JP4539000B2 - 電子部品の電気特性測定方法および電気特性測定装置 - Google Patents

電子部品の電気特性測定方法および電気特性測定装置 Download PDF

Info

Publication number
JP4539000B2
JP4539000B2 JP2001257652A JP2001257652A JP4539000B2 JP 4539000 B2 JP4539000 B2 JP 4539000B2 JP 2001257652 A JP2001257652 A JP 2001257652A JP 2001257652 A JP2001257652 A JP 2001257652A JP 4539000 B2 JP4539000 B2 JP 4539000B2
Authority
JP
Japan
Prior art keywords
transmission path
electronic component
relay transmission
transmission line
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001257652A
Other languages
English (en)
Other versions
JP2003066076A (ja
Inventor
岳 神谷
力 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001257652A priority Critical patent/JP4539000B2/ja
Publication of JP2003066076A publication Critical patent/JP2003066076A/ja
Application granted granted Critical
Publication of JP4539000B2 publication Critical patent/JP4539000B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、測定対象電子部品を、中継伝送路を介して測定器に接続したうえで、信号伝送時における前記測定対象電子部品の電気特性を前記測定器によって測定する方法および装置に関する。
【0002】
【従来の技術】
主として高周波域の信号に対して各種処理を行う電子部品(例えば、フィルタやアイソレータ)においては、反射係数・伝達係数といった電気特性が所定の規格を満たしているか否かの保証が製造主に求められる。
【0003】
このような電気特性の測定は、例えば、ネットワークアナライザ等の測定器を有する測定装置により実施される。測定装置においては、測定対象電子部品と測定装置とを同軸ケーブルによって接続するのが好ましい。しかしながら、表面実装型の電子部品等においては、同軸ケーブルに直接接続することができない。そこで、測定装置の接続ポートに同軸ケーブルを接続したうえで、さらに同軸ケーブルと測定対象電子部品との間を、例えばマイクロストリップラインのような中継伝送路を用いて中継することが行われる。
【0004】
【発明が解決しようとする課題】
従来の電気特性測定装置においては、中継伝送路を構成するマイクロストリップライン等の特性インピーダンスの調整が問題となる。同軸ケーブルは、その特性インピーダンスを精度高く調整することが可能であり、測定装置との間のインピーダンス整合を精度高く図ることができる。これに対して、マイクロストリップライン等の中継伝送路はその特性インピーダンスを精度高く調整することが不可能であり、そのために中継伝送路と同軸ケーブルとの間にインピーダンスの不整合を生じさせてしまうのは避けられない。そうすると、中継伝送路と同軸ケーブルとの接続部位に予期せぬ信号の反射が生じて測定精度を低下させてしまううえに、測定装置のダイナミックレンジを狭小化してしまう。ダイナミックレンジの狭小化は、ノイズ等に起因する偶然誤差を拡大させてしまうため、これも測定精度を低下させる要因になる。
【0005】
測定精度の低下を抑えるためにはTRL補正等の補正を実施して中継伝送路で生じる系統的誤差を除去することも考えられる。しかしながら、この補正方法であっても、インピーダンス不整合に起因する反射を抑制するものではなく、反射に起因する上記ダイナミックレンジの狭小化を抑制することができない。
【0006】
したがって、本発明の主たる目的は、中継伝送路の接続部位に生じる反射を抑制して測定精度を高めることである。
【0007】
【課題を解決するための手段】
本発明の請求項1に係る電子部品の電気特性測定方法は、測定対象電子部品を、中継伝送路を介して測定器に接続したうえで、信号伝送時における前記測定対象電子部品の電気特性を前記測定器によって測定する方法であって、前記中継伝送路の伝送路長により前記電気特性のうち前記中継伝送路における反射係数が変動することに着目して、前記中継伝送路の伝送路長を前記反射係数が可及的に極小値に近づく長さに設定したうえで、この中継伝送路を介して前記測定対象電子部品を前記測定器に接続してその電気特性を測定するものであり、前記中継伝送路の伝送路長をLとし、前記信号の中心周波数をfとし、光速をcとすると、(n−0.25)c/2f<L<(n+0.25)c/2f(n:自然数)の式を満たす範囲に、前記中継伝送路の伝送路長を設定し、互いに異なる周波数を有する複数の信号を伝送した際における前記測定対象電子部品の電気特性を測定する場合には、前記複数の信号の中心周波数の公約数となる周波数を、前記複数の信号全体の中心周波数とみなす、ことを特徴とする。
本発明の請求項2に係る電子部品の電気特性測定方法は、測定対象電子部品を、中継伝送路を介して測定器に接続したうえで、信号伝送時における前記測定対象電子部品の電気特性を前記測定器によって測定する方法であって、前記中継伝送路の伝送路長により前記電気特性のうち前記中継伝送路における伝送係数が変動することに着目して、前記中継伝送路の伝送路長を前記伝送係数が可及的に極大値に近づく長さに設定したうえで、この中継伝送路を介して前記測定対象電子部品を前記測定器に接続してその電気特性を測定するものであり、前記中継伝送路の伝送路長をLとし、前記信号の中心周波数をfとし、光速をcとすると、(n−0.25)c/2f<L<(n+0.25)c/2f(n:自然数)の式を満たす範囲に、前記中継伝送路の伝送路長を設定し、互いに異なる周波数を有する複数の信号を伝送した際における前記測定対象電子部品の電気特性を測定する場合には、前記複数の信号の中心周波数の公約数となる周波数を、前記複数の信号全体の中心周波数とみなす、ことを特徴とする。
本発明の請求項3に係る電子部品の電気特性測定装置は、測定対象電子部品を、中継伝送路を介して測定器に接続したうえで、信号伝送時における前記測定対象電子部品の電気特性を前記測定器によって測定する電子部品の電気特性測定装置であって、前記中継伝送路の伝送路長を、前記電気特性のうち前記中継伝送路における反射係数が可及的に極小値に近づく長さに設定するとともに、前記中継伝送路の伝送路長をLとし、前記信号の中心周波数をfとし、光速をcとすると、(n−0.25)c/2f<L<(n+0.25)c/2f(n:自然数)の式を満たす範囲に、前記中継伝送路の伝送路長を設定し、当該電気特性測定装置は、互いに異なる周波数を有する複数の信号を伝送した際における前記測定対象電子部品の電気特性を測定する装置であり、前記複数の信号の中心周波数の公約数となる周波数を、前記複数の信号全体の中心周波数とみなす、ことを特徴とする。
本発明の請求項4に係る電子部品の電気特性測定装置は、測定対象電子部品を、中継伝送路を介して測定器に接続したうえで、信号伝送時における前記測定対象電子部品の電気特性を前記測定器によって測定する電子部品の電気特性測定装置であって、前記中継伝送路の伝送路長を、前記電気特性のうち前記中継伝送路における伝達係数が可及的に極大値に近づく長さに設定するとともに、前記中継伝送路の伝送路長をLとし、前記信号の中心周波数をfとし、光速をcとすると、(n−0.25)c/2f<L<(n+0.25)c/2f(n:自然数)の式を満たす範囲に、前記中継伝送路の伝送路長を設定し、当該電気特性測定装置は、互いに異なる周波数を有する複数の信号を伝送した際における前記測定対象電子部品の電気特性を測定する装置であり、前記複数の信号の中心周波数の公約数となる周波数を、前記複数の信号全体の中心周波数とみなす、ことを特徴とする。
【0008】
以上説明した本発明の構成によれば、次の作用が得られる。すなわち、中継伝送路と測定対象電子部品との間の接続部位、ないしは中継伝送路と測定器との間の接続部位(中継伝送路と測定器との間に同軸ケーブルが介在する場合は同軸ケーブルと中継伝送路との間の接続部位)において、インピーダンスの不整合に起因する信号の反射が生じると、測定される測定対象電子部品の電気特性は生じた反射量に応じて増減する。
【0009】
これに対して、測定対象電子部品の電気特性を測定する場合においては、電気特性のうち前記中継伝送路における反射係数や伝達係数の測定値は、信号周波数により変動し、所定の周波数においてその値が極小値や極大値となる。そこで、理論上、前記反射係数が極小値を示す、もしくは前記伝達係数が極大値を示すと考えられる周波数信号を測定対象電子部品に入力した場合において、前記反射係数の測定値が可及的に極小値に近づく、もしくは前記伝達係数の測定値が可及的に極大値を近づくように、中継伝送路の伝送路長を設定すれば、電気特性に対する中継伝送路における反射の影響を最も小さくすることができる。
【0010】
このことに着目して、本発明では、中継伝送路の伝送路長を、中継伝送路における反射係数が可及的に極小値に近づく、もしくは伝達係数が可及的に極大値に近づく長さに設定することで、中継伝送路の接続部位に発生する反射の影響を最小限に抑えて測定精度を向上させた。
【0011】
なお、数100MHz〜数10GHz程度の高周波信号伝送時における前記測定対象電子部品の電気特性を測定する場合においては、反射の影響が多大なものとなる。そのため、数100MHz〜数10GHz程度の高周波信号伝送時における前記測定対象電子部品の電気特性を測定する方法ないし装置において本発明を実施すれば、その作用効果はこのうえなく大きなものとなる。
【0015】
また、本発明では、互いに異なる周波数を有する複数の信号を伝送した際における前記測定対象電子部品の電気特性を測定する場合には、前記複数の信号の中心周波数の公約数となる周波数を、前記複数の信号全体の中心周波数とみなすので、周波数の異なる複数の信号を印加した際における測定対象電子部品の電気特性を一度に測定しても、反射の影響を最小限に抑えることができる。
【0018】
【発明の実施の形態】
以下、本発明を、実施の形態を参照してさらに詳細に説明する。なお、本発明の請求項1ないし4に係る特徴的な実施の形態は、段落0050から段落0056に記載の事項である。また、図1から図5は本発明に係る実施形態と参考例の実施形態と共通するものであり、図7は本発明に係る実施形態に関する図であり、図6,図8,図9は参考例の実施形態に関する図である。
【0019】
本実施形態では、表面実装型の電子部品(例えばSAWフィルタ)を測定対象電子部品11として、この電子部品11の電気特性をネットワークアナライザを有する測定装置1を用いて測定する測定方法において本発明を実施している。
【0020】
図1は本実施形態の測定装置1の構成を示す平面図であり、図2は中継伝送路5の構成を示す平面図であり、図3は測定対象電子部品11の構成を示す裏面図である。
【0021】
測定装置1は、図1に示すように、ネットワークアナライザ3と、同軸ケーブル4A、4Bと、中継伝送路5とを備えている。
【0022】
ネットワークアナライザ3は、高周波に用いられる電子部品の電気特性を測定する測定器の一例であって、2ポートの入出力部(ポート1、ポート2)を有しており、これらのポート1、2それぞれに同軸ケーブル4A、4Bが接続されている。同軸ケーブル4A、4Bの遊端には、同軸ケーブルコネクタ6が設けられている。
【0023】
中継伝送路5は、マイクロストリップラインの形状を有しており、図2に示すように、絶縁基板7と、接続用配線部8と、同軸コネクタ9A、9Bとを備えている。接続用配線部8は、絶縁基板7の基板表面7aに形成されており、信号伝送路8a、8bと、接地線路8c〜8fとを備えている。信号伝送路8a、8bは、絶縁基板7の基板表面7aにおいて、基板両端それぞれから基板中央に向かって延出配置されており、その延出端部それぞれは、基板表面7aの中央部において所定の離間間隔を空けて対向配置されている。このように構成されることで、信号伝送路8a、8bは、それぞれ伝送路長L(通常は、同一の伝送路長に設定されている)を有して、絶縁基板7上に設けられている。
【0024】
接地線路8c〜8fは、基板表面7aの中央部において、信号伝送路8a、8bの両側それぞれに設けられている。伝送路8a側に位置する線路8c、8dと、伝送路8b側に位置する伝送路8e、8fとは、基板表面7aの中央部において所定の離間間隔(信号伝送路8a、8bと同等)を空けて対向配置されている。
【0025】
信号伝送路8a、8bは、基板端部において、同軸コネクタ9A、9Bの内部導体コンタクト(図示省略)に接続されている。接地線路8c〜8fは、スルーホール接続部10を介して基板裏面のグランドパターン(図示省略)に接続されており、さらには、グランドパターンを介して、同軸コネクタ9A、9Bの外部導体コンタクト(図示省略)に接続されている。
【0026】
測定対象電子部品11においては、図3に示すように、その裏面11aに、伝送路端子12a、12bと、接地端子12c〜12fとを備えている。そして、測定対象電子部品11の裏面11aを中継伝送路5の基板表面7aに当接させることで、伝送路端子12a、12b、接地端子12c〜12fを、信号伝送路8a、8b、接地線路8c〜8fに圧着させており、これにより測定対象電子部品11を中継伝送路5に測定実装するようになっている。
【0027】
本実施形態では、測定装置1内において測定対象電子部品11との間の接続部位以外で反射が生じる箇所として、中継伝送路5に着目する。まず、中継伝送路5と同軸ケーブル4A、4Bとの間の接続部位において生じる反射を図4を参照して詳細に説明する。なお、図4においては、中継伝送路5の特性インピーダンスをZ1とし、同軸ケーブル4A、4Bと測定対象電子部品11の特性インピーダンスとをZ0として、両者が等しくない(Z1≠Z0)としている。
【0028】
また、図4においては、同軸ケーブル4Aから中継伝送路5(信号伝送路8a)を介して測定対象電子部品11に向かう信号線路における電磁波の伝達反射形態を示しているが、測定対象電子部品11から中継伝送路5(信号伝送路8b)を介して同軸ケーブル4Bに向かう信号線路においても同様の反射が生じるのはいうまでもない。
【0029】
図4に戻って説明する。ネットワークアナライザ3のポート1から同軸ケーブル4Aを介して中継伝送路5(信号伝送路8a)に向かう電磁波a10は同軸ケーブル4Aと信号伝送路8aとの境界(接続部位)において一部が反射成分(b10)として反射するものの、その多くは伝達成分(c10)として信号伝送路8aに入射する。信号伝送路8aに入射した伝達成分(c10)は伝送路長(電気長)Lの信号伝送路8aを通過する間にωだけ位相が回転している。また、強度はd倍に減衰する、つまり、信号伝送路8aによる電磁波の損失はdである。
【0030】
このような伝達形態において回転位相ωは、
ω=2πfL1/c
c:光速 f:信号周波数
という式により求めることができる。
【0031】
信号伝送路8aと測定対象電子部品11との境界(接続部位)に到達した伝達成分c10は、この境界において再びその一部が反射成分c20として反射したうえで、伝達成分b20として測定対象電子部品11に入射する。反射成分c20は再び信号伝送路8aに入射して伝送路長(電気長)Lの信号伝送路8aを通過する間にω(ω=2πfL1/c)だけ位相が回転し、強度はd倍に減衰する。この状態で反射成分c20は、同軸ケーブル4Aと信号伝送路8aとの間の境界に到達し、ここで、同軸ケーブル4Aへ入射する伝達成分b11と信号伝送路8aへ反射する反射成分c11に分散する。
【0032】
このように、電磁波は、同軸ケーブル4A、4Bと中継伝送路5との間の境界(接続部位)における反射(c10、c11、c12、…)および伝達(b10、b11、b12、…)と、中継伝送路5と測定対象電子部品11との間の境界(接続部位)における反射(c20、c21、…)および伝達(b20、b21、…)とを無限に繰り返し、その結果として、電磁波に重畳しているノイズは拡大してしまう。
【0033】
以上説明した電磁波の伝送形態において、同軸ケーブル4Aから中継伝送路5(信号伝送路8a)に電磁波が進入する際の反射係数Γ1は、
Γ1=(Z1−Z0)/(Z1+Z0
という式により求めることができる。
【0034】
同様に、中継伝送路5(信号伝送路8a)から測定対象電子部品11や同軸ケーブル4Aに電磁波が進入する際の反射係数Γ2は、
Γ2=(Z0−Z1)/(Z0+Z1
という式により求めることができる。
【0035】
ここで、同軸ケーブル4Aを介して中継伝送路5に向かう電磁波a10を1とすると、中継伝送路5の反射係数b1と、伝達係数b2とは、
1=b10+b11+b12+…
2=b20+b21+…
という式により求めることができる。
【0036】
反射成分b10 11、12、 は、それぞれ、上記式 Γ1=(Z1−Z0)/(Z1+Z0)により求めることができる。同様に、伝達成分b20 21、 は、上記式 Γ2=(Z0−Z1)/(Z0+Z1)により求めることができる。したがって、中継伝送路5の反射係数b1と、伝達係数b2とは、
1=Γ1+{[Γ2(1−Γ1)(1−Γ2)d2j2 ω]/[(1−Γ2 2)d2j2 ω]}
2=[(1−Γ1)(1−Γ2)dej ω]/[1−Γ2 22j2 ω]
E:自然対数の底(≒2.71828…)
j:虚数単位[√(−1)]
という式により求めることができる。
【0037】
これらの式を基にして、中継伝送路5の反射係数b1や伝達係数b2がどのように変化するかを測定した結果を、図5に示す。図5では、その例として、反射係数b1を測定した結果を示している。また、図5では、Γ1=0.05、Γ2=0.05、L=0.3m、d=0.9とした場合の反射係数b1の変化を測定している。
【0038】
図5により明らかなように、反射係数b1は、周波数の変化に伴って、周期的に極小点(請求項における極小値に相当する)を形成していることがわかる(この測定例では、500MHz、1.0GHz、1.5GHz、2.0GHz)。このことは、反対に、伝達係数b2においては、周波数の変化に伴って、周期的に極大点(=極大値)を形成していることを示している。
【0039】
このような中継伝送路5における反射係数b1の極小点(伝達係数b2の極大点)においては、中継伝送路5と測定対象電子部品11との間で生じる不要な反射が最小となってノイズの拡大が少なくなる結果、測定対象電子部品11が有する固有の反射係数や伝達係数を、精度高く測定することが可能となる。
【0040】
反射係数b1の極小点(伝達係数b2の極大点)周波数は、次のようにして算出することができる。すなわち、前述した反射係数b1、伝達係数b2の算定式
1=Γ1+{[Γ2(1−Γ1)(1−Γ2)d2j2 ω]/[(1−Γ2 2)d2j2 ω]}、
2=[(1−Γ1)(1−Γ2)dej ω]/[1−Γ2 22j2 ω]において、
1=0、b2=1を代入することで求めることができ、具体的には、
f=(nc)/(2L)
n:自然数
となる。
【0041】
この式において、中継伝送路5(具体的には信号伝送路8a、8b)の伝送路長Lに着目して変形すると、
L=(nc)/(2f)
となり、この式は、伝送信号の周波数fを固定した場合において、中継伝送路5の反射係数b1が極小点(伝達係数b2が極大点)となる伝送路長Lを算出する式を示している。なお、この最適伝送路長算定式においては、n=0とすることも可能であるが、その場合には、中継伝送路5の伝送路長が実質ゼロとなり、現実には不可能となる。したがって、nは上述したごとく自然数となる。
【0042】
伝送路長の計算を具体的にいえば、次のようになる。すなわち、例えば、1GHzの信号伝播を考えた場合には、L=(nc)/(2f)=n×0.15となる。つまり、(15×n)cmの信号伝送路8a、8bを有する中継伝送路5を用いれば、1GHzの信号を処理する場合における測定対象電子部品11の電気特性(反射係数、伝達係数)を測定装置1によって精度高く測定することが可能となる。
【0043】
なお、伝送路長(15×n)cmにおいては、15、30、40cm等、種々の長さが設定可能であるが、長い伝送路長を設定した場合には、損失が大きくなるうえ製作しにくく、かつ取り扱いが不自由になるので、出来る限り、短寸の伝送路長、好ましくは、最小長さ(15cm)を設定するのがよい。
【0044】
具体的な伝送路長の設定方法を図6を参照して説明する。図6において、点線は、任意の測定対象電子部品111が有する反射係数の特性を示しており、実線は、反射係数(一方の同軸ケーブルと中継伝送路との間の接続面における反射係数)0.05、損失d=0.05を有し、さらには信号伝送路8a、8bの伝送路長Lを0.15m(=15cm)とした中継伝送路51が有する反射係数b1の特性を示している。
【0045】
このデータによれば、この測定対象電子部品111は、1.0GHz付近において、反射係数が極小点を有しており、そのため、逆に1.0GHz付近の信号をこの測定対象電子部品111に入力した際における反射係数を測定する場合には、測定結果におけるSN比が低くなって思うような測定精度が得られなくなる。
【0046】
これに対して、中継伝送路51は、伝送路長Lを15cmとすることにより、その反射係数b1は、1.0GHz付近において極小点を形成している。そのため、測定対象電子部品111における1.0GHz付近での反射係数を、中継伝送路51を用いて測定すれば、ノイズの拡大を最小限に抑制することが可能となり、これによりSN比の高い高精度の測定を実施することができる。
【0047】
以上のように、本実施形態によれば、測定対象電子部品11における反射が小さくなる波長領域において、ノイズの影響を最小限に抑えることが可能となり、測定精度が上昇するうえに、所望する測定精度を得るために必要な測定時間を短縮化することができて生産性が向上する。以下、その理由を説明する。
【0048】
上述した実施形態によれば、ノイズの影響を最小限に抑制することができるので、ノイズの影響を低減するために従前から行っていた測定値の平均化処理の回数を減らすことが可能となるうえに、測定操作における中間周波数帯域幅(一つの測定値を算出するのに要する測定実施時間幅)を狭くすることなく所望の測定精度を得ることができるようになる。これにより、単位時間当たりの測定可能回数が増加して生産性が向上する。
【0049】
なお、中継伝送路51を用いて、1.0GHz以外の波長域における測定対象電子部品111の反射係数等の電気特性を測定する場合には特に問題なく実施することができる。それは、1.0GHz以外の波長域において測定対象電子部品111は、反射係数が比較的大きな値をとるため、中継伝送路51の特性によりノイズが拡大したとしても、SN比はさほど低くならずに精度の高い測定を実施することができるためである。
【0050】
上述した実施の形態では、
L=(nc)/(2f)
という算定式により反射係数b1が極小点(伝達係数b2が極大点)となる中継伝送路5の伝送路長Lを設定した。しかしながら、本発明においては、少なくとも、反射係数b1を小さく設定する(伝達係数b2を大きく設定する)ことができれば、その効果である測定対象電子部品11における反射が小さくなる波長領域におけるノイズの影響の抑制を得ることができる。その点からみて、中継伝送路5の伝送路長Lは、
(n−0.25)c/2f < L <(n+0.25)c/2f (n:自然数)
の式を満たす範囲に設定すればよい。このような範囲に伝送路長Lを設定することができる理由は次の通りである。すなわち、伝送路長Lの変化により周期的に変動する反射係数b1や伝達係数b2の反復周期のうち、反射係数b1の極小点(伝達係数b2の極大点)を中心として、1/4周期内に反射係数b1や伝達係数b2が収まる状態であれば、少なくとも上述したノイズの影響の抑制効果を得ることができるためである。
【0051】
上述した実施の形態で説明したように、f=(nc)/(2L)の条件を満たす周波数において、中継伝送路5での反射が極小点(伝達が極大点)となる。この反射極小点(伝達極大点)は波長変化に対して周期的に反復形成され、上記式においてはn=1、2、3、4、…、をそれぞれ代入した際に反射極小点(伝達極大点)が形成される。そのため、伝送路長Lを最適に設定すれば、次のことが実現できる。
【0052】
すなわち、互いに異なる周波数f1、f2、…を有する複数の信号を、中継伝送路5を介して測定対象電子部品11に入力する際において、各信号に対する中継伝送路5の反射係数b1(f1)、b1(f2) …(伝達係数b2(f1)、b2(f2)、…)を共々に極小値(極大値)とすることができる。具体的には、次のようにして伝送路Lを設定すればよい。
【0053】
すなわち、周波数f1、f2、…の公約数となる周波数を周波数fαとした場合に、
Lα=(nc)/(2fα)
を満たすように、中継伝送路5の伝送路長Lαを設定すれば、各信号に対して中継伝送路5で生じる反射係数b1(f1)、b1(f2) …(伝達係数b2(f1)、b2(f2)、…)を共々に極小点(極大点)とすることができる。
具体的な伝送路長Lの設定方法を図7を参照して説明する。図7において、点線は、任意の測定対象電子部品112が有する反射係数の特性を示しており、実線は、反射係数(一方の同軸ケーブルと中継伝送路との間の接続面における反射係数)0.05、損失d=0.05を有し、さらには信号伝送路8a、8bの伝送路長Lを0.30m(=30cm)とした中継伝送路52が有する反射係数b1の特性を示している。
【0054】
このデータによれば、この測定対象電子部品112は、500MHzならびに1.0GHz付近において、反射係数が極小点(伝達係数が極大点)を有しており、そのため、逆に500MHzや1.0GHz付近の信号をこの測定対象電子部品112に入力した際における反射係数(伝達係数)を測定する場合には、測定結果におけるSN比が低くなって思うような測定精度が得られなくなる。
【0055】
これに対して、中継伝送路52は、伝送路長Lを30cmとすることにより、その反射係数b1(伝達係数b2)は、500MHz、1.0GHz付近において極小点(極大点)を形成している。そのため、測定対象電子部品112における500MHz、1.0GHz付近での反射係数を、中継伝送路52を用いて測定すれば、ノイズの拡大を最小限に抑制することが可能となり、これによりSN比の高い高精度の測定を実施することができる。
【0056】
なお、上述した公約数周波数fαが小さくなればなるほど、中継伝送路5の伝送路長Lαは長くなって実用的でなくなるため、公約数周波数fαは、測定周波数f1、f2、…の最大公約数とするのが好ましい。
【0057】
しかしながら、測定周波数f1、f2、…の最大公約数をしてもその値が小さく、そのために中継伝送路5の伝送路長Lαが長くなって実用的でなくなる場合には、次のようにすればよい。すなわち、複数ある測定周波数f1、f2、…を、互いに隣接する一つもしくは複数の測定周波数の集合体からなる周波数域f(a)、f(b)、…に区分する。そして、設定した周波数域f(a)、f(b)、…毎に中継伝送路5(a)、5(b)、…を設ける。さらには、これらの中継伝送路5(a)、5(b)、…それぞれの伝送路長L(a)、L(b)、…を、対応する周波数域f(a)、f(b)、…に対して反射係数b1が極小点(伝達係数b2が極大点)となる長さに設定する。この場合、中継伝送路5(a)、5(b)、…それぞれの伝送路長L(a)、L(b)、…は、上述した実施の形態もしくはその変形例で説明した方法によって最適な長さに設定すればよい。
【0058】
具体的には、次のようにして周波数域f(a)、f(b)、…毎に中継伝送路5(a)、5(b)、…を設定することができる。ここでは、図8(a)、(b)に示すように、点線で示す反射特性Rを有する測定対象電子部品113に対して、比較的低い反射係数となる周波数帯fwd(幅wdを有している)において、その反射係数(伝達係数)を測定する場合を例にして説明する。
【0059】
まず、周波数帯fwdを互いに隣り合う二つの帯域に分割することで、周波数帯fwdを構成する各周波数を周波数域f(a1)と、周波数域f(b1)とに区分する。なお、図8においては、周波数域f(a1)と、周波数域f(b1)とは、互いに重なり合った周波数共有領域を有していた。これは互いの測定精度を補完し合うために設けられた領域である。しかしながら、このような周波数共有領域を設けなくともよいのはいうまでもない。
【0060】
次に、設定した周波数域f(a1)、(b1)毎に中継伝送路5(a1)、5(b1)を設ける。さらには、これらの中継伝送路5(a1)、5(b1)それぞれの伝送路長L(a1)、L(b1)を、対応する周波数域f(a1)、f(b1)に対して反射係数b1が極小点(伝達係数b2が極大点)となる長さに設定する。この場合、中継伝送路5(a1)、5(b1)それぞれの伝送路長L(a1)、L(b1)は、上述した実施の形態もしくはその変形例で説明した方法によって最適な長さに設定すればよい。
【0061】
以上のようにして中継伝送路5(a1)、5(b1)それぞれの伝送路長L(a1)、L(b1)を設定することで、中継伝送路5(a1)、5(b1)が有する反射係数b1(伝達係数b2)の極小点(極大点)を、各周波数域f(a1)、(b1)の周波数中心位置に設定する。そして、このような設定を実施することで、周波数域f(a1)、f(b1)における中継伝送路5(a1)、5(b1)の反射を任意のレベル(例えば−30dB)以下に抑える。
【0062】
図8に示す例においては、具体的には、中継伝送路5(a1)の伝送路長L(a1)を20cmとし、中継伝送路5(b1)の伝送路長L(b1)を23cmとすることで、周波数域f(a1)、(b1)における中継伝送路5(a1)、5(b1)の反射を−30dB以下に抑えている。
【0063】
以上のようにして中継伝送路5(a1)、5(b1)の伝送路長L(a1)、L(b1)を設定したうえで、まず、中継伝送路5(a1)を介して、周波数域f(a1)における測定対象電子部品113の反射係数(伝達係数)を測定する。このとき、中継伝送路5(a1)での反射が−30dB以下に抑えているためにノイズの拡大が十分に抑制される結果、周波数域f(a1)における測定対象電子部品113の反射係数(伝達係数)を精度高く測定することができる。
【0064】
次に、中継伝送路5(b1)を介して、周波数域f(b1)における測定対象電子部品113の反射係数(伝達係数)を測定する。このとき、中継伝送路5(b1)での反射が−30dB以下に抑えられているためにノイズの拡大が十分に抑制される結果、周波数域f(b1)における測定対象電子部品113の反射係数(伝達係数)を精度高く測定することができる。
【0065】
なお、これら中継伝送路5(a1)、5(b1)を用いて、周波数帯fwd以外の波長域における測定対象電子部品113の反射係数等の電気特性を測定する場合には特に問題なく実施することができる。それは、周波数帯fwd以外の波長域において測定対象電子部品113は、反射係数が比較的大きな値をとるため、中継伝送路5(a1)、5(b1)の特性によりノイズが拡大したとしても、SN比はさほど低くならずに精度の高い測定を実施することができるためである。
【0066】
図8に示す測定方法を実施する場合においては、図9に示す測定装置11を構成することができる。この測定装置11は、ネットワークアナライザ3と、第1の測定ステーション13と、第2の測定ステーション14と、スイッチ15とを備えている。第1の測定ステーション13は、ネットワークアナライザ3に接続された同軸ケーブル4Aと、同軸ケーブル4Aに接続された中継伝送路5(a1)とから構成されている。
【0067】
第2の測定ステーション14は、ネットワークアナライザ3に接続された同軸ケーブル4Bと、同軸ケーブル4Bに接続された中継伝送路5(b1)とから構成されている。スイッチ15は、ネットワークアナライザ3に対して、同軸ケーブル4Aおよび中継伝送路5(a1)に対する接続状態と、同軸ケーブル4Bおよび中継伝送路5(b1)に対する接続状態とを切り替えている。
【0068】
なお、符号16は、緩衝ステーションであり、17は、試料投入ステーションであり、18は、良品取り出しステーションであり、19は、不良品取り出しストーションである。緩衝ステーション16は、第1の測定ステーション13から第2の測定ステーションに測定対象電子部品113を移動する際において、一次的に、測定対象電子部品113を待機させる機能を担っている。20は、測定対象電子部品113を各ステーション間で搬送する搬送装置20であり、21は、以下に説明する測定装置11全体の動作を制御する制御部である。
【0069】
この測定装置11による測定操作は次のようになる。まず、試料投入ステーション1に複数搭載された測定対象電子部品113、…の中から最初の測定対象電子部品113を、第1の測定ステーション13に搬送して、中継伝送路5(a1)上に測定実装(圧着実装)する。このとき同時に、スイッチ15は、第1の測定ステーション13をネットワークアナライザ3に接続する接続形態となり、これにより、第1の測定ステーション上13上の測定対象電子部品113に対して、周波数域f(a1)における反射係数(伝達係数)の測定がネットワークアナライザ3により実施され、その測定結果は、ネットワークアナライザ3から制御部21に出力されて、制御部21の図示しないメモリに記録される。
【0070】
測定が終了すると、第1の測定ステーション13上の測定対象電子部品113は、緩衝ステーション16に搬送される。同時に、空いた第1の測定ステーション13に対して、新たに測定対象電子部品113が試料投入ステーション17から搬送される。
【0071】
このとき、スイッチ15は、第1の測定ステーション13をネットワークアナライザ3に接続する接続形態を維持している。そして、この状態で第1の測定ステーション13において、次の測定対象電子部品113に対して周波数域f(a1)における反射係数(伝達係数)の測定がネットワークアナライザ3により実施される。
【0072】
上記測定操作が第1の測定ステーション13で実施されている間に、緩衝ステーション14上の測定対象電子部品113を、第2の測定ステーション14に搬送して中継伝送路5(b1)上に測定実装(圧着実装)する。
【0073】
第1の測定ステーション13において2番目の測定対象電子部品113に対する測定操作が終了すると、第1の測定ステーション13上の測定対象電子部品113を緩衝ステーション16に搬送する。その際、同時に、スイッチ15は、その接続形態を、第2の測定ステーション14をネットワークアナライザ3に接続する接続形態に変更する。接続状態がこのように変更されたことにより、第2の測定ステーション14上の測定対象電子部品113に対して、周波数域f(b1)における反射係数(伝達係数)の測定がネットワークアナライザ3により実施され、その測定結果が制御部21に出力されて、制御部21の図示しないメモリに記録される。
【0074】
制御部21では、第1、第2の測定ステーション13、14における測定が終了した測定対象電子部品113に対しては、その測定結果が良品を示すものか、不良品を示すものかを判断する。そして、良品である場合には、その測定対象電子部品113Gを搬送装置20によって第2の測定ステーション14から良品取り出しステーション18に搬送する。一方、不良品である場合には、その測定対象電子部品113NGを搬送装置20によって第2の測定ステーション14から不良品取り出しステーション19に搬送する。
【0075】
このように、この測定装置11によれば、上述した測定操作および搬送操作を繰り返すことで、複数の測定対象電子部品11の測定操作を順次行うことが可能となる。
【0076】
そして、緩衝ステーション16を設けることで、一方の測定ステーション13、14において測定対象電子部品113の電気特性を測定する操作中において、同時に他の測定対象電子部品113の搬送操作を円滑に実施することが可能となり、これによって測定に要する時間の短縮化を図ることができるようになる。
【0077】
なお、上述した実施の形態においては、測定対象電子部品11が有する電気特性のうち、反射係数や伝達係数を測定する方法および装置において本発明を実施していたが、インピーダンス等の他の電気特性を測定する際においても本発明を同様に実施できるのはいうまでもない。
【0078】
【発明の効果】
以上説明したように、本発明によれば、中継伝送路の接続部位に生じる反射を抑制して測定精度を高めることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の測定装置の構成を示す概略図である。
【図2】中継伝送路の構成を示す平面図である。
【図3】測定対象電子部品の構成を示す裏面図である。
【図4】中継伝送路における信号伝播形態を示す概略図である。
【図5】中継伝送路における反射と信号周波数との関係を示す図である。
【図6】参考例の中継伝送路および測定対象電子部品における反射と信号周波数との関係を示す図である。
【図7】本発明に係る中継伝送路および測定対象電子部品における反射と信号周波数との関係を示す図である。
【図8】参考例における測定方法の説明に供する図であって、中継伝送路および測定対象電子部品における反射と信号周波数との関係を示す図である。
【図9】参考例の測定装置の構成を示す図である。
【符号の説明】
1測定装置3ネットワークアナライザ4A、4B同軸ケーブル
5中継伝送路6同軸コネクタ7絶縁基板
8接続用配線部8a、8b信号伝送路
9A、B同軸コネクタ11測定対象電子部

Claims (4)

  1. 測定対象電子部品を、中継伝送路を介して測定器に接続したうえで、信号伝送時における前記測定対象電子部品の電気特性を前記測定器によって測定する方法であって、
    前記中継伝送路の伝送路長により前記電気特性のうち前記中継伝送路における反射係数が変動することに着目して、前記中継伝送路の伝送路長を前記反射係数が可及的に極小値に近づく長さに設定したうえで、この中継伝送路を介して前記測定対象電子部品を前記測定器に接続してその電気特性を測定するものであり、
    前記中継伝送路の伝送路長をLとし、前記信号の中心周波数をfとし、光速をcとすると、(n−0.25)c/2f<L<(n+0.25)c/2f(n:自然数)の式を満たす範囲に、前記中継伝送路の伝送路長を設定し、
    互いに異なる周波数を有する複数の信号を伝送した際における前記測定対象電子部品の電気特性を測定する場合には、前記複数の信号の中心周波数の公約数となる周波数を、前記複数の信号全体の中心周波数とみなす、ことを特徴とする電子部品の電気特性測定方法。
  2. 測定対象電子部品を、中継伝送路を介して測定器に接続したうえで、信号伝送時における前記測定対象電子部品の電気特性を前記測定器によって測定する方法であって、
    前記中継伝送路の伝送路長により前記電気特性のうち前記中継伝送路における伝送係数が変動することに着目して、前記中継伝送路の伝送路長を前記伝送係数が可及的に極大値に近づく長さに設定したうえで、この中継伝送路を介して前記測定対象電子部品を前記測定器に接続してその電気特性を測定するものであり、
    前記中継伝送路の伝送路長をLとし、前記信号の中心周波数をfとし、光速をcとすると、(n−0.25)c/2f<L<(n+0.25)c/2f(n:自然数)の式を満たす範囲に、前記中継伝送路の伝送路長を設定し、
    互いに異なる周波数を有する複数の信号を伝送した際における前記測定対象電子部品の電気特性を測定する場合には、前記複数の信号の中心周波数の公約数となる周波数を、前記複数の信号全体の中心周波数とみなす、ことを特徴とする電子部品の電気特性測定方法。
  3. 測定対象電子部品を、中継伝送路を介して測定器に接続したうえで、信号伝送時における前記測定対象電子部品の電気特性を前記測定器によって測定する電子部品の電気特性測定装置であって、
    前記中継伝送路の伝送路長を、前記電気特性のうち前記中継伝送路における反射係数が可及的に極小値に近づく長さに設定するとともに、
    前記中継伝送路の伝送路長をLとし、前記信号の中心周波数をfとし、光速をcとすると、(n−0.25)c/2f<L<(n+0.25)c/2f(n:自然数)の式を満たす範囲に、前記中継伝送路の伝送路長を設定し、
    当該電気特性測定装置は、互いに異なる周波数を有する複数の信号を伝送した際における前記測定対象電子部品の電気特性を測定する装置であり、前記複数の信号の中心周波数の公約数となる周波数を、前記複数の信号全体の中心周波数とみなす、ことを特徴とする電子部品の電気特性測定装置。
  4. 測定対象電子部品を、中継伝送路を介して測定器に接続したうえで、信号伝送時における前記測定対象電子部品の電気特性を前記測定器によって測定する電子部品の電気特性測定装置であって、
    前記中継伝送路の伝送路長を、前記電気特性のうち前記中継伝送路における伝達係数が可及的に極大値に近づく長さに設定するとともに、
    前記中継伝送路の伝送路長をLとし、前記信号の中心周波数をfとし、光速をcとすると、(n−0.25)c/2f<L<(n+0.25)c/2f(n:自然数)の式を満たす範囲に、前記中継伝送路の伝送路長を設定し、
    当該電気特性測定装置は、互いに異なる周波数を有する複数の信号を伝送した際における前記測定対象電子部品の電気特性を測定する装置であり、前記複数の信号の中心周波数の公約数となる周波数を、前記複数の信号全体の中心周波数とみなす、ことを特徴とする電子部品の電気特性測定装置。
JP2001257652A 2001-08-28 2001-08-28 電子部品の電気特性測定方法および電気特性測定装置 Expired - Fee Related JP4539000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257652A JP4539000B2 (ja) 2001-08-28 2001-08-28 電子部品の電気特性測定方法および電気特性測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257652A JP4539000B2 (ja) 2001-08-28 2001-08-28 電子部品の電気特性測定方法および電気特性測定装置

Publications (2)

Publication Number Publication Date
JP2003066076A JP2003066076A (ja) 2003-03-05
JP4539000B2 true JP4539000B2 (ja) 2010-09-08

Family

ID=19085279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257652A Expired - Fee Related JP4539000B2 (ja) 2001-08-28 2001-08-28 電子部品の電気特性測定方法および電気特性測定装置

Country Status (1)

Country Link
JP (1) JP4539000B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032025B2 (ja) * 2013-01-22 2016-11-24 日立化成株式会社 蓄電池状態検知方法及び蓄電池状態検知装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183301A (ja) * 1991-12-26 1993-07-23 Fujitsu Ltd 極超短波帯用パッケージ入出力部の構造
JPH07270478A (ja) * 1994-03-31 1995-10-20 Nitto Denko Corp プリント配線板のクロスト−ク検査方法
JPH11339898A (ja) * 1998-03-27 1999-12-10 Kyocera Corp 高周波用入出力端子および高周波回路用パッケージ
JP2000196301A (ja) * 1998-12-24 2000-07-14 Kyocera Corp 誘電体導波管線路と方形導波管との接続構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183301A (ja) * 1991-12-26 1993-07-23 Fujitsu Ltd 極超短波帯用パッケージ入出力部の構造
JPH07270478A (ja) * 1994-03-31 1995-10-20 Nitto Denko Corp プリント配線板のクロスト−ク検査方法
JPH11339898A (ja) * 1998-03-27 1999-12-10 Kyocera Corp 高周波用入出力端子および高周波回路用パッケージ
JP2000196301A (ja) * 1998-12-24 2000-07-14 Kyocera Corp 誘電体導波管線路と方形導波管との接続構造

Also Published As

Publication number Publication date
JP2003066076A (ja) 2003-03-05

Similar Documents

Publication Publication Date Title
KR101164243B1 (ko) 분배기 및 통신 방법
AU2010329983B2 (en) Microwave transition device between a microstrip line and a rectangular waveguide
US7671698B2 (en) Wide-band directional coupler
US7439748B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
US7405576B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
US7676252B2 (en) Filter circuit having plural resonator blocks with a phase adjustment unit
JP4656212B2 (ja) 接続方法
EP2360776B1 (en) Microwave directional coupler
US8461938B2 (en) Directional couplers for use in electronic devices, and methods of use thereof
JP3404238B2 (ja) 高周波測定の校正標準器および校正法ならびに高周波用伝送線路の伝送損失の測定方法
US7375534B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP4539000B2 (ja) 電子部品の電気特性測定方法および電気特性測定装置
US6690177B2 (en) Frequency selective improvement of the directivity of a return loss bridge
JPH06303010A (ja) 高周波伝送線路及び該高周波伝送線路を用いた集積回路装置並びに高周波平面回路の接続方法
JP2007150803A (ja) インピーダンス変成器
JP6351450B2 (ja) 無線モジュール、電子モジュール及び測定方法
CN106532199B (zh) 一种随机冷却系统用的宽带相位均衡器
JP3659461B2 (ja) 高周波測定用基板
Mircea et al. Impedance matching for UHF band antennas on ceramic substrate
Roman et al. Compact microstrip directional coupler with topology layout on multilayer PCB
Shirakawa et al. Small and planar termination for non-contact PIM measurement using planar balanced-transmission line
JPH0522007A (ja) 電力合成器
JP5566747B2 (ja) ミリ波伝送線路、これを用いた回路基板、および回路基板の測定方法
JP3102091B2 (ja) 高周波機器の電気特性測定方法
Nicholson Low return loss DC to 60 GHz SMT package with performance verification by precision 50 Ohm load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4539000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees