JP4532357B2 - Concentration measuring device - Google Patents

Concentration measuring device Download PDF

Info

Publication number
JP4532357B2
JP4532357B2 JP2005174930A JP2005174930A JP4532357B2 JP 4532357 B2 JP4532357 B2 JP 4532357B2 JP 2005174930 A JP2005174930 A JP 2005174930A JP 2005174930 A JP2005174930 A JP 2005174930A JP 4532357 B2 JP4532357 B2 JP 4532357B2
Authority
JP
Japan
Prior art keywords
electrode
concentration
voltage
conductance
concentration measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005174930A
Other languages
Japanese (ja)
Other versions
JP2006349450A (en
Inventor
寿 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atago Co Ltd
Original Assignee
Atago Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atago Co Ltd filed Critical Atago Co Ltd
Priority to JP2005174930A priority Critical patent/JP4532357B2/en
Publication of JP2006349450A publication Critical patent/JP2006349450A/en
Application granted granted Critical
Publication of JP4532357B2 publication Critical patent/JP4532357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、例えば食塩水の塩分濃度を測定する濃度測定装置に係り、特に、測定精度を向上させる技術に関する。   The present invention relates to a concentration measuring apparatus that measures, for example, the salt concentration of saline, and more particularly to a technique for improving measurement accuracy.

塩分濃度を測定するために用いられる塩分濃度計として、例えば、特開2002−5862号公報(特許文献1)に記載されているように、液体中に2つの電極を挿入し、これらの電極間に交流電圧を印加し、このときに流れる電流値を測定し、この電流値に基づいて塩分濃度を測定する方式のものが知られている。   As a salinity meter used for measuring the salinity concentration, for example, as described in Japanese Patent Application Laid-Open No. 2002-5862 (Patent Document 1), two electrodes are inserted into a liquid, and between these electrodes A system is known in which an AC voltage is applied to the current, the current value flowing at this time is measured, and the salinity concentration is measured based on this current value.

図7は、従来における塩分濃度測定装置の測定原理を模式的に示す説明図であり、同図に示すように、食塩水102が充填された容器101中に2つの電極103,104を挿入し、2つの電極103,104間に電源105より交流電圧を印加する。すると、図中の矢印Y1,Y2に示すような経路で食塩水102中に電流が流れ、流れた電流が電流計106にて測定される。   FIG. 7 is an explanatory view schematically showing the measurement principle of a conventional salinity concentration measuring device. As shown in the figure, two electrodes 103 and 104 are inserted into a container 101 filled with a saline solution 102. An AC voltage is applied between the two electrodes 103 and 104 from the power source 105. Then, a current flows in the saline 102 through a path as indicated by arrows Y1 and Y2 in the figure, and the flowing current is measured by the ammeter 106.

そして、(測定電流)/(印加電圧)を演算することにより、食塩水102の電気導電率gを求め、電気導電率と塩分濃度との対応関係に基づいて、求められた電気導電率gに対応する塩分濃度を求め、求められた塩分濃度を表示手段に表示する。
特開2002−5862号公報
Then, by calculating (measurement current) / (applied voltage), the electrical conductivity g of the saline solution 102 is obtained, and based on the correspondence between the electrical conductivity and the salinity concentration, the obtained electrical conductivity g is calculated. The corresponding salinity concentration is obtained and the obtained salinity concentration is displayed on the display means.
JP 2002-5862 A

しかしながら、上述した従来における塩分濃度計では、電流が2つの電極103,104間のみを流れるわけではなく、図7の矢印Y2に示すように、電極の裏側や周囲にも電流が流れるので、測定対象となる食塩水102の量や、容器101の大きさにより、電流値が大きく変化してしまい、高精度な濃度検出ができなくなるという欠点があった。   However, in the above-described conventional salinity meter, the current does not flow only between the two electrodes 103 and 104, and the current flows also on the back side and the periphery of the electrode as shown by the arrow Y2 in FIG. Depending on the amount of the target saline solution 102 and the size of the container 101, the current value varies greatly, and there is a drawback that it is impossible to detect the concentration with high accuracy.

本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、少量の液体サンプルから高精度に測定対象物の濃度を測定することのできる濃度測定装置を提供することにある。   The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a concentration measuring apparatus capable of measuring the concentration of a measurement object with high accuracy from a small amount of liquid sample. Is to provide.

上記目的を達成するため、本願請求項1に記載の発明は、液体中に溶解している測定対象物の濃度を測定する濃度測定装置において、上部拡開円筒形状をなし、前記液体を注入するサンプルステージと、前記サンプルステージの略中央部に設けられる第1の電極と、前記第1の電極と同一平面上で、且つ、前記第1の電極の周囲部に設けられる第2の電極と、前記第1の電極と第2の電極との間に交流電力を供給する電源手段と、前記第2の電極の周囲部に設けられ、第2の電極と同一電位とされた周囲電極と、前記第1の電極と第2の電極との間に生じる電圧、及び前記第1の電極と第2の電極との間に流れる電流を測定する検出手段と、測定対象物のコンダクタンスと前記測定対象物の濃度との関係を示す特性曲線データを備え、前記検出手段で検出された電流値及び電圧値に基づいて、前記測定対象物のコンダクタンスを求め、求めたコンダクタンスに基づき、前記特性曲線データを参照して、前記測定対象物の濃度を求める濃度測定手段と、前記求められた濃度を表示する表示手段と、を備えたことを特徴とする。 In order to achieve the above object, the invention according to claim 1 of the present application is a concentration measuring apparatus for measuring the concentration of a measurement object dissolved in a liquid, and has an upper expanded cylindrical shape and injects the liquid. A sample stage, a first electrode provided at a substantially central portion of the sample stage, a second electrode provided on the same plane as the first electrode and around the first electrode; Power supply means for supplying AC power between the first electrode and the second electrode; a peripheral electrode provided at a peripheral portion of the second electrode and having the same potential as the second electrode; Detection means for measuring a voltage generated between the first electrode and the second electrode and a current flowing between the first electrode and the second electrode, conductance of the measurement object, and the measurement object Characteristic curve data showing the relationship with the concentration of Concentration measuring means for obtaining the conductance of the measurement object based on the current value and the voltage value detected by the means, and for obtaining the concentration of the measurement object with reference to the characteristic curve data based on the obtained conductance; And a display means for displaying the obtained concentration.

請求項2に記載の発明は、前記第2の電極は、前記第1の電極の周囲をほぼ囲むように配置されることを特徴とする。 The invention described in claim 2 is characterized in that the second electrode is disposed so as to substantially surround the periphery of the first electrode .

請求項3に記載の発明は、前記第2の電極と前記周囲電極との間に、バッファアンプを設けることにより、前記第2の電極と前記周囲電極とを同一電位とすることを特徴とする。 According to a third aspect of the present invention , a buffer amplifier is provided between the second electrode and the surrounding electrode, so that the second electrode and the surrounding electrode have the same potential. .

請求項4に記載の発明は、前記電源手段は、一定の交流電圧を出力する電圧源であり、前記検出手段は、前記電源手段と前記第1または第2の電極との間に設けられるシャント抵抗と、該シャント抵抗の両端に生じる電圧に基づいて第1の電極と第2の電極との間に流れる電流を求める電流検出手段と、前記第1の電極と第2の電極との間の電圧を検出する電圧検出手段と、を備え、前記濃度測定手段は、前記電流検出手段で検出された電流と前記電圧検出手段で検出された電圧からコンダクタンスを求め、該コンダクタンスに基づいて前記測定対象物の濃度を求めることを特徴とする。 According to a fourth aspect of the present invention, the power supply means is a voltage source that outputs a constant alternating voltage, and the detection means is a shunt provided between the power supply means and the first or second electrode. A current detecting means for obtaining a current flowing between the first electrode and the second electrode based on a resistance and a voltage generated at both ends of the shunt resistor; and between the first electrode and the second electrode Voltage detecting means for detecting a voltage, wherein the concentration measuring means obtains conductance from the current detected by the current detecting means and the voltage detected by the voltage detecting means, and the measurement object is based on the conductance. It is characterized by determining the concentration of the object .

請求項5に記載の発明は、前記液体は食塩水であり、前記測定対象物の濃度は塩分濃度であることを特徴とする。 The invention according to claim 5 is characterized in that the liquid is a saline solution and the concentration of the measurement object is a salinity concentration .

請求項1の発明では、第2の電極の周囲部に、該第2の電極と同一電位となる周囲電極が設けられるので、第1,第2の電極間に流れる電流が第2の電極の周囲に漏れ出すことを防止することができる。従って、第2の電極の周囲部となる溶液注入領域の形状に影響されず、且つサンプルとなる液体の量が少量であっても高精度な濃度測定が可能となる。また、コンダクタンスと測定対象物の濃度との関係を示す特性曲線データを備え、コンダクタンスが求められた際には、このコンダクタンスを特性曲線データに代入することにより、測定対象物の濃度を求めることができるので、演算負荷を軽減することができる。 In the first aspect of the present invention, since the peripheral electrode having the same potential as the second electrode is provided in the peripheral portion of the second electrode, the current flowing between the first and second electrodes is It is possible to prevent leakage to the surroundings. Therefore, it is not affected by the shape of the solution injection region around the second electrode, and high-precision concentration measurement is possible even when the amount of liquid as a sample is small. In addition, characteristic curve data indicating the relationship between the conductance and the concentration of the measurement object is provided. When the conductance is obtained, the conductance is substituted into the characteristic curve data to obtain the concentration of the measurement object. As a result, the calculation load can be reduced.

請求項の発明では、第2の電極が第1の電極の周囲をほぼ囲むように配置されるので、2つの電極間に安定した電流を流すことができ、測定精度を向上させることができる。 In the invention of claim 2 , since the second electrode is arranged so as to substantially surround the periphery of the first electrode, a stable current can flow between the two electrodes, and the measurement accuracy can be improved. .

請求項の発明では、第2の電極と周囲電極との間にバッファアンプを設けるので、第2の電極と周囲電極とを容易に同一電位とすることができる。また、第2の電極から周囲電極へは電流が流れないので、高精度な濃度測定が可能となる。 In the invention of claim 3 , since the buffer amplifier is provided between the second electrode and the surrounding electrode, the second electrode and the surrounding electrode can be easily set to the same potential. In addition, since no current flows from the second electrode to the surrounding electrodes, it is possible to measure the concentration with high accuracy.

請求項の発明では、電源手段と電極とを結ぶ電線に設けられたシャント抵抗を用いて電流を測定し、更に、電圧検出手段により、第1,第2の電極間の電圧を測定するので、高精度な電流、電圧の測定が可能となり、ひいては高精度なコンダクタンスの算出が可能となる。 In the invention of claim 4 , since the current is measured using a shunt resistor provided on the electric wire connecting the power supply means and the electrode, and the voltage between the first and second electrodes is further measured by the voltage detecting means. Therefore, it becomes possible to measure current and voltage with high accuracy, and in turn, it is possible to calculate conductance with high accuracy.

請求項の発明では、測定対象物濃度として塩分濃度を測定するので、塩分濃度の測定を高精度且つ簡単な操作で測定することができる。 In the invention of claim 5 , since the salinity concentration is measured as the measurement object concentration, the salinity concentration can be measured with high accuracy and a simple operation.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る濃度測定装置としての、塩分濃度測定装置の構成を示す外観図、図2は塩分濃度測定装置の分解斜視図である。図示のように、この塩分濃度測定装置1は、上ケース2と下ケース3により全体が覆われる筐体構造を成しており、内部には各種の電子部品を実装する基板4と、測定対象となる食塩水が注入される領域を形成するサンプルステージ11と、測定結果となる塩分濃度を表示する液晶表示器等の表示部(表示手段)9と、処理の開始、ゼロ調整などの操作を行う操作スイッチ10a,10bと、を備えている。また、サンプルステージ11の下部には電極基板5が設けられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an external view showing a configuration of a salinity concentration measuring apparatus as a concentration measuring apparatus according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view of the salinity concentration measuring apparatus. As shown in the figure, the salinity concentration measuring device 1 has a casing structure that is entirely covered by an upper case 2 and a lower case 3, a substrate 4 on which various electronic components are mounted, and a measurement target The sample stage 11 that forms the region where the saline solution to be injected is injected, the display unit (display means) 9 such as a liquid crystal display that displays the salinity concentration that is the measurement result, and operations such as start of processing and zero adjustment Operation switches 10a and 10b to perform are provided. An electrode substrate 5 is provided below the sample stage 11.

図3は、サンプルステージ11の一部破断斜視図であり、同図に示すようにサンプルステージ11は、上部拡開円筒形状をなしており、該サンプルステージ11の下側開口部には、液体封密用のOリング12(図2参照)を介して電極基板5が配置され、サンプルステージ11及び電極基板5で囲まれた部分が測定対象となる食塩水の注入領域となる。   FIG. 3 is a partially broken perspective view of the sample stage 11. As shown in the figure, the sample stage 11 has an upper expanded cylindrical shape, and a liquid is provided in the lower opening of the sample stage 11. The electrode substrate 5 is disposed via the sealing O-ring 12 (see FIG. 2), and a portion surrounded by the sample stage 11 and the electrode substrate 5 is an injection region of a saline solution to be measured.

電極基板5には、サンプルステージ11の円形状の開口部の中心部に形成された第1の電極8と、該第1の電極8を中心とし、該第1の電極8の周囲部をほぼ覆うように設けられた第2の電極7が設けられている。更に、サンプルステージ11の下部円周面は、導体で構成されたガード電極(周囲電極)11aとされている。   The electrode substrate 5 includes a first electrode 8 formed at the center of the circular opening of the sample stage 11, and the periphery of the first electrode 8 with the first electrode 8 as the center. A second electrode 7 is provided so as to cover it. Furthermore, the lower circumferential surface of the sample stage 11 is a guard electrode (peripheral electrode) 11a made of a conductor.

図4は、本実施形態に係る塩分濃度測定装置1の制御部を示すブロック図である。同図に示すように、制御部は、所定の周波数の交流電圧信号を発生する信号発生器(電源手段)22と、該信号発生器22より出力される交流信号を増幅する出力増幅回路23とを備え、該出力増幅回路23の出力端子はシャント抵抗21を介して第2の電極7に接続されている。また、第1の電極8は、グランドに接地されている。   FIG. 4 is a block diagram showing a control unit of the salinity concentration measuring apparatus 1 according to the present embodiment. As shown in the figure, the control unit includes a signal generator (power supply means) 22 that generates an AC voltage signal having a predetermined frequency, and an output amplifier circuit 23 that amplifies the AC signal output from the signal generator 22. The output terminal of the output amplifier circuit 23 is connected to the second electrode 7 via the shunt resistor 21. The first electrode 8 is grounded.

更に、第2の電極7は、バッファアンプ26を介してガード電極11aに接続され、且つ第2の電極7に印加される電圧を検出する電圧検出回路(検出手段)25に接続されている。また、シャント抵抗21の両端は、電流検出回路(検出手段)24に接続されており、シャント抵抗21に発生する電圧に基づいて、該シャント抵抗21に流れる電流を求める。   Further, the second electrode 7 is connected to the guard electrode 11 a via the buffer amplifier 26, and is connected to a voltage detection circuit (detection means) 25 that detects a voltage applied to the second electrode 7. Further, both ends of the shunt resistor 21 are connected to a current detection circuit (detection means) 24, and a current flowing through the shunt resistor 21 is obtained based on a voltage generated in the shunt resistor 21.

電流検出回路24、及び電圧検出回路25の各出力端は、各検出回路24,25で検出されたアナログ信号をディジタル信号に変換するためのAD変換回路27に接続され、更に、該AD変換回路27の出力端はCPU(濃度測定手段)28に接続されている。CPU28は、電流検出回路24で検出された電流、及び電圧検出回路25で検出された電圧に基づき、第2の電極7と第1の電極8の間に注入された食塩水のコンダクタンスgを求める処理を行う。更に、図6に示す如くのコンダクタンスと塩分濃度との関係を示す特性データを備えており、この特性データに、求められたコンダクタンスgを代入することにより、注入された食塩水の塩分濃度を求める。 Each output terminal of the current detection circuit 24 and the voltage detection circuit 25 is connected to an AD conversion circuit 27 for converting an analog signal detected by the detection circuits 24 and 25 into a digital signal. Further, the AD conversion circuit The output terminal 27 is connected to a CPU (concentration measuring means) 28. The CPU 28 obtains the conductance g of the saline solution injected between the second electrode 7 and the first electrode 8 based on the current detected by the current detection circuit 24 and the voltage detected by the voltage detection circuit 25. Process. Furthermore, characteristic data indicating the relationship between conductance and salinity as shown in FIG. 6 is provided, and the salinity of the injected saline is obtained by substituting the obtained conductance g into this characteristic data. .

表示部9は、CPU28で求められた塩分濃度を表示する。   The display unit 9 displays the salinity concentration obtained by the CPU 28.

次に、上記のように構成された本実施形態に係る塩分濃度測定装置の処理動作について説明する。図1〜図3に示したサンプルステージ11内に測定対象となる食塩水を注入した状態で、CPU28から信号発生器22に起動信号が送られると、信号発生器22より所定周波数の交流の電圧信号が出力される。   Next, the processing operation of the salinity concentration measuring apparatus according to the present embodiment configured as described above will be described. When an activation signal is sent from the CPU 28 to the signal generator 22 in a state in which a saline solution to be measured is injected into the sample stage 11 shown in FIGS. 1 to 3, an AC voltage having a predetermined frequency is sent from the signal generator 22. A signal is output.

そして、出力された電圧信号は、出力増幅回路23にて増幅された後、シャント抵抗21を介して第2の電極7に印加される。また、サンプルステージ11の中央部に形成された第1の電極8はグランドに接地されているので、食塩水中にて第2の電極7から第1の電極8に向けて電流が流れる。   The output voltage signal is amplified by the output amplifier circuit 23 and then applied to the second electrode 7 via the shunt resistor 21. Further, since the first electrode 8 formed at the center of the sample stage 11 is grounded to the ground, a current flows from the second electrode 7 toward the first electrode 8 in the saline solution.

この際、第2の電極7とガード電極11aはバッファアンプ26を介して接続されているので、第2の電極7とガード電極11aは、同一の電位となる。また、第2の電極7からガード電極11aを見たときのインピーダンスは無限大となるため、第2の電極7からガード電極11a側へは電流は流れない。   At this time, since the second electrode 7 and the guard electrode 11a are connected via the buffer amplifier 26, the second electrode 7 and the guard electrode 11a have the same potential. Further, since the impedance when the guard electrode 11a is viewed from the second electrode 7 is infinite, no current flows from the second electrode 7 to the guard electrode 11a side.

また、サンプルステージ11内に注入された食塩水中においても、第2の電極7とガード電極11aが同一電位となることにより、この間には電流は流れない。これを、図5に示す模式図を参照して説明すると、第1の電極8を中心とした円弧状に第2の電極7が設けられ、更に、該第2の電極7の周囲を覆うようにガード電極11aが設けられ、且つ、第2の電極7とガード電極11aは同一の電位であるので、第2の電極7から第1の電極8へ流れる電流は、全て円弧状を成す第2の電極7の内側を流れることになる。従って、サンプルとして注入される食塩水の量や周囲の形状に影響されることなく、食塩水の濃度に応じた電流が2つの電極7,8間を流れることになる。   Further, even in the saline solution injected into the sample stage 11, the second electrode 7 and the guard electrode 11a have the same potential, so that no current flows between them. This will be described with reference to the schematic diagram shown in FIG. 5. The second electrode 7 is provided in an arc shape centered on the first electrode 8, and further covers the periphery of the second electrode 7. Since the second electrode 7 and the guard electrode 11a are at the same potential, the current flowing from the second electrode 7 to the first electrode 8 is entirely in an arc shape. It flows inside the electrode 7. Accordingly, a current corresponding to the concentration of the saline solution flows between the two electrodes 7 and 8 without being affected by the amount of the saline solution injected as a sample and the surrounding shape.

他方、2つの電極7,8間を流れる電流がシャント抵抗21に流れることにより、該シャント抵抗21の両端には、電流に比例した大きさの電圧が発生するので、電流検出回路24では、シャント抵抗21に生じる電圧、及びこのシャント抵抗21の抵抗値に基づいてシャント抵抗21に流れる電流を求め、求めた電流データをAD変換回路27に出力する。そして、AD変換回路27では、電流データをディジタル化して、CPU28に出力する。   On the other hand, since the current flowing between the two electrodes 7 and 8 flows to the shunt resistor 21, a voltage having a magnitude proportional to the current is generated at both ends of the shunt resistor 21. Based on the voltage generated in the resistor 21 and the resistance value of the shunt resistor 21, the current flowing through the shunt resistor 21 is obtained, and the obtained current data is output to the AD conversion circuit 27. The AD conversion circuit 27 digitizes the current data and outputs it to the CPU 28.

また、第2の電極7に生じる電圧は、電圧検出回路25で検出され、検出された電圧はAD変換回路27でディジタル化され、CPU28に出力される。   The voltage generated at the second electrode 7 is detected by the voltage detection circuit 25, and the detected voltage is digitized by the AD conversion circuit 27 and output to the CPU 28.

その後、CPU28では、求められた電圧(V)と、電流(I)から、g=I/Vの関係式を用いてコンダクタンスgを求める。更に、このコンダクタンスgを図6に示した特性データに代入することにより、塩分濃度を求め、求められた塩分濃度データを表示部9に出力する。こうして、表示部9に塩分濃度が表示され、操作者はサンプルとして注入した食塩水の塩分濃度を知ることができるのである。 Thereafter, the CPU 28 obtains the conductance g from the obtained voltage (V) and current (I) using the relational expression g = I / V. Further, by substituting the conductance g into the characteristic data shown in FIG. 6, the salinity concentration is obtained, and the obtained salinity concentration data is output to the display unit 9. Thus, the salinity concentration is displayed on the display unit 9, and the operator can know the salinity concentration of the saline injected as a sample.

このようにして、本実施形態に係る塩分濃度測定装置では、第1の電極8の周囲部に第2の電極7を設け、且つ、該第2の電極7の周囲を覆うようにガード電極11aを設け、更に、第2の電極7とガード電極11aとが同一電位となるようにしたので、第2の電極7に交流電圧を印加した際に、第2の電極7の外側に電流が漏れ出すことを回避することができる。従って、第2の電極7から第1の電極8へ流れる電流が、第2の電極7の内部に限定されるので、食塩水の注入量や周囲部の形状に影響されない高精度な塩分濃度測定が可能となる。   Thus, in the salinity concentration measuring apparatus according to the present embodiment, the second electrode 7 is provided around the first electrode 8, and the guard electrode 11 a is covered so as to cover the periphery of the second electrode 7. In addition, since the second electrode 7 and the guard electrode 11a have the same potential, when an AC voltage is applied to the second electrode 7, current leaks to the outside of the second electrode 7. Can be avoided. Therefore, since the current flowing from the second electrode 7 to the first electrode 8 is limited to the inside of the second electrode 7, highly accurate salinity concentration measurement is not affected by the amount of saline solution injected or the shape of the surrounding portion. Is possible.

また、第2の電極7と第1の電極8との間に充填される程度の少量のサンプルで塩分濃度の測定が可能となるので、測定作業を簡素化することができる。   In addition, since the salinity concentration can be measured with a small amount of sample that is filled between the second electrode 7 and the first electrode 8, the measurement operation can be simplified.

更に、電圧検出回路25は、第2の電極7と直接接続して電圧を検出するので、高精度な電圧検出が可能となり、コンダクタンスgを高精度に求めることができ、ひいては、塩分濃度の測定精度を向上させることができる。 Further, since the voltage detection circuit 25 is directly connected to the second electrode 7 to detect the voltage, it is possible to detect the voltage with high accuracy, to obtain the conductance g with high accuracy, and thus to measure the salinity concentration. Accuracy can be improved.

また、CPU28は、予め設定されたコンダクタンスgと塩分濃度との関係を示す特性データ(図6)を備え、求められたコンダクタンスgをこの特性データに代入することにより塩分濃度を求めるようにしているので、高精度に且つ容易にコンダクタンスgを塩分濃度に変換することができる。 Further, the CPU 28 has characteristic data (FIG. 6) showing a relationship between a preset conductance g and a salinity concentration, and obtains the salinity concentration by substituting the obtained conductance g into the characteristic data. Therefore, the conductance g can be easily converted into the salinity concentration with high accuracy.

以上、本発明の濃度測定装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。   The concentration measuring apparatus of the present invention has been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part is replaced with an arbitrary configuration having the same function. Can do.

例えば、上記した実施形態では、電圧検出回路25を用いて2つの電極7,8間の電圧を測定する構成としたが、出力増幅回路23より出力される電圧を、2つの電極7,8間の電圧であるものとしてコンダクタンスgを測定することも可能である。このような構成とすれば、電圧検出回路25を省略できるので、回路構成を簡素化することができる。 For example, in the embodiment described above, the voltage detection circuit 25 is used to measure the voltage between the two electrodes 7 and 8. However, the voltage output from the output amplifier circuit 23 is between the two electrodes 7 and 8. It is also possible to measure the conductance g as a voltage of With such a configuration, the voltage detection circuit 25 can be omitted, so that the circuit configuration can be simplified.

また、上記した実施形態では、信号発生器22より一定レベルの交流電圧信号を出力し、このときに流れる電流に基づいてコンダクタンスgを求めるようにしたが、信号発生器22より一定レベルの交流電流信号を出力し、このときに2つの電極7,8間に生じる電圧を測定することにより、コンダクタンスgを求めるようにしても良い。 In the embodiment described above, a constant level AC voltage signal is output from the signal generator 22, and the conductance g is obtained based on the current flowing at this time. The conductance g may be obtained by outputting a signal and measuring the voltage generated between the two electrodes 7 and 8 at this time.

更に、上記した実施形態では、食塩水中に含まれる塩分濃度を測定する塩分濃度測定装置を例に挙げて説明したが、本発明に係る濃度測定装置は、これに限定されるものではなく、液体中に溶解した物質でその濃度に応じてコンダクタンスが変化する他の測定対象物についても採用することができる。 Furthermore, in the above-described embodiment, the salinity concentration measuring device for measuring the salinity concentration contained in the saline solution has been described as an example. However, the concentration measuring device according to the present invention is not limited to this, and liquid It is also possible to employ other substances to be measured whose conductance changes depending on the concentration of the substance dissolved therein.

食塩水中の塩分濃度を簡単且つ正確に測定する上で極めて有用である。   It is extremely useful for easily and accurately measuring the salinity in saline.

本発明の一実施形態に係る濃度測定装置の外観図である。It is an external view of the density | concentration measuring apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る濃度測定装置の分解斜視図である。It is a disassembled perspective view of the density | concentration measuring apparatus which concerns on one Embodiment of this invention. サンプルステージ部分の構成を示す一部破断斜視図である。It is a partially broken perspective view which shows the structure of a sample stage part. 本発明の一実施形態に係る濃度測定装置の、制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part of the density | concentration measuring apparatus which concerns on one Embodiment of this invention. 第1の電極、第2の電極、及びガード電極の位置関係と、電流経路を模式的に示す説明図である。It is explanatory drawing which shows typically the positional relationship of a 1st electrode, a 2nd electrode, and a guard electrode, and an electric current path | route. 塩分濃度とコンダクタンスとの関係を示す特性図である。It is a characteristic view which shows the relationship between salt concentration and conductance . 従来における塩分濃度測定装置の測定原理を示す説明図である。It is explanatory drawing which shows the measurement principle of the conventional salt concentration measuring apparatus.

符号の説明Explanation of symbols

1 塩分濃度測定装置(濃度測定装置)
2 上ケース
3 下ケース
4 基板
5 電極基板
7 第2の電極
8 第1の電極
9 表示部(表示手段)
10a,10b 操作スイッチ
11 サンプルステージ
11a ガード電極(周囲電極)
12 Oリング
21 シャント抵抗
22 信号発生器
23 出力増幅回路
24 電流検出回路(電流検出手段)
25 電圧検出回路(電圧検出手段)
26 バッファアンプ
27 AD変換回路
28 CPU(濃度測定手段)
1 Salinity concentration measuring device (concentration measuring device)
2 Upper case 3 Lower case 4 Substrate 5 Electrode substrate 7 Second electrode 8 First electrode 9 Display unit (display means)
10a, 10b Operation switch 11 Sample stage 11a Guard electrode (peripheral electrode)
12 O-ring 21 Shunt resistor 22 Signal generator 23 Output amplifier circuit 24 Current detection circuit (current detection means)
25 Voltage detection circuit (voltage detection means)
26 Buffer amplifier 27 AD conversion circuit 28 CPU (concentration measuring means)

Claims (5)

液体中に溶解している測定対象物の濃度を測定する濃度測定装置において、
上部拡開円筒形状をなし、前記液体を注入するサンプルステージと、
前記サンプルステージの略中央部に設けられる第1の電極と、
前記第1の電極と同一平面上で、且つ、前記第1の電極の周囲部に設けられる第2の電極と、
前記第1の電極と第2の電極との間に交流電力を供給する電源手段と、
前記第2の電極の周囲部に設けられ、第2の電極と同一電位とされた周囲電極と、
前記第1の電極と第2の電極との間に生じる電圧、及び前記第1の電極と第2の電極との間に流れる電流を測定する検出手段と、
測定対象物のコンダクタンスと前記測定対象物の濃度との関係を示す特性曲線データを備え、前記検出手段で検出された電流値及び電圧値に基づいて、前記測定対象物のコンダクタンスを求め、求めたコンダクタンスに基づき、前記特性曲線データを参照して、前記測定対象物の濃度を求める濃度測定手段と、
前記求められた濃度を表示する表示手段と、
を備えたことを特徴とする濃度測定装置。
In a concentration measuring device that measures the concentration of a measurement object dissolved in a liquid,
A sample stage for injecting the liquid;
A first electrode provided at a substantially central portion of the sample stage;
A second electrode provided on the same plane as the first electrode and around the first electrode;
Power supply means for supplying AC power between the first electrode and the second electrode;
A peripheral electrode provided around the second electrode and having the same potential as the second electrode;
Detecting means for measuring a voltage generated between the first electrode and the second electrode, and a current flowing between the first electrode and the second electrode;
Characteristic curve data indicating the relationship between the conductance of the measurement object and the concentration of the measurement object is provided, and the conductance of the measurement object is obtained based on the current value and the voltage value detected by the detection means. Based on conductance, referring to the characteristic curve data, a concentration measuring means for determining the concentration of the measurement object;
Display means for displaying the determined concentration;
A concentration measuring apparatus comprising:
前記第2の電極は、前記第1の電極の周囲をほぼ囲むように配置されることを特徴とする請求項1に記載の濃度測定装置。 The concentration measuring apparatus according to claim 1, wherein the second electrode is disposed so as to substantially surround the periphery of the first electrode . 前記第2の電極と前記周囲電極との間に、バッファアンプを設けることにより、前記第2の電極と前記周囲電極とを同一電位とすることを特徴とする請求項1または請求項2のいずれかに記載の濃度測定装置。 3. The method according to claim 1, wherein a buffer amplifier is provided between the second electrode and the surrounding electrode, whereby the second electrode and the surrounding electrode have the same potential. concentration measuring apparatus crab according. 前記電源手段は、一定の交流電圧を出力する電圧源であり、
前記検出手段は、前記電源手段と前記第1または第2の電極との間に設けられるシャント抵抗と、該シャント抵抗の両端に生じる電圧に基づいて第1の電極と第2の電極との間に流れる電流を求める電流検出手段と、前記第1の電極と第2の電極との間の電圧を検出する電圧検出手段と、を備え、
前記濃度測定手段は、前記電流検出手段で検出された電流と前記電圧検出手段で検出された電圧からコンダクタンスを求め、該コンダクタンスに基づいて前記測定対象物の濃度を求めることを特徴とする請求項1〜請求項3のいずれか1項に記載の濃度測定装置。
The power supply means is a voltage source that outputs a constant AC voltage,
The detecting means includes a shunt resistor provided between the power supply means and the first or second electrode, and a voltage between the first electrode and the second electrode based on a voltage generated at both ends of the shunt resistor. Current detecting means for obtaining a current flowing through the first electrode, and voltage detecting means for detecting a voltage between the first electrode and the second electrode,
The concentration measuring means obtains a conductance from the current detected by the current detecting means and the voltage detected by the voltage detecting means, and obtains the concentration of the measurement object based on the conductance. The concentration measuring apparatus according to any one of claims 1 to 3 .
前記液体は食塩水であり、前記測定対象物の濃度は塩分濃度であることを特徴とする請求項1〜請求項4のいずれか1項に記載の濃度測定装置。 5. The concentration measuring apparatus according to claim 1, wherein the liquid is a saline solution, and the concentration of the measurement object is a salinity concentration .
JP2005174930A 2005-06-15 2005-06-15 Concentration measuring device Expired - Fee Related JP4532357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005174930A JP4532357B2 (en) 2005-06-15 2005-06-15 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174930A JP4532357B2 (en) 2005-06-15 2005-06-15 Concentration measuring device

Publications (2)

Publication Number Publication Date
JP2006349450A JP2006349450A (en) 2006-12-28
JP4532357B2 true JP4532357B2 (en) 2010-08-25

Family

ID=37645470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174930A Expired - Fee Related JP4532357B2 (en) 2005-06-15 2005-06-15 Concentration measuring device

Country Status (1)

Country Link
JP (1) JP4532357B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4480738B2 (en) * 2007-04-27 2010-06-16 株式会社アタゴ Concentration measuring device
JP5624782B2 (en) * 2010-03-25 2014-11-12 出光興産株式会社 Volume resistivity measuring device for sample liquid and volume resistivity measuring method using the same
JP5044774B2 (en) * 2010-07-26 2012-10-10 株式会社アタゴ Salinity concentration measuring apparatus and salinity concentration measuring method
JP5980373B1 (en) * 2015-04-28 2016-08-31 シャープ株式会社 Electrolyzer
JP6884338B2 (en) * 2016-09-27 2021-06-09 ラピスセミコンダクタ株式会社 Semiconductor devices and methods for manufacturing semiconductor devices

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928646A (en) * 1982-08-11 1984-02-15 Kao Corp Method and device for measuring moisture content of skin
JPS6131948A (en) * 1984-07-25 1986-02-14 Toshiba Corp Instrument for measuring impedance of coated film
JPS6190047A (en) * 1984-10-09 1986-05-08 Taro Momo Method for automatic measurement of biochemical reaction
JPS633351U (en) * 1986-06-20 1988-01-11
JPH0239153U (en) * 1988-09-06 1990-03-15
JPH0635962U (en) * 1992-10-16 1994-05-13 株式会社東邦計測研究所 Current spread prevention device
JPH06138068A (en) * 1992-10-24 1994-05-20 Shiroki Corp Concentration meter for electrolyte solution
JPH08313479A (en) * 1995-05-22 1996-11-29 Shiroki Corp Ion sensor
JPH1164262A (en) * 1997-08-27 1999-03-05 Power Reactor & Nuclear Fuel Dev Corp Method for measuring concentration of sodium in alcohol
JPH11152136A (en) * 1997-11-25 1999-06-08 Dainippon Ink & Chem Inc Sealable container
JP2002005862A (en) * 2000-06-20 2002-01-09 Teruo Kawaida Circuit for measuring salinity concentration
JP2002014174A (en) * 2000-06-29 2002-01-18 Sunx Ltd Capacitance sensor
JP2002022689A (en) * 2000-07-13 2002-01-23 Natl Research Inst For Disaster Prevention Instrument for measuring mixing amount in substance to be measured
JP2004101443A (en) * 2002-09-11 2004-04-02 Fuji Photo Film Co Ltd Concentration detecting apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928646A (en) * 1982-08-11 1984-02-15 Kao Corp Method and device for measuring moisture content of skin
JPS6131948A (en) * 1984-07-25 1986-02-14 Toshiba Corp Instrument for measuring impedance of coated film
JPS6190047A (en) * 1984-10-09 1986-05-08 Taro Momo Method for automatic measurement of biochemical reaction
JPS633351U (en) * 1986-06-20 1988-01-11
JPH0239153U (en) * 1988-09-06 1990-03-15
JPH0635962U (en) * 1992-10-16 1994-05-13 株式会社東邦計測研究所 Current spread prevention device
JPH06138068A (en) * 1992-10-24 1994-05-20 Shiroki Corp Concentration meter for electrolyte solution
JPH08313479A (en) * 1995-05-22 1996-11-29 Shiroki Corp Ion sensor
JPH1164262A (en) * 1997-08-27 1999-03-05 Power Reactor & Nuclear Fuel Dev Corp Method for measuring concentration of sodium in alcohol
JPH11152136A (en) * 1997-11-25 1999-06-08 Dainippon Ink & Chem Inc Sealable container
JP2002005862A (en) * 2000-06-20 2002-01-09 Teruo Kawaida Circuit for measuring salinity concentration
JP2002014174A (en) * 2000-06-29 2002-01-18 Sunx Ltd Capacitance sensor
JP2002022689A (en) * 2000-07-13 2002-01-23 Natl Research Inst For Disaster Prevention Instrument for measuring mixing amount in substance to be measured
JP2004101443A (en) * 2002-09-11 2004-04-02 Fuji Photo Film Co Ltd Concentration detecting apparatus

Also Published As

Publication number Publication date
JP2006349450A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
KR100216646B1 (en) Electronic flow meter
US9146145B2 (en) Apparatus for determining and/or monitoring a process variable
JP4532357B2 (en) Concentration measuring device
US7550979B2 (en) System and method for measuring conductivity of fluid
JP4386855B2 (en) Operation method of magnetic inductive flow meter
JPH09502267A (en) Magnetic flowmeter with empty pipe detector
JP2009505085A (en) Magnetic induction flow measuring device
WO2007072774A1 (en) Corrosion evaluation device, and corrosion evaluation method
US7219557B2 (en) Method and apparatus for calculating flowing medium temperature in a magnetoinductive flowmeter
JP2007132684A (en) Insulation resistance measurement device
JP2005519279A (en) Stabilized conductivity detection system
JPS5892854A (en) Ion concentration analyser
JP2023169302A (en) Vehicle battery current detection system
JP2008151534A (en) Magnetic flux measurement method and magnetic sensor
JP2003232822A (en) Resistivity measuring method by four probe method and its device
JP5691653B2 (en) Electric conductivity meter
JP2020052005A (en) Electrolyte measurement device
US9772300B2 (en) Inductive conductivity sensor for measuring the specific electrical conductivity of a medium
JP2010085349A (en) Electromagnetic flowmeter and insulation resistance measuring method
RU2708682C1 (en) Contact sensor of specific electric conductivity of liquid
JP4936921B2 (en) Quartz crystal sensor device
JP2021006781A (en) Foreign matter sensing device
JPH1073469A (en) Liquid-level detector
JP6134226B2 (en) Four-terminal resistance measuring device
JP4007484B2 (en) Resistivity measuring method and resistivity meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Ref document number: 4532357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees