JP4351024B2 - Friction stir welding method for heat-treatable aluminum alloy material - Google Patents
Friction stir welding method for heat-treatable aluminum alloy material Download PDFInfo
- Publication number
- JP4351024B2 JP4351024B2 JP2003371055A JP2003371055A JP4351024B2 JP 4351024 B2 JP4351024 B2 JP 4351024B2 JP 2003371055 A JP2003371055 A JP 2003371055A JP 2003371055 A JP2003371055 A JP 2003371055A JP 4351024 B2 JP4351024 B2 JP 4351024B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- aluminum alloy
- alloy material
- friction stir
- stir welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Description
本発明は、熱処理型アルミニウム合金材の摩擦攪拌接合方法に係り、特に、熱処理型アルミニウム合金材の摩擦攪拌接合において、その攪拌接合部や熱影響部での破断の発生を効果的に防止して、延性に優れた、ひいてはプレス成形性に優れた接合材を有利に得ることの出来る摩擦攪拌接合方法に関するものである。
The present invention relates to a friction stir welding how the heat-treatable aluminum alloy material, in particular, in the friction stir welding of heat-treatable aluminum alloy material, effectively prevent the occurrence of fracture at that stir joining portion and the heat-affected zone Te, excellent ductility, are those concerning the thus capable of obtaining a bonding material having excellent press formability advantageously friction stir welding how.
従来から、熱処理型アルミニウム合金からなる板材を、プレス成形用のブランク材として用い、かかるブランク材に対してプレス成形を施すことによって、多種多様なプレス製品が、製造されてきている。そして、このような熱処理型アルミニウム合金板材のプレス加工においては、高い強度が得られるT6調質のアルミニウム合金板材よりも、かかるT6調質のものに比して軟らかい、延性に優れたT4調質のアルミニウム合金板材が、好適に採用されている。 Conventionally, a wide variety of press products have been manufactured by using a plate material made of a heat-treatable aluminum alloy as a blank material for press molding and subjecting the blank material to press molding. In such a heat-treatable aluminum alloy sheet press, T4 tempering is softer and more ductile than T6 tempered aluminum alloy sheet that provides high strength. The aluminum alloy plate material is suitably employed.
一方、近年では、プレス加工後の切削やトリミングの省略による材料歩留りの向上や、製造工程の簡略化等を目的として、複数のアルミニウム合金材を接合した後に、その接合材に対して、プレス加工や曲げ加工等が行なわれるようになってきている。具体的には、複数のアルミニウム合金材を互いに突き合わせて溶接することによって接合し、一体化して、1枚のプレス成形用ブランク材、所謂テーラードブランク材を製造し、そして、このプレス成形用ブランク材に対して所定のプレス成形を行なうようにした技術が、例えば、自動車の内装パネル用のプレス製品の製造等の分野において、多く採用されてきているのである。 On the other hand, in recent years, after joining a plurality of aluminum alloy materials for the purpose of improving material yield by omitting cutting and trimming after press processing and simplifying the manufacturing process, press processing is performed on the joint materials. And bending are now being carried out. Specifically, a plurality of aluminum alloy materials are joined to each other by welding and integrated to produce a single press-forming blank material, a so-called tailored blank material, and this press-forming blank material For example, a technique for performing predetermined press molding has been widely employed in the field of manufacturing a press product for an interior panel of an automobile, for example.
このようなプレス成形技術においては、上記した材料歩留りの向上や製造工程の簡略化等の他にも、一般的なプレス成形技術では使用困難な小型の金属板を、ブランク材の形成材料として利用することが出来、また、かかるプレス成形用ブランク材として、厚さの異なるアルミニウム合金材を一体的に接合してなるブランク材を用いれば、必要な部位に必要なだけの強度が付与されたプレス製品を容易に得ることが出来る等といった利点も、享受され得ることとなる。 In such press forming technology, in addition to the above-mentioned improvement in material yield and simplification of the manufacturing process, a small metal plate that is difficult to use with general press forming technology is used as a material for forming blanks. As a blank material for press molding, if a blank material formed by integrally joining aluminum alloy materials having different thicknesses is used, a press with a necessary strength provided to a necessary part. Advantages such as being able to easily obtain a product can also be enjoyed.
ところで、そのようなプレス成形用ブランク材を得るために、アルミニウム合金材を接合する方法としては、従来より、TIG溶接や、MIG溶接、レーザ溶接、摩擦攪拌接合等の各種の接合手法が採用されているが、それらの中でも、摩擦攪拌接合法にあっては、溶融溶接に比して入熱が少なく軟化や歪みが少ない固相接合により、充分な接合強度乃至は継手強度を実現することが出来るところから、特に注目を浴びている。しかしながら、摩擦攪拌接合方式によって、T4調質材を突き合わせて接合しても、攪拌接合部の近傍の熱影響部における軟化は避けらず、それ故、摩擦攪拌接合によって製造されたブランク材を、何等の後処理も施すことなく、そのままプレス成形した際には、最も強度乃至は硬さが低い熱影響部に、応力が局所的に集中し、かかる熱影響部が優先的に変形して破断が起きてしまうことが、往々にしてあり、この熱影響部での破断により、プレス形状やその伸び乃至は延び(変形量)が制限されてしまうことが問題となるのである。 By the way, in order to obtain such a blank for press forming, various joining methods such as TIG welding, MIG welding, laser welding, friction stir welding, etc. have been conventionally employed as methods for joining aluminum alloy materials. However, among them, in the friction stir welding method, sufficient joining strength or joint strength can be realized by solid phase joining with less heat input and less softening and distortion than fusion welding. It's getting a lot of attention from where it can. However, even if the T4 tempered material is abutted and joined by the friction stir welding method, softening in the heat affected zone in the vicinity of the stir welded portion is not avoided, and therefore, the blank material manufactured by friction stir welding is used. When press-molding as it is without any post-treatment, stress is concentrated locally on the heat-affected zone with the lowest strength or hardness, and the heat-affected zone is preferentially deformed and fractured. This often occurs, and the breakage at the heat-affected zone limits the press shape and its elongation or elongation (deformation amount).
これに対し、接合する部材として熱処理型アルミニウム合金材を用い、それを摩擦攪拌接合した後、時効硬化処理を施すことにより、熱影響部も含めた接合部全体の継手強度を向上せしめる試みが、数多く為されている(例えば、特許文献1〜3参照)。また、特許文献4においては、高い継手強度を確保することを目的として、TIG溶接やMIG溶接、レーザ溶接、摩擦攪拌接合等を実施するに先立ち、アルミニウム合金材に対して、予め、最高強度が得られる時効処理条件より低い温度又は短い時間で時効処理を行なう、亜時効処理の採用が、明らかにされている。そして、そのような亜時効処理条件としては、その実施例中において、炉の温度:160℃〜200℃で、3時間の熱処理を行なうことが、明らかにされている。 On the other hand, using a heat-treatable aluminum alloy material as a member to be joined, and after friction stir welding it, an attempt to improve the joint strength of the entire joint part including the heat affected part by applying age hardening treatment, Many have been made (for example, see Patent Documents 1 to 3). Moreover, in patent document 4, prior to performing TIG welding, MIG welding, laser welding, friction stir welding, etc. for the purpose of ensuring high joint strength, the maximum strength is preliminarily applied to the aluminum alloy material. The adoption of a sub-aging treatment in which the aging treatment is performed at a temperature lower than or shorter than the aging treatment conditions obtained has been clarified. As such sub-aging treatment conditions, it has been clarified in the examples that the heat treatment is performed at a furnace temperature of 160 ° C. to 200 ° C. for 3 hours.
このように、接合後に時効硬化処理を行なったり、接合前に亜時効処理を行なうことによって、確かに、継手強度は向上するものの、接合材のプレス成形性や延性については、全く検討されておらず、依然として、熱影響部の強度が接合部や母材に比して低く、かかる熱影響部に応力が集中して破断が生じ易く、プレス形状や伸び(成形量)が制約される問題を内在している。 Thus, although the joint strength is improved by performing age hardening treatment after joining or sub-aging treatment before joining, the press formability and ductility of the joining material have not been studied at all. However, the strength of the heat-affected zone is still lower than that of the joint and the base material, stress concentrates on the heat-affected zone, and breakage easily occurs, and the press shape and elongation (molding amount) are restricted. Is inherent.
また、特許文献5においては、摩擦攪拌接合に先立って、プローブの移動方向前方部分を、レーザ光、ガス炎、ヒータ等の外部熱源を用いて、500℃以下、好ましくは100℃〜300℃の温度となるように加熱(前方加熱)する摩擦攪拌接合法が提案され、これにて、接合不良を生じることなく、良好に接合することが可能となると共に、接合速度を向上させて、プローブの寿命を長くすることが出来るようになることが、明らかにされている。更に、特許文献6や特許文献7には、摩擦攪拌接合を開始するまでの時間を短縮したり、熱影響部を含む接合部位の割れ防止のために、接合部位の前方及び後方を、溶接トーチや誘導加熱にて、100℃〜300℃の温度範囲で加熱する方法も、提案されている。しかしながら、これらの前方加熱方式は、摩擦攪拌接合に先立って、アルミニウム合金材に対して熱処理が実施されているものの、単に、変形抵抗の低減や開始時間の短縮等を目的とするに過ぎないものであって、アルミニウム合金材の改質を、何等、目的としてはいない。 Moreover, in patent document 5, prior to friction stir welding, the front part of the moving direction of the probe is 500 ° C. or less, preferably 100 ° C. to 300 ° C., using an external heat source such as a laser beam, a gas flame, or a heater. A friction stir welding method that heats to a temperature (forward heating) has been proposed, which enables good bonding without causing poor bonding and improves the bonding speed, It has been clarified that the lifetime can be extended. Further, Patent Document 6 and Patent Document 7 describe a welding torch at the front and rear of the joint portion in order to shorten the time until the friction stir welding is started or to prevent cracking of the joint portion including the heat affected zone. There has also been proposed a method of heating in a temperature range of 100 ° C. to 300 ° C. by induction heating. However, these forward heating methods are merely intended to reduce deformation resistance and start time, although heat treatment is performed on the aluminum alloy material prior to friction stir welding. However, there is no purpose of modifying the aluminum alloy material.
ここにおいて、本発明者らが、上記の如き事情に鑑み、熱処理型アルミニウム合金材の摩擦攪拌接合材におけるプレス成形性等の問題を悉く解消すべく鋭意検討した結果、攪拌接合部、熱影響部及び母材の強度バランスを制御することにより、具体的には、攪拌接合部や熱影響部の硬さを母材の硬さ以上とすることにより、プレス成形時における攪拌接合部や熱影響部への応力集中を回避することが可能であることを知見した。 Here, in view of the circumstances as described above, the present inventors have intensively studied to eliminate problems such as press formability in the friction stir welding material of the heat-treatable aluminum alloy material. In addition, by controlling the strength balance of the base material, specifically, by setting the hardness of the stir welded portion and the heat affected zone to be equal to or higher than the hardness of the base material, the stir welded portion and the heat affected zone at the time of press molding. It was found that it was possible to avoid stress concentration on the surface.
そして、本発明者らは、更に、攪拌接合部、熱影響部及び母材の強度バランスを制御するために、冶金学的観点から、摩擦攪拌接合後の攪拌接合部、熱影響部及び母材部分の各金属組織について、研究を重ねた結果、攪拌接合部の近傍に生じる、最も低い硬さを有する熱影響部にあっては、その金属組織が復元された状態(復元組織)となっていることを知見した。そして、T4調質された熱処理型アルミニウム合金材に対して、予め、金属組織中のGPゾーン(またはクラスター)を一旦消滅せしめる復元処理を行ない、更にその復元処理の後に、摩擦攪拌接合を行なうようにすれば、母材の強度乃至は硬さが、熱影響部の強度乃至は硬さと同程度か、それ以下に効果的に低減され、その結果、プレス成形時における熱影響部への応力集中による破断が有利に防止され、且つ、応力が面積の大きな母材部分で効果的に分散されることとなって、接合材全体の変形量が有利に増大せしめられ、これにより、接合材の延性乃至は破断伸びが効果的に高められ、プレス成形性が有利に向上せしめられ得ることを、見出したのである。 Further, the present inventors further controlled the strength balance between the stir welded portion, the heat affected zone and the base metal from the metallurgical viewpoint, after the friction stir weld, the heat affected zone and the base material. As a result of repeated research on each metal structure of the part, in the heat affected zone having the lowest hardness that occurs in the vicinity of the stir weld, the metal structure is restored (restored structure) I found out. Then, the T4 tempered heat-treatable aluminum alloy material is preliminarily subjected to a restoration process for once eliminating the GP zone (or cluster) in the metal structure, and after the restoration process, a friction stir welding is performed. In this case, the strength or hardness of the base material is effectively reduced to the same level or lower than the strength or hardness of the heat-affected zone, and as a result, stress concentration on the heat-affected zone during press molding Is advantageously prevented, and the stress is effectively dispersed in the base material portion having a large area, which advantageously increases the amount of deformation of the entire joint material, thereby increasing the ductility of the joint material. It has been found that the elongation at break can be effectively increased and the press formability can be advantageously improved.
従って、本発明は、かかる知見に基づいて完成されたものであって、その解決課題とするところは、攪拌接合部、熱影響部及び母材の強度バランスを制御することにより、攪拌接合部や熱影響部での破断を防止して、延性、ひいてはプレス成形性に優れた接合材を有利に得ることが出来る熱処理型アルミニウム合金材の摩擦攪拌接合方法を提供すること、及びそのような熱処理型アルミニウム合金材の摩擦攪拌接合方法によって有利に製造される、プレス成形性が高められたプレス成形用接合材を提供することにある。 Therefore, the present invention has been completed based on such knowledge, and the problem to be solved is that by controlling the strength balance of the stir welded portion, the heat affected zone and the base material, Providing a friction stir welding method for a heat-treatable aluminum alloy material that can advantageously obtain a joint material excellent in ductility and by extension, press formability by preventing breakage in a heat-affected zone, and such heat treatment mold An object of the present invention is to provide a press-molding bonding material with improved press-formability, which is advantageously produced by a friction stir welding method for an aluminum alloy material.
そして、本発明にあっては、上記した課題の解決のために、熱処理型アルミニウム合金材からなる母材を摩擦攪拌接合する方法であって、かかる熱処理型アルミニウム合金材にT4調質を施した後、該T4調質した熱処理型アルミニウム合金材に対して、150℃〜350℃の温度に昇温し、該温度で300秒以下の時間、保持する熱処理を施すことからなる復元処理を行ない、そしてその復元処理の施された、復元状態にある熱処理型アルミニウム合金材を、摩擦攪拌接合して、生じた攪拌接合部の硬さが母材の硬さよりも大きく、且つ該母材より該攪拌接合部に向かって硬さが大きくなるようにしたことを特徴とする熱処理型アルミニウム合金材の摩擦攪拌接合方法を、その第一の態様とするものである。
Then, in the present invention, in order to solve the aforementioned problems, a method of friction stir welding a base metal made of heat-treatable aluminum alloy was subjected to T4 tempered in the heat treatment type aluminum alloy Thereafter, the T4 tempered heat-treatable aluminum alloy material is heated to a temperature of 150 ° C. to 350 ° C., and a restoration treatment is performed by performing a heat treatment that is held for 300 seconds or less at the temperature , Then, the heat-treatable aluminum alloy material that has been subjected to the restoration treatment is friction stir welded , and the resulting stir welded portion has a hardness greater than the hardness of the base material and the stirrer from the base material. A friction stir welding method for heat-treatable aluminum alloy material characterized in that the hardness increases toward the joint portion is the first aspect.
また、本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法における望ましい第二の態様にあっては、前記復元処理における昇温速度及び降温速度が、それぞれ、2℃/秒以上である。 Moreover, in the desirable 2nd aspect in the friction stir welding method of the heat processing type aluminum alloy material according to this invention, the temperature increase rate and temperature decrease rate in the said reconstruction process are 2 degree-C / sec or more, respectively .
さらに、本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法の第三の態様においては、前記熱処理型アルミニウム合金材として6000系アルミニウム合金材が用いられ、且つ前記復元処理が、前記T4調質した熱処理型アルミニウム合金材を、200℃〜350℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理にて実施される。 Furthermore, in the third aspect of the friction stir welding method for heat-treatable aluminum alloy material according to the present invention, a 6000 series aluminum alloy material is used as the heat-treatable aluminum alloy material, and the restoration treatment is tempered by T4. The heat treatment type aluminum alloy material is heated to a temperature of 200 ° C. to 350 ° C., and the heat treatment type aluminum alloy material is carried out by a heat treatment that is held at the temperature for 300 seconds or less.
加えて、本発明の第四の態様においては、前記熱処理型アルミニウム合金材として2000系アルミニウム合金材が用いられ、且つ前記復元処理が、前記T4調質した熱処理型アルミニウム合金材を、150℃〜300℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理とされることとなる。 In addition, in the fourth aspect of the present invention, a 2000 series aluminum alloy material is used as the heat treatment type aluminum alloy material, and the restoration treatment is performed at a temperature of 150 ° C. The temperature is raised to a temperature of 300 ° C., and the heat treatment is performed at such a temperature for 300 seconds or less.
更にまた、本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法の第五の態様によれば、前記熱処理型アルミニウム合金材として7000系アルミニウム合金材が用いられ、且つ前記復元処理が、前記T4調質した熱処理型アルミニウム合金材を、150℃〜250℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理にて実施される。 Furthermore, according to the fifth aspect of the friction stir welding method for heat-treatable aluminum alloy material according to the present invention, a 7000 series aluminum alloy material is used as the heat-treatable aluminum alloy material, and the restoration treatment is performed in the T4 mode. The heat-treated aluminum alloy material is heated to a temperature of 150 ° C. to 250 ° C., and the heat treatment is carried out by maintaining the temperature for 300 seconds or less.
ところで、本発明にあっては、その好ましい第六の態様として、前記復元処理の後、該復元処理の施された前記熱処理型アルミニウム合金材を、その自然時効による引張強さの上昇量が10MPaを超えない間に、前記摩擦攪拌接合が行なわれるようにする手法が、採用される。 By the way, in the present invention, as a preferable sixth aspect thereof, after the restoration treatment, the heat treatment type aluminum alloy material subjected to the restoration treatment has an increase in tensile strength of 10 MPa due to natural aging. A method is adopted in which the friction stir welding is performed while the temperature does not exceed.
また、かかる本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法の第七の態様においては、前記復元処理が、ソルトバス、オイルバス、空気炉、赤外線加熱又は誘導加熱の何れかの加熱手段による熱処理にて行なわれる構成が、採用される。 Moreover, in the seventh aspect of the friction stir welding method for heat-treatable aluminum alloy materials according to the present invention, the restoration treatment is performed by a salt bath, an oil bath, an air furnace, infrared heating or induction heating. A configuration performed by heat treatment is employed.
さらに、本発明の望ましい第八の態様においては、前記熱処理型アルミニウム合金材の摩擦攪拌接合されるべき被接合部位に沿って、所定の加熱手段を用いて、前記復元処理が順次実施される一方、かかる復元処理の済んだ前記被接合部位に対して、前記摩擦攪拌接合が順次実施されることとなる。 Furthermore, in a desirable eighth aspect of the present invention, the restoration process is sequentially performed by using a predetermined heating means along a bonded portion of the heat-treatable aluminum alloy material to be friction stir welded. Then, the friction stir welding is sequentially performed on the joined parts that have been restored.
また、本発明は、上述せる如き熱処理型アルミニウム合金材の摩擦攪拌接合方法によって得られるプレス成形用接合材も、また、その態様の一つとしている。 Further, the present invention also includes a press-forming bonding material obtained by the friction stir welding method for heat-treatable aluminum alloy material as described above.
かくの如き本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法によれば、熱処理型アルミニウム合金材に、T4調質を施した後、更に復元処理を施しているところから、T4調質されたアルミニウム合金材の金属組織中に形成された、微細な化合物からなるGPゾーン(またはクラスター)が一旦消滅せしめられた状態となる。そして、このようなGPゾーンが消滅した熱処理型アルミニウム合金材同士を突き合わせて、摩擦攪拌接合を行なうと、攪拌接合部は、溶体化処理を行なった場合と同様の組織となって、その強度乃至は硬さは、母材や熱影響部よりも高くなる。また、熱影響部は、時効硬化が僅かに起こった復元組織となり、その強度乃至は硬さは母材と同等以上、且つ攪拌接合部よりも低くなる。一方、未接合部(熱影響部を含む接合部以外の部位)である母材は、復元組織のままとなり、その強度乃至は硬さは最も低くなる。この結果、継手部を含んだ部位に対してプレス成形を行なっても、従来のように熱影響部に局所的に応力が集中してかかる熱影響部で破断が起こるようなことが有利に防止され、母材で応力が分散するようになって変形量が増大し、これにより、接合材の破断伸び乃至は延性が効果的に高められて、プレス成形性が有利に向上せしめられるようになるのである。 According to the friction stir welding method of the heat treatment type aluminum alloy material according to the present invention as described above, the heat treatment type aluminum alloy material was subjected to the T4 tempering and further subjected to the restoration treatment, so that the T4 tempering was performed. A GP zone (or cluster) made of a fine compound formed in the metal structure of the aluminum alloy material is once extinguished. When the heat-treatable aluminum alloy materials in which the GP zone has disappeared are brought into contact with each other and friction stir welding is performed, the stir welded portion has the same structure as that obtained when the solution treatment is performed. The hardness is higher than that of the base material and the heat affected zone. Further, the heat-affected zone is a restored structure in which age hardening has slightly occurred, and the strength or hardness thereof is equal to or higher than that of the base material and lower than that of the stir joint. On the other hand, the base material which is an unjoined part (parts other than the joined part including the heat affected zone) remains in the restored structure, and the strength or hardness thereof is the lowest. As a result, even if press molding is performed on the part including the joint part, it is advantageously prevented that stress is locally concentrated on the heat-affected zone and breakage occurs at the heat-affected zone as in the past. As a result, stress is dispersed in the base material, and the amount of deformation is increased. As a result, the elongation at break or ductility of the bonding material is effectively increased, and the press formability is advantageously improved. It is.
なお、かかる本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法において、特に、上記した第三〜第五の態様を採用すれば、熱処理型アルミニウム合金材の種類に応じて、復元処理の熱処理条件が緻密に設定されているところから、攪拌接合部、熱影響部及び母材の強度バランスをより一層効果的に制御することが可能となり、延性、ひいてはプレス成形性に優れた接合材を更に有利に得ることが出来る。 In addition, in the friction stir welding method for heat-treatable aluminum alloy material according to the present invention, in particular, if the third to fifth aspects described above are employed, the heat treatment conditions for the restoration treatment depend on the type of heat-treatable aluminum alloy material. Therefore, it is possible to more effectively control the strength balance of the stir welded part, the heat-affected part and the base material, and it is more advantageous to use a joint material excellent in ductility and in turn press formability. Can be obtained.
また、本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法の第六の態様によれば、母材の強度乃至は硬さを、より一層確実に、攪拌接合部や熱影響部の強度乃至は硬さよりも低くすることが出来る。 Further, according to the sixth aspect of the friction stir welding method for heat-treatable aluminum alloy material according to the present invention, the strength or hardness of the base material can be further ensured, and the strength or the strength of the stir welded portion or the heat affected zone can be increased. It can be made lower than the hardness.
さらに、本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法の第七の態様によれば、所望とする条件の熱処理を有利に実施することが可能となる。 Furthermore, according to the seventh aspect of the friction stir welding method for heat-treatable aluminum alloy material according to the present invention, heat treatment under desired conditions can be advantageously performed.
加えて、本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法の第八の態様によれば、接合すべき一対の熱処理型アルミニウム合金材に対して、復元処理操作と摩擦攪拌接合操作とが、それぞれ、別々の場所で別々に実施されることなく、同一のライン上で、順次、引き続いて行なわれるようになっているところから、上述せる如きプレス成形性に優れた接合材を、連続的に効率良く製造することが出来る。更に、復元処理後、摩擦攪拌接合が実施されるまでの自然時効による時効硬化も起こらないことから、母材の強度乃至は硬さを、攪拌接合部や熱影響部の強度乃至は硬さよりも、より一層確実に低くすることが可能となる。 In addition, according to the eighth aspect of the friction stir welding method for heat-treatable aluminum alloy material according to the present invention, for the pair of heat-treatable aluminum alloy materials to be joined, the restoration treatment operation and the friction stir welding operation are: Each of the above-mentioned bonding materials having excellent press formability can be continuously produced from the place where they are successively carried out successively on the same line without being carried out separately at different places. It can be manufactured efficiently. Furthermore, since age hardening due to natural aging until the friction stir welding is performed after the restoration treatment does not occur, the strength or hardness of the base material is set to be higher than the strength or hardness of the stir welding portion or the heat affected zone. Thus, it is possible to lower the temperature more reliably.
また、本発明に従うプレス成形用接合材にあっては、上述せる如き熱処理型アルミニウム合金材の摩擦攪拌接合方法によって製造されるところから、プレス成形時に、熱影響部での破断が防止されて、変形量が有利に増大せしめられ、その結果、自由なプレス形状やより大きな加工量でのプレス成形が可能となる。 Moreover, in the bonding material for press molding according to the present invention, since it is produced by the friction stir welding method of the heat treatment type aluminum alloy material as described above, during the press molding, the fracture at the heat affected zone is prevented, The amount of deformation is advantageously increased, and as a result, press forming with a free press shape and a larger processing amount becomes possible.
ところで、かくの如き本発明に従う熱処理型アルミニウム合金材の摩擦攪拌接合方法において、熱処理型アルミニウム合金材の材質としては、時効硬化熱処理によって強度を高めることが可能な、従来より公知の熱処理型のアルミニウム合金、例えば、JIS呼称の合金番号にて、6000系(Al−Mg−Si系)、2000系(Al−Cu−Mg系)、7000系(Al−Zn−Mg系)等のアルミニウム合金が用いられることとなる。より具体的には、6000系合金としては、JIS A6061合金、JIS A6063合金等のSi含有量が少ないものや、AA6016合金、AA6111合金等のSi含有量が多いものでも良い。また、2000系合金としては、JIS A2014合金、JIS A2017合金、JIS A2024合金等を例示することが出来る一方、7000系合金としては、JIS A7075合金、JIS A7N01合金等を挙げることが出来る。 By the way, in the friction stir welding method for heat-treatable aluminum alloy material according to the present invention as described above, the heat-treatable aluminum alloy material is made of heat-treatable aluminum that can be increased in strength by age hardening heat treatment. Alloys, for example, 6000 series (Al-Mg-Si series), 2000 series (Al-Cu-Mg series), 7000 series (Al-Zn-Mg series) aluminum alloys, etc. are used under the alloy number of JIS designation. Will be. More specifically, the 6000 series alloy may be one having a low Si content such as JIS A6061 alloy or JIS A6063 alloy or one having a high Si content such as AA6016 alloy or AA6111 alloy. Examples of 2000 series alloys include JIS A2014 alloy, JIS A2017 alloy, JIS A2024 alloy and the like, while examples of 7000 series alloys include JIS A7075 alloy and JIS A7N01 alloy.
また、そのような熱処理型アルミニウム合金材の形状としては、接合されるべき被接合部位の端部を、接合相手方の被接合部位の端部に突き合わせることが可能な形状のものであれば、圧延や押出、鍛造等の公知の手法にて製作された、板状や管状、棒状等、各種の形状の熱処理型アルミニウム合金材(熱処理型Al合金材)が、何れも、採用されることとなるが、一般には、板材や押出形材が有利に用いられる。 In addition, as the shape of such a heat-treatable aluminum alloy material, if it has a shape capable of abutting the end of the joined part to be joined to the end of the joined part of the other party, Any of heat-treatable aluminum alloy materials (heat-treatable Al alloy materials) of various shapes, such as plate-like, tubular, rod-like, manufactured by known methods such as rolling, extrusion, forging, etc. In general, however, plate materials and extruded shapes are advantageously used.
そして、それらの形状の中でも、板状の圧延材は、例えば、次のようにして形成されることとなる。即ち、先ず、所定の化学成分組成とされたアルミニウム合金が、通常の半連続鋳造法によって造塊され、次いで、この得られた鋳塊に対して均質化処理が施された後、熱間圧延が行われて、熱間圧延板が製造される。また、所定の化学成分組成に調整されたアルミニウム合金の溶湯を、連続鋳造法(溶湯圧延法)により、直接に、連続鋳造板として製造する。そして、これらの熱間圧延板或いは連続鋳造板に対して、冷間圧延が行なわれて、所定の厚さを有する平板形状の板材とされる。なお、かかる冷間圧延の前や、冷間圧延の途中において、必要に応じて、中間焼鈍処理が実施されることもある。 And among those shapes, a plate-shaped rolling material will be formed as follows, for example. That is, first, an aluminum alloy having a predetermined chemical composition is ingoted by a normal semi-continuous casting method, and then the obtained ingot is homogenized and then hot rolled. Is performed to produce a hot-rolled sheet. Also, an aluminum alloy melt adjusted to a predetermined chemical composition is directly produced as a continuous cast plate by a continuous casting method (molten rolling method). And these hot-rolled plates or continuous cast plates are cold-rolled to obtain flat plate-shaped plate materials having a predetermined thickness. In addition, before this cold rolling and in the middle of cold rolling, an intermediate annealing process may be implemented as needed.
次いで、上述せる如き板材や押出形材等の熱処理型Al合金材の複数を用いて、摩擦攪拌接合が行なわれることとなるが、本発明においては、先ず、熱処理型Al合金材に対して、T4調質が実施される。つまり、熱処理型Al合金材に対して、溶体化処理が施された後、焼入れが行なわれ、そして自然時効されることにより、T4調質材が得られるのである。特に、6000系合金材を用いる場合には、ベークハード性(塗装焼付硬化性)を付与するために、必要に応じて、焼入れの後、40℃〜120℃の温度で、24時間以内の予備時効を行なうようにすることも出来る。 Next, friction stir welding is performed using a plurality of heat-treatable Al alloy materials such as the above-described plate materials and extruded shapes, but in the present invention, first, for heat-treatable Al alloy materials, T4 tempering is performed. That is, the heat-treatable Al alloy material is subjected to a solution treatment, quenched, and naturally aged to obtain a T4 tempered material. In particular, in the case of using a 6000 series alloy material, in order to impart bake hardness (coating bake hardenability), if necessary, it is preliminarily kept at a temperature of 40 ° C. to 120 ° C. within 24 hours after quenching. Aging can also be performed.
その後、かかるT4調質された熱処理型Al合金材には、その摩擦攪拌接合に先立って、復元処理が施される。なお、ここにおいて、復元処理とは、T4調質された熱処理型Al合金材の金属組織中に自然時効により形成されたGPゾーン(またはクラスター)を一旦消滅させる処理のことであり、本発明においては、かかる復元処理が、T4調質された熱処理型Al合金材を、150℃〜350℃の温度に昇温し、その昇温した温度で300秒以下の間、より好ましくは、60秒以下の間、保持する熱処理にて、実施されることとなる。また、かかる保持時間の下限は、特に制限されるものではなく、目的とする温度に昇温した後、直ちに降温するようにしても良い。 Thereafter, the T4 tempered heat-treatable Al alloy material is subjected to a restoration process prior to the friction stir welding. Here, the restoration process is a process for once extinguishing GP zones (or clusters) formed by natural aging in the metal structure of the heat-treated Al alloy material tempered by T4. Is such that the heat treatment type Al alloy material that has undergone the T4 tempering process is heated to a temperature of 150 ° C. to 350 ° C., and the elevated temperature is 300 seconds or less, more preferably 60 seconds or less. During this period, the heat treatment is performed. Further, the lower limit of the holding time is not particularly limited, and the temperature may be lowered immediately after the temperature is raised to a target temperature.
なお、上記の復元処理において、熱処理温度(復元処理温度)が150℃に満たず、低い場合には、GPゾーン(またはクラスター)が充分に消滅せず、つまり、復元が充分に行なわれず、母材の強度乃至は硬さを有効に低減せしめることが出来なくなる一方、熱処理温度が350℃を超えるようになると、過時効となって、金属組織中に形成された析出物が粗大化して、復元組織が得られなくなる。また、上記熱処理温度での保持時間が長過ぎると、復元されるものの、復元に続いて、時効硬化が生じたり、或いは過時効による軟化が生じ、目的とする復元組織が得られなくなる。 In the above restoration process, when the heat treatment temperature (restoration process temperature) is less than 150 ° C. and is low, the GP zone (or cluster) does not disappear sufficiently, that is, the restoration is not sufficiently performed, and the mother While it becomes impossible to effectively reduce the strength or hardness of the material, when the heat treatment temperature exceeds 350 ° C., it becomes over-aged, and the precipitate formed in the metal structure becomes coarse and restored. The organization cannot be obtained. In addition, if the holding time at the heat treatment temperature is too long, it is restored, but age hardening or softening due to overaging occurs after restoration, and the desired restored structure cannot be obtained.
また、上述せる如き熱処理温度(復元処理温度)は、被接合材たる熱処理型Al合金の種類に応じて、更に細かく設定されることが、より一層望ましく、例えば、熱処理型Al合金として、6000系Al合金材を使用する場合には、上述せる範囲の中でも、好ましくは200℃〜350℃、更に好ましくは200℃〜300℃が有利に採用される。また、2000系Al合金材の場合には、上述せる範囲の中でも、好ましくは150℃〜300℃、更に好ましくは180℃〜300℃とされることが望ましい。更に、7000系Al合金材の場合には、上述せる如き範囲の中でも、好ましくは150℃〜250℃、更に好ましくは170℃〜250℃とされることが望ましい。 Further, it is more desirable that the heat treatment temperature (restoration treatment temperature) as described above is set more finely according to the type of the heat treatment type Al alloy to be bonded, for example, as a heat treatment type Al alloy, 6000 series In the case where an Al alloy material is used, the temperature is preferably 200 ° C. to 350 ° C., more preferably 200 ° C. to 300 ° C., among the ranges described above. Further, in the case of a 2000 series Al alloy material, it is preferably set to 150 ° C. to 300 ° C., more preferably 180 ° C. to 300 ° C., within the range described above. Further, in the case of a 7000 series Al alloy material, it is desirable that the temperature is preferably 150 ° C. to 250 ° C., more preferably 170 ° C. to 250 ° C., within the range described above.
さらに、上述せる如き目的とする熱処理温度に、熱処理型Al合金材を昇温せしめたり、かかる熱処理温度から降温せしめるに際して、その昇温速度や降温速度としては、特に制限されるものではないものの、上記した復元を効果的に実現するためには、昇温速度も降温速度も、それぞれ、好適には2℃/秒以上、更に好適には4℃/秒〜50℃/秒となるように設定されることが、望ましい。 Furthermore, when the temperature of the heat treatment type Al alloy material is raised to the target heat treatment temperature as described above, or when the temperature is lowered from the heat treatment temperature, the rate of temperature rise or the rate of temperature drop is not particularly limited, In order to effectively realize the restoration described above, the temperature raising rate and the temperature lowering rate are each preferably set to 2 ° C./second or more, more preferably 4 ° C./second to 50 ° C./second. It is desirable that
かくして、上述せる如き所定の熱処理が施されることによって、T4調質された熱処理型Al合金材には、その金属組織に形成されたGPゾーン(またはクラスター)が一旦消滅し、復元組織となる。これによって、復元処理の施された、復元状態にある熱処理型Al合金材は、その強度乃至は硬さが、全体的に下がるようになるのである。 Thus, by performing the predetermined heat treatment as described above, the GP zone (or cluster) formed in the metal structure of the heat-treated Al alloy material tempered by T4 once disappears and becomes a restored structure. . As a result, the strength or hardness of the heat-treated Al alloy material that has been subjected to the restoration process and is in a restored state is lowered as a whole.
そして、本発明においては、そのような復元処理により、熱処理型Al合金の強度乃至は硬さが低減せしめられた状態で、次の摩擦攪拌接合が、実施されることとなる。しかしながら、前記復元処理の施された熱処理型Al合金材は、強度乃至は硬さの小さな復元状態から、自然時効によって、再びその金属組織中にGPゾーン(またはクラスター)が形成されて、強度乃至は硬さが上昇する。このため、摩擦攪拌接合法による接合操作は、自然時効によって熱処理型Al合金材の強さ乃至は硬さが上昇し過ぎない、復元状態のうちに、換言すればGPゾーンが実質的に再度形成されるまでに実施されることが望ましいのである。具体的には、熱処理型Al合金材の引張強さの上昇量、即ち、摩擦攪拌接合時の熱処理型Al合金材の引張強さから、復元処理後の熱処理型Al合金材の引張強さを差し引いた値が、10MPaを超えない間、より好ましくは5MPaを超えない間に実施せしめられることが、望ましい。何故なら、時効硬化による引張強さの上昇量が10MPaを超えるようになると、接合後において、母材の強度乃至は硬さが、熱影響部の強度乃至は硬さよりも高くなってしまい、所望とする強度バランスを得ることが出来なくなるからである。なお、ここにおいて、「引張強さ」は、JIS−Z−2241の「金属材料引張試験方法」に準じて測定され得るものである。 In the present invention, the following friction stir welding is performed in a state where the strength or hardness of the heat treatment type Al alloy is reduced by such restoration processing. However, the heat-treated Al alloy material that has been subjected to the restoration treatment has a strength or thoroughness because a GP zone (or cluster) is formed again in the metal structure by natural aging from a restoration state having a low strength or hardness. Increases in hardness. For this reason, in the joining operation by the friction stir welding method, the strength or hardness of the heat-treatable Al alloy material does not increase excessively due to natural aging. In other words, the GP zone is substantially formed again in the restored state. It is desirable to be implemented by the time it is done. Specifically, the amount of increase in the tensile strength of the heat treatment type Al alloy material, that is, the tensile strength of the heat treatment type Al alloy material after the restoration treatment is determined from the tensile strength of the heat treatment type Al alloy material at the time of friction stir welding. It is desirable that the subtracted value be carried out while not exceeding 10 MPa, more preferably not exceeding 5 MPa. This is because when the amount of increase in tensile strength due to age hardening exceeds 10 MPa, the strength or hardness of the base material becomes higher than the strength or hardness of the heat-affected zone after bonding. This is because it becomes impossible to obtain the strength balance. Here, “tensile strength” can be measured according to “Metal Material Tensile Test Method” of JIS-Z-2241.
このため、例えば、復元処理後の熱処理型Al合金材を20℃の温度で保管する場合、6000系Al合金材にあっては、復元処理後、約60日以内に、また2000系Al合金材にあっては、復元処理後、約20日以内に、更に7000系Al合金材にあっては、復元処理後、約20日以内に、摩擦攪拌接合を行なうことが望ましいのである。また、かかる保管温度が高くなる程、時効硬化が早く進むところから、例えば、6000系Al合金材を40℃で保管する場合には、復元処理後、1週間以内或いは2週間以内に摩擦攪拌接合を実施することが望ましい。要するに、引張強さがあまり上昇しないうちに、言い換えれば、復元処理による効果が失われないうちに摩擦攪拌接合を実施することが肝要なのである。 For this reason, for example, when the heat-treated Al alloy material after the restoration process is stored at a temperature of 20 ° C., in the case of the 6000 series Al alloy material, within about 60 days after the restoration process, the 2000 series Al alloy material In that case, it is desirable to perform friction stir welding within about 20 days after the restoration process, and further within about 20 days after the restoration process in the case of a 7000 series Al alloy material. In addition, since age hardening progresses faster as the storage temperature increases, for example, when storing a 6000 series Al alloy material at 40 ° C., friction stir welding within one week or two weeks after restoration processing It is desirable to implement. In short, it is important to perform the friction stir welding before the tensile strength is increased so much, in other words, before the effect of the restoration process is lost.
ところで、復元状態にある熱処理型Al合金材を摩擦攪拌接合して、目的とする接合材を形成せしめるに際しては、従来と同様な手法が採用され得るのであり、例えば、先ず、図1に示されるように、復元処理の施された熱処理型Al合金材(ここでは、板材)の二枚を突き合わせ、かかる二つの熱処理型Al合金材10a,10bを突き合わせた状態下で、それら二つの熱処理型Al合金材10a,10bが長手方向(接合方向)及び幅方向に相対的に移動することがないように、常法に従って拘束する。そして、回転工具12を軸回りにピン14と一体的に高速回転させて、突き合わされた熱処理型Al合金材10a,10bの突合せ部16に該回転工具12のピン14を差し込み、かかる回転工具12及びピン14を、突合せ部16に沿って、つまり図1の紙面に対して垂直な方向に、相対的に移動せしめることにより、二つの熱処理型Al合金材10a,10bを、その突合せ部16において、摩擦攪拌接合せしめるのである。なお、その際、回転工具12及びピン14は、突合せ部に沿って移動せしめられたり、或いは、拘束された熱処理型Al合金材10a,10bが移動せしめられたりされることとなる。
By the way, when a heat-treatable Al alloy material in a restored state is friction stir welded to form a target joining material, a technique similar to the conventional technique can be employed. For example, first, as shown in FIG. As described above, two heat-treated Al alloy materials (here, plate materials) that have undergone restoration treatment are butted together, and the two heat-treatable
このように、摩擦攪拌接合が行なわれると、二つの熱処理型Al合金材10a,10bの突合せ部16には、図2の上段に示されるように、それら二つの熱処理型Al合金材10a,10bに跨る攪拌接合部18が、長手方向(図2中、紙面に垂直な方向)に、連続的に延びるように形成されるのである。また、かかる攪拌接合部18に隣接する周辺域には、熱影響部20(HAZ部:熱の影響を受ける部位)が存在せしめられる。
As described above, when the friction stir welding is performed, the two heat-treatable
このため、通常であれば、図2の下段に示されるように、熱影響部20の硬さが最も低くなるものの、本実施形態においては、摩擦攪拌接合に先立って、復元処理が実施されているところから、摩擦攪拌接合後、攪拌接合部18は、溶体化処理を行なった場合と同様の組織となって、その硬さは、図2の中段に示されるように、母材22や熱影響部20よりも大きくなる。より具体的には、攪拌接合部18は、450℃以上の温度に達することで、Si、Mg、Cu等のクラスターを形成する合金成分が固溶し、接合後の自然時効による硬化速度が、熱影響部20や母材22よりも効果的に高められて、最も硬くなるのである。また、熱影響部20は、熱を受けても軟化が起こることなく、復元組織に僅かな時効硬化が起こった状態となって、その硬さは、前記攪拌接合部18と比べて小さいものの、母材22の硬さと同じか、それ以上になる。更に、摩擦攪拌接合による熱の影響を何等受けない母材22は、復元組織のままの状態であり、その硬さは最も小さくなる。この結果、本実施形態の接合材における、接合方向に直角な方向の硬さ分布は、図2の中段に示されるように、左右の母材22から攪拌接合部18(突合せ部16)に向かって大きくなる、台形形状となるのである。
Therefore, normally, as shown in the lower part of FIG. 2, the hardness of the heat affected
これに対し、復元処理が行なわれない場合には、摩擦攪拌接合後、攪拌接合部18は、溶体化処理を行なった場合と同様の組織となって、その硬さは、図2の下段に示されるように、T4調質された母材22と同程度か、或いは母材22より僅かに小さな硬さとなる一方、熱影響部20は復元状態の金属組織となって、最も軟らかくなる。このため、かかる接合材に応力が加えられると、最も小さな硬さを有する熱影響部20に応力が集中して、熱影響部20が優先的に変形し、破断が惹起される。
On the other hand, when the restoration process is not performed, after the friction stir welding, the stir welded
なお、本発明者らの検討によれば、上述せる如き復元処理の施された復元組織を有する熱処理型Al合金材を、TIG溶接やMIG溶接等の溶融溶接方式で接合したところで、図2の中段に示されるような台形形状の硬さ分布は得られず、熱影響部において、硬さが最も低くなることが認められている。更に、接合部及び接合部に隣接している熱影響部の一部は、一旦溶融されるために、鋳造組織が変質し、延性が低下してしまうこととなる。 According to the study by the present inventors, when the heat treatment type Al alloy material having the restoration structure subjected to the restoration treatment as described above is joined by a fusion welding method such as TIG welding or MIG welding, FIG. A trapezoidal hardness distribution as shown in the middle is not obtained, and it is recognized that the hardness is lowest in the heat affected zone. Furthermore, since the joint part and a part of the heat-affected part adjacent to the joint part are once melted, the cast structure is altered and ductility is lowered.
以上のように、本発明に従う熱処理型Al合金材の摩擦攪拌接合方法にあっては、復元状態とされた熱処理型Al合金材に対して、摩擦攪拌接合を行なうようにしているところから、攪拌接合部18、熱影響部20及び母材22の強度バランスが制御され、母材22の硬さが最も小さくされた接合材が有利に得られるのである。その結果、接合材に応力が加えられても、熱影響部20に応力集中が生じるようなことが効果的に防止されて、応力が母材22全体で分散されるようになる。これにより、接合材全体の変形量が有利に増大せしめられ得、以て、自由なプレス形状やより大きな加工量でのプレス成形が可能となる。換言すれば、接合材のプレス成形性が、極めて効果的に高められ得るのである。
As described above, in the friction stir welding method for heat-treatable Al alloy material according to the present invention, the friction stir welding is performed on the heat-treated Al alloy material in a restored state. The strength balance of the joint 18, the heat-affected
かくして、上述せるようにして得られた接合材にあっては、優れたプレス成形性が付与されているところから、プレス成形用のブランク材等として有利に用いられ、プレス成形に供された後、船舶や車両、航空機等の殻やフロア、建材、熱交換器、アンテナ、自動車部品、橋架等に、有利に用いられることとなる。 Thus, in the bonding material obtained as described above, after excellent press moldability is imparted, it is advantageously used as a blank material for press molding, etc., and after being subjected to press molding It is advantageously used for shells and floors of ships, vehicles, airplanes, building materials, heat exchangers, antennas, automobile parts, bridges, and the like.
ところで、摩擦攪拌接合に先立って実施される復元処理の加熱方式としては、特に限定されるものではなく、従来から公知の加熱手段を用いた熱処理が何れも採用され得る。例えば、復元処理工程と摩擦攪拌接合工程とが非連続的に実施されるオフラインの製造工程を採用する場合には、ソルトバス(塩浴)、オイルバス、空気炉、赤外線加熱又は誘導加熱のうちの何れかの加熱手段を用いて行なう熱処理が、設備的な面やコスト的な面から、好適に採用されることとなる。 By the way, the heating method of the restoration process performed prior to the friction stir welding is not particularly limited, and any heat treatment using a conventionally known heating means may be employed. For example, when adopting an offline manufacturing process in which the restoration process and the friction stir welding process are performed discontinuously, a salt bath, an oil bath, an air furnace, infrared heating or induction heating The heat treatment performed using any one of the heating means is preferably employed from the viewpoint of equipment and cost.
また、本発明においては、復元処理と摩擦攪拌接合を、同一のライン上で連続的に実施することも可能であり、このようなオンラインの製造工程を採用する場合には、例えば、図3に示されるように、熱処理型Al合金材10a,10bの摩擦攪拌接合されるべき被接合部位(突合せ部16)に沿って、前記した復元処理(熱処理)が、被接合材の幅方向(接合方向に直角な方向)において、突合せ部16から母材部に至る充分な長さにて、望ましくは幅方向の全体に亘って、順次実施される一方で、かかる復元処理の済んだ被接合部位(突合せ部16)に対して、摩擦攪拌接合が順次実施されることとなる。なお、このようなオンラインの製造工程を採用する場合には、加熱手段として、赤外線加熱、誘導加熱、レーザ加熱、ガス炎加熱等が好適に採用されることとなる。この場合においても、復元処理(熱処理)は、被接合部位(突合せ部16)とその近傍だけでなく、加工時に加えられる応力が母材部分で有効に分散されて、大きな変形量が確保され得るように、熱処理型Al合金材の幅方向の広範囲に対して施される必要があることは、勿論言うまでもないところである。
In the present invention, it is also possible to carry out the restoration process and the friction stir welding continuously on the same line. When such an on-line manufacturing process is adopted, for example, FIG. As shown, along the to-be-joined portions (butting portions 16) to be friction stir welded of the heat-treatable
以上、本発明の代表的な実施形態について詳述してきたが、それは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものではないことが、理解されるべきである。 The exemplary embodiments of the present invention have been described in detail above. However, the embodiments are merely examples, and the present invention is limited in any way by specific descriptions according to such embodiments. It should be understood that it is not interpreted.
例えば、上記の実施形態では、板厚が同じで、同一の熱処理型Al合金からなる板状の熱処理型Al合金材10a,10bを用いて、それらを接合せしめる例が示されているが、板厚の異なる熱処理型Al合金材が接合されても、また材質の異なる熱処理型Al合金材が接合されても良い。そして、板厚が異なる場合には、薄肉側の熱処理型Al合金材と厚肉側の熱処理型Al合金材の両方に対して、復元処理が施されても、或いは、薄肉側の熱処理型Al合金材のみに復元処理が施されても良い。要するに、接合後において、強度乃至は硬さが最も低くなる部位が、接合される熱処理型Al合金材のうちの何れかの母材となるように、前述せる如きT4調質や復元処理、摩擦攪拌接合が順次、実施されれば良いのである。
For example, in the above embodiment, an example is shown in which the plate thickness is the same and the plate-like heat treatment type
その他、一々列挙はしないが、本発明は、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施され得るものであり、そして、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもないところである。 In addition, although not listed one by one, the present invention can be implemented in a mode with various changes, modifications, improvements, and the like based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the invention.
以下に、本発明の代表的な実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。 Hereinafter, representative examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited by the description of such examples. It goes without saying.
先ず、下記表1に示される如き化学成分組成を有する10種類のアルミニウム合金(A〜J)を、常法に従って、DC鋳造法により造塊した。そして、その得られた鋳塊に対して、それぞれ、均質化処理、熱間圧延、冷間圧延を行なって、厚さが1.0mmのアルミニウム合金板材とした後、更に、溶体化処理、焼入れを行ない、室温で10日間の自然時効を経て、T4調質材とした。 First, 10 types of aluminum alloys (A to J) having chemical composition as shown in Table 1 below were ingoted by a DC casting method according to a conventional method. Then, the resulting ingot is subjected to homogenization treatment, hot rolling, and cold rolling, respectively, to obtain an aluminum alloy sheet having a thickness of 1.0 mm, and further to solution treatment and quenching. And subjected to natural aging for 10 days at room temperature to obtain a T4 tempered material.
次いで、各T4調質材について、下記表2に示す条件で熱処理(復元処理)を行ない、20℃で3日間保管した後、かかる復元処理の施されたアルミニウム合金材を、それぞれ2枚ずつ用い、その幅方向の端面同士において相互に突き合わせた状態で、それらの突合せ部を摩擦撹拌接合法(FSW法)により突合せ接合して、接合材たる試験材1〜10を作製した。なお、何れのアルミニウム合金材にあっても、復元処理を行なってから、接合を実施するまでの引張強さの上昇量は、10MPa以下であることを、別途、確認した。また、摩擦攪拌接合に際しては、鋼製の回転工具を使用し、回転数:1000rpm、接合速度:400mm/分で、工具を水平移動させる条件を採用した。更に、回転工具の端部には、切削を目的として、深さ1mmの溝を8箇所設けた。 Next, each T4 tempered material is subjected to heat treatment (restoration treatment) under the conditions shown in Table 2 below, and after storing at 20 ° C. for 3 days, two aluminum alloy materials subjected to such restoration treatment are used. In the state where the end surfaces in the width direction were butted against each other, the butted portions were butt-joined by a friction stir welding method (FSW method) to prepare test materials 1 to 10 as bonding materials. In any aluminum alloy material, it was separately confirmed that the amount of increase in tensile strength from the time when the restoration process was performed until the joining was performed was 10 MPa or less. In addition, in the friction stir welding, a steel rotating tool was used, and a condition was adopted in which the tool was horizontally moved at a rotation speed of 1000 rpm and a welding speed of 400 mm / min. Further, eight grooves having a depth of 1 mm were provided at the end of the rotary tool for the purpose of cutting.
そして、接合後、得られた試験材1〜10を、20℃で7日間保管した後、それらの試験材の各々について、後述せるようにして、ビッカース硬さ試験、引張試験及び成形性試験を行ない、得られた結果を、それぞれ、下記表2に併せ示した。 And after joining, the obtained test materials 1 to 10 are stored at 20 ° C. for 7 days, and then, for each of the test materials, a Vickers hardness test, a tensile test, and a moldability test are performed as described later. The results obtained are shown in Table 2 below.
−ビッカース硬さ試験−
試験材の接合方向に対して直角方向に試験片を切り出した。そして、かかる試験片の接合方向に直角な方向の断面を、樹脂埋め及び研磨した後、ビッカース硬さ試験機を用いて、JIS−Z−2244に準じて、荷重1kgfで、攪拌接合部、熱影響部及び母材部の硬さを測定した。
-Vickers hardness test-
A test piece was cut out in a direction perpendicular to the joining direction of the test materials. And after filling and polishing the cross section in the direction perpendicular to the joining direction of the test piece, using a Vickers hardness tester, according to JIS-Z-2244, with a load of 1 kgf, a stir welded portion, heat The hardness of the affected part and the base material part was measured.
−引張試験−
引張試験における引張方向に対して、試験材の接合方向が直角となるように、また接合部が中央に位置するように、JIS−5号形の引張試験片を切り出した。そして、かかる試験片を用いて、室温で、JIS−Z−2241に準じて引張試験を行ない、引張強さ、耐力及び破断伸びを測定すると共に、破断位置を確認した。
-Tensile test-
A JIS-5 type tensile test piece was cut out so that the joining direction of the test material was perpendicular to the tensile direction in the tensile test, and the joint was positioned in the center. And using this test piece, the tensile test was done at room temperature according to JIS-Z-2241, and while measuring the tensile strength, the yield strength, and breaking elongation, the breaking position was confirmed.
−成形試験−
試験材の接合部が中央に位置するように、直径120.0mmの円板状試験片を切り出した。そして、かかる試験片の表面に低粘度潤滑油を塗布した後、エリクセン試験機を用いて、張出し加工を行って、破断までの限界成形高さを測定した。なお、張出し加工は、材料流入を防止するために、試験片をロックビード付きのダイスで拘束し、直径50mmの球頭ポンチを用いて、成形速度2mm/sの条件で実施した。
-Molding test-
A disc-shaped test piece having a diameter of 120.0 mm was cut out so that the joint portion of the test material was located at the center. And after apply | coating a low-viscosity lubricating oil to the surface of this test piece, it used the Erichsen test machine and performed the extension process, and measured the limit shaping | molding height until a fracture | rupture. In order to prevent the material from flowing in, the overhanging process was carried out under the condition of a molding speed of 2 mm / s using a ball-head punch having a diameter of 50 mm, constraining the test piece with a die with a lock bead.
かかる表2の結果から明らかなように、試験材1〜10は、何れも、攪拌接合部、熱影響部及び母材のうち、母材の硬さが最も低い値となっている。また、引張試験の結果から、熱影響部で破断が起こることなく、母材で破断が起こっていると共に、破断伸びが16%以上となっており、更に、成形試験においては、何れの試験材も、限界成形高さが15.0mm以上の大きな値となっている。これらの結果から、本発明に従って復元処理が施された試験材1〜10は、プレス成形時に充分な変形が可能な、優れたプレス成形性を有するものであることが、分かる。 As is clear from the results in Table 2, all of the test materials 1 to 10 have the lowest hardness of the base material among the stir welded portion, the heat affected zone, and the base material. In addition, from the results of the tensile test, the base material was not ruptured at the heat-affected zone, and the elongation at break was 16% or more. However, the limit molding height is a large value of 15.0 mm or more. From these results, it can be seen that the test materials 1 to 10 subjected to the restoration treatment according to the present invention have excellent press formability that can be sufficiently deformed during press forming.
<比較例1>
また、比較のために、先ず、前記実施例で用いられたものと同じ化学成分組成を有する10種類の合金(A〜J)を、常法に従って、DC鋳造法により造塊した。得られた鋳塊に対して、それぞれ、均質化処理、熱間圧延、冷間圧延を行なって、厚さが1.0mmのアルミニウム合金板材とした後、更に、溶体化処理、焼入れを行ない、室温で10日間の自然時効を経て、T4調質材とした。そして、各T4調質材について、熱処理(復元処理)を行なうことなく、T4調質されたアルミニウム合金材を、そのまま、それぞれ2枚ずつ用い、その幅方向の端面同士において相互に突き合わせた状態で、それらの突合せ部を、前記実施例と同様な条件で、摩擦撹拌接合法(FSW法)により突合せ接合して、接合材たる試験材11〜20を作製した。そして、摩擦攪拌接合後、得られた試験材11〜20を、20℃で7日間保管した後、それらの試験材の各々について、前述せるようにして、ビッカース硬さ試験、引張試験及び成形性試験を行ない、得られた結果を、それぞれ、下記表3に併せ示した。
<Comparative Example 1>
For comparison, first, 10 types of alloys (A to J) having the same chemical composition as those used in the above examples were ingoted by a DC casting method according to a conventional method. Each of the obtained ingots is subjected to homogenization treatment, hot rolling, and cold rolling to obtain an aluminum alloy sheet having a thickness of 1.0 mm, and further subjected to solution treatment and quenching. After natural aging for 10 days at room temperature, a T4 tempered material was obtained. And about each T4 tempered material, without performing heat treatment (restoration process), two T4 tempered aluminum alloy materials are used as they are, respectively, in a state where they are butted against each other at the end faces in the width direction. These butt portions were butt-joined by the friction stir welding method (FSW method) under the same conditions as in the above-described example, to prepare test materials 11 to 20 as bonding materials. Then, after friction stir welding, the obtained test materials 11 to 20 were stored at 20 ° C. for 7 days, and each of these test materials was subjected to the Vickers hardness test, the tensile test, and the moldability as described above. The test was conducted, and the obtained results are shown in Table 3 below.
かかる表3の結果から明らかなように、試験材11〜20は、復元処理を行なわなかったため、何れも、攪拌接合部、熱影響部及び母材のうち、熱影響部のビッカース硬さが最も低い値となっており、かかる熱影響部で破断が生じている。また、どの試験材も、同一のアルミニウム合金材からなる前記試験材1〜10に比べて、伸びが小さく、限界成形高さも15.0mmに満たないことが分かる。 As is clear from the results in Table 3, since the test materials 11 to 20 were not subjected to the restoration process, the Vickers hardness of the heat affected zone was the highest among the stir welded portion, the heat affected zone and the base material. The value is low, and the heat-affected zone is broken. In addition, it can be seen that each test material has a smaller elongation and a limit forming height of less than 15.0 mm compared to the test materials 1 to 10 made of the same aluminum alloy material.
<比較例2>
また、比較のために、先ず、前記実施例で用いられたものと同じ化学成分組成を有する10種類の合金(A〜J)を、常法に従って、DC鋳造法により造塊した。得られた鋳塊に対して、それぞれ、均質化処理、熱間圧延、冷間圧延を行なって、厚さが1.0mmのアルミニウム合金板材とした後、更に、溶体化処理、焼入れを行ない、室温で10日間の自然時効を経て、T4調質材とした。そして、各T4調質材について、下記表4に示す条件で熱処理を行ない、20℃で3日間保管した後、かかる熱処理の施されたアルミニウム合金材を、それぞれ2枚ずつ用い、その幅方向の端面同士において相互に突き合わせた状態で、それらの突合せ部を、前記実施例と同様な条件で、摩擦撹拌接合法(FSW法)により突合せ接合して、接合材たる試験材21〜50を作製した。かくして、摩擦攪拌接合後、得られた試験材21〜50を、20℃で7日間保管した後、それらの試験材の各々について、前述せるようにして、ビッカース硬さ試験、引張試験及び成形性試験を行ない、得られた結果を、それぞれ、下記表4に併せ示した。
<Comparative example 2>
For comparison, first, 10 types of alloys (A to J) having the same chemical composition as those used in the above examples were ingoted by a DC casting method according to a conventional method. Each of the obtained ingots is subjected to homogenization treatment, hot rolling, and cold rolling to obtain an aluminum alloy sheet having a thickness of 1.0 mm, and further subjected to solution treatment and quenching. After natural aging for 10 days at room temperature, a T4 tempered material was obtained. And about each T4 tempered material, after heat-treating on the conditions shown in Table 4 below and storing for 3 days at 20 ° C., two aluminum alloy materials subjected to such heat treatment were used in each of the width direction. In a state in which the end surfaces are butted against each other, the butted portions are butt-joined by the friction stir welding method (FSW method) under the same conditions as in the above-described example, and test materials 21 to 50 as bonding materials are produced. . Thus, after friction stir welding, the obtained test materials 21 to 50 were stored at 20 ° C. for 7 days, and each of these test materials was subjected to the Vickers hardness test, the tensile test, and the moldability as described above. The test was conducted, and the obtained results are shown in Table 4 below.
かかる表4の結果から明らかなように、試験材21,24,27,30,33,36,39,42,45,48は何れも、熱処理温度が低いため、T4調質されたアルミニウム合金材の金属組織が復元されず、母材のビッカース硬さが熱影響部よりも高く、熱影響部で破断が生じており、破断伸び及び限界成形高さは低い値となっている。また、試験材22,25,28,31,34,37,40,43,46,49は何れも、熱処理温度が高いため、過時効による軟化が生じ、所望とする復元組織が得られなかったところから、引張試験で母材破断となったものの、破断伸び及び限界成形高さは低い値となった。更に、試験材23,26,29,32,35,38,41,44,47,50は何れも、熱処理時間が長過ぎるため、過時効による軟化が生じ、所望とする復元組織が得られなかったところから、引張試験で母材破断となったものの、破断伸び及び限界成形高さは低い値となった。
As is clear from the results in Table 4, the test materials 21, 24, 27, 30, 33, 36, 39, 42, 45, and 48 all have a low heat treatment temperature. Thus, the Vickers hardness of the base material is higher than that of the heat-affected zone, fracture occurs in the heat-affected zone, and the elongation at break and the limit forming height are low. In addition, since all of the
<比較例3>
また、比較のために、先ず、前記実施例で用いられたものと同じ化学成分組成を有する10種類の合金(A〜J)を、常法に従って、DC鋳造法により造塊した。得られた鋳塊に対して、それぞれ、均質化処理、熱間圧延、冷間圧延を行なって、厚さが1.0mmのアルミニウム合金板材とした後、更に、溶体化処理、焼入れを行ない、室温で10日間の自然時効を経て、T4調質材とした。そして、各T4調質材について、下記表5に示す条件で熱処理(復元処理)を行ない、40℃で30日間保管した後、かかる熱処理の施されたアルミニウム合金材を、それぞれ2枚ずつ用い、その幅方向の端面同士において相互に突き合わせた状態で、それらの突合せ部を、前記実施例と同様な条件で、摩擦撹拌接合法(FSW法)により突合せ接合して、接合材たる試験材51〜60を作製した。なお、何れのアルミニウム合金材にあっても、復元処理を行なってから、接合を実施するまでの引張強さの上昇量は、10MPaを超えていた。かくして、摩擦攪拌接合後、得られた試験材51〜60を、20℃で7日間保管した後、それらの試験材の各々について、前述せるようにして、ビッカース硬さ試験、引張試験及び成形性試験を行ない、得られた結果を、それぞれ、下記表5に併せ示した。
<Comparative Example 3>
For comparison, first, 10 types of alloys (A to J) having the same chemical composition as those used in the above examples were ingoted by a DC casting method according to a conventional method. Each of the obtained ingots is subjected to homogenization treatment, hot rolling, and cold rolling to obtain an aluminum alloy sheet having a thickness of 1.0 mm, and further subjected to solution treatment and quenching. After natural aging for 10 days at room temperature, a T4 tempered material was obtained. And about each T4 tempered material, after performing heat treatment (restoration treatment) under the conditions shown in Table 5 below and storing at 40 ° C. for 30 days, two heat-treated aluminum alloy materials were used, respectively. In a state where the end faces in the width direction are butted against each other, the butted portions are butt-joined by the friction stir welding method (FSW method) under the same conditions as in the above-described example, and the test materials 51 to 51 which are the joining materials 60 was produced. In any aluminum alloy material, the amount of increase in tensile strength after performing the restoration process until the joining was performed exceeded 10 MPa. Thus, after friction stir welding, the obtained test materials 51 to 60 were stored at 20 ° C. for 7 days, and each of these test materials was subjected to the Vickers hardness test, tensile test, and moldability as described above. The test was conducted, and the obtained results are shown in Table 5 below.
かかる表5の結果から明らかなように、試験材51〜60にあっては、何れも、復元状態から時効硬化が生じた状態で、摩擦攪拌接合が行なわれたため、攪拌接合部、熱影響部及び母材のうち、熱影響部のビッカース硬さが最も低い値となっており、かかる熱影響部で破断が生じている。また、どの試験材も、同一のアルミニウム合金材からなる前記試験材1〜10に比べて、伸びが小さく、限界成形高さも15.0mmに満たないことが分かる。 As is clear from the results of Table 5, in all of the test materials 51 to 60, the friction stir welding was performed in the state where age hardening occurred from the restored state. Among the base materials, the Vickers hardness of the heat affected zone is the lowest value, and the heat affected zone is broken. In addition, it can be seen that each test material has a smaller elongation and a limit forming height of less than 15.0 mm compared to the test materials 1 to 10 made of the same aluminum alloy material.
10a,b 熱処理型アルミニウム合金材
12 回転工具
14 ピン
16 突合せ部
18 攪拌接合部
20 熱影響部
22 母材
10a, b Heat-treatable
Claims (8)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003371055A JP4351024B2 (en) | 2003-10-30 | 2003-10-30 | Friction stir welding method for heat-treatable aluminum alloy material |
US12/486,950 US20090250144A1 (en) | 2003-06-09 | 2009-06-18 | Method of joining heat-treatable aluminum alloy members by friction stir welding |
US15/287,957 US10016837B2 (en) | 2003-06-09 | 2016-10-07 | Method of joining heat-treatable aluminum alloy members by friction stir welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003371055A JP4351024B2 (en) | 2003-10-30 | 2003-10-30 | Friction stir welding method for heat-treatable aluminum alloy material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005131679A JP2005131679A (en) | 2005-05-26 |
JP4351024B2 true JP4351024B2 (en) | 2009-10-28 |
Family
ID=34647864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003371055A Expired - Fee Related JP4351024B2 (en) | 2003-06-09 | 2003-10-30 | Friction stir welding method for heat-treatable aluminum alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4351024B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070138239A1 (en) | 2005-12-15 | 2007-06-21 | Sumitomo Light Metal Industries, Ltd. | Method of joining heat-treatable aluminum alloy members by friction stir welding and joined product obtained by the method and used for press forming |
GB2454401B (en) * | 2004-04-30 | 2009-06-24 | Hidetoshi Fujii | Method of connecting metal material |
US7810700B2 (en) * | 2005-12-15 | 2010-10-12 | Sumitomo Light Metal Industries, Ltd. | Heat treating friction stir welded aluminum alloy members and joined product |
JP6153160B2 (en) * | 2013-05-28 | 2017-06-28 | 公益財団法人鉄道総合技術研究所 | Aluminum alloy and method for manufacturing the same, joining material and method for manufacturing the same, structure of railway vehicle, and structure of transportation means |
US11964338B2 (en) | 2016-03-11 | 2024-04-23 | Osaka University | Method for low-temperature joining of metal materials, and joint structure |
CN115505717B (en) * | 2022-09-28 | 2023-06-23 | 宝钢轧辊科技有限责任公司 | Roll center Kong Cuihuo method |
-
2003
- 2003-10-30 JP JP2003371055A patent/JP4351024B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005131679A (en) | 2005-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10016837B2 (en) | Method of joining heat-treatable aluminum alloy members by friction stir welding | |
US9926619B2 (en) | Aluminum alloy | |
US7490752B2 (en) | Manufacturing method for friction welded aluminum alloy parts | |
US7810700B2 (en) | Heat treating friction stir welded aluminum alloy members and joined product | |
JP4351025B2 (en) | Method for joining heat-treatable aluminum alloy materials | |
JP4351024B2 (en) | Friction stir welding method for heat-treatable aluminum alloy material | |
JP4789253B2 (en) | Aluminum alloy bonding material excellent in formability and manufacturing method thereof | |
JP4183177B2 (en) | Heat treated aluminum alloy bonding material with excellent ductility | |
JP2006021216A (en) | Method for manufacturing tailored blank press formed parts | |
EP4201578A1 (en) | Apparatus and method of forming countersinks and/or mouse holes in a stamped high strength aluminium sheet | |
JP4437914B2 (en) | Aluminum bonding material and method of pressing aluminum bonding material | |
JP4323296B2 (en) | Method of joining heat-treatable aluminum alloy material and joining material for press forming | |
EP2837704B1 (en) | Aluminium alloy | |
JP2000061663A (en) | Method of joining aluminum alloy | |
JP4707318B2 (en) | Aluminum alloy material joining method and press forming joining material | |
JP6679296B2 (en) | Al alloy material for high energy beam welding and method for producing the same | |
JP3726034B2 (en) | Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints | |
JP6679269B2 (en) | Al alloy material for high energy beam welding | |
JP4707317B2 (en) | Aluminum blank for press molding | |
JP2002294381A (en) | Aluminum alloy welded joint for forming | |
JP2001321948A (en) | Method of welding for aluminum alloy material of heat treatment type | |
JP4410514B2 (en) | Aluminum alloy bonding material excellent in formability and manufacturing method thereof | |
JP7305396B2 (en) | Spot welding method for galvanized steel sheets | |
JP2008207249A (en) | Method for welding aluminum alloy material having excellent weld crack resistance, and method for evaluating weld crack resistance of aluminum alloy material | |
JP2002115019A (en) | Aluminum alloy having excellent weld crack resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090721 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090723 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4351024 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130731 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |