | 1999-05-12 | Heat treatment method for welding material using filler metal for welding Al-Zn-Mg-Cu alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000317676A true JP2000317676A (en) | 2000-11-21 |
JP3446947B2 JP3446947B2 (en) | 2003-09-16 |
Family
ID=15072114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13204099A Expired - Fee Related JP3446947B2 (en) | 1999-05-12 | 1999-05-12 | Heat treatment method for welding material using filler metal for welding Al-Zn-Mg-Cu alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3446947B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006083982A2 (en) * | 2005-02-01 | 2006-08-10 | Timothy Langan | Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same |
CN100361777C (en) * | 2004-12-08 | 2008-01-16 | 中国科学院金属研究所 | High strength low heat cracking aluminium copper serial alloy welding wire, its preparation method and application |
EP2439015A1 (en) * | 2009-06-05 | 2012-04-11 | Sumitomo Light Metal Industries, Ltd. | Frame for two-wheeler and all-terrain vehicle and process for producing same |
CN103834837A (en) * | 2005-02-10 | 2014-06-04 | 肯联铝业轧制品-雷文斯伍德有限公司 | Al- Zn-Cu-Mg aluminum base alloys and methods of manufacture and use |
JP2014534071A (en) * | 2011-09-27 | 2014-12-18 | スネクマ | Welding of metal parts made of aluminum by MIG method using pulse current and filler wire, and method of attaching hard surface |
CN104651764A (en) * | 2015-02-12 | 2015-05-27 | 东北大学 | Solid solution thermal treatment method for high-zinc scandium-containing aluminum alloy |
CN105328359A (en) * | 2015-10-29 | 2016-02-17 | 中国航空工业集团公司北京航空材料研究院 | Welding wire used for Al-Cu-Li system aluminum lithium alloy and Al-Cu system aluminum alloy |
CN105328360A (en) * | 2015-10-29 | 2016-02-17 | 中国航空工业集团公司北京航空材料研究院 | Welding wire used for Al-Cu-Li system aluminum lithium alloy and Al-Cu system aluminum alloy |
WO2016061385A1 (en) * | 2014-10-15 | 2016-04-21 | Alcoa Inc. | A method of fusion welding |
WO2018157159A1 (en) * | 2017-02-27 | 2018-08-30 | Arconic Inc. | Aluminum alloy compositions, products and methods of making the same |
CN108707795A (en) * | 2018-06-15 | 2018-10-26 | 东北大学 | Aluminium alloy welding wire and preparation method thereof containing Ag, Sc, Zr and Yb |
CN110026669A (en) * | 2019-04-28 | 2019-07-19 | 西南交通大学 | A kind of diffusion welding method of magnesium alloy and fine copper or copper alloy |
CN114318089A (en) * | 2022-01-05 | 2022-04-12 | 成都阳光铝制品有限公司 | Aluminum alloy for manufacturing automobile parts and preparation method thereof |
DE112020004885T5 (en) | 2019-10-09 | 2022-06-23 | Uacj Corporation | WELDED COMPONENT WITH EXCELLENT STRESS CORROSION CRACKING RESISTANCE AND METHOD OF MAKING THE SAME |
CN114892052A (en) * | 2022-05-10 | 2022-08-12 | 上海工程技术大学 | High-surface-tension 7 xxx-series aluminum alloy welding wire and preparation method and application thereof |
CN116144993A (en) * | 2022-10-31 | 2023-05-23 | 沈阳航空航天大学 | 7-series aluminum alloy wire for arc additive manufacturing and preparation method and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105177371A (en) * | 2015-06-29 | 2015-12-23 | 安徽越天特种车桥有限公司 | Nanometer zirconium silicate-doped anti-friction type composite aluminum alloy vehicle part and casting process thereof |
-
1999
- 1999-05-12 JP JP13204099A patent/JP3446947B2/en not_active Expired - Fee Related
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100361777C (en) * | 2004-12-08 | 2008-01-16 | 中国科学院金属研究所 | High strength low heat cracking aluminium copper serial alloy welding wire, its preparation method and application |
WO2006083982A3 (en) * | 2005-02-01 | 2007-01-11 | Timothy Langan | Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same |
US8133331B2 (en) | 2005-02-01 | 2012-03-13 | Surface Treatment Technologies, Inc. | Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same |
WO2006083982A2 (en) * | 2005-02-01 | 2006-08-10 | Timothy Langan | Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same |
CN103834837A (en) * | 2005-02-10 | 2014-06-04 | 肯联铝业轧制品-雷文斯伍德有限公司 | Al- Zn-Cu-Mg aluminum base alloys and methods of manufacture and use |
CN103834837B (en) * | 2005-02-10 | 2016-11-09 | 肯联铝业轧制品-雷文斯伍德有限公司 | Al-Zn-Cu-Mg acieral and manufacture method thereof and purposes |
EP2439015A1 (en) * | 2009-06-05 | 2012-04-11 | Sumitomo Light Metal Industries, Ltd. | Frame for two-wheeler and all-terrain vehicle and process for producing same |
EP2439015A4 (en) * | 2009-06-05 | 2012-10-24 | Sumitomo Light Metal Ind | Frame for two-wheeler and all-terrain vehicle and process for producing same |
JP2014534071A (en) * | 2011-09-27 | 2014-12-18 | スネクマ | Welding of metal parts made of aluminum by MIG method using pulse current and filler wire, and method of attaching hard surface |
WO2016061385A1 (en) * | 2014-10-15 | 2016-04-21 | Alcoa Inc. | A method of fusion welding |
CN104651764A (en) * | 2015-02-12 | 2015-05-27 | 东北大学 | Solid solution thermal treatment method for high-zinc scandium-containing aluminum alloy |
CN105328360A (en) * | 2015-10-29 | 2016-02-17 | 中国航空工业集团公司北京航空材料研究院 | Welding wire used for Al-Cu-Li system aluminum lithium alloy and Al-Cu system aluminum alloy |
CN105328359A (en) * | 2015-10-29 | 2016-02-17 | 中国航空工业集团公司北京航空材料研究院 | Welding wire used for Al-Cu-Li system aluminum lithium alloy and Al-Cu system aluminum alloy |
WO2018157159A1 (en) * | 2017-02-27 | 2018-08-30 | Arconic Inc. | Aluminum alloy compositions, products and methods of making the same |
CN108707795A (en) * | 2018-06-15 | 2018-10-26 | 东北大学 | Aluminium alloy welding wire and preparation method thereof containing Ag, Sc, Zr and Yb |
CN108707795B (en) * | 2018-06-15 | 2020-07-14 | 东北大学 | Aluminum alloy welding wire containing Ag, Sc, Zr and Yb and preparation method thereof |
CN110026669A (en) * | 2019-04-28 | 2019-07-19 | 西南交通大学 | A kind of diffusion welding method of magnesium alloy and fine copper or copper alloy |
DE112020004885T5 (en) | 2019-10-09 | 2022-06-23 | Uacj Corporation | WELDED COMPONENT WITH EXCELLENT STRESS CORROSION CRACKING RESISTANCE AND METHOD OF MAKING THE SAME |
CN114318089A (en) * | 2022-01-05 | 2022-04-12 | 成都阳光铝制品有限公司 | Aluminum alloy for manufacturing automobile parts and preparation method thereof |
CN114892052A (en) * | 2022-05-10 | 2022-08-12 | 上海工程技术大学 | High-surface-tension 7 xxx-series aluminum alloy welding wire and preparation method and application thereof |
CN114892052B (en) * | 2022-05-10 | 2023-04-14 | 上海工程技术大学 | High-surface-tension 7 xxx-series aluminum alloy welding wire and preparation method and application thereof |
CN116144993A (en) * | 2022-10-31 | 2023-05-23 | 沈阳航空航天大学 | 7-series aluminum alloy wire for arc additive manufacturing and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3446947B2 (en) | 2003-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4101749B2 (en) | Weldable high strength Al-Mg-Si alloy | |
US11267081B2 (en) | Aluminum welding filler composition suitable for formation into wire used for fusion welding | |
JP2000317676A (en) | Filler metal for welding of al-zn-mg-cu base alloy and heat treatment of welding material using the filler metal | |
US9926619B2 (en) | Aluminum alloy | |
US20050211345A1 (en) | High conductivity bare aluminum finstock and related process | |
JPH09104940A (en) | High-tensile aluminum-copper base alloy excellent in weldability | |
US20170136584A1 (en) | Aluminum Welding Filler Metal | |
EP3265264B1 (en) | Process for manufacturing welded parts comprising arc-welded wrought components made of 6xxx series aluminium alloy using a 5xxx series aluminium filler wire | |
JP3164587B2 (en) | Alloys with excellent thermal fatigue resistance, aluminum alloys with excellent thermal fatigue resistance, and aluminum alloy members with excellent thermal fatigue resistance | |
JPH05169290A (en) | Aluminum alloy filler material and its production | |
AU2017204285A1 (en) | Aluminum welding filler metal, casting and wrought metal alloy | |
EP2592165A1 (en) | Aluminium alloy | |
JPH03122248A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JP2859019B2 (en) | Aluminum alloy filler metal for molding dies and method of manufacturing the same | |
JP3529664B2 (en) | Aluminum alloy filler metal | |
JP3562979B2 (en) | Automotive frame structural material for bending and arc welding made of extruded Al-Mg-Si alloy | |
JPH03122247A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH06346177A (en) | Aluminum alloy for weld structure excellent in stress corrosion cracking resistance and proof stress value after welding | |
JP2008207249A (en) | Method for welding aluminum alloy material having excellent weld crack resistance, and method for evaluating weld crack resistance of aluminum alloy material | |
JPH0413833A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH06184689A (en) | High strength aluminum alloy material for welding | |
JPH042741A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH0718362A (en) | Aluminum alloy for laser welding | |
JPH11199994A (en) | Zinc phosphate treating method for aluminum alloy welded member and aluminum alloy welding member | |
JP2021511218A (en) | Welding electrodes for aluminum plates or steel plates and methods for obtaining them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080704 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090704 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150704 Year of fee payment: 12 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |