JP4539388B2 - 障害物検出装置 - Google Patents

障害物検出装置 Download PDF

Info

Publication number
JP4539388B2
JP4539388B2 JP2005076002A JP2005076002A JP4539388B2 JP 4539388 B2 JP4539388 B2 JP 4539388B2 JP 2005076002 A JP2005076002 A JP 2005076002A JP 2005076002 A JP2005076002 A JP 2005076002A JP 4539388 B2 JP4539388 B2 JP 4539388B2
Authority
JP
Japan
Prior art keywords
image
distance
value
height
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005076002A
Other languages
English (en)
Other versions
JP2006260098A (ja
Inventor
健一郎 野坂
智治 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005076002A priority Critical patent/JP4539388B2/ja
Publication of JP2006260098A publication Critical patent/JP2006260098A/ja
Application granted granted Critical
Publication of JP4539388B2 publication Critical patent/JP4539388B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Image Analysis (AREA)

Description

本発明は、移動体に搭載され移動体が走行しようとする場所に存在する障害物を検出する障害物検出装置に関するものである。
従来から、自動車の衝突を自動的に回避するために走行の障害となる物体を検出する技術が提案されている。この種の技術としては、自動車の車外の距離画像をステレオ画像法により取得し、距離画像から道路の白線の位置および形状を推定することによって道路モデルを決定し、さらに道路モデルを用いて道路表面より上にある物体の形状や位置から衝突の可能性を判断することが提案されている(たとえば、特許文献1参照)。
また、距離画像から得られる測定点の三次元データを基準面に投影し、基準面に設定したグリッドセル内の測定点の度数を求め、度数を2値化して障害物を抽出する技術も提案されている(たとえば、特許文献2参照)。
特開平5−265547号公報 特開2001−242934号公報
特許文献1に記載の技術では、距離画像から道路モデルを決定した後に道路表面より上にある物体の衝突の可能性を判断するから、障害物を道路とは分離することができるが、まず道路モデルを正確に検出することが前提であり、正確な道路モデルを決定できなければ障害物の存否も判断することができない。したがって、障害物を検出するための処理負荷が大きいという問題がある。しかも、駐車場や公園のような道路以外の場所ではこの技術を利用することができない。
また、特許文献2に記載の技術では、測定点を基準面に投影しているだけであるから、障害物の位置は抽出することができるとしても、障害物の有無を判断する段階では障害物の形状に関する情報が消失しており、傾斜面のように移動体が走行可能な面であっても障害物とは区別することができない。
本発明は上記事由に鑑みて為されたものであり、その目的は、距離画像を用いて走行可能な経路か衝突を回避しなければならない障害物かを判別することを可能とし、しかも処理負荷が小さく高速な処理が可能な障害物検出装置を提供することにある。
請求項1の発明は、移動体に搭載され移動体が走行しようとする面を含む空間領域を斜め下向きに撮像し画素値が距離値である距離画像を生成する距離画像センサと、あらかじめ設定した基準面の距離画像と移動体の走行中において距離画像センサにより生成された距離画像との差分画像を生成する差分画像生成部と、差分画像のうち差分値が規定の距離閾値以上である領域について距離画像を基準面からの高さに対応付けた複数段階の閾値で2値化し複数の2値画像を生成する2値画像生成部と、各2値画像が規定の関係を満たすときに前記空間領域に障害物が存在すると判断する判断部とを備え、2値画像生成部は、差分画像のうち差分値が規定の距離閾値以上である領域について距離画像を基準面に投影することにより基準面からの高さ値を画素値とした高さ画像を生成する高さ画像生成部と、高さ画像を複数段階の閾値で2値化し複数の2値画像を生成する2値化部とからなり、2値化部は2段階の閾値で高さ画像を2値化した2つの2値画像を生成し、判断部は、各2値画像について、それぞれ基準面からの高さ値が閾値以上である領域の面積を求め、障害物と判断する前記関係として、両面積の差が規定した判定閾値以下であることと、両面積の比が1の前後で規定した判定範囲内であることとの一方を用いることを特徴とする。
この構成によれば、距離画像を基準面に対する高さに対応付けた複数段階の閾値で2値化した複数の2値画像を生成するとともに、各2値画像の関係によって障害物の有無を判断するから、複数の2値画像によって距離画像内に存在している物体の基準面からの高さと位置との情報を得ることができる。得られた情報が特定の関係であるときには障害物とみなすことにより、障害物に対しては衝突する可能性があると判断し、障害物の関係を満たさない場合には障害物ではなく走行可能であると判断することができる。
しかも、基準面に関する距離画像との差分画像に距離閾値を適用して障害物が存在すると考えられる領域を抽出し、抽出した領域のみについて距離値を含む三次元データを用いて障害物か否かを判断するから、距離画像内の全画素を対象として三次元データを処理する場合に比較すると、処理負荷が軽減され平均演算時間が短縮される。また、障害物の候補は差分画像に対して距離閾値を適用するだけで抽出するから、この際の処理負荷は小さく、この段階で障害物の候補が抽出されなければ障害物の有無を判断する必要がないから、この点でも処理負荷を軽減できる。
さらに、基準面に対する高さ値を画素値とした高さ画像における高さ値を複数段階の閾値で2値化した複数の2値画像を生成するとともに、各2値画像の関係によって障害物の有無を判断するから、複数の2値画像によって距離画像内に存在している物体の基準面からの高さと位置との情報を得ることができる。得られた情報が特定の関係であるときには障害物とみなすことにより、障害物に対しては衝突する可能性があると判断し、障害物の関係を満たさない場合には障害物ではなく走行可能であると判断することができる。
加えて、2つの2値画像において障害物の候補となる領域の面積の比較のみで障害物か否かを判断するから、処理負荷が小さく高速な処理が期待できる。
請求項2の発明は、移動体に搭載され移動体が走行しようとする面を含む空間領域を斜め下向きに撮像し画素値が距離値である距離画像を生成する距離画像センサと、あらかじめ設定した基準面の距離画像と移動体の走行中において距離画像センサにより生成された距離画像との差分画像を生成する差分画像生成部と、差分画像のうち差分値が規定の距離閾値以上である領域について距離画像を基準面からの高さに対応付けた複数段階の閾値で2値化し複数の2値画像を生成する2値画像生成部と、各2値画像が規定の関係を満たすときに前記空間領域に障害物が存在すると判断する判断部とを備え、2値画像生成部は、差分画像のうち差分値が規定の距離閾値以上である領域について距離画像を基準面に投影することにより基準面からの高さ値を画素値とした高さ画像を生成する高さ画像生成部と、高さ画像を複数段階の閾値で2値化し複数の2値画像を生成する2値化部とからなり、2値化部は2段階の閾値で高さ画像を2値化した2つの2値画像を生成し、判断部は、各2値画像について、それぞれ基準面からの高さ値が閾値以上である領域のエッジを求め、障害物と判断する前記関係として、両エッジの位置の距離差が規定した判定閾値以上であることを用いることを特徴とする。
この構成によれば、距離画像を基準面に対する高さに対応付けた複数段階の閾値で2値化した複数の2値画像を生成するとともに、各2値画像の関係によって障害物の有無を判断するから、複数の2値画像によって距離画像内に存在している物体の基準面からの高さと位置との情報を得ることができる。得られた情報が特定の関係であるときには、障害物とみなすことにより、障害物に対しては衝突する可能性があると判断し、障害物の関係を満たさない場合には障害物ではなく走行可能であると判断することができる。
しかも、基準面に関する距離画像との差分画像に距離画像を適用して障害物が存在すると考えられる領域を抽出し、抽出した領域のみについえ距離値を含む三次元データを用いて障害物か否かを判断するから、距離画像内の全画素を対象として三次元データを処理する場合に比較すると、処理負荷が軽減され平均演算時間が短縮される。また、障害物の候補は差分画像に対して距離閾値を適用するだけで抽出するから、この際の処理負荷は小さく、この段階で障害物の候補が抽出されなければ障害物の有無を判断する必要がないから、この点でも処理負荷を軽減できる。
さらに、基準面に対する高さ値を画素値とした高さ画像における高さ値を複数段階の閾値で2値化した複数の2値画像を生成するとともに、各2値画像の関係によって障害物の有無を判断するから、複数の2値画像によって距離画像内に存在している物体の基準面からの高さと位置との情報を得ることができる。得られた情報が特定の関係であるときには障害物とみなすことにより、障害物に対しては衝突する可能性があると判断し、障害物の関係を満たさない場合には障害物ではなく走行可能であると判断することができる。
加えて、障害物の候補である領域のエッジの距離差を用いており、判定閾値より大きい距離差が生じることは、障害物ではなく傾斜面であることを示している。すなわち、障害物か傾斜面かの判別が容易にできる。
請求項3の発明では、請求項1または請求項2の発明において、前記基準面は前記移動体が走行している面を延長した平面であることを特徴とする。
この構成によれば、基準面の設定が容易であり、たとえば移動体に対する距離画像センサの位置および姿勢から演算によって基準面を設定することが可能になる。
本発明の構成によれば、距離画像を基準面に対する高さに対応付けた複数段階の閾値で2値化した複数の2値画像の関係によって障害物の有無を判断し、また請求項2の構成では、基準面に対する高さ値を画素値とした高さ画像における高さ値を複数段階の閾値で2値化した複数の2値画像の関係によって障害物の有無を判断するから、いずれの構成においても障害物と障害物以外とを容易に識別することができるという利点がある。また、基準面に関する距離画像との差分画像に距離閾値を適用して障害物が存在すると考えられる領域を抽出し、抽出した領域のみについて障害物か否かを判断するから、処理負荷が小さく平均演算時間が短縮されるという利点がある。
以下に説明する実施形態では、移動体として移動範囲の地図情報を用いて自律的に移動する自律移動装置を例示し、本発明の障害物検出装置を自律移動装置に搭載した例を説明する。自律移動装置2は、図1に示すように、電動モータあるいはエンジンのような駆動源を持つ走行装置21を備える。ここでは、走行装置21として駆動源でタイヤを回転駆動させて推進力を得る構成を採用している。走行装置21は推進力および進行方向が可変であって、外部から推進力および進行方向に関する指示を受ける走行制御部22により走行装置21の推進力および進行方向が制御される。たとえば、駆動源を電動モータとするとき、走行制御部22では、推進力を増加させる指示を受けると、電動モータへの通電電流を増加させる。あるいはまた、進行方向が指示されると左右のタイヤの回転数を変化させるように通電電流を制御し、指示された進行方向に方向転換する。
自律移動装置2については要旨ではないから詳述しないが、一般に自律移動装置2は、現在位置を認識する機能を有し、保有する地図情報において指示された経路を通るように自律的に走行する。本発明は、この種の自律移動装置2に対して、障害物を検出する機能を付加することにより障害物との衝突の回避などに用いることを可能とし、また障害物とは別に傾斜面を検出する機能を付加することにより傾斜面を登坂する際の推進力の制御に用いることを可能とするものである。
この種の機能を実現するために、自律移動装置2には自律移動装置2の移動方向を含む所定範囲を視野に持つ距離画像センサ11が搭載される。距離画像センサ11は、視野内に存在する物体までの距離を求め、画素値が距離値である距離画像を生成する。この種の距離画像センサの原理としては、複数台の撮像装置の視差を利用してステレオ画像法により物体までの距離を求めるもの、強度を変調した信号光を投光するとともに信号光の物体による反射光を受光し、信号光の投光時と受光時との時間差を変調波形の位相差により求めるものなどが知られている。ここでは、強度を変調した信号光を投光して投受光の位相差を求める構成を採用しているものとする。信号光の投光には赤外線発光ダイオードを用い、信号光の受光にはCCDイメージセンサあるいは類似構成のイメージセンサを用いるものとする。また、CCDイメージセンサの前方にはレンズ群からなる受光光学系が配置される。
ステレオ画像法あるいは投受光の位相差を用いる距離画像センサ11では、数分の1秒より短い時間内で得られる情報を用いて視野内の全領域の距離を計測することができるから、光切断法を用いる場合よりも短時間で距離の測定が可能である。したがって、とくに高速に移動するものでなければ、自律移動装置2が移動している間においても視野内の全領域の距離を実質的に時間差なく計測することができる。また、距離画像センサ11では受光量を距離に換算する処理をイメージセンサの1フレーム内の時間で行うものとする。
距離画像センサ11の視野Vfは、図2のように、自律移動装置2が走行しようとする面(通常は、路面、地面、床面のいずれか)を含む空間領域であって斜め下向きに設定される。距離画像センサ11は自律移動装置2が走行する範囲における障害物の有無を検出するのが目的であるから、距離画像センサ11の視野角は、自律移動装置2の走行性能に応じて適宜に設定される。自律移動装置2の速度が速く、旋回性能が高いほど視野は広く設定することになる。
上述した距離画像センサ11において、各画素は受光系の所定位置を原点とした球座標における角度(伏角と方位角)に対応する。つまり、画素位置が持つ球座標の角度の情報と、画素値が持つ球座標の距離の情報とにより、距離画像センサ11に設定した球座標での物体の三次元の座標位置を特定することができる。球座標における距離をr、z軸(距離画像センサ11の受光系の上向きを正とする軸、つまり距離画像の垂直方向の上向きを正とする軸)に対する角度をθ、方位角をφとすれば、距離画像センサ11で得られる情報は(r,θ,φ)のパラメータを持つが、以下では説明を簡単にするために、図3のように、原則として角度に関する説明には角度θのみを用い、方位角φは説明上で必要な場合にのみ用いる。
距離画像センサ11では、図3のように、角度θ1,θ2,……ごとの距離r1,r2,……が求められる。ここで、自律移動装置2が走行している面を延長した平面を基準面Fbとし、基準面Fbに関する距離画像を基準画像として基準画像記憶部12に格納する。このような基準画像は、自律移動装置2を水平な床面に置いたときの床面の距離画像として生成することができる。あるいはまた、自律移動装置2に対する距離画像センサ11の取付状態(位置および姿勢)と基準面Fbとする平面との関係から計算により画素値を求めて基準画像を生成してもよい。
自律移動装置2の走行時には、自律移動装置2の走行中に距離画像センサ11で得られる距離画像と、基準画像記憶部12に格納されている距離画像との差分画像が差分画像生成部13において求められる。つまり、差分画像生成部13は、距離画像センサ11で得られた距離画像の各画素(各角度θ1,θ2,……に対応する)と、基準画像の各画素とについて、同じ位置の画素同士の画素値の差分を求める。この差分画像は、距離画像センサ11の各画素に対応付けた各角度θ1,θ2,……ごとの距離r1,r2,……の差分値を画素値とするから、基準面Fbの上に障害物Obが存在しないときには、差分画像における各画素値はほぼ0になる。一方、障害物Obが存在していれば、図4のように、障害物Obに対応する画素では、差分画像における各画素値の絶対値は比較的大きい値になる。
たとえば、基準面Fbの距離画像である基準画像において、距離画像センサ11における受光光学系の光軸Axを基準軸とし、光軸Axに対してなす角度θc(z軸に対する角度を90°から減じた角度)に対応する画素の距離値(画素値)がrcであり、自律移動装置2の走行中に距離画像センサ11で得られた距離画像では角度θcに対応する画素の距離値がrc′であるとする。このとき、差分画像における角度θcに対応する画素値は(rc−rc′)になる。障害物Obがなければrc≒rc′になるから(rc−rc′)≒0になるが、障害物Obが存在していると(rc−rc′)の絶対値は比較的大きい値になる。また、この値は基準面Fbからの障害物Obの高さ寸法に1より大きい倍率を乗じた値になるから、高さ寸法について差分を求める場合よりも差分を検出しやすくなる。なお、この倍率は、距離画像センサ11の受光光学系の光軸Axが基準面Fbに直交する方向に対してなす角度をθoとするときに、(1/cos(θo+θc))になる。
上述したように、障害物Obの有無に応じて差分画像の画素値が変化するから、差分画像の各画素値に対して適宜に規定した距離閾値を適用し、画素値が距離閾値以上である画素を抽出すれば、当該画素は障害物Obの可能性があるとみなすことができる。つまり、差分画像を距離閾値で2値化することにより障害物Obの存在する可能性がある領域を抽出する。距離閾値は、距離画像センサ11による測定誤差を考慮し、測定値のばらつきが正規分布になるものとして測定値のばらつきの標準偏差に基づいて距離閾値を設定する。たとえば、距離閾値は標準偏差の2倍に設定される。このように差分画像の画素値のうち距離閾値以上の画素のみを抽出することにより、基準面Fbにほぼ一致している画素に対する処理が不要になるから、処理負荷が軽減される。ここで、距離閾値以上の画素については連結成分に着目し、類似度の高い連結成分を連続させ、孤立成分を除去する処理を行うことにより、ノイズをさらに低減させる。
ところで、自律移動装置2は、図5(a)のように基準面Fbに対して登り傾斜している傾斜面Fcを登坂可能である場合があり、また、図5(b)のように基準面Fbとは高さの異なる段差面Fdを登り上がることができる場合がある。この種の傾斜面Fcや段差面Fdに対して自律移動装置2の行動を決定するには、傾斜面Fcや段差面Fdを障害物Obとは区別して検出する必要がある。しかしながら、差分画像における一つの画素の画素値にのみ着目すると、障害物Obか傾斜面Fcや段差面Fdと障害物Obとの区別ができない。
そこで、差分画像に含まれる情報から傾斜面Fcあるいは段差面Fdと障害物Obとを区別する情報を抽出するために、まず、高さ画像生成部14では、距離画像センサ11で得た距離画像のうち差分画像の画素値が距離閾値以上である領域を基準面Fbに投影した高さ画像を生成する。高さ画像は、基準面Fbからの高さ値を画素値とした画像になる。
このように、高さ画像は、差分画像の画素値が距離閾値以上になる領域について距離画像を基準面Fbに投影した画像であるから、差分画像を座標変換することによっても生成することが可能である。つまり、差分画像の画素値は(rc−rc′)であるから、差分画像における角度θcの位置の画素値を高さ画像の画素値に変換すると、(rc−rc′)・cos(θc+θo)になる。また、差分画像の画素位置は極座標で規定されるから、高さ画像においては光軸Axと基準面Fbとの交点を原点とし、基準面Fbの平面内に設定した座標上に高さ値をマッピングすれば、高さ画像を得ることができる。なお、基準面Fbの平面内での基準軸は方位角φに対応付けて設定する。
高さ画像は、複数の閾値が設定されている2値化部15において2値化される。図1では2段階の閾値を設定した例を示してあり、2値化部15には、第1の閾値を設定した第1の2値化部15aと、第2の閾値を設定した第2の2値化部15bとを設けている。第1の閾値は自律移動装置2が登り上がることができる程度の高さ寸法として設定され、第2の閾値は第1の閾値よりは小さくかつ第1の閾値とは有意の差を持つ程度の高さ寸法として設定される。たとえば、第2の閾値は第1の閾値の2分の1以下に設定する。
第1および第2の2値化部15a,15bでは同じ高さ画像について大小2段階の閾値で2値化を行うから、第1および第2の2値化部15a,15bでそれぞれ得られた2値画像の関係から視野Vf内に存在する物体の形状を推定することができる。2値化後には第1の閾値または第2の閾値以上である画素の連結成分に着目し、クラスタリング処理により連結成分の連結および分離を行うことにより、1つの物体が1つの連結領域に対応した2値画像が生成される。ただし、物体の形状によっては、1つの物体が複数の連結領域に分離される可能性もある。
上述のように、高さ値を2段階の閾値で2値化することにより、視野Vf内の物体の傾斜の度合いを知ることができる。たとえば、自律移動装置2が登坂可能な上り勾配を持つ図5(a)のような傾斜面Fcであれば、高さ画像では自律移動装置2に近い領域(高さ画像の下部領域)から離れるに従って高さ値が大きくなるから、2種類の閾値で2値化すると、図6に示すように、閾値を越える領域D1,D2(斜線部)の面積が変化する。ここでは、図5(a)のような上り傾斜の傾斜面Fcを想定しているから、第1の2値画像における領域D1の面積のほうが、第2の2値画像における領域D2の面積よりも小さくなる。
一方、図4に示した障害物Obのように、基準面Fbに対して略垂直に立ち上がる面を持ち、しかも、その面の高さが自律移動装置2では登り上がることができない程度である場合には、2種類の閾値で2値化しても、図7のように、領域D1,D2(斜線部)の面積はほとんど変化せず、しかも自律移動装置2では登り上がることができないから、障害物Obであると判断することができる。
さらに、自律移動装置2が登り上がることのできる段差面Fdであって、図5(b)のような状態であると、段差面Fdは第1の閾値以下になるから、第2の2値画像では領域D2が生じるが第1の2値画像では対応する領域D1が生じないことになる。
そこで、第1の2値化部15aと第2の2値化部15bとから得られた第1の2値画像と第2の2値画像との関係を評価するために判断部16(図1参照)を設けている。判断部16では、距離画像センサ11の2つの2値画像の関係を評価し、視野Vf内における障害物Obの有無を判断する。また、一見すると障害物Obと判断されるもののうち自律移動装置2が走行可能な傾斜面Fcまたは段差面Fdを障害物Obから分離する。
判断部16における評価は、以下のように行う。まず第1の2値画像において第1の閾値以上(基準面Fbからの高さ値が第1の閾値以上)である画素の連結領域の個数を計数する。この処理はクラスタリング処理におけるクラスタの個数を計数すればよい。第1および第2の2値画像の関係を評価して障害物Obか否かの判断をするには、2値画像内に存在する物体の対応付けが必要である。ここに、第1の2値画像における連結領域の個数が、あらかじめ規定した個数より多い場合には異常と判断して対応付けは行わず、障害物Obか否かの判断は行わない。異常と判断する個数は、第1および第2の2値画像の対応付けに要する処理時間などに基づいて実験的に設定する。
第1の2値画像における連結領域の個数が異常と判断されなければ、第1の2値画像と第2の2値画像との各連結領域の対応付けを行う。対応付けには各連結領域の重心位置を求め、第1の2値画像と第2の2値画像とにおける重心間の距離が最小になる各一対の連結領域を同じ物体に対応する連結領域とする。対応付けが終了した後には、障害物Obか否かの判断を行う。また、上述したようように、障害物Obの候補と判断された領域であっても傾斜面Fcや段差面Fdである可能性もあるから、傾斜面Fcであると判断された場合には、傾斜面Fcの勾配を求める。
障害物Obであるか傾斜面Fcあるいは段差面Fdであるかの判断は、第1の2値画像と第2の2値画像とで対応付けた各一対の連結領域の面積の関係を用いる方法と、第1の2値画像と第2の2値画像とで対応付けた各一対の連結領域のエッジの位置の関係を用いる方法とがある。
面積の関係は、図6および図7を用いて説明した通りであって、障害物Obでは領域D1,D2の面積がほとんど変化せず、傾斜面Fcでは領域D1,D2の面積が大きく変化し、登り上がることのできる段差面Fdでは領域D1が生じない。そこで、領域D1,D2の面積比または領域D1,D2の面積差を用いて、面積の相違を評価する。いま、領域D1の面積をS1、領域D2の面積をS2とすれば、障害物ObではS1−S2≒0、S1/S2≒1になり、また適宜の閾値Tha,Thbを設定しておけば、上り勾配の傾斜面Fcでは、S2−S1>Tha、S2/S1>Thbになる。これらの関係を利用すれば、障害物Obと傾斜面Fcとを区別することが可能になる。
高さ画像に適用する第1の閾値をTh1とするとともに第2の閾値をTh2とし、傾斜面Fcの基準面Fbに対する傾斜角度をψとし、さらに、傾斜面Fcに直交し傾斜面Fcの傾斜方向を含む一つの面内における領域D1,D2の長さ寸法(たとえば、高さ画像の垂直方向に沿って傾斜しているとすれば、領域D1,D2の垂直方向の長さ寸法)をそれぞれs1,s2とすれば、Th1−Th2=(s2−s1)tanψという関係が得られる。
閾値Thaは面積に対して適用するから、ディメンションを合わせるために、長さ寸法s1,s2に適宜長さ(たとえば、高さ画像の垂直方向または水平方向の画素数、あるいは水平方向と垂直方向との画素数の平均値)を乗じる。閾値Thaを自律移動装置2が登坂可能な傾斜角度ψの最大値ψ(max)に対応付けると、Tha=k・(Th1−Th2)/tanψ(max)と設定することができる。ただし、kは高さ画像の垂直方向または水平方向の画素数、あるいは水平方向と垂直方向との画素数の平均値である。また、閾値Thbには、高さ画像の全画素数で閾値Thaを除した値を用いればよい。
なお、面積の差または比を用いて傾斜面Fcを評価すると、段差面Fdとの区別ができない可能性があるが、段差面Fdの高さ値が閾値Th1より小さい場合には、自律移動装置2で登り上がることができると判断されるから、閾値Tha,Thbによる判断は不要である。
上述した例では、判定部16において領域D1,D2の面積の差または比を用いて障害物Obか傾斜面Fcかの判断をしているが、領域D1,D2のエッジの位置の距離差を評価することによっても障害物Obか傾斜面Fcかを判断するが可能である。いま、第1の2値化部15aおよび第2の2値化部15bにより図8(a)(b)に示すような領域D1,D2が得られたとする。判定部16では、図9のように、2値画像における各領域D1,D2について画面の周縁を除くエッジの位置の距離差を評価するために、各領域D1,D2のエッジに関する重心g1,g2の位置を求め、両重心g1,g2の間の距離を評価する。つまり、エッジの重心g1,g2の間の距離が適宜に設定した判定閾値以上であれば、2枚の2値画像においてエッジの位置が変化していることになるから、判定閾値を適宜に設定すれば自律移動装置2の登坂可能な傾斜面Fcであると判断することができる。逆に言えば、エッジの重心g1,g2の間の距離が判定閾値よりも小さいときには、自律移動装置2が登坂できない程度の傾斜角度を持つ傾斜面であるか障害物Obであると判断することができる。
重心g1,g2の間の距離をdとし、傾斜面Fcの傾斜角度をψとすれば、第1の閾値Th1および第2の閾値Th2を用いて、tanψ=(Th1−Th2)/dの関係が得られるから、自律移動装置2が登坂可能な傾斜角度ψの最大値ψ(max)を、重心g1,g2の間の距離dに関する閾値Thdに対応付けるとすれば、Thd=(Th1−Th2)/tanψ(max)になる。また、領域D1,D2のエッジの重心g1,g2の間の距離dを用いて傾斜面Fcの傾斜角度(勾配)ψを求めるから、傾斜角度ψを精度よくかつ再現性よく求めることができる。
上述したように、2つの2値画像の関係(領域D1,D2の面積の差あるいは比、または領域D1,D2のエッジの位置)を用いて傾斜面Fcか障害物Obを判別するから、2つの2値画像の関係を用いるだけで三次元データを用いることなく傾斜面Fcか否かの判断ができることになり、全画素の情報を用いる場合に比較すると、処理負荷を大幅に軽減することができる。しかも、閾値Th1,Th2は傾斜面Fcを登坂可能か否かの目安を与えるから、閾値Th1,Th2の設定によって登坂可能な傾斜面Fcの勾配を設定することができる。つまり、自律移動装置2の性能に合わせて閾値Th1、Th2を設定することができる。
判定部16では、登坂可能な傾斜角度ψの傾斜面Fcであると判断した場合には、傾斜面Fcの傾斜角度ψのほか、自律移動装置2が走行している方向(距離画像センサ11で得られる距離画像の垂直方向)に対して傾斜面Fcが傾斜している方向も検出する。傾斜方向は自律移動装置2の移動方向を制御するための情報に用いることができる。
上述のようにして判定部16において障害物Obまたは登坂不可能な傾斜面と登坂可能な傾斜面Fcとが判別され、その結果は、走行制御部22に与えられる。走行制御部22では、判定部16での判定結果に対応して、自律移動装置2を停止させるか旋回させるか旋回させるときには左右どちらに旋回させるかなどのルールが設定されており、判定部16での判定結果にルールを適用して得られた制御内容で走行装置21を制御する。図示していないが、判断部16と走行制御部22との間には適宜のインタフェースが設けられており、一般的な自律移動装置2にインタフェースを介して本発明の障害物検出装置を接続することで、自律移動装置2に障害物検出装置の機能を容易に付加することができるようにしてある。なお、図1に符号12〜16で示した構成は、適宜のプログラムをコンピュータで実行することにより実現される。
上述した動作を図10にまとめる。図10に示す処理は、距離画像センサ11に設けたイメージセンサの1フレーム内の時間で行われる。まず、イメージセンサにより撮像した画像から距離画像を生成し(S1)、次に距離画像と基準画像との差分画像を差分画像生成部13で生成し、差分画像において距離閾値以上の画素が存在する領域を抽出する(S2)。ステップS2の処理は障害物Obが存在する可能性のある領域を抽出する処理であるから、障害物候補検出処理と言える。差分画像において距離閾値以上の画素が存在しなければ、つまり障害物候補が存在しなければ(S3)、次のフレームに移行する。また、障害物候補が存在するときには、差分画像から抽出した障害物候補の領域について高さ画像生成部14で距離画像を基準面Fbに投影して高さ画像を生成する(S4)。高さ画像に対しては、上述したように2値化部15で2段階の閾値を用いて2値化し、第1および第2の2値画像を生成する。次に、判断部16において、第1および第2の2値画像における各領域の対応付けを行う。判断部16では領域の対応付け後に、上述した判断を行って障害物Obか傾斜面Fcかを判別する(S5)。ステップS5には、第1の2値画像における障害物候補の個数が適数個であるか否かを判断する処理が含まれており、適数個でない場合には検出異常のフラグを設定する。したがって、ステップS5の処理後に検出異常のフラグが設定されていれば(S6)、取得した距離画像は採用しないようにするなどの検出異常の処理を行う(S7)。
ステップS5における判別処理の結果、障害物Obの存在が検出されたときには(S7)、障害物Obの位置など情報を走行制御部22に通知し(S8)、自律移動装置2に障害物Obに対応した行動をとらせる。また、ステップS7において障害物Obの存在が検出されていないときには走行可能であるから、傾斜面Fcや段差面Fdに関して得た情報(傾斜角度や傾斜方向など)を走行制御部2に引き渡す(S9)。
なお、上述した例では2値化部15aにおいて2段階の閾値を用いているが、3段階以上の閾値を用いて2値化を行うようにし、各2値画像の関係を用いて障害物Obか否かを判断するようにしてもよい。3枚以上の2値画像の関係を用いると、2枚の2値画像の関係を用いる場合よりも物体の形状をより正確に把握することができる。ただし、2値画像の枚数が増加すれば処理時間が増加する。また、障害物Obか傾斜面Fcかの判断程度であれば上述した実施形態で説明したように2枚の2値画像の関係を用いるだけでよいから、処理時間を短縮するために2枚の2値画像の関係で判断すればよい。
また、上述の構成では、高さ画像生成部14と2値化部15とにより2値画像を生成する2値画像生成部を構成し、高さ画像に対して閾値を適用しているが、差分画像を用いて障害物Obの候補と判断された領域について、距離画像に適宜の閾値を適用することで2値画像を得るようにしてもよい。この場合、距離画像に適用する閾値は、基準面からの高さに対応付ける必要があるから、距離画像内の画素の位置によって異なる閾値を設定することになる。つまり、2値画像生成部として高さ画像生成部14が不要になる。
本発明の実施形態を示すブロック図である。 同上の外観斜視図である。 同上の原理説明図である。 同上の原理説明図である。 同上の原理説明図である。 同上において斜面に対応する動作説明図である。 同上において障害物に対応する動作説明図である。 同上において斜面に対応する動作説明図である。 同上において斜面に対応する動作説明図である。 同上の全体の処理の流れを示す動作説明図である。
符号の説明
2 自律移動装置
11 距離画像センサ
12 基準画像記憶部
13 差分画像生成部
14 高さ画像生成部
15 2値化部
15a 第1の2値化部
15b 第2の2値化部
16 判断部
21 走行装置
22 走行制御部

Claims (3)

  1. 移動体に搭載され移動体が走行しようとする面を含む空間領域を斜め下向きに撮像し画素値が距離値である距離画像を生成する距離画像センサと、あらかじめ設定した基準面の距離画像と移動体の走行中において距離画像センサにより生成された距離画像との差分画像を生成する差分画像生成部と、差分画像のうち差分値が規定の距離閾値以上である領域について距離画像を基準面からの高さに対応付けた複数段階の閾値で2値化し複数の2値画像を生成する2値画像生成部と、各2値画像が規定の関係を満たすときに前記空間領域に障害物が存在すると判断する判断部とを備え、2値画像生成部は、差分画像のうち差分値が規定の距離閾値以上である領域について距離画像を基準面に投影することにより基準面からの高さ値を画素値とした高さ画像を生成する高さ画像生成部と、高さ画像を複数段階の閾値で2値化し複数の2値画像を生成する2値化部とからなり、2値化部は2段階の閾値で高さ画像を2値化した2つの2値画像を生成し、判断部は、各2値画像について、それぞれ基準面からの高さ値が閾値以上である領域の面積を求め、障害物と判断する前記関係として、両面積の差が規定した判定閾値以下であることと、両面積の比が1の前後で規定した判定範囲内であることとの一方を用いることを特徴とする障害物検出装置。
  2. 移動体に搭載され移動体が走行しようとする面を含む空間領域を斜め下向きに撮像し画素値が距離値である距離画像を生成する距離画像センサと、あらかじめ設定した基準面の距離画像と移動体の走行中において距離画像センサにより生成された距離画像との差分画像を生成する差分画像生成部と、差分画像のうち差分値が規定の距離閾値以上である領域について距離画像を基準面からの高さに対応付けた複数段階の閾値で2値化し複数の2値画像を生成する2値画像生成部と、各2値画像が規定の関係を満たすときに前記空間領域に障害物が存在すると判断する判断部とを備え、2値画像生成部は、差分画像のうち差分値が規定の距離閾値以上である領域について距離画像を基準面に投影することにより基準面からの高さ値を画素値とした高さ画像を生成する高さ画像生成部と、高さ画像を複数段階の閾値で2値化し複数の2値画像を生成する2値化部とからなり、2値化部は2段階の閾値で高さ画像を2値化した2つの2値画像を生成し、判断部は、各2値画像について、それぞれ基準面からの高さ値が閾値以上である領域のエッジを求め、障害物と判断する前記関係として、両エッジの位置の距離差が規定した判定閾値以上であることを用いることを特徴とする障害物検出装置。
  3. 前記基準面は前記移動体が走行している面を延長した平面であることを特徴とする請求項1または請求項2記載の障害物検出装置。
JP2005076002A 2005-03-16 2005-03-16 障害物検出装置 Expired - Fee Related JP4539388B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076002A JP4539388B2 (ja) 2005-03-16 2005-03-16 障害物検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076002A JP4539388B2 (ja) 2005-03-16 2005-03-16 障害物検出装置

Publications (2)

Publication Number Publication Date
JP2006260098A JP2006260098A (ja) 2006-09-28
JP4539388B2 true JP4539388B2 (ja) 2010-09-08

Family

ID=37099287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076002A Expired - Fee Related JP4539388B2 (ja) 2005-03-16 2005-03-16 障害物検出装置

Country Status (1)

Country Link
JP (1) JP4539388B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145585B2 (ja) * 2007-06-08 2013-02-20 国立大学法人 熊本大学 物標検出装置
JP2010067144A (ja) * 2008-09-12 2010-03-25 Muratec Automation Co Ltd 搬送システム及び衝突防止システム
CN101441076B (zh) * 2008-12-29 2010-06-02 东软集团股份有限公司 一种检测障碍物的方法和装置
JP2011185664A (ja) * 2010-03-05 2011-09-22 Panasonic Electric Works Co Ltd 対象物検出装置
JP5605289B2 (ja) * 2011-04-05 2014-10-15 トヨタ自動車株式会社 移動体の障害認識方法及び障害認識システム
JP6705636B2 (ja) 2015-10-14 2020-06-03 東芝ライフスタイル株式会社 電気掃除機
JP2020148700A (ja) * 2019-03-15 2020-09-17 オムロン株式会社 距離画像センサ、および角度情報取得方法
JP6743316B1 (ja) * 2019-11-26 2020-08-19 みどり精密工業株式会社 炉壁の形状・損耗測定装置及び炉壁の形状・損耗測定方法
CN113110425A (zh) * 2021-03-29 2021-07-13 重庆智行者信息科技有限公司 一种基于自动驾驶的靶车系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000057323A (ja) * 1998-08-11 2000-02-25 Sumitomo Electric Ind Ltd 画像処理装置
JP2001357388A (ja) * 2000-06-12 2001-12-26 Oki Electric Ind Co Ltd 道路監視装置
JP2002366932A (ja) * 2001-06-11 2002-12-20 Toshiba Corp 物体検出装置及びその方法
JP2003196656A (ja) * 2001-12-28 2003-07-11 Matsushita Electric Works Ltd 距離画像処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000057323A (ja) * 1998-08-11 2000-02-25 Sumitomo Electric Ind Ltd 画像処理装置
JP2001357388A (ja) * 2000-06-12 2001-12-26 Oki Electric Ind Co Ltd 道路監視装置
JP2002366932A (ja) * 2001-06-11 2002-12-20 Toshiba Corp 物体検出装置及びその方法
JP2003196656A (ja) * 2001-12-28 2003-07-11 Matsushita Electric Works Ltd 距離画像処理装置

Also Published As

Publication number Publication date
JP2006260098A (ja) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4539388B2 (ja) 障害物検出装置
Hata et al. Road marking detection using LIDAR reflective intensity data and its application to vehicle localization
KR102614323B1 (ko) 수동 및 능동 측정을 이용한 장면의 3차원 지도 생성
US8209074B2 (en) Robot and method for controlling the same
US8467902B2 (en) Method and apparatus for estimating pose of mobile robot using particle filter
Suhr et al. Sensor fusion-based vacant parking slot detection and tracking
US8670592B2 (en) Clear path detection using segmentation-based method
Choi et al. Environment-detection-and-mapping algorithm for autonomous driving in rural or off-road environment
US8699754B2 (en) Clear path detection through road modeling
US8332134B2 (en) Three-dimensional LIDAR-based clear path detection
JP4450532B2 (ja) 相対位置計測装置
US9157757B1 (en) Methods and systems for mobile-agent navigation
KR101395089B1 (ko) 장애물 감지 시스템 및 방법
KR20220134029A (ko) 자율 주행 내비게이션 동안의 객체 회피 방법
JP6705496B2 (ja) 画像処理装置、撮像装置、移動体機器制御システム、移動体、画像処理方法、及びプログラム
WO2014064990A1 (ja) 平面検出装置、平面検出装置を備えた自律移動装置、路面段差検出方法、路面段差検出装置、および路面段差検出装置を備えた車両
WO2018061084A1 (ja) 自己位置推定方法及び自己位置推定装置
JP6705497B2 (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、プログラム、及び移動体
WO2017145605A1 (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及びプログラム
JP2009175932A (ja) 移動ロボットの走行領域判別装置及び走行領域判別方法
JP7033389B2 (ja) 車両の周囲にある縁石を検知する装置および方法並びに車両用縁石チェックシステム
KR101100827B1 (ko) 도로주행 로봇의 자기 위치 인식방법
US10672141B2 (en) Device, method, system and computer-readable medium for determining collision target object rejection
JP6572696B2 (ja) 画像処理装置、物体認識装置、機器制御システム、画像処理方法およびプログラム
JP2005217883A (ja) ステレオ画像を用いた道路平面領域並びに障害物検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees