JP4007484B2 - Resistivity measuring method and resistivity meter - Google Patents

Resistivity measuring method and resistivity meter Download PDF

Info

Publication number
JP4007484B2
JP4007484B2 JP2001319737A JP2001319737A JP4007484B2 JP 4007484 B2 JP4007484 B2 JP 4007484B2 JP 2001319737 A JP2001319737 A JP 2001319737A JP 2001319737 A JP2001319737 A JP 2001319737A JP 4007484 B2 JP4007484 B2 JP 4007484B2
Authority
JP
Japan
Prior art keywords
resistivity
plane
electrode probes
electrode
isotropic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001319737A
Other languages
Japanese (ja)
Other versions
JP2003121480A (en
Inventor
小島  隆
里志 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Denshijiki Industry Co Ltd
Original Assignee
Kanagawa Prefecture
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture, Denshijiki Industry Co Ltd filed Critical Kanagawa Prefecture
Priority to JP2001319737A priority Critical patent/JP4007484B2/en
Publication of JP2003121480A publication Critical patent/JP2003121480A/en
Application granted granted Critical
Publication of JP4007484B2 publication Critical patent/JP4007484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導電性フィルム、半導体ウェハー、磁性膜、多層抵抗膜等の面内等方性材料及びその他の導電性の面内等方性材料の面内と厚さ方向の二つの抵抗率の評価に有用な抵抗率測定方法及び固有抵抗率計に関する。
【0002】
【従来の技術】
近年、導電性フィルム、半導体ウェハー、磁性膜、多層抵抗膜等の新素材が急速に開発されて来ており、これら開発された材料の諸性質について迅速、且つ簡易な評価が求められてきているが、抵抗率についても同様である。例えば、キャパシタ用に開発されている電極紙としての導電性プラスチック等においては、厚さ方向の抵抗率の測定が重要になってきている。
【0003】
面内方向と面外方向の抵抗率が同じである等方性材料の抵抗率測定方法としては、4端子法や4探針法があり、面内方向と面外方向の特性が異なる異方性性材料の抵抗率測定法としては、Montgomery法がある。
4端子法又は4探針法は、一直線上に配置した4つの電極端子又は電極探針を試料に接触させ、外側に配置した一対の電極端子又は電極探針により試料に電流を流し、内側に配置した一対の電極端子又は電極探針により電位差を測定する。そして、4端子法では、電流値、電位差、試料の断面積及び内側の電極端子間距離から抵抗率を算出し、4探針法では、電流値、電位差、試料の厚さ及び形状係数から抵抗率を算出する。
【0004】
異方性材料の抵抗率を測定する場合、最も単純な方法としては、4探針法により異方性主軸の数だけ繰り返して行う。例えば、面内等方性材料(二つの異なる抵抗率を有する異方性材料)の抵抗率測定においては、図1に示すように、X―Y平面内とz方向で夫々異なる抵抗率ρip(=ρx=ρy)、ρzを有する材料1について、X―Y、X―Zの方向から細長く薄い試料2、3を切り出し、これにらの各試料2、3について夫々4本の電極探針を当てて面内方向の抵抗率ρipと、厚さ方向の抵抗率ρzを算出するものである。4端子法を用いた場合も同様である。
【0005】
また、Montgomery法は、異方性材料から各辺が異方性主軸の方向と一致する直方体の試料を切り出し、その内の一面の四隅に電極を配置し、一辺に配置した一対の電極間に電流を流して対辺に配置した一対の電極で電位差を測定する。これを電極の配置を90°回転して二度行い、その結果と試料寸法から測定した面内の二方向の抵抗率を計算(算出)するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、4探針法による異方性材料の抵抗率測定法では、異方性主軸の数だけ測定を繰り返さなければならず、試料の正確な寸法形状の切り出し加工に非常に手間が掛かり、大変な労力を要するという問題がある。
また、Montgomery法では、準備する試料は一個であり、試料の切り出し加工においては4探針法に比べて軽減されるが、正確な直方体形状の試料の準備や、正確に電極を取り付けること等が困難であり、多大な労力を要する。また、電位差が測定装置の測定範囲に納まるように試料寸法を調節しなければならない場合がある。
【0007】
更に、何れの測定方法においても試料の厚さが薄い場合には、その厚さ方向の抵抗率を測定することが非常に困難となり、条件によっては不可能な場合がある。例えば、前述した導電性プラスチック等は、その厚さが数十μm程度と極めて薄いものであり、厚さ方向の抵抗率を4探針法で測定する場合、極めて小さい試料となり、厚さ方向の試料の切り出しは殆ど不可能である。
【0008】
本発明は、上述の点に鑑みてなされたもので、面内等方性材料の面内方向と厚さ方向の抵抗率を迅速に且つ容易に測定することができる抵抗率測定方法及び固有抵抗率計を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために請求項1に係わる抵抗率測定方法の発明では、面内等方性材料の面内方向の抵抗率ρipと厚さ方向の抵抗率ρzとを測定する抵抗率測定方法であって、一対の通電用電極探針と、二対の第1、第2の測定用電極探針とから成る6本の電極探針を前記面内等方性材料の表面に接触させて前記通電用電極探針間に電流を流し、前記第1の測定用電極探針間に発生する電位差VBCと、第2の測定用電極探針間に発生する電位差VEFとの比VEF/VBCをPとして、前記面内方向の抵抗率ρipと厚さ方向の抵抗率ρzを、次式
【0010】
【数3】

Figure 0004007484
【0011】
(tは、面内等方性材料の厚さ、q(P)、gBC(P)、gEF(P)は、面内等方性材料の寸法と電極探針の座標で決まる関数)
により算出することを特徴とする。
請求項2に係わる固有抵抗率計の発明では、面内等方性材料の面内方向の抵抗率ρipと厚さ方向の抵抗率ρzとを測定する固有抵抗率計であって、一対の通電用電極探針と、二対の第1、第2の測定用電極探針とから成る6本の電極探針を有し、前記面内等方性材料の表面に接触させるプローブと、前記通電用電極探針間に電流を供給する励磁回路と、前記第1、第2の測定用電極探針間の各電位差VBC、VEFを検出して、その比VEF/VBCをPとして、前記面内方向の抵抗率ρipと厚さ方向の抵抗率ρzを、次式
【0012】
【数4】
Figure 0004007484
【0013】
(tは面内等方性材料の厚さ、q(P)、gBC(P)、gEF(P)は、面内等方性材料の寸法と探針の座標で決まる関数)
により算出する演算手段と、前記演算手段に前記関数q(P)、gBC(P)、gEF(P)(面内等方性材料の寸法と探針の座標で決まる関数)及び電流値を入力する入力手段と、前記算出した面内方向の固有抵抗率ρipと厚さ方向の固有抵抗率ρzを表示する表示手段とを備えたことを特徴とする。
【0014】
プローブの6本の電極探針が面内等方性材料の表面に接触されて励磁回路から通電用電極探針間に電流が流れると、二対の第1、第2の測定用電極探針間に電位差VBC、VEFが発生する。演算手段は、これらの電位差VBC、VEFを入力して、入力手段から入力された面内等方性材料の厚さ、長さ、形状及び探針の位置に対して予め記憶されている関数q(P)、gBC(P)、gEF(P)を読み出し、これらを使って、演算式に沿って演算処理を行い、前記面内等方性材料の面内抵抗率ρip、及び厚さ方向の抵抗率ρzを算出して表示手段に表示する。これにより、面内等方性材料の面内方向の抵抗率ρipと厚さ方向の抵抗率ρzを迅速に、且つ簡単に測定することができる。
【0015】
【発明の実施の形態】
以下、本発明に係わる抵抗率測定方法を図面により詳細に説明する。
図2は、本発明に係る抵抗率測定方法の説明図である。図2において抵抗率を測定すべき材料(試料)1は、面内方向と厚さ方向の特性が異なる即ち、面内方向の抵抗率と厚さ方向の抵抗率とが異なる異方性材料、所謂面内等方性材料で、薄い直方体形状をなし、図示のように(X、Y、Z)座標系に置かれているものとする。そして、この面内等方性材料1のX軸に平行な辺1aの長さをlx、Y軸に平行な辺1bの長さをly、Z軸方向の辺1cの長さ(厚さ)をtとする。
【0016】
材料1の表面(上面)1sには、例えば、辺1aの中心を通りY軸方向に平行な直線La上にY軸方向に沿って6本の電極探針a、b、c、d、e、fが所定の間隔で一列に配置されている。これらの6本の電極探針a〜fは、各先端が被接触面としての表面1sに点接触している。尚、これらの電極探針a〜fの表面1sへの接触点を電極A、B、C、D、E、Fで表す。
【0017】
これら6本の電極探針のうち、一対の電極探針aとdが励磁電源に接続されて電流(直流電流)を流すための通電用の電極探針、二対の電極探針bとc、及び電極探針eとfが電位差VBC、及びVEFを測定する測定用の電極探針とされており、一度に二つの電位差VBC、VEFを測定する。この材料1は、測定対象となる未知の抵抗率が、X―Y平面内の抵抗率ρip(=ρx=ρy)と、Z方向の抵抗率ρzの二つである。そして、これらの二つの電位差VBC、VEFの測定値から逆解析により二つの抵抗率ρipとρzを求める。
【0018】
さて、図1に示すように(X、Y、Z)座標系に置かれた直方体の面内等方性材料1の表面1sに点電極a、dを介して電流を流す場合の電位分布を考える。前述したように、X―Y平面内の抵抗率をρip(=ρx=ρy)、Z(厚さ)方向の抵抗率ρzとすると、材料1内に生じる電位分布は、電位をΦとすると、次式で表される。
【0019】
【数5】
Figure 0004007484
【0020】
ここで、次のような座標変換を考えると、
【0021】
【数6】
Figure 0004007484
【0022】
上式(1)は、
【0023】
【数7】
Figure 0004007484
【0024】
のように等方性材料の電位分布を表すラプラスの方程式となる。
このとき、座標変換後の(X、Y、Z)座標系における抵抗率をρ'(≡ρu≡ρ≡ρ)、材料1の厚さをt'とおくと、夫々次式のように与えられる。
【0025】
【数8】
Figure 0004007484
【0026】
即ち、面内等方性材料1内の電位分布は、等方性材料の電位分布の解と式(4)、式(5)のような座標変換に伴う諸量の変換式を利用して求めることができる。
等方性材料の直方体に一組の点電極を介して電流を流した場合の電位分布に関する問題はすでに解析されており、座標変換に伴う諸量の変換式と電位、Φの解を使用してBC間、及びEF間の電位差VBC、VEFを求めると次式のように表される。
【0027】
【数9】
Figure 0004007484
【0028】
ここで、1/FBC及び1/FEFは、面内等方性材料1の寸法、電極の座標によって決まる係数(形状係数)である。尚、これらの係数1/FBC及び1/FEFは、無限級数で表される複雑な関数であり、省略する。
次に、上記電位差VBC、VEFから抵抗率ρipとρzを求める。そこで、電位差VEFのVBCに対する比をPとおくと、上式(6)、(7)は、次式で表される。
【0029】
【数10】
Figure 0004007484
【0030】
上式(8)において、FBC、FEF及びここで定義したPは、材料1の長さlx、ly及び電極探針の座標を決めると、t'のみの関数となる。これを夫々次式のように表す。
BC=fBC(t') 、FEF=fEF(t') 、P=p(t')
図3にこれらの関数の一例を示す。図2は、図1に示す面内等方性材料1の寸法を、lx=ly=100mmとし、探針a〜fをその中央部にY軸に平行に5mm間隔で配置する場合について、t'を変数にFBC、FEF、Pを計算している。図3からPの範囲を適当に選ぶことで、Pよりt'を逆に求めることができることが確認できる。即ち、pの逆関数が定義可能であり、この逆関数をqとして次のように表す。
【0031】
t'=q(P) (9)
また、前式(6)、(7)をρipについて解くと次式で表される。
【0032】
【数11】
Figure 0004007484
【0033】
ここで、gBC(P)=fBC(q(P))、gEF(P)=fEF(q(P))である。
従って、値Pを上式(10)、(11)の何れかに代入して、面内方向の抵抗率ρipを求めることが可能である。また、前式(5)をρzについて解けば、
【0034】
【数12】
Figure 0004007484
【0035】
従って、予めtの値(材料1の厚さ)が分かっていれば、上式(12)にt'、ρip及びtの値を代入して材料1のZ軸方向(厚み方向)の抵抗値ρzを算出することが可能である。
図3において、t'の小さな範囲では、fBC(t')、fEF(t')、p(t')は、何れもt'に無関係に一定の値(約2.8)となる。これは、t'が或る程度小さくなると材料内の電流の流れが二次元的になるためである。また、t'が大きくなるとp(t')の変化が次第に小さくなり、p(t')が約1.5付近に漸近する。これは、t'が電流密度の高い領域の深さに比べて十分大きくなり、材料1の表面1sにおける電位分布が、t'=∞の材料に電流を流したときの値に近づくためである。
【0036】
測定可能な範囲の検討は、Pとt'の関係、t'(P)とFBCの関係(即ち、PとFBCの関係)、t'(P)とFEFの関係(即ち、PとFEFの関係)について行うものであるが、Pとt'の関係が最も厳しいので、これについて検討を行えば合理的である。従って、図3において測定可能な範囲を示せば、点線で囲った範囲となる。
【0037】
図3と同じ条件における関数q(P)を図4に、関数gBC(P)、gEF(P)を図5に示す。これらの関数は、順解析により求めた図3に示す関係をPを変数に書き換えた関係であり、離散的に与えられる。図4から、関数q(P)は、Pの値が1.6以下及び2.0以上で、図5から、関数gBC(P)、gEF(P)は、Pの値が1.6以下で夫々Pの変化に敏感となり、急激に変化している。従って、このような急激に変化する領域における前記各関数q(P)、gBC(P)、gEF(P)は、逆解析には実用的ではない。
【0038】
本発明の測定方法では、電位差VBC、VEF、電流値I、面内等方性材料1の厚さtを測定して、これらの各値を前式(8)〜(12)に代入して抵抗率を算出するものであり、測定値には、誤差が含まれることは不可避であるので、計算過程における誤差の拡大を検討しておくことが重要となる。そこで、現在の測定装置の精度を考慮して全ての測定値の相対誤差を0.1%以下と仮定して抵抗率に伝播する相対誤差の限界を求めた結果を図6に示す。図6において、Pの範囲を 1.53〜2.04の範囲に限定すると、抵抗率ρip、ρzを計算するときの最終的な相対誤差の限界が共に5%以内になり、十分に実用にかなう範囲である。
【0039】
上述した0.1%以下の測定誤差に対して抵抗率ρip、ρzの最終的な相対誤差の限界が共に5%以内となるPの範囲をPの有効範囲と称することにする。図1に示す6本の探針a〜fの間隔(ピッチ)が変わると、関数q(P)、gBC(P)、gEF(P)が変化するので、これに伴いPの有効範囲も変化する。図7は、6本の電極探針a〜fの間隔を2.5mm〜10mmの範囲で変えて、その範囲の変化の結果を示す。図7に示すようにPの有効範囲は、曲線I(P min)、II(Pmax)に示すように電極探針a〜fの間隔大きくなるとPの大きい方へ移行し、且つ広くなる(曲線II)。
【0040】
また、Pの有効範囲が定まると、同時にt'の範囲も決定される(式(9))。そこで、電極探針a〜fの間隔とt'の範囲の関係を図8の曲線III(t'min)、IV(t'max)で示す。図7に示すように電極探針a〜fの間隔が広くなると、t'の範囲は厚い方向に移行し、且つ著しく広くなる(曲線IV)。
また、前式(5)に示すようにt'は、材料1の厚さtと抵抗率の比ρz/ρipの関数であり、従って、厚さtを求めれば、ρz/ρipの範囲が決まる。そこで、t=1、2、4、8mmとして、図7に示した結果に対してρz/ρipの範囲を求めた結果を図8(a)、(b)、(c)、(d)に示す。この図8は、0.1%の相対誤差に対して抵抗率を誤差5%以内で測定することができるρz/ρipの範囲と電極探針a〜fの間隔の関係を示しており、測定に際して抵抗率が大凡予測できる場合には、適切な探針間隔と材料の厚さとを選択することができる。
【0041】
上述したように本願発明の測定方法によれば、6本の電極探針を材料1の表面1sに押し付けて接触させるだけで、面内方向の抵抗率ρipと厚さ方向の抵抗率ρzとを迅速且つ容易に測定することが可能である。
尚、上記実施形態においては、6本の電極探針a〜fを一直線上に一列に配置し、一対の通電用電極探針aとdの内側及び外側に二対の測定用電極探針bとc、eとfを配置した場合について記述したが、かかる配置に限定されるものではない。即ち、測定用電極探針bとc、eとfは、通電用電極探針aとdにより面内等方性材料1に通電したときに当該面内等方性材料1に発生する電圧を測定できればよく、従って、上記三対の電極探針aとd、bとc、及びeとfは、所望の位置に設定すればよい。また、各一対の電極探針間の間隔も所望の間隔に設定すればよい。
【0042】
図9は、前述した抵抗率測定方法を適用した固有抵抗率計の実施形態を示すブロック図である。図9において面内等方性材料としての材料1は、測定対象となる未知の抵抗率が、表面(X−Y平面)1s内の抵抗率ρip(=ρx=ρy)と、厚さ(Z軸)方向の抵抗率ρzの二つである。固有抵抗率計10のプローブ(探触子)11は、例えば、6本の電極探針11a〜11fが一列に所定の間隔で配列されており、各先端が材料1の表面1sに同時に所定の接触圧で点接触可能とされている。そして、これらの電極探針11a〜11fの接触点を電極A〜Fで表す。
【0043】
6本の電極探針11a〜11fのうち、一対の電極探針11aと11dが電流を流すための通電用電極探針とされ、これらの通電用電極探針11aと11dの、内側の一対の電極探針11bと11c、外側の一対の電極探針11eと11fが夫々電位差を検出する測定用(検出用)の電極探針とされている。通電用電極探針11aと11dは、励磁回路12に接続されて材料1の電極AとDとの間に電流(直流電流)Iを流すようになっている。測定用電極探針11bと11cは、電極BとCとの間の電位差VBCを検出し、測定用電極探針11eと11fは、電極EとFとの間の電位差VEFを検出する。これら測定用電極探針11b〜11fは切換回路13に接続されている。この切換回路13は、後述する演算手段としてのコンピュータ18により切換制御されて、測定用電極探針11bと11c間の電位差VBCと測定用電極探針11eと11f間の電位差VEFを選択的に(交互に)出力する。
【0044】
入力手段としてのキーボード14は、コンピュータ18に各種パラメータ即ち、材料の形状(円形、正方形又は長方形)、形状に応じた寸法、探針の位置、電流値及びメモリ番号を入力する。メモリ番号とは、ユーザによって測定すべき材料の形状、寸法、探針位置及び電流値が特定している場合において、これらの情報をメモリに記憶させたときに、これらの情報の組合せについて付ける番号である。この番号を入力することで、これらの情報の入力の手間が省ける。
【0045】
前述したように関数q(P)、gBC(P)、gEF(P)は、形状係数1/FBC、1/FEFをt'について計算した結果を整理して与えられる。なお、形状係数1/FBC、1/FEFは、無限級数で表される関数であり、これらの計算をその都度行うと計算に長時間を要する。そこで、数種類の試料の形状、寸法と探針位置に対して予め前述した関数P、q(P)、gBC(P)、gEF(P)のデータ列がコンピュータ18のメモリ部に格納されている。これにより、コンピュータ18は、検出した電位差VBC、VEFに基づいて抵抗率ρip、ρzを迅速に演算することができる。
【0046】
前段増幅回路15、後段増幅回路16は、切換回路13から出力された電位差VBC、VEFを順次増幅して所定の電圧として出力する。負帰還回路17は、前段増幅回路15、後段増幅回路16に接続されており、接点電圧即ち、検出された電位差VBC、VEF、増幅回路15、16の残留電圧を、負帰還を掛けて測定前の0(零)値を取るためのものである。
【0047】
コンピュータ18は、励磁回路12を制御して通電用電極探針11a、11dに加える電流Iの方向を所定時間毎に電極探針11a→11d、11d→11aへと所定回数切り換える。また、コンピュータ18は、電極探針11a〜11fの材料1への接触時及び離隔時にアークの発生を防止するために、測定開始時に6本の電極探針が全て材料1の表面1sに接触した後に通電用電極探針11a、11d間に通電させ、所定回測定後電流を遮断する。また、コンピュータ18は、前段増幅回路15、後段増幅回路16の各増幅率を最適な値に切換制御して後段増幅器16から所定の電圧を出力させる。電源回路20は、前記各回路12、13、15〜18に所定の電源を供給する。
【0048】
以下に動作を説明する。
コンピュータ18は、測定に際して、測定用電極探針11bと11cとの間、11eと11fとの間を短絡させてゼロ調節する。また、通電用電極探針11aと11dとの間の電流Iが0(開放時)のときに前段増幅回路15と後段増幅回路16の各オフセット電圧をキャンセルして、測定前のゼロを取る。
【0049】
次いで、オペレータがプローブ11の6本の電極探針11a〜11fの先端を材料1の表面1sに押し付けて接触させる。図10(a)に示すように通電用電極探針11aから11dに電流Iが流れると電極A、Dの周りに円形状に同心的に電位が発生し、電極Aが正電位、電極Dが負電位となり、電極BとC間に電位差VBCが発生し、電極FとEとの間に電位差VEFが発生する。電極探針11a〜11fの間隔を変えると、同図(b)に示すように電極BとC間に発生する電位差VBC、電極FとE間に発生する電位差VEFが変化する。尚、図10は、材料1に発生する電位差を分かりやすく描いたものである。
【0050】
コンピュータ18は、切換回路13から出力されて前段増幅回路15及び後段増幅回路16で増幅された電位差VBC、VEFを入力して、キーボード14から入力された材料の厚さ、長さ、形状及び探針の位置に対して読み出した関数q(P)、gBC(P)、gEF(P)より、前式(10)〜(12)に沿って演算処理を行い、材料1の面内抵抗率ρip、及び厚さ方向の抵抗率ρzを算出する。即ち、検出した二つの電位差VBC、VEFから前述した逆解析の演算を実行して二つの抵抗率ρipとρzとを算出する。コンピュータ18は、前述したように通電用電極探針11aと11dとの間の電流Iの方向を切り換えて所定回数例えば、10回抵抗率ρip、ρzを算出してその平均値を算出する。これにより、抵抗率ρip、ρzを精度よく測定することが可能となる。コンピュータ18は、この算出した面内方向の抵抗率ρipと厚さ方向の抵抗率ρzを表示回路19に表示すると共に、現在の形状、プローブの探針の位置を併せて補足表示する。これにより、面内等方性材料1の面内方向の抵抗率ρipと厚さ方向の抵抗率ρzを迅速に、且つ簡単に測定することができる。
【0051】
この固有抵抗率計は、非破壊検査の分野の機器に応用することができる。例えば、材料の内部欠陥の分布状況の評価や、材料の不均一性の管理等に応用することができる。
尚、上記実施形態においては、プローブ11の6本の電極探針11a〜11fを一直線上に一列に配置し、一対の通電用電極探針11aと11dの内側及び外側に二対の測定用電極探針11bと11c、11eと11fを配置した場合について記述したが、かかる配置に限定されるものではない。即ち、測定用電極探針11bと11c、11eと11fは、通電用電極探針11aと11dにより面内等方性材料1に通電したときに当該面内等方性材料1に発生する電圧を測定できればよく、従って、上記三対の電極探針11aと11d、11bと11c、及び11eと11fは、所望の位置に設定すればよい。また、各電極探針間の間隔についても所望の間隔に設定すればよい。
【0052】
【発明の効果】
以上説明したように、請求項1の発明では、面内等方性材料の面内と厚さ方向の抵抗率を迅速に、且つ容易に測定することが可能となり、薄膜状の材料の厚さ方向の抵抗率を評価することが可能となる。
請求項2の発明では、6本の電極探針を測定すべき面内等方性材料の表面に接触させるだけで、面内方向と厚さ方向の二つの抵抗率を迅速に、且つ容易に測定することが可能となる。これにより、材料の内部欠陥の分布状況の評価や、材料の不均一性の管理等の非破壊検査の分野の機器に応用することができる。また、構成が簡単であり、取り扱いも容易である。
【図面の簡単な説明】
【図1】4探針法により異方性材料の面内方向と厚さ方向の二つの抵抗率を測定する場合の説明図である。
【図2】本発明に係る抵抗率測定方法により面内等方性材料の面内方向と厚さ方向の二つの抵抗率を測定する場合の説明図である。
【図3】図2に示す抵抗率測定方法により抵抗率を逆解析により演算する場合に使用する関数の一例を示す図である。
【図4】図3に示すt'とその相対誤差の拡大率を示す図である。
【図5】図3に示すFBC、FEFとその相対誤差の拡大率を示す図である。
【図6】図2に示す抵抗率測定方法における抵抗率の評価に伝播する測定誤差の説明図である。
【図7】図3に示すPとt'の有効範囲と電極探針間隔との関係を示す図である。
【図8】 0.1%の測定誤差に対して抵抗率を5%以内で評価できるρip/ρzの範囲と電極探針間隔との関係を示す図である。
【図9】本発明に係る抵抗率測定方法を用いた固有抵抗率計の実施形態を示すブロック図である。
【図10】図9に示す固有抵抗率計による測定時における面内等方性材料に発生する電位差を分かりやすく描いた説明図である。
【符号の説明】
1 面内等方性材料
1s 表面(X−Y平面)
a〜f 電極探針
A〜F 電極
t 面内等方性材料の厚さ
ρip 面内方向の抵抗率
ρz 厚み方向の抵抗率
BC 測定用電極探針b-c間の電位差
EF 測定用電極探針e-f間の電位差
10 固有抵抗率計
11 プローブ
11a〜11f 電極探針
12 励磁回路
13 切換回路
14 キーボード(入力手段)
15、16 増幅回路
17 負帰還回路
18 コンピュータ(演算手段)
19 表示回路(表示手段)
20 電源回路[0001]
BACKGROUND OF THE INVENTION
The present invention provides two in-plane resistivity and in-plane isotropic materials such as conductive films, semiconductor wafers, magnetic films, multilayer resistive films, and other conductive in-plane isotropic materials. The present invention relates to a resistivity measurement method and a specific resistivity meter useful for evaluation.
[0002]
[Prior art]
In recent years, new materials such as conductive films, semiconductor wafers, magnetic films, and multilayer resistive films have been rapidly developed, and quick and simple evaluations have been required for the properties of these developed materials. However, the same applies to the resistivity. For example, in a conductive plastic as an electrode paper developed for capacitors, measurement of resistivity in the thickness direction has become important.
[0003]
The resistivity measurement method for isotropic materials with the same resistivity in the in-plane direction and the out-of-plane direction includes the four-terminal method and the four-probe method, which are anisotropic with different in-plane and out-of-plane characteristics. There is a Montgomery method as a method for measuring the resistivity of the sexual material.
In the 4-terminal method or 4-probe method, four electrode terminals or electrode probes arranged on a straight line are brought into contact with the sample, and a current is passed through the sample by a pair of electrode terminals or electrode probes arranged on the outside. A potential difference is measured by a pair of electrode terminals or electrode probes. In the 4-terminal method, the resistivity is calculated from the current value, the potential difference, the cross-sectional area of the sample, and the distance between the inner electrode terminals. In the 4-probe method, the resistance is calculated from the current value, the potential difference, the thickness of the sample, and the shape factor. Calculate the rate.
[0004]
When measuring the resistivity of an anisotropic material, the simplest method is to repeat the number of anisotropic main axes by the four-probe method. For example, in the resistivity measurement of an in-plane isotropic material (an anisotropic material having two different resistivity), as shown in FIG. 1, the resistivity ρ ip is different in the XY plane and in the z direction. For the material 1 having (= ρ x = ρ y ) and ρ z , the thin and thin samples 2 and 3 are cut out from the directions of XY and XZ, and four samples for each of these samples 2 and 3 are cut out. The resistivity ρ ip in the in-plane direction and the resistivity ρ z in the thickness direction are calculated by applying the electrode probe. The same applies when the four-terminal method is used.
[0005]
In the Montgomery method, a rectangular parallelepiped sample in which each side coincides with the direction of the anisotropic main axis is cut out from an anisotropic material, electrodes are arranged at four corners of one side, and a pair of electrodes arranged on one side are arranged. A potential difference is measured with a pair of electrodes arranged on opposite sides by passing an electric current. This is performed twice by rotating the electrode arrangement by 90 °, and the in-plane resistivity measured from the result and the sample dimensions is calculated (calculated).
[0006]
[Problems to be solved by the invention]
However, in the resistivity measurement method for anisotropic materials by the four-probe method, the measurement must be repeated as many times as the number of the anisotropic main axes, and it takes a lot of work to cut out the exact dimensions of the sample. There is a problem of requiring a lot of labor.
In the Montgomery method, only one sample is prepared, and the sample cutting process is reduced compared to the four-probe method. However, it is possible to prepare an accurate rectangular parallelepiped sample, attach an electrode accurately, etc. It is difficult and requires a lot of effort. In some cases, the sample dimensions must be adjusted so that the potential difference falls within the measurement range of the measurement apparatus.
[0007]
Furthermore, in any measurement method, when the thickness of the sample is thin, it is very difficult to measure the resistivity in the thickness direction, and it may be impossible depending on conditions. For example, the conductive plastic described above is extremely thin with a thickness of about several tens of μm. When the resistivity in the thickness direction is measured by the four-probe method, the sample becomes an extremely small sample, It is almost impossible to cut out the sample.
[0008]
The present invention has been made in view of the above points, and a resistivity measuring method and a specific resistance capable of quickly and easily measuring the resistivity in the in-plane direction and the thickness direction of the in-plane isotropic material. The purpose is to provide a rate meter.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the invention of the resistivity measuring method according to claim 1, the resistivity for measuring the in-plane resistivity ρ ip and the thickness direction resistivity ρ z of the in-plane isotropic material. A measuring method, wherein six electrode probes comprising a pair of energizing electrode probes and two pairs of first and second measuring electrode probes are brought into contact with the surface of the in-plane isotropic material. Then, a current is passed between the energizing electrode probes, and the ratio between the potential difference V BC generated between the first measuring electrode probes and the potential difference V EF generated between the second measuring electrode probes. When V EF / V BC is P, the resistivity ρ ip in the in- plane direction and the resistivity ρ z in the thickness direction are expressed by the following equations:
[Equation 3]
Figure 0004007484
[0011]
(T is the thickness of the in-plane isotropic material, q (P), g BC (P), and g EF (P) are functions determined by the dimensions of the in-plane isotropic material and the coordinates of the electrode probe)
It is characterized by calculating by.
The specific resistivity meter according to claim 2 is a specific resistivity meter for measuring an in-plane resistivity ρ ip and a thickness direction resistivity ρ z of an in-plane isotropic material, A probe having six electrode probes each comprising a pair of first and second measurement electrode probes, and contacting the surface of the in-plane isotropic material; Each potential difference V BC , V EF between the excitation circuit for supplying current between the energizing electrode probe and the first and second measuring electrode probes is detected, and the ratio V EF / V BC is calculated. As P, the resistivity ρ ip in the in- plane direction and the resistivity ρ z in the thickness direction are expressed by the following equation:
[Expression 4]
Figure 0004007484
[0013]
(T is the thickness of the in-plane isotropic material, q (P), g BC (P), and g EF (P) are functions determined by the dimensions of the in-plane isotropic material and the coordinates of the probe)
, The function q (P), g BC (P), g EF (P) (a function determined by the dimensions of the in-plane isotropic material and the coordinates of the probe) and the current value input means for inputting a, and further comprising a display means for displaying the resistivity [rho z of resistivity [rho ip the thickness direction of the calculated in-plane direction.
[0014]
When the six electrode probes of the probe are brought into contact with the surface of the in-plane isotropic material and a current flows between the excitation electrode probe and the energizing electrode probe, two pairs of first and second measurement electrode probes Potential differences V BC and V EF are generated between them. The calculation means inputs these potential differences V BC and V EF and stores them in advance for the thickness, length, shape, and probe position of the in-plane isotropic material input from the input means. The functions q (P), g BC (P), and g EF (P) are read out, and using these, calculation processing is performed according to the calculation formula, and the in-plane resistivity ρ ip of the in-plane isotropic material is calculated. And the resistivity ρ z in the thickness direction is calculated and displayed on the display means. Thereby, the in-plane resistivity ρ ip and the thickness direction resistivity ρ z of the in-plane isotropic material can be measured quickly and easily.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the resistivity measurement method according to the present invention will be described in detail with reference to the drawings.
FIG. 2 is an explanatory diagram of a resistivity measuring method according to the present invention. The material (sample) 1 whose resistivity is to be measured in FIG. 2 is an anisotropic material having different in-plane characteristics and thickness-direction characteristics, that is, in-plane-direction resistivity and thickness-direction resistivity are different. It is assumed that a so-called in-plane isotropic material has a thin rectangular parallelepiped shape and is placed in the (X, Y, Z) coordinate system as shown. Then, the length of the side 1a parallel to the X axis of the in-plane isotropic material 1 is lx, the length of the side 1b parallel to the Y axis is ly, and the length (thickness) of the side 1c in the Z-axis direction. Is t.
[0016]
The surface (upper surface) 1s of the material 1 has, for example, six electrode probes a, b, c, d, e along the Y-axis direction on a straight line La passing through the center of the side 1a and parallel to the Y-axis direction. , F are arranged in a line at a predetermined interval. The tip ends of these six electrode probes a to f are in point contact with the surface 1s as a contacted surface. The contact points of the electrode probes a to f with respect to the surface 1s are represented by electrodes A, B, C, D, E, and F.
[0017]
Among these six electrode probes, a pair of electrode probes a and d are connected to an excitation power source and an energizing electrode probe for flowing a current (DC current), two pairs of electrode probes b and c. , And the electrode probes e and f are electrode probes for measurement for measuring the potential differences V BC and V EF , and two potential differences V BC and V EF are measured at a time. This material 1 has two unknown resistivity to be measured: resistivity ρ ip (= ρ x = ρ y ) in the XY plane and resistivity ρ z in the Z direction. Then, a two resistivity [rho ip and [rho z These two potential V BC, inverse analysis from measurements of V EF.
[0018]
Now, as shown in FIG. 1, the potential distribution when current is passed through the surface 1s of the in-plane isotropic material 1 of the rectangular parallelepiped placed in the (X, Y, Z) coordinate system via the point electrodes a and d is shown. Think. As described above, when the resistivity in the XY plane is ρ ip (= ρ x = ρ y ) and the resistivity ρ z in the Z (thickness) direction, the potential distribution generated in the material 1 is the potential. If Φ, it is expressed by the following equation.
[0019]
[Equation 5]
Figure 0004007484
[0020]
Here, consider the following coordinate transformation:
[0021]
[Formula 6]
Figure 0004007484
[0022]
The above formula (1) is
[0023]
[Expression 7]
Figure 0004007484
[0024]
Thus, the Laplace equation representing the potential distribution of the isotropic material is obtained.
At this time, if the resistivity in the (X, Y, Z) coordinate system after coordinate transformation is ρ ′ (≡ρ u ≡ρ v ≡ρ w ) and the thickness of the material 1 is t ′, As given.
[0025]
[Equation 8]
Figure 0004007484
[0026]
That is, the potential distribution in the in-plane isotropic material 1 is obtained by using the solution of the potential distribution of the isotropic material and the conversion formulas of various quantities associated with the coordinate conversion such as the equations (4) and (5). Can be sought.
The problem of potential distribution when a current is passed through a rectangular parallelepiped of isotropic material through a pair of point electrodes has already been analyzed. Te between BC, and the potential difference V BC between EF, when determining the V EF is expressed by the following equation.
[0027]
[Equation 9]
Figure 0004007484
[0028]
Here, 1 / F BC and 1 / F EF are coefficients (shape factors) determined by the dimensions of the in-plane isotropic material 1 and the coordinates of the electrodes. Note that these coefficients 1 / F BC and 1 / F EF are complicated functions represented by an infinite series and are omitted.
Next, the resistivity ρ ip and ρ z are obtained from the potential differences V BC and V EF . Therefore, when the ratio of the potential difference V EF to V BC is P, the above equations (6) and (7) are expressed by the following equations.
[0029]
[Expression 10]
Figure 0004007484
[0030]
In the above equation (8), F BC , F EF and P defined here are functions of only t ′ when the length lx, ly of the material 1 and the coordinates of the electrode probe are determined. This is expressed as follows.
F BC = f BC (t ′), F EF = f EF (t ′), P = p (t ′)
FIG. 3 shows an example of these functions. FIG. 2 shows a case where the dimension of the in-plane isotropic material 1 shown in FIG. 1 is lx = ly = 100 mm, and the probes a to f are arranged in the center thereof at intervals of 5 mm parallel to the Y axis. F BC , F EF , and P are calculated using 'as a variable. It can be confirmed that t ′ can be obtained in reverse from P by appropriately selecting the range of P from FIG. That is, an inverse function of p can be defined, and this inverse function is represented as q as follows.
[0031]
t ′ = q (P) (9)
Furthermore, Equation (6), is expressed by the following equation is solved for [rho ip (7).
[0032]
[Expression 11]
Figure 0004007484
[0033]
Here, g BC (P) = f BC (q (P)) and g EF (P) = f EF (q (P)).
Therefore, it is possible to determine the resistivity ρ ip in the in-plane direction by substituting the value P into any of the above formulas (10) and (11). Also, if the previous equation (5) is solved for ρ z ,
[0034]
[Expression 12]
Figure 0004007484
[0035]
Accordingly, if the value of t (the thickness of the material 1) is known in advance, the resistance of the material 1 in the Z-axis direction (thickness direction) is substituted by substituting the values of t ′, ρip, and t into the above equation (12). The value ρ z can be calculated.
In FIG. 3, in a small range of t ′, f BC (t ′), f EF (t ′), and p (t ′) are all constant values (about 2.8) regardless of t ′. This is because the current flow in the material becomes two-dimensional when t ′ is reduced to some extent. Further, as t ′ increases, the change in p (t ′) gradually decreases, and p (t ′) gradually approaches about 1.5. This is because t ′ is sufficiently larger than the depth of the region where the current density is high, and the potential distribution on the surface 1 s of the material 1 approaches the value when a current is passed through the material of t ′ = ∞. .
[0036]
Examination of the measurable range includes the relationship between P and t ′, the relationship between t ′ (P) and F BC (ie, the relationship between P and F BC ), and the relationship between t ′ (P) and F EF (ie, P The relationship between P and t EF is the most severe, and it is reasonable to examine this because it is the most severe. Therefore, if a measurable range is shown in FIG. 3, it is a range surrounded by a dotted line.
[0037]
FIG. 4 shows the function q (P) under the same conditions as FIG. 3, and FIG. 5 shows the functions g BC (P) and g EF (P). These functions are relationships obtained by rewriting the relationship shown in FIG. 3 obtained by forward analysis with P as a variable, and are given discretely. From FIG. 4, the function q (P) has P values of 1.6 or less and 2.0 or more, and from FIG. 5, the functions g BC (P) and g EF (P) have P values of 1.6 or less and P Sensitive to change and changing rapidly. Accordingly, the functions q (P), g BC (P), and g EF (P) in such a rapidly changing region are not practical for inverse analysis.
[0038]
In the measurement method of the present invention, the potential differences V BC , V EF , the current value I, and the thickness t of the in-plane isotropic material 1 are measured, and these values are substituted into the previous equations (8) to (12). Thus, the resistivity is calculated, and it is inevitable that the measurement value includes an error. Therefore, it is important to consider the expansion of the error in the calculation process. Therefore, FIG. 6 shows the result of obtaining the limit of the relative error that propagates to the resistivity assuming that the relative error of all the measured values is 0.1% or less in consideration of the accuracy of the current measuring apparatus. In FIG. 6, when the range of P is limited to the range of 1.53 to 2.04, the limits of the final relative error when calculating the resistivity ρ ip and ρ z are both within 5%, and the range is sufficiently practical. It is.
[0039]
The range of P in which the final relative error limits of the resistivity ρ ip and ρ z are both within 5% with respect to the measurement error of 0.1% or less is referred to as an effective range of P. Since the functions q (P), g BC (P), and g EF (P) change when the interval (pitch) between the six probes a to f shown in FIG. 1 changes, the effective range of P is changed accordingly. Also changes. FIG. 7 shows the result of changing the distance between the six electrode probes a to f in the range of 2.5 mm to 10 mm. As shown in FIG. 7, the effective range of P shifts to a larger P and becomes wider as the distance between the electrode probes a to f increases as shown by the curves I (P min) and II (Pmax) (curves). II).
[0040]
When the effective range of P is determined, the range of t ′ is also determined at the same time (formula (9)). Therefore, the relationship between the distance between the electrode probes a to f and the range of t ′ is shown by curves III (t′min) and IV (t′max) in FIG. As shown in FIG. 7, when the distance between the electrode probes af increases, the range of t ′ shifts in the thick direction and becomes significantly wider (curve IV).
Further, as shown in the previous equation (5), t ′ is a function of the ratio of the thickness t of the material 1 to the resistivity ρ z / ρ ip , and therefore, if the thickness t is obtained, ρ z / ρ ip The range of is determined. Therefore, assuming t = 1, 2, 4, and 8 mm, the results of obtaining the range of ρ z / ρ ip with respect to the result shown in FIG. 7 are the results of FIGS. 8A, 8 B, 8 C, and 8 D. ). FIG 8 shows the relationship between 0.1% relative error intervals ranging electrode probe a~f of ρ z / ρ ip capable of measuring the resistivity within 5% error with respect to the measurement In this case, if the resistivity can be roughly predicted, an appropriate probe interval and material thickness can be selected.
[0041]
As described above, according to the measurement method of the present invention, the resistivity ρ ip in the in-plane direction and the resistivity ρ z in the thickness direction can be obtained simply by pressing the six electrode probes against the surface 1s of the material 1 and bringing them into contact with each other. Can be measured quickly and easily.
In the above-described embodiment, six electrode probes a to f are arranged in a line on a straight line, and two pairs of measurement electrode probes b are provided inside and outside the pair of energizing electrode probes a and d. Although c, e, and f have been described, the present invention is not limited to such an arrangement. That is, the measurement electrode probes b and c, e, and f generate voltages generated in the in-plane isotropic material 1 when the in-plane isotropic material 1 is energized by the energization electrode probes a and d. Therefore, the three pairs of electrode probes a and d, b and c, and e and f may be set at desired positions. Moreover, what is necessary is just to set the space | interval between each pair of electrode probes to a desired space | interval.
[0042]
FIG. 9 is a block diagram showing an embodiment of a specific resistivity meter to which the resistivity measurement method described above is applied. In FIG. 9, the material 1 as the in-plane isotropic material has an unknown resistivity to be measured, a resistivity ρ ip (= ρ x = ρ y ) in the surface (XY plane) 1 s, and a thickness. are two are (Z-axis) direction of the resistivity [rho z. The probe (probe) 11 of the specific resistivity meter 10 has, for example, six electrode probes 11 a to 11 f arranged in a line at a predetermined interval, and each tip is simultaneously formed on the surface 1 s of the material 1 with a predetermined value. Point contact is possible with contact pressure. The contact points of these electrode probes 11a to 11f are represented by electrodes A to F.
[0043]
Of the six electrode probes 11a to 11f, the pair of electrode probes 11a and 11d is an energizing electrode probe for flowing current, and the inner pair of these energizing electrode probes 11a and 11d. The electrode probes 11b and 11c and the pair of outer electrode probes 11e and 11f are used as measurement (detection) electrode probes for detecting a potential difference. The energization electrode probes 11a and 11d are connected to the excitation circuit 12 so as to pass a current (DC current) I between the electrodes A and D of the material 1. The measurement electrode probes 11b and 11c detect a potential difference V BC between the electrodes B and C, and the measurement electrode probes 11e and 11f detect a potential difference V EF between the electrodes E and F. These measurement electrode probes 11 b to 11 f are connected to a switching circuit 13. This switching circuit 13 is switched and controlled by a computer 18 as arithmetic means described later, and selectively selects a potential difference V BC between the measuring electrode probes 11b and 11c and a potential difference V EF between the measuring electrode probes 11e and 11f. (Alternately).
[0044]
The keyboard 14 as input means inputs various parameters, that is, the shape of the material (circular, square, or rectangular), the size according to the shape, the position of the probe, the current value, and the memory number. The memory number is the number assigned to the combination of information when the shape, size, probe position and current value of the material to be measured are specified by the user and the information is stored in the memory. It is. By inputting this number, the labor of inputting such information can be saved.
[0045]
As described above, the functions q (P), g BC (P), and g EF (P) are given by organizing the results of calculating the shape factors 1 / F BC and 1 / F EF for t ′. Note that the shape factors 1 / F BC and 1 / F EF are functions represented by an infinite series, and it takes a long time to perform these calculations each time. Therefore, the data strings of the above-described functions P, q (P), g BC (P), and g EF (P) are stored in the memory unit of the computer 18 in advance for several types of sample shapes, dimensions, and probe positions. ing. As a result, the computer 18 can quickly calculate the resistivity ρ ip , ρ z based on the detected potential differences V BC , V EF .
[0046]
The pre-stage amplifier circuit 15 and the post-stage amplifier circuit 16 sequentially amplify the potential differences V BC and V EF output from the switching circuit 13 and output them as predetermined voltages. The negative feedback circuit 17 is connected to the preamplifier circuit 15 and the postamplifier circuit 16 and applies negative feedback to the contact voltages, that is, the detected potential differences V BC and V EF and the residual voltages of the amplifier circuits 15 and 16. This is for taking a 0 (zero) value before measurement.
[0047]
The computer 18 controls the excitation circuit 12 to switch the direction of the current I applied to the energizing electrode probes 11a and 11d from the electrode probes 11a to 11d and 11d to 11a every predetermined time. Further, the computer 18 contacts all the electrode probes 11a to 11f with the surface 1s of the material 1 at the start of measurement in order to prevent generation of an arc when the electrode probes 11a to 11f are in contact with the material 1 and at the time of separation. After that, current is passed between the current-carrying electrode probes 11a and 11d, and the current is cut off after a predetermined number of measurements. Further, the computer 18 controls the respective amplification factors of the pre-stage amplifier circuit 15 and the post-stage amplifier circuit 16 to be optimal values and outputs a predetermined voltage from the post-stage amplifier 16. The power supply circuit 20 supplies a predetermined power to each of the circuits 12, 13, 15-18.
[0048]
The operation will be described below.
In the measurement, the computer 18 performs zero adjustment by short-circuiting between the measurement electrode probes 11b and 11c and between 11e and 11f. Further, when the current I between the energizing electrode probes 11a and 11d is 0 (when opened), the offset voltages of the preamplifier circuit 15 and the postamplifier circuit 16 are canceled, and zero before measurement is taken.
[0049]
Next, the operator presses the tips of the six electrode probes 11 a to 11 f of the probe 11 against the surface 1 s of the material 1 to make contact. As shown in FIG. 10A, when a current I flows from the current-carrying electrode probes 11a to 11d, a potential is generated concentrically in a circular shape around the electrodes A and D, the electrode A is a positive potential, and the electrode D is A negative potential is generated, a potential difference V BC is generated between the electrodes B and C, and a potential difference V EF is generated between the electrodes F and E. When the distance between the electrode probes 11a to 11f is changed, the potential difference V BC generated between the electrodes B and C and the potential difference V EF generated between the electrodes F and E are changed as shown in FIG. FIG. 10 depicts the potential difference generated in the material 1 in an easy-to-understand manner.
[0050]
The computer 18 inputs the potential differences V BC and V EF output from the switching circuit 13 and amplified by the pre-stage amplifier circuit 15 and the post-stage amplifier circuit 16, and the thickness, length, and shape of the material input from the keyboard 14. And the function q (P), g BC (P), and g EF (P) read out with respect to the probe position, the arithmetic processing is performed according to the previous equations (10) to (12), and the surface of the material 1 The internal resistivity ρ ip and the resistivity ρ z in the thickness direction are calculated. That is, the above-described inverse analysis is performed from the detected two potential differences V BC and V EF to calculate the two resistivities ρ ip and ρ z . As described above, the computer 18 switches the direction of the current I between the energization electrode probes 11a and 11d, calculates the resistivity ρ ip , ρ z a predetermined number of times, for example, 10 times, and calculates the average value. . This makes it possible to accurately measure the resistivity ρ ip and ρ z . The computer 18 displays the calculated resistivity ρ ip in the in-plane direction and resistivity ρ z in the thickness direction on the display circuit 19 and additionally displays the current shape and the probe probe position together. Thereby, the resistivity ρ ip in the in-plane direction and the resistivity ρ z in the thickness direction of the in-plane isotropic material 1 can be measured quickly and easily.
[0051]
This resistivity meter can be applied to equipment in the field of nondestructive inspection. For example, the present invention can be applied to evaluation of the distribution state of internal defects of materials, management of material non-uniformity, and the like.
In the above embodiment, the six electrode probes 11a to 11f of the probe 11 are arranged in a line on a straight line, and two pairs of measurement electrodes are provided inside and outside the pair of energizing electrode probes 11a and 11d. Although the case where the probes 11b and 11c and 11e and 11f are arranged has been described, the present invention is not limited to such arrangement. That is, the measurement electrode probes 11b and 11c, 11e and 11f generate a voltage generated in the in-plane isotropic material 1 when the in-plane isotropic material 1 is energized by the energization electrode probes 11a and 11d. Therefore, the three pairs of electrode probes 11a and 11d, 11b and 11c, and 11e and 11f may be set at desired positions. Moreover, what is necessary is just to set the space | interval between each electrode probe to a desired space | interval.
[0052]
【The invention's effect】
As described above, according to the first aspect of the present invention, the in-plane and in-thickness resistivity of the in-plane isotropic material can be measured quickly and easily, and the thickness of the thin film material can be measured. It becomes possible to evaluate the resistivity in the direction.
According to the second aspect of the present invention, the two resistivity in the in-plane direction and the thickness direction can be quickly and easily achieved by simply bringing the six electrode probes into contact with the surface of the in-plane isotropic material to be measured. It becomes possible to measure. Thereby, it can apply to the apparatus of the field | area of the nondestructive inspection, such as evaluation of the distribution condition of the internal defect of material, and management of the nonuniformity of material. Further, the configuration is simple and the handling is easy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram in the case of measuring two resistivity values in an in-plane direction and a thickness direction of an anisotropic material by a four-probe method.
FIG. 2 is an explanatory diagram in the case of measuring two resistivity values in an in-plane direction and a thickness direction of an in-plane isotropic material by the resistivity measurement method according to the present invention.
FIG. 3 is a diagram illustrating an example of a function used when the resistivity is calculated by inverse analysis using the resistivity measurement method illustrated in FIG. 2;
4 is a diagram showing an enlargement ratio of t ′ and its relative error shown in FIG. 3; FIG.
FIG. 5 is a diagram illustrating an enlargement ratio of F BC and F EF shown in FIG. 3 and their relative errors.
6 is an explanatory diagram of a measurement error propagated to resistivity evaluation in the resistivity measuring method shown in FIG.
7 is a diagram showing a relationship between an effective range of P and t ′ shown in FIG. 3 and an electrode probe interval. FIG.
FIG. 8 is a diagram showing a relationship between a range of ρ ip / ρ z where the resistivity can be evaluated within 5% with respect to a measurement error of 0.1% and an electrode probe interval.
FIG. 9 is a block diagram showing an embodiment of a specific resistivity meter using the resistivity measuring method according to the present invention.
10 is an explanatory diagram depicting the potential difference generated in the in-plane isotropic material at the time of measurement by the specific resistivity meter shown in FIG. 9 in an easy-to-understand manner.
[Explanation of symbols]
1 In-plane isotropic material 1s surface (XY plane)
a to f electrode probes A to F electrode t thickness of in-plane isotropic material ρ ip in- plane resistivity ρ z thickness direction resistivity V BC potential difference V ec between electrode probes bc Potential difference between measurement electrode probes ef 10 Specific resistivity meter 11 Probes 11a to 11f Electrode probe 12 Excitation circuit 13 Switching circuit 14 Keyboard (input means)
15, 16 Amplifier circuit 17 Negative feedback circuit 18 Computer (calculation means)
19 Display circuit (display means)
20 Power supply circuit

Claims (2)

面内等方性材料の面内方向の抵抗率ρipと厚さ方向の抵抗率ρzとを測定する抵抗率測定方法であって、
一対の通電用電極探針と、二対の第1、第2の測定用電極探針とから成る6本の電極探針を前記面内等方性材料の表面に接触させて前記通電用電極探針間に電流を流し、前記第1の測定用電極探針間に発生する電位差VBCと、第2の測定用電極探針間に発生する電位差VEFとの比VEF/VBCをPとして、前記面内方向の抵抗率ρipと厚さ方向の抵抗率ρzを、次式
Figure 0004007484
(tは、面内等方性材料の厚さ、q(P)、gBC(P)、gEF(P)は、面内等方性材料の寸法と電極探針の座標で決まる関数)
により算出することを特徴とする抵抗率測定方法。
A resistivity measurement method for measuring an in-plane resistivity ρ ip and a thickness direction resistivity ρ z of an in-plane isotropic material,
Six electrode probes comprising a pair of energizing electrode probes and two pairs of first and second measuring electrode probes are brought into contact with the surface of the in-plane isotropic material to thereby provide the energizing electrodes. When a current is passed between the probe tips, a ratio V EF / V BC between a potential difference V BC generated between the first measurement electrode probes and a potential difference V EF generated between the second measurement electrode probes is obtained. As P, the resistivity ρ ip in the in- plane direction and the resistivity ρ z in the thickness direction are
Figure 0004007484
(T is the thickness of the in-plane isotropic material, q (P), g BC (P), and g EF (P) are functions determined by the dimensions of the in-plane isotropic material and the coordinates of the electrode probe)
The resistivity measurement method characterized by calculating by this.
面内等方性材料の面内方向の抵抗率ρipと厚さ方向の抵抗率ρzとを測定する固有抵抗率計であって、
一対の通電用電極探針と、二対の第1、第2の測定用電極探針とから成る6本の電極探針を有し、前記面内等方性材料の表面に接触させるプローブと、
前記通電用電極探針間に電流を供給する励磁回路と、
前記第1、第2の測定用電極探針間の各電位差VBC、VEFを検出して、その比VEF/VBCをPとして、前記面内方向の抵抗率ρipと厚さ方向の抵抗率ρzを、次式
Figure 0004007484
(tは面内等方性材料の厚さ、q(P)、gBC(P)、gEF(P)は、面内等方性材料の寸法と電極探針の座標で決まる関数)
により算出する演算手段と、
前記演算手段に前記関数q(P)、gBC(P)、gEF(P)(面内等方性材料の寸法と電極探針の座標で決まる関数)及び電流値を入力する入力手段と、
前記算出した面内方向の抵抗率ρipと厚さ方向の抵抗率ρzを表示する表示手段と
を備えたことを特徴とする固有抵抗率計。
An intrinsic resistivity meter that measures the resistivity ρ ip in the in-plane direction and the resistivity ρ z in the thickness direction of the in-plane isotropic material,
A probe having six electrode probes each composed of a pair of energizing electrode probes and two pairs of first and second measuring electrode probes, and contacting the surface of the in-plane isotropic material; ,
An excitation circuit for supplying a current between the energizing electrode probes;
Respective potential differences V BC and V EF between the first and second measurement electrode probes are detected, and the ratio V EF / V BC is P, and the in-plane resistivity ρ ip and the thickness direction The resistivity ρ z of
Figure 0004007484
(T is the thickness of the in-plane isotropic material, q (P), g BC (P), and g EF (P) are functions determined by the dimensions of the in-plane isotropic material and the coordinates of the electrode probe)
Computing means for calculating by
Input means for inputting the functions q (P), g BC (P), g EF (P) (a function determined by the dimensions of the in-plane isotropic material and the coordinates of the electrode probe) and a current value to the arithmetic means; ,
A specific resistivity meter comprising: a display means for displaying the calculated resistivity ρ ip in the in-plane direction and resistivity ρ z in the thickness direction.
JP2001319737A 2001-10-17 2001-10-17 Resistivity measuring method and resistivity meter Expired - Fee Related JP4007484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319737A JP4007484B2 (en) 2001-10-17 2001-10-17 Resistivity measuring method and resistivity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319737A JP4007484B2 (en) 2001-10-17 2001-10-17 Resistivity measuring method and resistivity meter

Publications (2)

Publication Number Publication Date
JP2003121480A JP2003121480A (en) 2003-04-23
JP4007484B2 true JP4007484B2 (en) 2007-11-14

Family

ID=19137246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319737A Expired - Fee Related JP4007484B2 (en) 2001-10-17 2001-10-17 Resistivity measuring method and resistivity meter

Country Status (1)

Country Link
JP (1) JP4007484B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743582B2 (en) * 2011-02-08 2015-07-01 東日本旅客鉄道株式会社 Rail bond resistance measuring apparatus and rail bond resistance measuring method
JP6974144B2 (en) * 2017-12-06 2021-12-01 日置電機株式会社 Processing equipment and processing method
JP7466896B2 (en) * 2020-05-20 2024-04-15 国立研究開発法人物質・材料研究機構 Current-voltage characteristic measuring method, measuring device, quality control method and manufacturing method
KR102690023B1 (en) * 2024-03-14 2024-08-05 인하대학교 산학협력단 Sheet resistance and mobility measurement device and method for precise characterization of thin film transistors

Also Published As

Publication number Publication date
JP2003121480A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
US7443177B1 (en) Characterization of conductor by alternating current potential-drop method with a four-point probe
US10073151B2 (en) Fast hall effect measurement system
CN102692524B (en) A kind of nano thermoelectric seebeck coefficient in-situ quantitative characterization device based on atomic force microscope
JP2019028012A (en) Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity
JP2003028900A (en) Non-contact voltage measurement method and apparatus
CN106370932B (en) Method and system for detecting resistivity of thin-layer silicon wafer based on pseudo-measurement value method
JP4007484B2 (en) Resistivity measuring method and resistivity meter
JP4042853B2 (en) Hardening depth measuring device for steel
JP4532357B2 (en) Concentration measuring device
JPH0356848A (en) Method and device for surface cracking measurement
JP2013210247A (en) Insulation inspection device and insulation inspection method
JP2670655B2 (en) Circuit pattern inspection device and inspection method
CN109997046A (en) Electric resistance measuring apparatus and resistance measurement method
JP4208560B2 (en) Impedance measuring device
Koon Nonlinearity of resistive impurity effects on van der Pauw measurements
JP3398089B2 (en) Measurement method of resistivity value of resistive film
Saw et al. Automated low-temperature resistivity measurement setup: Design and fabrication
Nikolov et al. Virtual System for Sheet Resistance Measurement of Inkjet Printed Conductive Layers
JP2664067B2 (en) Small signal detection method
JP2023111710A (en) Thickness measuring method and thickness measuring device for electrically conductive analyte
JP3338698B2 (en) Magnetic permeability measuring apparatus and magnetic permeability measuring method
Martens et al. Precise eddy current impedance measurement of metal plates
JP2007147360A (en) Surface resistivity measuring device and method
Sierra Varela Contactless measurements of electrical conductivity via the eddy current method
JP3080590B2 (en) Semiconductor wafer resistance measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160907

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees