JPS6190047A - Method for automatic measurement of biochemical reaction - Google Patents

Method for automatic measurement of biochemical reaction

Info

Publication number
JPS6190047A
JPS6190047A JP21234384A JP21234384A JPS6190047A JP S6190047 A JPS6190047 A JP S6190047A JP 21234384 A JP21234384 A JP 21234384A JP 21234384 A JP21234384 A JP 21234384A JP S6190047 A JPS6190047 A JP S6190047A
Authority
JP
Japan
Prior art keywords
vessel
measuring
electrodes
conductivity
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21234384A
Other languages
Japanese (ja)
Inventor
Taro Momo
百々 太郎
Masayoshi Takakuwa
高桑 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21234384A priority Critical patent/JPS6190047A/en
Publication of JPS6190047A publication Critical patent/JPS6190047A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48735Investigating suspensions of cells, e.g. measuring microbe concentration

Abstract

PURPOSE:To obtain a signal to monitor and control momentarily the progressing condition of biochemical reaction in real time by measuring the change of the electrical conductivity of the living material in a reaction vessel. CONSTITUTION:Electrodes 9, 10 for measuring conductivity are inserted in the reaction vessel 7 and are connected to an oscillator 8. AC current from the oscillator 8 passes through the material in the vessel 7, the electrode 10 and a detecting resistor 11 and returns to the oscillator. The value proportional to the electrical conductivity of the material in the vessel 7 is obtd. from the AC voltage at both terminals of the resistor 11 when the measurement is made by maintaining the specified voltage of an AC power source. The signal taken from the resistor 11 is passed through an amplifying detector 12 and the change of the electrical conductivity with time is recorded in a recorder 13. The output of the detector 12 is compared with a set value in a comparator 14 which delivers a control signal through signal transmission lines 15, 16. The C9, C10 of the equiv. circuit for the current flowing between the electrodes 9 and 10 are he static capacity between the electrodes 9, 10 and the material in the vessel 7a. The progressing condition of the chemical reaction in the vessel 7 is monitored and discriminated by measuring momentarily the electric resistance R of the material in the vessel 7.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 化学反応槽内の反応の進展状況を電気伝導度の測定によ
って検出し、反応の制御を行なわせることを可能にした
方法に関するものである。
[Detailed Description of the Invention] (a) Industrial Application Field This invention relates to a method that makes it possible to detect the progress of a reaction in a chemical reaction tank by measuring electrical conductivity and to control the reaction. .

(ロ)、従来の技術 反応槽内における反応の進展状態を測定し制御する場合
、反応槽からサンプルをとり出して化学分析を行い、そ
の成分比などの測定値から判断している。   □ この方法では、化学分析に時間を要するというような欠
点のため、迅速性に欠ける。化学分析によるほかに、溶
存酸素計やPHメーターを用いて直読する方法も採るこ
とができるが、特定元素の測定しかできないし、また液
体状態でないと測定できないという欠点がある。
(b) Conventional technology When measuring and controlling the progress of a reaction in a reaction tank, a sample is taken out from the reaction tank and subjected to chemical analysis, and judgments are made based on measured values such as component ratios. □ This method lacks speed because chemical analysis requires time. In addition to chemical analysis, direct reading using a dissolved oxygen meter or PH meter can also be used, but these methods have the disadvantage that they can only measure specific elements and cannot be measured unless they are in a liquid state.

酵母などのAUTOLYS I S (自己消化、自己
融解)の測定の場合にも、化学分析が行なわれるが、上
に述べたのと同じように迅速性に乏しいなどの欠点があ
る。
Chemical analysis is also carried out for the measurement of AUTOLYS (autolysis, autolysis) in yeast and the like, but it has the same shortcomings as mentioned above, such as lack of rapidity.

また肉眼によって外観の軟化から判断することも行なわ
れているが、定量的な測定とは言えない。
Judgments have also been made based on the softening of the appearance with the naked eye, but this cannot be said to be a quantitative measurement.

獣肉、魚肉の自己消化によるペプチドの調味料製造に際
しては、数日の反応時間のうちわずか30分程度の許容
範囲内で反応停止を行なわせる必要があるが、化学分析
のような測定方法では時間がかかって不適当である。
When producing peptide seasonings by autolyzing meat or fish, it is necessary to stop the reaction within a tolerance of only 30 minutes out of several days of reaction time, but measurement methods such as chemical analysis require less time. It is inappropriate because it takes a lot of time.

圧搾パン酵母の経時変化を従来の技術で測定した高桑正
義等による実験結果を次に示す。(文献1)30℃に貯
蔵した酵母から調整した酵母洗浄液の紫外部吸収および
洗浄液のPHを測定した結果は次の如くである。
The results of an experiment conducted by Masayoshi Takakuwa et al., who measured changes over time in compressed baker's yeast using conventional techniques, are shown below. (Reference 1) The results of measuring the ultraviolet absorption of a yeast washing solution prepared from yeast stored at 30°C and the pH of the washing solution are as follows.

表1130℃で貯蔵した圧搾酵母の260.280n円
の紫外線の吸収量の変化 吸収 0    3、7     2.4    5.33 
   6.0    −’3.9    6.06  
 10.2     6.4    7.48   1
3.1     8.0     ?、610   5
7.1    36.0    8.711   70
.3    43.0    8.5※ 酵母の軟化は貯蔵10日巨匠観測され、このときに洗浄
液の260nmと280 nmの吸光度が急増した。ま
た酵母が軟化するときには、細胞壁が破れて内容物の漏
出していることが電子顕微鏡写真で認められたC 水質検査などのために用いられている市販の電導変針の
測定セルの代表的なものを第1図に示す。
Table 1 Changes in the amount of ultraviolet rays absorbed by compressed yeast stored at 30°C at 260.280 nm Absorption 0 3, 7 2.4 5.33
6.0 -'3.9 6.06
10.2 6.4 7.48 1
3.1 8.0? , 610 5
7.1 36.0 8.711 70
.. 3 43.0 8.5* Softening of the yeast was observed after 10 days of storage, at which time the absorbance of the washing solution at 260 nm and 280 nm rapidly increased. Furthermore, when the yeast softens, the cell wall ruptures and the contents leak out, which was observed in electron micrographs.C A typical measurement cell with a commercially available conductive needle used for water quality testing, etc. is shown in Figure 1.

第1図において、(1)及び(2)は測定用電極で通常
は白金で作られており、内面は白金黒処理を行って実効
的な表面積を大きくしである。
In FIG. 1, (1) and (2) are measuring electrodes, which are usually made of platinum, and the inner surfaces are treated with platinum black to increase the effective surface area.

測定用電極(1)と(2)の断面積は通常1cr+?(
直径1.13crr?)にとり、測定用電極(1)と(
2)との間隔をlL:rnにとってあって、この電極間
のコンダクタンスを測ると、溶液の電導塵が、シーメン
ス/cTnで求められるようになっている。
The cross-sectional area of measurement electrodes (1) and (2) is usually 1 cr+? (
Diameter 1.13 crr? ), measuring electrode (1) and (
2), and by measuring the conductance between the electrodes, the conductive dust in the solution can be determined by Siemens/cTn.

(3)はガラス円筒で、ガラスは測定用電極(1)、(
2)の外面も覆っている。(4)はガラス円筒(3)の
外周面に開けられた孔である。溶液はこの孔を通って円
筒(3)内に入り、電導塵が測定される。孔(4)は円
筒外周面に通常2〜3ケ所開けられている。(5)及び
(6)は電極への被覆されたリード線で、夫々測定用電
極(1)及び(2)につながっている。交流電界(低電
導度溶液の測定では100H2程度、高電導度溶液の測
定ではlKH2程度)をリード線(5)、(6)を通じ
て交流電源から測定用電極(1)、(2)に印加して、
印加した電圧と流れた電流から溶液の電導塵を算出する
(3) is a glass cylinder, and the glass is the measuring electrode (1), (
It also covers the outer surface of 2). (4) is a hole made in the outer peripheral surface of the glass cylinder (3). The solution enters the cylinder (3) through this hole and the conductive dust is measured. Two to three holes (4) are usually formed on the outer peripheral surface of the cylinder. (5) and (6) are coated lead wires to the electrodes, which are connected to the measuring electrodes (1) and (2), respectively. Apply an AC electric field (approximately 100H2 for measurement of low conductivity solutions, approximately 1KH2 for measurement of high conductivity solutions) from an AC power supply to the measurement electrodes (1) and (2) through lead wires (5) and (6). hand,
Calculate the amount of conductive dust in the solution from the applied voltage and flowing current.

このような電導塵セルを用いる測定では、液体の電導塵
しか測定できず、発酵中の獣魚肉のようなドロドロした
ものや、圧搾酵母のような固形状のものは測定すること
ができなかった。
Measurements using such a conductive dust cell can only measure liquid conductive dust, and cannot measure mushy substances such as fermented animal and fish meat, or solid substances such as compressed yeast. .

(ハ)発明が解決しようとする問題点 従来のものには、前述したような色々な問題を残してい
た。この発明のものは、これらの問題点を新らしい方法
によって解決しようとするものである。
(c) Problems to be solved by the invention Conventional systems still have various problems as mentioned above. The present invention attempts to solve these problems by a new method.

に)問題を解決するだめの手段 本発明は電気伝導度を測定することによって、生体化学
反応の進展状況を時々刻々に実時間で監視し、反応を制
御する信号を得ることを可能にするものである。
B) Means for solving the problem The present invention makes it possible to monitor the progress of biochemical reactions in real time and obtain signals to control the reactions by measuring electrical conductivity. It is.

本発明による電気伝導度(以下電導度と略することもあ
る)の測定法を図面に基づいて説明する。
A method for measuring electrical conductivity (hereinafter sometimes abbreviated as electrical conductivity) according to the present invention will be explained based on the drawings.

第2図は生化学反応槽において電気伝導度の測定方法を
示す説明図で、反応槽(7)には電導塵測定用の二本の
電極(9)、α0)を挿入して、発振器(8)につない
であり、交番電流は発振器(8)から電極(9)、反応
槽内の物質、電極α0)、検出抵抗(1υ、を通って発
振器(8)に戻る。
Figure 2 is an explanatory diagram showing the method for measuring electrical conductivity in a biochemical reaction tank. Two electrodes (9), α0) for measuring conductive dust are inserted into the reaction tank (7), and an oscillator ( 8), and the alternating current returns to the oscillator (8) from the oscillator (8) through the electrode (9), the substance in the reaction tank, the electrode α0), and the detection resistor (1υ).

交流電源の発振器(8)の出力インピーダンスおよび検
出抵抗(11)は、反応槽(7)内の物質の抵抗値より
も十分低くとっておく、交流電源の電圧を一定にして測
定を行うと、検出抵抗01)の両端の交流電圧は反応槽
内の物質の電気伝導度に比例した値が得られる。   
  ・ 検出抵抗からとり入れた信号は増幅検波器(12)を通
して記録計03)に電気伝導度の経時変化が記録される
。また増幅検波器(抑の出力は、コンパレーター04)
において設定値と比較して、信号伝送線051 (16
)を通じて、制御信号を送り出せるようになっているO 直流によって電導塵を測定しようとすると、電極におけ
る分極効果のだめに正しい値が得られないので、交流を
用いて測定するのである。
The output impedance of the oscillator (8) of the AC power source and the detection resistor (11) are kept sufficiently lower than the resistance value of the substance in the reaction tank (7), and when the voltage of the AC power source is kept constant, the measurement is performed. The alternating current voltage across the detection resistor 01) has a value proportional to the electrical conductivity of the substance in the reaction tank.
- The signal taken in from the detection resistor passes through the amplification detector (12) and records the change in electrical conductivity over time on the recorder 03). Also, the amplified detector (the output of the suppressor is comparator 04)
The signal transmission line 051 (16
) to send a control signal through O If we attempt to measure conductive dust using direct current, we will not be able to obtain accurate values due to polarization effects in the electrodes, so we use alternating current for measurement.

また、反応槽(7)中の物質が酵母のような固体状の流
動しない物質であっても、交流の場合には電気容量的(
CAPACITIVE)な結合で電流が流れて電導塵を
測定することができる。
Furthermore, even if the substance in the reaction tank (7) is a solid, non-flowing substance such as yeast, in the case of alternating current, the capacitance (
CAPACITIVE) connection allows current to flow and conductive dust to be measured.

第2図の電極(9)、aO+間に流れる電流の等価回路
を第3図に示す。第3図における(C9)、(C1o’
)は、第2図における電極(9)および電極(10)と
反応槽内の物質との間の静電容量である。(2)は反応
槽内の物質の電気抵抗である。
FIG. 3 shows an equivalent circuit of the current flowing between the electrode (9) and aO+ in FIG. 2. (C9), (C1o' in Figure 3)
) is the capacitance between electrode (9) and electrode (10) in FIG. 2 and the substance in the reaction vessel. (2) is the electrical resistance of the substance in the reaction tank.

(ホ)作用 本発明は、この電気抵抗■を時々刻々に測定することに
よって、反応槽内の化学反応の進展状況を監視するもの
である。
(E) Function The present invention monitors the progress of the chemical reaction within the reaction tank by measuring this electrical resistance (2) from time to time.

反応槽内の物質の正、負のイオンが電流を運んで、第3
図の電気抵抗(2)を生み出している。
The positive and negative ions of the substances in the reaction tank carry the current, and the third
This produces electrical resistance (2) in the figure.

文献1にあげた圧搾酵母の場合には、酵母が新鮮な間は
電気伝導にあずかるイオンの数が少いが、細胞壁が破れ
て酵母の内容物が漏出してくると、電気伝導にあずかる
イオンの数が増えて電気抵抗型が小さくなる。
In the case of the compressed yeast mentioned in Reference 1, while the yeast is fresh, the number of ions that participate in electrical conduction is small, but when the cell wall ruptures and the contents of the yeast leak out, the number of ions that participate in electrical conduction increases. The number of resistors increases and the electrical resistance type becomes smaller.

抵抗(R)(或は(2)の逆数であるところの電気伝導
度σ)の測定値の経時変化から、化学反応の進展状態を
監視しようとする本発明においては、測定回路に電気抵
抗(2)と直列につながるインピーダンス(C9ωΣ1
、(C1oωΣ1、および第2図における検出抵抗(1
1)の抵抗値Tは、電気抵抗(2)に比べて十分小さい
値にとっておく必要がある。
In the present invention, which attempts to monitor the progress of a chemical reaction from the change over time in the measured value of resistance (R) (or electrical conductivity σ, which is the reciprocal of (2)), the measurement circuit is equipped with electrical resistance ( 2) and the impedance (C9ωΣ1
, (C1oωΣ1, and the detection resistor (1
The resistance value T of 1) needs to be set to a sufficiently smaller value than the electrical resistance (2).

ここにωは測定に用いる交流電源の角周波数でとすると
、 で与えられることになるから、V(t)が反応槽内の物
質の電気伝導度σ(t) −CR(t))−1にほぼ比
例するとみなせるためには、T乾(1)、 (C9ω 
)−1<<R(t)、(C1oω)−’<<R(t) 
、である必要がある。
If ω is the angular frequency of the AC power source used for measurement, it is given by: Therefore, V(t) is the electrical conductivity of the substance in the reaction tank σ(t) −CR(t))−1 In order to be considered to be approximately proportional to T dry (1), (C9ω
)-1<<R(t), (C1oω)-'<<R(t)
, must be.

ここで反応槽内の物質の電気抵抗(2)、検出抵抗Tの
両端にあられれる電圧Vは、化学反応の進展状態に応じ
て時間的に変化することを強調するように時刻tの関数
であることを明示するために、R(t)、V(t)、と
書きあられした。
Here, the electrical resistance (2) of the substance in the reaction tank and the voltage V developed across the detection resistor T are functions of time t to emphasize that they change over time according to the progress of the chemical reaction. To make this clear, they were written as R(t) and V(t).

反応槽内の物質の状態の変化や化学組成の変化に応じて
、電気伝導に寄与するイオンの種類や数が変化するので
、電導塵を測定することによって化学反応や生体反応の
進展を監視することができるのである。
The type and number of ions that contribute to electrical conduction change according to changes in the state of substances and chemical composition in the reaction tank, so the progress of chemical and biological reactions can be monitored by measuring electrically conductive dust. It is possible.

化学分析のような測定に時間を要するものではないので
、測定の迅速性に特徴があり、まだ測定値が電気信号の
形で得られるから、自動的に制御信号をとり出せるとい
う利点がある。
Unlike chemical analysis, which does not require time to measure, it is characterized by rapid measurement, and since measured values are still obtained in the form of electrical signals, it has the advantage that control signals can be automatically extracted.

(へ)実施例 以下本発明の詳細な説明する。(f) Example The present invention will be explained in detail below.

第4図は、本発明による反応槽の電気伝導度を測定する
方法を示す一実施例の説明図である。
FIG. 4 is an explanatory diagram of an embodiment of the method of measuring the electrical conductivity of a reaction vessel according to the present invention.

シャーレ(17)に充填したパン酵母Q8)に、電極(
19)および(20)が挿入されている。パン酵母の充
填深さが10朋、電極の直径2町が211IIIで、パ
ン酵母内への挿入深さが5朋、電極間の距離(至)が2
0間、の場合に、この電極間に500H2の交流電界を
印加して電導塵を経時的に測定した結果を第5図に示す
The electrode (
19) and (20) have been inserted. The filling depth of baker's yeast is 10 mm, the diameter of the electrode is 2 mm, the insertion depth into the baker's yeast is 5 mm, and the distance between the electrodes is 2 mm.
FIG. 5 shows the results of measuring conductive dust over time by applying an alternating current electric field of 500 H2 between the electrodes.

横軸に時間を単位にした経過時間、縦軸にマイクロシー
メンス←壬=ゴモ彊丑を単位とした電導塵をとっである
。この測定を行ったパン酵母の場合、測定開始後約80
時間で白っぽくなシ、約130時間で軟化が観測された
。電導塵はこの外観の変化に先立って変化しはじめてい
ることが第5図で認められる。
The horizontal axis shows elapsed time in units of time, and the vertical axis shows conductive dust in units of microSiemens←壬=Gomojiao. In the case of baker's yeast for which this measurement was performed, approximately 80
A whitish color was observed over time, and softening was observed after about 130 hours. It can be seen in FIG. 5 that the conductive dust begins to change prior to this change in appearance.

電導塵を測定するだめの第2図に示した発振器(8)や
、第2図に示した検出抵抗(11や、増幅検波器(12
1には市販の電導度肝を用いてもよいし、測定に適した
回路を製作してもよい。
The oscillator (8) shown in Figure 2 for measuring conductive dust, the detection resistor (11) shown in Figure 2, and the amplification detector (12)
For 1, a commercially available conductivity gauge may be used, or a circuit suitable for measurement may be manufactured.

第6図には試作した測定回路のブロック図を示す。図に
おいて(21)はクロックパルス発振器で、例えば1.
2MH2のパルスを発生し、例は分周器で例えば1/2
30に分周すると分周器128)からの出力は約15分
に1つのパルスを発生する。(g9+はタイミング回路
とリレーであって、分周器□□□)からパルスが来る毎
に、例えば10秒間リレーを閉じるようにする。國)お
よび例は測定用電極への端子である。
FIG. 6 shows a block diagram of the prototype measurement circuit. In the figure, (21) is a clock pulse oscillator, for example 1.
Generates a 2MH2 pulse, and uses a frequency divider to generate a pulse of 1/2, for example.
When divided by 30, the output from frequency divider 128) generates one pulse approximately every 15 minutes. (g9+ is a timing circuit and a relay, and the relay is closed for 10 seconds, for example, every time a pulse is received from the frequency divider □□□). (Country) and examples are terminals to measurement electrodes.

咥;は回路に流れる電流の検出用抵抗である。剛と(2
71は夫々増幅検波器と記録計である。(22)は発振
器、(例えば500)(Z、1ボルト、出力インピーダ
ンス10オーム)である。
is a resistor for detecting the current flowing in the circuit. Tsuyoshi and (2
71 are an amplification detector and a recorder, respectively. (22) is an oscillator, (eg 500) (Z, 1 volt, output impedance 10 ohms).

この回路を用いて測定すると、約15分間に10秒間づ
つ反応槽内の電導度にほぼ比例した電流が流れて、記録
計+Z7)への記録は、例えば第7図に示tもののよう
になる。
When measuring using this circuit, a current approximately proportional to the conductivity inside the reaction tank flows for 10 seconds every 15 minutes, and the recording on the recorder +Z7) is as shown in Figure 7, for example. .

1      このように、短時間だけ電流を通じて測
定すれば、反応物質に電流を流すことによる攪乱を少く
することができる。記録計僻)への出力電圧と、端子−
)と端子例との間の抵抗値との較正表を作っておくと、
記録計の記録から、物質の電導度の時間的変化が読みと
れることになる。
1 In this way, if the current is passed for a short period of time and the measurement is carried out, the disturbance caused by passing the current through the reactant can be reduced. Output voltage to recorder (recorder) and terminal -
) and the resistance value between the terminal example and make a calibration table.
From the records recorded by the recorder, changes in the electrical conductivity of the material over time can be read.

第7図の例で見ると、測定開始の直後では電導度は一定
であるが、80時間経過後では電導度は時間と共に増加
していることが見られる。
Looking at the example in FIG. 7, it can be seen that the conductivity is constant immediately after the start of measurement, but after 80 hours has passed, the conductivity increases with time.

本発明において主として用いられる電極は、円柱形の電
極である。これは、液状の物質のみならず固形状の物質
(例えば圧搾酵母のようなもの)に対しても突きさして
使えるという利点がある。
The electrodes mainly used in the present invention are cylindrical electrodes. This has the advantage that it can be used to penetrate not only liquid substances but also solid substances (for example, pressed yeast).

このような電極を用いて測った電気抵抗(8)と物質の
電気室導度←)との間には、 R−±・l!nD−’ πσ         a の関係がある。ここにInは自然数であり、■)は二本
の電極間の距離、aは電極の半径である。塩化マグネシ
ウムの水溶液の濃度5 X 10−4モtv/1からi
 x i o’−2モル/lの範囲で、標準的な電導度
セル(第1図に示しだもの)で測った電導度と円柱電極
(第4図に示したもの)で測った電導度とを、電解質溶
液の濃度の関数として、両対数目盛であられしたものを
第8図に示す。
The relationship between the electrical resistance (8) measured using such an electrode and the electrical chamber conductivity of the material (←) is R-±・l! There is a relationship of nD-' πσ a . Here, In is a natural number, ■) is the distance between the two electrodes, and a is the radius of the electrode. Concentration of aqueous solution of magnesium chloride 5 x 10-4 motv/1 to i
Conductivity measured with a standard conductivity cell (as shown in Figure 1) and with a cylindrical electrode (as shown in Figure 4) in the range x i o'-2 mol/l. is plotted on a log-logarithmic scale as a function of the concentration of the electrolyte solution in FIG.

各濃度において、円柱電極で測った電導度は、電導度セ
ルで測りた電導度(比電導度マイクロシーメンス/cI
r+)の約1 / 8.5であって、円柱電極による測
定が電導度の相対的測定に対して十分であることがわか
る。
At each concentration, the conductivity measured with a cylindrical electrode is the same as the conductivity measured with a conductivity cell (specific conductivity microSiemens/cI
r+), which shows that measurements with cylindrical electrodes are sufficient for relative measurements of conductivity.

発明の詳細な説明したように、電導度の測定は交流で行
なわれる。第3図に示した等価回路で表現されるように
、電極と被測定物質との間の電流のやりとりは、静電容
量(C1を通じて行なわれ、そのインピーダンス(Cω
)−1は物質の電気抵抗■よシもずっと小さくなるよう
に(C1を大きくとることが望ましい。
As described in the detailed description of the invention, conductivity measurements are made with alternating current. As expressed in the equivalent circuit shown in Figure 3, the exchange of current between the electrode and the substance to be measured takes place through the capacitance (C1), and its impedance (Cω
)-1 is such that the electrical resistance of the material is also much smaller (it is desirable to set C1 large).

そのためには、白金黒処理をした白金電極を用いるとい
うようなことをして、微視的に見た表面積を巨視的に見
た表面積よりもずっと大きくすることが効果がある。
To this end, it is effective to make the microscopic surface area much larger than the macroscopic surface area by using platinum electrodes treated with platinum black.

また、物質の抵抗値が低いときには(Cω)−1を更に
小さくする方法として、ωをを大きく数十KH2にとる
ことも行なわれる。ただし、あまシ高い周波数を使うと
、浮遊容量を通じて電流が流れることは無視できなくな
るので使用周波数の上限はIMH2程度までである。低
い周波数の方が測定はし易いが、(Cω)−1が電気抵
抗(8)に比べて無視できるという点から、低周波数の
下限は、100H2の程度で・ある。
Further, when the resistance value of the material is low, as a method of further reducing (Cω)-1, ω is set to a large value of several tens of KH2. However, if a relatively high frequency is used, the fact that current flows through stray capacitance cannot be ignored, so the upper limit of the frequency used is about IMH2. Although it is easier to measure at lower frequencies, the lower limit of low frequencies is about 100H2 since (Cω)-1 can be ignored compared to the electrical resistance (8).

(ト)発明の効果 本発明によれば、以下の効果が得られる。(g) Effects of the invention According to the present invention, the following effects can be obtained.

(1)液状、固体状物質の生化学反応の実時間測定が可
能となシ、これによって、反応の自動制御を行うことが
できる。
(1) It is possible to measure biochemical reactions of liquid and solid substances in real time, and thereby the reactions can be automatically controlled.

化学反応の進展状況を監視するために、サンプルを取り
出して化学分析を行っているのでは時間遅れが生じて、
迅速な制御は不可能となるが、本発明によれば、実時間
で測定値の表示が得られ、測定が電気信号の形で出てい
るので、この信号を用いて反応槽の自動制御が可能とな
る。
In order to monitor the progress of a chemical reaction, taking a sample and conducting a chemical analysis causes a time delay.
However, according to the present invention, the measured values can be displayed in real time, and since the measurements are output in the form of electrical signals, this signal can be used to automatically control the reaction tank. It becomes possible.

(2)測定による攪乱を少くすることができる。(2) Disturbance due to measurement can be reduced.

測定するためのサンプルをとり出したりすることによる
被測定系に与える攪乱に比べて、微小な電極を挿入する
だけであるから、与える攪乱は少い。
Compared to the disturbance caused to the system to be measured by taking out a sample for measurement, the disturbance caused is small because only a minute electrode is inserted.

(3)定量的な測定が可能となる。(3) Quantitative measurement becomes possible.

パンの酵母の経時変化のような場合、熟練者が観察によ
って判断管理していたやり方に比べて、本発明の方法に
よれば、定量的な管理が可能となる。
In cases such as changes in yeast in bread over time, the method of the present invention allows for quantitative control, compared to the method in which experts judge and control based on observation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、電気伝導度測定用セル。 第2図は、生化学反応槽の電導塵測定のブロック図。 第3図は、電導塵測定の等価回路。 第4図は、反応槽の電気伝導度を測定する一実施例。 第5図は、パン酵母の電導塵の経時変化を表わす図。 第6図は、電導塵測定のだめの回路の一実施例のブロッ
ク図。 第7図は、電導塵の経時変化の測定の一例。 第8図は、電導塵セルで測定しだ電導塵と、円柱電極で
測定した電導塵を、電解値溶液の濃度の関数として示し
た図。
Figure 1 shows a cell for measuring electrical conductivity. FIG. 2 is a block diagram of conductive dust measurement in a biochemical reaction tank. Figure 3 is an equivalent circuit for measuring conductive dust. FIG. 4 is an example of measuring the electrical conductivity of a reaction tank. FIG. 5 is a diagram showing changes in conductive dust in baker's yeast over time. FIG. 6 is a block diagram of an embodiment of a circuit for measuring conductive dust. Figure 7 is an example of measurement of changes in conductive dust over time. FIG. 8 is a diagram showing the conductive dust measured by the conductive dust cell and the conductive dust measured by the cylindrical electrode as a function of the concentration of the electrolytic value solution.

Claims (1)

【特許請求の範囲】[Claims] 生体化学反応槽内の生体物質の電気伝導度の変化を、交
流電界を印加することによって測定し、該測定値の変化
によって、上記生体物質の化学反応状態を判定すること
を特徴とする生体化学反応自動測定方法。
Biochemistry characterized by measuring the change in electrical conductivity of the biological material in the biochemical reaction tank by applying an alternating current electric field, and determining the chemical reaction state of the biological material based on the change in the measured value. Automatic reaction measurement method.
JP21234384A 1984-10-09 1984-10-09 Method for automatic measurement of biochemical reaction Pending JPS6190047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21234384A JPS6190047A (en) 1984-10-09 1984-10-09 Method for automatic measurement of biochemical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21234384A JPS6190047A (en) 1984-10-09 1984-10-09 Method for automatic measurement of biochemical reaction

Publications (1)

Publication Number Publication Date
JPS6190047A true JPS6190047A (en) 1986-05-08

Family

ID=16620962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21234384A Pending JPS6190047A (en) 1984-10-09 1984-10-09 Method for automatic measurement of biochemical reaction

Country Status (1)

Country Link
JP (1) JPS6190047A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2379018A (en) * 2001-08-10 2003-02-26 Univ Hull Monitoring chemical reactions in a microreactor
JP2003520680A (en) * 2000-01-24 2003-07-08 アールイーヴィ22・アー・ゲー Water treatment equipment
JP2006349450A (en) * 2005-06-15 2006-12-28 Atago:Kk Concentration measuring device
CN104316565A (en) * 2014-09-16 2015-01-28 中国石油大学(华东) Heavy oil thermal reaction coke formation detection apparatus, and method for online detection by using apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520680A (en) * 2000-01-24 2003-07-08 アールイーヴィ22・アー・ゲー Water treatment equipment
JP4761686B2 (en) * 2000-01-24 2011-08-31 アールイーヴィ22・アー・ゲー Water treatment equipment
GB2379018A (en) * 2001-08-10 2003-02-26 Univ Hull Monitoring chemical reactions in a microreactor
EP1283071A3 (en) * 2001-08-10 2004-06-16 Micro Chemical Systems Limited Monitoring of chemical reactions in channels of a micro-reactor
US6989090B2 (en) 2001-08-10 2006-01-24 Micro Chemical Systems Limited Method to monitor chemical reactions in a micro-reactor by measuring an electrical current
GB2379018B (en) * 2001-08-10 2006-02-22 Univ Hull Monitoring of chemical reactions
JP2006349450A (en) * 2005-06-15 2006-12-28 Atago:Kk Concentration measuring device
JP4532357B2 (en) * 2005-06-15 2010-08-25 株式会社アタゴ Concentration measuring device
CN104316565A (en) * 2014-09-16 2015-01-28 中国石油大学(华东) Heavy oil thermal reaction coke formation detection apparatus, and method for online detection by using apparatus

Similar Documents

Publication Publication Date Title
US4003705A (en) Analysis apparatus and method of measuring rate of change of electrolyte pH
KR101256133B1 (en) Method and apparatus for detection of abnormal traces during electrochemical analyte detection
US5645710A (en) Glucose sensor and assay method
EP2199792B1 (en) Method for testing the quality of the thermal coupling of a measuring cell
JPS63163266A (en) Corrosion detecting end of steel products in concrete and method for evaluating corrosion of steel products using said end
NZ192090A (en) Measuring a chemical characteristic of a liquid with immersed electrodes ph meter
JP6995053B2 (en) Methods for calibrating biomass sensors using impedance spectroscopy and the use of suspensions to carry out such methods.
DE69828319T2 (en) METHOD AND APPARATUS FOR MEASURING BLOOD COAGULATION OR LYSIS WITH THE HELP OF VISCOSITY CHANGES
US5755939A (en) Polyion sensor with molecular weight differentiation
JPS6190047A (en) Method for automatic measurement of biochemical reaction
WO1993001490A1 (en) High speed oxygen sensor
Dai et al. Long-term monitoring of timber moisture content below the fiber saturation point using wood resistance sensors
US4886584A (en) Potential measuring method and apparatus having signal amplifying multiple membrane electrode
Pfützner Dielectric analysis of blood by means of a raster-electrode technique
US4264328A (en) Method for recording measured values in an automatically performed blood gas analysis
US5220283A (en) Calibration of streaming current detection
Lagerlöf Determination of ionized calcium in parotid saliva
Tjin et al. Investigation into the effects of haematocrit and temperature on the resistivity of mammalian blood using a four-electrode probe
RU2749982C1 (en) Method for continuous monitoring of glucose level in biological body fluid and device for its implementation
US1657421A (en) Apparatus for the electrometric determination of hydrogen ion concentration
JPS5913947A (en) Apparatus for measuring hematocrit
JPH0115818B2 (en)
JP2000131283A (en) Detecting analyzer for positive and negative ion in liquid
US5921922A (en) Measuring of bloodgases
Bishop et al. Differential electrolytic potentiometry with periodic polarisation. Part XXI. Introduction and instrumentation